
Parameterized Packages

Sarthak Shah

April 3, 2023

About me

Contact Details

Name: Sarthak Shah
IRC Nick: cel7t
Github: cel7t
Email: shahsarthakw@gmail.com
Phone: +91 87670 59061
University: BITS Pilani, Hyderabad Campus
Country of Residence: India
Time zone: IST (UTC + 5:30)
Primary Language: English

Background

I am a second year dual degree student studying Mathematics and Elec-
tronics & Communications Engineering at BITS Pilani. My programming
expertise mainly lies with Scheme, Common Lisp, Clojure and C/C++.

1

https://github.com/cel7t
mailto:shahsarthakw@gmail.com
https://www.bits-pilani.ac.in/hyderabad/


In addition to that, I am working as a system administrator of my univer-
sity’s HPC system.
I am also the president of my college’s equivalent of a GNU/Linux advo-
cacy group, through which I have organized and facilitated GNU/Linux
installation workshops to introduce my classmates and juniors to free soft-
ware. I am currently in the process of organizing a workshop on functional
programming using Racket.
Thanks to these experiences I have also built a good understanding of
build systems and shell scripting, which I believe will be beneficial to this
project.

Why GNU Guix?

I’ve been a Guix user for a few years now, and I believe that its greatest
advantage over other functional package managers like Nix is that all its
packages are meticulously defined in such a way that they can be built
from source wherever needed. Often while running programs in situa-
tions such as High-Performance Computing, performance is critical and
it is necessary to build packages with certain options to make them run
faster and more efficiently. So far Gentoo is the only GNU/Linux distri-
bution offering global build system configuration options (in the form of
USE flags); however, if Guix were to get the same ability in the form of pa-
rameteric packages it would make it a very good option for any situation
where performance is paramount.
I also love using Scheme and the opportunity to work on a large-scale
project using Scheme would be very interesting.

2



Current contributions

I have contributed the following to Guix:

• Two packages: xfishtank and xpenguins

• Bugfix: Replace pumpa origin

• Feature: –with-configure-flag

Project

Abstract

Parameterized packages will provide users a simple way to configure many
aspects of packages, à la Gentoo USE flags.
GNU Guix is capable of building all its packages from source, and one
great advantage provided by this feature is the ability to specify inclusion
or exclusion of optional features in certain packages which will result in
greater flexibility and control for the end user. For example, a user run-
ning a package on a web server might not require X11 support for it, or a
user running Pipewire might want to compile a package with support for
it. This project will introduce optional ’package parameters’ for all pack-
ages in Guix.
Potential Mentors: Ludovic Courtès

3

https://issues.guix.gnu.org/62262
https://issues.guix.gnu.org/61906
https://issues.guix.gnu.org/62551


Parameterized Packages for Guix

Project Goals

• Providing optional ’parameters’ and ’parameter-transforms’ values
in the package record

• Writing logic to calculate the combinatorial variations created by pa-
rameters

• Writing a macro ’let-parameters’ to make it easier to write simple pa-
rameteric packages

• Writing a package transform for the same in the same vein as –with-
patch or –with-source

• Writing documentation and tests for the aforementioned

• Resolving complexities that arise from the addition of these

Project Overview

This project will introduce two extra values in the package record called
’parameters’ and ’parameter-transforms’
These will be completely optional and if ’parameters’ have not been spec-
ified for a given package, it will be assumed to depend on the default (un-
parameteric) version of its dependencies. It will also introduce a macro
called ’let-parameters’

4



How it will work To see how the suggested UI works, see below the ex-
ample of a hypothetical package ‘gui-music-player‘:

(define-public gui-music-player

(package

(parameters (and

(xor wayland x11^)

(xor pulseaudio^ jack* alsa)))

(parameter-transforms

((jack)

(changes-to-be-made-to-package)))))

Alternatively,

(define-public gui-music-player

(package

(let-parameters (and

(xor wayland x11^)

(xor pulseaudio^ jack* alsa))

(p-if x11

(some-code-for-x11-version))

(p-case

(pulseaudio (do-this-for-pulseaudio))

(jack (do-this-for-jack))

(alsa (do-this-for-alsa))))))

Here, the parameters entry is a list that contains a boolean expression of
pre-defined parameter symbols like x11, jack etc.
Symbols such as ˆ, * or ! may be appended to these to indicate the follow-
ing:

5



• ˆ - the given parameter is default; i.e the default version of the pack-
age chooses this parameter
if this is not specified, the first option is assumed to be the default

• * - the given parameter has a non-standard transform, which will be
specified in parameter-transforms

• ! - negation

It is necessary for any valid list of parameter symbols to evaluate to #t.
The number of combinations for a given parameter list will be computed
with the help of an algorithm based on either the Quine-McCluskey Al-
gorithm or Petrick’s Method which will be used to simplify the parameter
list’s boolean expressions.
This will help us avoid combinatorial explosion.
The parameter-transforms will contain procedures for creating package
variants based on the flags specified; note that it might be necessary to
specify cases such as (and pulseaudio wayland) if the methods for pulseau-
dio and wayland do not compose.

