;;; GNU Guix --- Functional package management for GNU ;;; Copyright © 2015, 2016 Ludovic Courtès ;;; Copyright © 2016 Ricardo Wurmus ;;; ;;; This file is part of GNU Guix. ;;; ;;; GNU Guix is free software; you can redistribute it and/or modify it ;;; under the terms of the GNU General Public License as published by ;;; the Free Software Foundation; either version 3 of the License, or (at ;;; your option) any later version. ;;; ;;; GNU Guix is distributed in the hope that it will be useful, but ;;; WITHOUT ANY WARRANTY; without even the implied warranty of ;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ;;; GNU General Public License for more details. ;;; ;;; You should have received a copy of the GNU General Public License ;;; along with GNU Guix. If not, see . (define-module (guix graph) #:use-module (guix store) #:use-module (guix monads) #:use-module (guix records) #:use-module (guix sets) #:use-module (rnrs io ports) #:use-module (srfi srfi-1) #:use-module (srfi srfi-9) #:use-module (srfi srfi-26) #:use-module (ice-9 match) #:use-module (ice-9 vlist) #:export (node-type node-type? node-type-identifier node-type-label node-type-edges node-type-convert node-type-name node-type-description node-edges node-back-edges traverse/depth-first node-transitive-edges node-reachable-count %graph-backends %d3js-backend %graphviz-backend graph-backend? graph-backend graph-backend-name graph-backend-description export-graph)) ;;; Commentary: ;;; ;;; This module provides an abstract way to represent graphs and to manipulate ;;; them. It comes with several such representations for packages, ;;; derivations, and store items. It also provides a generic interface for ;;; exporting graphs in an external format, including a Graphviz ;;; implementation thereof. ;;; ;;; Code: ;;; ;;; Node types. ;;; (define-record-type* node-type make-node-type node-type? (identifier node-type-identifier) ;node -> M identifier (label node-type-label) ;node -> string (edges node-type-edges) ;node -> M list of nodes (convert node-type-convert ;any -> M list of nodes (default (lift1 list %store-monad))) (name node-type-name) ;string (description node-type-description)) ;string (define (%node-edges type nodes cons-edge) (with-monad %store-monad (match type (($ identifier label node-edges) (define (add-edge node edges) (>>= (node-edges node) (lambda (nodes) (return (fold (cut cons-edge node <> <>) edges nodes))))) (mlet %store-monad ((edges (foldm %store-monad add-edge vlist-null nodes))) (return (lambda (node) (reverse (vhash-foldq* cons '() node edges))))))))) (define (node-edges type nodes) "Return, as a monadic value, a one-argument procedure that, given a node of TYPE, returns its edges. NODES is taken to be the sinks of the global graph." (%node-edges type nodes (lambda (source target edges) (vhash-consq source target edges)))) (define (node-back-edges type nodes) "Return, as a monadic value, a one-argument procedure that, given a node of TYPE, returns its back edges. NODES is taken to be the sinks of the global graph." (%node-edges type nodes (lambda (source target edges) (vhash-consq target source edges)))) (define (traverse/depth-first proc seed nodes node-edges) "Do a depth-first traversal of NODES along NODE-EDGES, calling PROC with each node and the current result, and visiting each reachable node exactly once. NODES must be a list of nodes, and NODE-EDGES must be a one-argument procedure as returned by 'node-edges' or 'node-back-edges'." (let loop ((nodes (append-map node-edges nodes)) (result seed) (visited (setq))) (match nodes (() result) ((head . tail) (if (set-contains? visited head) (loop tail result visited) (let ((edges (node-edges head))) (loop (append edges tail) (proc head result) (set-insert head visited)))))))) (define (node-transitive-edges nodes node-edges) "Return the list of nodes directly or indirectly connected to NODES according to the NODE-EDGES procedure. NODE-EDGES must be a one-argument procedure that, given a node, returns its list of direct dependents; it is typically returned by 'node-edges' or 'node-back-edges'." (traverse/depth-first cons '() nodes node-edges)) (define (node-reachable-count nodes node-edges) "Return the number of nodes reachable from NODES along NODE-EDGES." (traverse/depth-first (lambda (_ count) (+ 1 count)) 0 nodes node-edges)) ;;; ;;; Graphviz export. ;;; (define-record-type (graph-backend name description prologue epilogue node edge) graph-backend? (name graph-backend-name) (description graph-backend-description) (prologue graph-backend-prologue) (epilogue graph-backend-epilogue) (node graph-backend-node) (edge graph-backend-edge)) (define %colors ;; See colortbl.h in Graphviz. #("red" "magenta" "blue" "cyan3" "darkseagreen" "peachpuff4" "darkviolet" "dimgrey" "darkgoldenrod")) (define (pop-color hint) "Return a Graphviz color based on HINT, an arbitrary object." (let ((index (hash hint (vector-length %colors)))) (vector-ref %colors index))) (define (emit-prologue name port) (format port "digraph \"Guix ~a\" {\n" name)) (define (emit-epilogue port) (display "\n}\n" port)) (define (emit-node id label port) (format port " \"~a\" [label = \"~a\", shape = box, fontname = Helvetica];~%" id label)) (define (emit-edge id1 id2 port) (format port " \"~a\" -> \"~a\" [color = ~a];~%" id1 id2 (pop-color id1))) (define %graphviz-backend (graph-backend "graphviz" "Generate graph in DOT format for use with Graphviz." emit-prologue emit-epilogue emit-node emit-edge)) ;;; ;;; d3js export. ;;; (define (emit-d3js-prologue name port) (format port "\ " (call-with-input-file "graph.js" get-string-all))) (define (emit-d3js-node id label port) (format port "\ nodes[\"~a\"] = {\"id\": \"~a\", \"label\": \"~a\", \"index\": nodeArray.length}; nodeArray.push(nodes[\"~a\"]);~%" id id label id)) (define (emit-d3js-edge id1 id2 port) (format port "links.push({\"source\": \"~a\", \"target\": \"~a\"});~%" id1 id2)) (define %d3js-backend (graph-backend "d3js" "Generate chord diagrams with d3js." emit-d3js-prologue emit-d3js-epilogue emit-d3js-node emit-d3js-edge)) ;;; ;;; Shared. ;;; (define %graph-backends (list %graphviz-backend %d3js-backend)) (define* (export-graph sinks port #:key reverse-edges? node-type (backend %graphviz-backend)) "Write to PORT the representation of the DAG with the given SINKS, using the given BACKEND. Use NODE-TYPE to traverse the DAG. When REVERSE-EDGES? is true, draw reverse arrows." (match backend (($ _ _ emit-prologue emit-epilogue emit-node emit-edge) (emit-prologue (node-type-name node-type) port) (match node-type (($ node-identifier node-label node-edges) (let loop ((nodes sinks) (visited (set))) (match nodes (() (with-monad %store-monad (emit-epilogue port) (store-return #t))) ((head . tail) (mlet %store-monad ((id (node-identifier head))) (if (set-contains? visited id) (loop tail visited) (mlet* %store-monad ((dependencies (node-edges head)) (ids (mapm %store-monad node-identifier dependencies))) (emit-node id (node-label head) port) (for-each (lambda (dependency dependency-id) (if reverse-edges? (emit-edge dependency-id id port) (emit-edge id dependency-id port))) dependencies ids) (loop (append dependencies tail) (set-insert id visited))))))))))))) ;;; graph.scm ends here