
Work�ow management for data analysis with GNU
Guix

Roel Janssen

June 9, 2016

Abstract

Combining programs to perform more powerful actions using scripting languages seems
a good idea, until portability and parallel execution on computing clusters become the
main concerns of the script. This paper attempts to build a domain-speci�c language for
work�ow management built on top of GNU Guix’s language for package management to
provide portable, shareable and reproducible work�ow descriptions that can run on cluster
computing setups.

Contents

1 Introduction 1
1.1 Scripting languages . 1
1.2 How, what and why . 1

2 Motivation 2
2.1 Portability and reproducibility among system distributions 2
2.2 Shareable, portable and reproducible work�ows 2
2.3 Declarative language properties . 2

3 Work�ow Description Language 3
3.1 Processes . 3

3.1.1 Example process de�nition . 4
3.1.2 Executing the process’s procedure . 4

3.2 Work�ows . 5
3.2.1 Example work�ow de�nition . 5
3.2.2 Invoking work�ows with GNU Guix 7

3.3 Computing the execution order . 7

4 Integration with the guix command 7
4.1 Lay-out of existing functionality . 7
4.2 User interface . 8
4.3 Work�ow execution engine . 8
4.4 Lay-out with the added functionality . 8

5 Conclusion 9

6 Discussion 9

Appendix A Dependency pairs to exection order 10

i

1 Introduction
Users operate computers by running computer programs. When using computers to analyze
data sets, we use a variety of small tools together to build a new abstraction layer to compute.
A functional package manager takes care of making these programs available to users in a
portable and reproducible way. [1] But how do we describe our use of the programs to get from
an initial dataset to a speci�c dataset from which we draw conclusions? More importantly,
how do we reproduce such data transformations at a later point in time?

1.1 Scripting languages
We could simply write each command invocation in a script, and possibly enhance it with
variables and looping constructs to make it easier to modify. Of course we can only do this
when we take the availability of the interpreter for the scripting language for granted.

Due to di�erences in operating system environments, writing portable scripts becomes as
complex as writing full programs. The attempt of GNU Autotools1 to enable developers to
generate portable build con�guration scripts serves a �ne example of the complexity involved.

Inevitably, writing portable scripts involves dealing with deployment and execution di�erences
among software distributions. How do we ensure the system provides all programs we use in
the script? Can we use multiple computing nodes to run parts of the scripts in parallel? Will
the script survive system upgrades?

1.2 How, what and why
Furthermore, we would explain the script’s inner workings to another developer by expressing
a di�erent perspective of the script; its structure in terms of processes that make up the whole.
So, in addition to expressing the procedure that describes how to achieve a certain result, we
would like to describe the structure of information with which we express what parts work
together and why they do so.

We describe the context of a procedure (in a structural relational perspective) and the actual
“how-to” instructions as a process, which provides insight into the what perspective. We further
abstract a set of processes connected by their input and output properties, or related practical
use in a work�ow, which provides insight into the why perspective. With a work�ow language,
we attempt to elegantly describe the relationships between processes and their procedures in
order to determine an e�cient way to execute the entire work�ow.

Work�ow execution programs need to take care of the environment of the programs, the order
in which programs should run, and how the programs will run e�ciently across multiple
compute nodes in a computing cluster. We call the combination of these subjects work�ow
management.

In this document, we pursue a declarative approach to de�ning work�ows, by extending GNU
Guix’s language (implemented in Scheme) for describing packages [2]. By doing so, we can
describe processes with such a great precision that we can actually map the output of a process
to the source code of individual programs.

1https://gnu.org/s/autoconf/

1

https://gnu.org/s/autoconf/

2 Motivation
We attempt to create a single solution to the challenges described below with a work�ow
management extension to GNU Guix:

• Portable and reproducible software deployment:
Obtaining similar or even identical results starts with using identical software environ-
ments.

• Shareable, portable and reproducible work�ow process descriptions:
Enable sharing of recipes to run a program and its run-time con�gurable settings to
obtain a speci�c result.

• Integration with multi-computer execution models:
In bioinformatics, the programs run on high-performance computing environments
because of the size of the data sets.