What if a package record does not contain the parameter value? The
package will then be used in its default state by all the packages depend-
ing on it. In general, parameters propagate to dependencies if they are able
to create a valid configuration with the given parameters, and if they do
not have the given parameters they are generated in their default state.
This will help in the gradual adoption of parameters, as not every package
will have to specify parameters and at the same time the packages speci-
fying parameters will be able to take advantage of them.

6

https://guix.gnu.org/manual/devel/en/html_node/Defining-Package-Variants.html
https://guix.gnu.org/manual/devel/en/html_node/Defining-Package-Variants.html


One great advantage of this method is that a user could have two pack-
ages with conflicting parameters, but they would both work on the system
thanks to Guix building both versions of dependencies. This would not
work on imperative distributions providing similar functionality.
For example, say gui-music-player (built with pulseaudio) and cli-music-
player (built with jack) both depend on mpd, Guix will generate two ver-
sions of mpd, one made with the pulseaudio parameter and one made
with the jack parameter allowing both to coexist.

Parameter symbols Fairly generic options such as x11, gcc or en_US (lo-
cale) will be accepted as parameters;
all of them with the exception of locales will be lowercase and they, along
with their converses will have pre-defined transforms for every build sys-
tem they are valid for.
The vast majority of time in this project is expected to go into writing the
main logic and defining a bunch of parameter symbols.
The target would be adding at least 10-20 parameter symbols.

Per-user parameter symbol list An arguably convenient feature would
be adding a file ~/.config/guix/parameters.scm that contains a list of pa-
rameter symbols for the user that all packages are built with.

Stretch Goals

Adding parameters to a number of packages These will serve as exam-
ples for package maintainers and also convenient test-cases for parameter
symbols.

7



Reasons for picking this project

This project will give GNU Guix a competitive edge over not only other
functional package managers but also imperative package managers and
also give a wide variety of users greater freedom over how they choose
to build their packages; a server user might choose not to build packages
with x11 or wayland, while an HPC user might choose to build packages
with stronger optimization parameters. They would also aid in reducing
the size of Guix’s packages which are incredibly large compared to the
same packages on imperative distributions such as Debian or Artix. Most
of all, it would provide potential users one more reason to try Guix!

8



Timeline

Community-Bonding Period (May 4th - 28th)

Please note that I will have my final exams during this period due to which
I have had to reduce the scope of the Goals.

Goals

• Creating a more detailed outline of the project

• Doing some groundwork on package transforms that parameters will
build on top of

• Writing a draft of the algorithm that will be used to resolve parame-
ters

• Understanding what kind of parameter symbols Guix users need by
interacting with the community

Official Coding Period

Week one (May 29th - June 4th)

I will begin work on package parameters by implementing the parameter
list parser and the underlying algorithm for finding valid combinations.

9



Week two (June 5th - June 11th)

I expect the algorithm writing part of week one’s task to continue to week
two, and two or three days will be needed to iron out any bugs in the same.

Week three (June 12th - June 18th)

I will work on modifying the package record to include the two optional
parameters.

Week four (June 19th - June 25th)

I will work on the let-parameters macro.

Week five (June 26th - July 2nd)

Buffer period, as the tasks in week one and two or unexpected bugs might
take more time.

Week six (July 3rd - July 9th)

I will work on writing documentation and tests for all the work done so
far.

10



Midterm evaluations: July 10th

Expected Results:

• A functioning parameter list resolver

• The two additional options added to the package record

• The let-parameters macro

• Documentation and tests for all of the above

Week seven (July 10th - July 16th)

I will work on ’plugging in’ transforms; I will add logic that guix will use
to transform packages based on a set of given parameters. This includes
some ’default transforms’ for parameters like x11.

Week eight (July 17th - July 23rd)

Adding more parameter symbols, so that there are at least four or five.

Week nine (July 24th - July 30th)

Writing the first package that supports parameters, possibly Emacs.
Ironing out any resulting bugs.

Week ten (July 31st - August 6th)

Writing the –with-parameters transform for package transforms.

11



Week eleven (August 7th - August 13th)

Writing documentation and tests for all of the work done so far.

Week twelve (August 14th - August 20th)

Writing more parameter symbols and possibly more packages.

Final week (August 21st - August 28th)

Buffer period for any work left or any hard bugs.

Final evaluation

Expected Results (in addition to midterm evaluation results):

• At least ten working parameter symbols with accompanying trans-
forms

• A few packages with parameters defined

• The –with-parameters transform

• Documentation and tests for all of the work done

12


