
groff_diff (7) Miscellaneous Information Manual groff_diff (7)

*[string [arg . . .]]
Interpolate string, passing it arg . . . as arguments.

\ / Apply an italic correction: modify the spacing of the preceding glyph so that the distance be-
tween it and the following glyph is correct if the latter is of upright shape. For example, if
an italic “f” is followed immediately by a roman right parenthesis, then in many fonts the top
right portion of the “f” overlaps the top of the right parenthesis, producing f), which is ugly.
Inserting \ / between them produces f) and avoids this problem. Use this escape sequence
whenever an oblique glyph is immediately followed by an upright glyph without any inter-
vening space.

\, Apply a left italic correction: modify the spacing of the following glyph so that the distance
between it and the preceding glyph is correct if the latter is of upright shape. For example, if
a roman left parenthesis is immediately followed by an italic “f”, then in many fonts the bot-
tom left portion of the “f” overlaps the bottom of the left parenthesis, producing (f, which is
ugly. Inserting \ , between them produces (f and avoids this problem. Use this escape se-
quence whenever an upright glyph is followed immediately by an oblique glyph without any
intervening space.

\: Insert a non-printing break point. That is, a word can break there, but the soft hyphen char-
acter does not mark the break point if it does (in contrast to “\%”). The remainder of the
word is subject to hyphenation as normal.

\?anything\? Suppress formatting of anything. This feature has two applications.

Use it with the output comparison operator to compare its operands by character rather than
as formatted output. Since troff reads comparands protected with \? in copy mode, they
need not even be valid groff syntax. The escape character is still lexically recognized, how-
ever, and consumes the next character.

When used in a diversion, \? transparently embeds input, read in copy mode, until its own
next occurrence on the input line. Use \! if you want to embed newlines in a diversion. Un-
like \!, \? is interpreted even in copy mode, and anything in the top-level diversion is not sent
to device-independent output.

\[char] Typeset the special character char. See groff_char(7).

\[base-char combining-component . . .]
Typeset a composite glyph consisting of base-char overlaid with one or more combining-
components. For example, “ \[A ho]” is a capital letter “A” with a “hook accent” (ogonek).
See the composite request below; Groff: The GNU Implementation of troff , the groff Tex-
info manual, for details of composite glyph name construction; and groff_char(7) for a list of
components used in composite glyph names.

\~ Insert an unbreakable space that is adjustable like an ordinary space. It is discarded from the
end of an output line if a break is forced.

Restricted requests
To mitigate risks from untrusted input documents, the cf, pi, and sy requests are disabled by default. troff (1)’s
-U option enables the formatter’s “unsafe mode”, restoring their function (and enabling additional groff ex-
tension requests, open, opena, and pso).

New requests
Several GNU troff requests work like AT&T troff ’s “as” and ds requests, accepting an optional leading neu-
tral double-quote, notated “["]”, in an argument that the formatter reads in copy mode to the end of the input
line, permitting inclusion of leading spaces.

.aln new-register existing-register
Create alias (additional name) new-register of existing-register. If existing-register is undefined,
GNU troff produces a warning in category “reg” and ignores the request. See section “Warnings”

groff 1.23.0.2736-b6180 2025-01-02 220