In Software deployment for reproducible, multi-user software environments [1] we found an
extensible programming language for describing reproducible software deployment. Extending
this language with work�ow management e�ectively provides a single solution to the challenges
stated above.

2.1 Portability and reproducibility among system distributions
In Free Software we dealt with portability among system distributions by creating a common
set of programs that form the basis for all distributions and a set of macros to deal with the
remaining di�erences.

For reproducible software deployment, we can use a functional package manager with which
we can reproduce the programs that make up a software environment on all major software
distributions based on Linux.

GNU Guix — an implementation of a functional package manager with an extensible language
to deal with the build and deployment processes of software programs — provides software
deployment features with a declarative language, which makes it a good starting point for a
work�ow management language.

2.2 Shareable, portable and reproducible work�ows
A portable self-contained software environment (provided by a functional package manager)
makes writing portable scripts easy. By using a language that provides meta-linguistic abstrac-
tion features, we can implement a mechanism for (parallel) execution of programs on multiple
computers, so that the procedures do not have to deal with this complexity.

2.3 Declarative language properties
A script only provides an answer to the how, but leaves the what and why aspects completely in
the dark. The declarative approach of the GNU Guix package management language displays
the capability of describing the what and why aspects.

2

Automation requires understanding the computational problem in various contexts (how, what
and why). Existing work�ow management programs attempt to provide insight in the what
and why aspects, but leave important details like software deployment up to external programs.

Designing an e�cient mechanism or framework to handle these complexities could simplify
the code that actually does the work. The possibility for meta-linguistic abstraction in LISP and
Scheme [3] allows for a solution closer to what we humans can understand: a domain-speci�c
language for work�ow de�nitions.

The domain-speci�c language for package management of GNU Guix [2] serves as a basis and
an inspiration for a simple yet e�ective declarative language for work�ow management.

3 Work�ow Description Language
First, by building on the purely functional deployment model [4] to deploy programs and their
entire environment we attempt to maximize the precision of expressing work�ows.

We do this by extending GNU Guix — an implementation of a purely functional package
manager. In the work�ow description language, a user only needs to specify which packages a
process requires. GNU Guix can then build and deploy these packages and their (recursive)
dependencies.

Secondly, the declarative nature of the language we de�ne helps providing insight into the
what aspect of work�ow management by exposing the relationships between processes. We
can derive the order in which processes must execute, and in extension, which processes can
run in parallel to each other from a set of pairs in the form of (A B) where A depends on the
successful completion of B.

Thirdly, because GNU Guix can provide a self-contained run-time environment for a procedure,
we can distribute its execution to other computers in a network. We leave the coordination of
remote code execution to existing job control systems.

We implement record types in Scheme, similar to those used for describing packages, to provide
a format for expressing properties in a structured way. This allows for a declarative approach
to de�ning processes and work�ows, which makes our language a description language.

3.1 Processes
A process describes a computable task to perform. This essentially consists of two components:
the transformation according to a speci�ed algorithm and the implementation of a program to
perform the task. By distinguishing between the algorithm (mathematical steps) and the imple-
mentation (computer program) used to perform the task, we can more easily �nd di�erences
between what should happen, and what actually happens.

Processes live in the context of a work�ow like functions live in the context of a program.
In fact, we implement processes as functions in our work�ow language, taking input as a
parameter and returning the desired output.

Here we �nd an essential di�erence between a package and a process; with a package, we
know about all variables in advance, while with processes, the input and output variables could
di�er each time we run it.

3

3.1.1 Example process de�nition

(define (rnaseq-fastq-quality-control in out)
(process

(name "rnaseq-fastq-quality-control")
(version "1.0")
(environment
`(("fastqc" ,fastqc-bin-0.11.4)))

(input in)
(output (string-append out "/" name))
(procedure
(script
(interpreter 'guile)
(source

(let ((sample-files (find-files in #:directories? #f)))
`(begin

;; Create output directories.
(unless (access? ,out F_OK) (mkdir ,out))
(unless (access? ,output F_OK) (mkdir ,output))
;; Perform the analysis step.
(map (lambda (file)

(when (string-suffix? ".fastq.gz" file)
(system* "fastqc" "-q" file "-o" ,output)))

',sample-files))))))
(synopsis "Generate quality control reports for FastQ files")
(description "This process generates a quality control report

for a single FastQ file without any special options passed to
FastQC.")))

3.1.2 Executing the process’s procedure

The procedure contains code to perform, and the environment describes the environment
in which this code can successfully run. In a single expression, we captured the run-time
environment and a way to use that environment to run the exact program including its
dependencies as described by the package de�nitions.

When distributing code, we cannot assume the other machine has an identical software envi-
ronment. So, before we attempt to run the Scheme code, we must create a suitable software
environment for the procedure to run successfully. Setting the environment variables to the
values suggested by the output of GNU Guix after installing a package takes care of this. We
can obtain these values at a later time by by running:

guix package --search-paths

By using the intermediary form of a shell script, we can execute the code on any computing
cluster. From a process description we can derive the contents of the shell script.

For the example process de�ned in section 3.1.1, the work�ow execution engine can generate
the following shell script:

#!/gnu/store/7cdd8s466qyjh64m0byq0rz9gk1jid40-bash-4.3.42/bin/sh
export PATH="/hpc/shared_profiles/rnaseq/bin:/hpc/shared_profiles/guile/bin"

4

guile -c '(begin
(unless (access? "/hpc/example-out" F_OK)

(mkdir "/hpc/example-out"))
(unless (access? "/hpc/example-out/run-1" F_OK)

(mkdir "/hpc/example-out/run-1"))
(map (lambda (file)

(when (string-suffix? ".fastq.gz" file)
(system* "fastqc" "-q" file "-o" ,output)))

\'("/hpc/example-in/sample_R1_001.fastq.gz"
"/hpc/example-in/sample_R1_002.fastq.gz")))'

3.2 Work�ows
When de�ning work�ows, we want to express the order (�ow) in which processes (work) should
run. When processes can run in parallel, we would like to do so. To make this a computational
problem, we need to describe the processes and their relationship to each other.

3.2.1 Example work�ow de�nition

Taken from an existing Perl script, we can abstract the individual processes and describe their
relationship to each other. We do not have to take care of writing our own parallel execution
mechanism, because the work�ow execution engine can compute this.

(define (rnaseq-pipeline in out)
(workflow
(name "rnaseq-pipeline")
(version "1.0")
(input in)
(output (string-append

out "/" name "-"
(date->string (current-date) "~Y-~m-~d")))

(processes
'(rnaseq-initialize

rnaseq-fastq-quality-control
rnaseq-align
rnaseq-add-read-groups
rnaseq-index
rnaseq-feature-readcount
rnaseq-collect-alignment-metrics
rnaseq-merge-read-features
rnaseq-compute-rpkm-values
rnaseq-normalize-read-counts
rnaseq-differential-expression))

(restrictions
`((,rnaseq-fastq-quality-control ,rnaseq-initialize)

(,rnaseq-align ,rnaseq-initialize)
(,rnaseq-add-read-groups ,rnaseq-align)
(,rnaseq-index ,rnaseq-add-read-groups)
(,rnaseq-collect-alignment-metrics ,rnaseq-index)

5

(,rnaseq-feature-readcount ,rnaseq-index)
(,rnaseq-merge-read-features ,rnaseq-feature-readcount)
(,rnaseq-compute-rpkm-values ,rnaseq-merge-read-features)
(,rnaseq-normalize-read-counts ,rnaseq-merge-read-features)
(,rnaseq-differential-expression ,rnaseq-merge-read-features)

))
(synopsis "RNA sequencing pipeline used at the UMCU")
(description "The RNAseq pipeline can do quality control on

FastQ and BAM files; align reads against a reference genome; count
reads in features; normalize read counts; calculate RPKMs and
perform DE analysis of standard designs.")))

From this example we can generate the overview graph displayed in Figure 1 and a sequential
execution order graph displayed in Figure 2. A parallel execution order graph would look
similar to the upside-down version of the overview graph.

Figure 1: Process overview as described by the code for an RNA sequencing pipeline. In a dependency
graph, we would draw the arrows exactly the other way, which tells us the parallel execution graph.

6

Figure 2: A graph displaying the sequential order in which processes may execute to resolve all
dependency constraints. An implementation for computing this order can be found in appendix A
“Dependency pairs to exection order”.

3.2.2 Invoking work�ows with GNU Guix

Remember that we implemented both the work�ow and the processes as functions taking two
arguments: input and output. As a result, we can specify where to �nd the input data and
where to store the output data.

guix workflow --execute=rnaseq-pipeline \
--input=/home/roel/pipelines/rnaseq-in \
--output=/home/roel/pipelines/rnaseq-out

3.3 Computing the execution order
From the list of dependency pairs, we can identify free processes, which do not rely on data
from others. We provide an implementation for this functionality in Appendix A.

4 Integration with the guix command
GNU Guix provides an interface for users to do package management. In addition to a tra-
ditional package management interface to install, remove and upgrade packages, it provides
subcommands to generate dependency graphs and edit package recipes. Users of work�ow
execution programs expect similar functionality for their work�ow descriptions.

Therefore, full integration of work�ow management in GNU Guix involves implementing the rel-
evant subcommands like graph for work�ows so that users can run guix graph my-workflow
and get the graph of a work�ow as displayed in Figure 1.

4.1 Lay-out of existing functionality
GNU Guix’s user interface consists of multiple Scheme modules connected by a ‘main’ module
that directs a user’s request to run the relevant Scheme functions. With Scheme — a dialect
of Lisp — we build language abstractions to produce more suitable language constructs for
a speci�c situation. For example, the (guix packages) module provides a package record
type that allows the developer to describe a package without needing to write any of the actual
run-time code for GNU Guix. The declarative language knows how to transform a package
recipe into the instructions to pass to the build daemon.

7

Figure 3 displays a subset of the Scheme modules that make GNU Guix including the Scheme
language interpreter for which we can generate dependency graph with GNU Guix itself.

import

build

package

download

lint

graphscriptspackages

guixemacs

build

packages

services

system

tests

gnu build-aux

guile

subcommands

head

modules

helpers

distribution
Scheme interpreter

Figure 3: The general structure of Scheme modules that make up GNU Guix.

4.2 User interface
To implement the work�ow language subcommand, we need to add the module (guix scripts
workflow). Furthermore, to integrate the work�ow language with the graph and lint sub-
commands, we need to modify the corresponding (guix graph) and (guix lint) modules.

Adding a work�ow recipe involves creating a (gnu workflows ...) module, similar to the
way to add a package recipe by creating a (gnu packages ...) module.

4.3 Work�ow execution engine
For the work�ow language to execute the workflow descriptions, we must implement a
work�ow execution engine.

For this work�ow execution engine we need to implement record types for workflow and
process in (guix workflows) and a dependency resolver which we do in (guix workflow
execution-order).

The proof-of-concept implementation contains additional modules for helper functions to
generate shell scripts from a process record in (guix workflow execution-helper).

4.4 Lay-out with the added functionality
Figure 4 displays the new and a�ected modules to implement work�ow management to GNU
Guix.

8

workflows

import

buildworkflows

package

download

lint

graph

workflow

scriptspackages

guixemacs

build

packages

services

system

tests

gnu build-aux

guile

subcommands

head

modules

helpers

distribution
Scheme interpreter

Figure 4: The impact of adding work�ow management to GNU Guix. Additional modules to
implement and existing modules to adjust.

As explained in section 4.2 User interface and section 4.3 Work�ow execution engine, we need to
implement three new modules: (gnu workflows), (guix workflows) and (guix scripts
workflow). Integrating existing commands with work�ow management requires adjusting
(guix scripts lint) and (guix scripts graph).

5 Conclusion
When building pipelines for data analysis, GNU Guix can provide both package management
and work�ow management. Implementing both packages and work�ows as Scheme record
types enables users to refer to a precise package and the corresponding dependency graph of
that package when de�ning work�ows.

Because GNU Guix provides a self-contained environment, the execution of processes in a
work�ow becomes as simple as running a command without the burden of checking for missing
programs or di�erent versions of programs.

Describing the relationships between processes from which a work�ow execution engine can
compute the execution order reduces the amount of code required to run a work�ow correctly.

The sum of these simpli�cations make an elegant language extension to GNU Guix to de�ne
work�ows.

6 Discussion
The reliance of one process on another seems expressed redundantly. We could detect whether
a process depends on another by looking for the process-output function, which provides a

9

way to say “the input of process A uses the output of process B”. So, to gather dependency
information from process records, we can look for inputs that use this function.

We can then describe dependency pairs. When process A depends on process B, we de�ne the
pair (A B). When process A also depends on process C , we simply de�ne another pair (A C)
so that we get a list of pairs ((A B) (A C)).

For the direct dependencies (where the input depends on the output of another process), we
could compute the dependency pairs automatically.

Appendix A Dependency pairs to exection order
This appendix includes a possible implementation of a dependency solver written in Guile
Scheme2. The execution-order function provides a simple interface to compute the execution
order for a given set of processes and their restrictions.

(define* (process-depends-on process dependencies
#:optional (depend-list '()))

"Returns the list of processes PROCESS depends on."
(if (null? dependencies)

depend-list
(let ((item (car dependencies)))

(if (equal? process (car item))
(process-depends-on process (cdr dependencies)

(append depend-list (cdr item)))
(process-depends-on process (cdr dependencies)

depend-list)))))

(define* (process-needed-by process dependencies
#:optional (depend-list '()))

"Returns the dependency pairs needed by PROCESS."
(if (null? dependencies)

depend-list
(let ((item (car dependencies)))

(if (equal? (list process) (cdr item))
(process-needed-by process

(delete item dependencies)
(append (list item) depend-list))

(process-needed-by process
(delete item dependencies)
depend-list)))))

(define* (compute-free-points processes dependencies
#:optional (free-points '()))

"Returns a PROCESS that can be used to start the execution at."
(if (null? processes)

free-points
(let ((process (car processes)))

2https://gnu.org/s/guile

10

https://gnu.org/s/guile

(if (null? (process-depends-on process dependencies))
(compute-free-points (cdr processes) dependencies

(append free-points (list process)))
(compute-free-points (cdr processes) dependencies

free-points)))))

(define (reduce-dependencies processes dependencies)
"Removes dependencies on resolved PROCESSES."
(if (null? processes)

dependencies
(reduce-dependencies
(cdr processes)
(lset-difference eq? dependencies

(process-needed-by (car processes)
dependencies)))))

(define* (execution-order processes dependencies
#:optional (order '()))

"Returns the list of PROCESSES, re-ordered so it can be executed
and adhere to the dependencies provided in DEPENDENCIES."

(if (null? processes)
(reverse order)
(let* ((resolvable (compute-free-points processes

dependencies))
(leftovers (lset-difference eq? processes resolvable)))

(if (null? resolvable)
#f
(execution-order leftovers

(reduce-dependencies resolvable
dependencies)

(append resolvable order))))))

References
[1] Roel Janssen. Software deployment for reproducible, multi-user software environments.

2016.

[2] Ludovic Courtès. Functional Package Management with Guix. In European Lisp Symposium,
Madrid, Spain, June 2013.

[3] Harold Abelson, Gerald Jay Sussman, and Julie Sussman. Structure and Interpretation of
Computer Programs. MIT Press, 1996.

[4] Eelco Dolstra. The Purely Functional Software Deployment Model. Institute for Programming
research and Algorithmics, 2006.

11

	Introduction
	Scripting languages
	How, what and why

	Motivation
	Portability and reproducibility among system distributions
	Shareable, portable and reproducible workflows
	Declarative language properties

	Workflow Description Language
	Processes
	Example process definition
	Executing the process's procedure

	Workflows
	Example workflow definition
	Invoking workflows with GNU Guix

	Computing the execution order

	Integration with the guix command
	Lay-out of existing functionality
	User interface
	Workflow execution engine
	Lay-out with the added functionality

	Conclusion
	Discussion
	Appendix Dependency pairs to exection order

