unofficial mirror of guix-devel@gnu.org 
 help / color / mirror / code / Atom feed
blob 37e1c943e5e470b90d687f9421ec6d42823d52ab 5598 bytes (raw)
name: gnu/packages/machine-learning.scm 	 # note: path name is non-authoritative(*)

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
 
;;; GNU Guix --- Functional package management for GNU
;;; Copyright © 2015 Ricardo Wurmus <rekado@elephly.net>
;;;
;;; This file is part of GNU Guix.
;;;
;;; GNU Guix is free software; you can redistribute it and/or modify it
;;; under the terms of the GNU General Public License as published by
;;; the Free Software Foundation; either version 3 of the License, or (at
;;; your option) any later version.
;;;
;;; GNU Guix is distributed in the hope that it will be useful, but
;;; WITHOUT ANY WARRANTY; without even the implied warranty of
;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
;;; GNU General Public License for more details.
;;;
;;; You should have received a copy of the GNU General Public License
;;; along with GNU Guix.  If not, see <http://www.gnu.org/licenses/>.

(define-module (gnu packages machine-learning)
  #:use-module ((guix licenses) #:prefix license:)
  #:use-module (guix packages)
  #:use-module (guix utils)
  #:use-module (guix download)
  #:use-module (guix build-system gnu)
  #:use-module (gnu packages)
  #:use-module (gnu packages boost)
  #:use-module (gnu packages compression)
  #:use-module (gnu packages gcc)
  #:use-module (gnu packages maths)
  #:use-module (gnu packages python)
  #:use-module (gnu packages xml))

(define-public libsvm
  (package
    (name "libsvm")
    (version "3.20")
    (source
     (origin
       (method url-fetch)
       (uri (string-append
             "https://github.com/cjlin1/libsvm/archive/v"
             (string-delete #\. version) ".tar.gz"))
       (file-name (string-append name "-" version ".tar.gz"))
       (sha256
        (base32
         "1jpjlql3frjza7zxzrqqr2firh44fjb8fqsdmvz6bjz7sb47zgp4"))))
    (build-system gnu-build-system)
    (arguments
     `(#:tests? #f ;no "check" target
       #:phases (modify-phases %standard-phases
                  (delete 'configure)
                  (replace
                   'install
                   (lambda* (#:key outputs #:allow-other-keys)
                     (let* ((out (assoc-ref outputs "out"))
                            (bin (string-append out "/bin/")))
                       (mkdir-p bin)
                       (for-each (lambda (file)
                                   (copy-file file (string-append bin file)))
                                 '("svm-train"
                                   "svm-predict"
                                   "svm-scale")))
                     #t)))))
    (home-page "http://www.csie.ntu.edu.tw/~cjlin/libsvm/")
    (synopsis "Library for Support Vector Machines")
    (description
     "LIBSVM is an integrated software for support vector
classification, (C-SVC, nu-SVC), regression (epsilon-SVR, nu-SVR) and
distribution estimation (one-class SVM).  It supports multi-class
classification.")
    (license license:bsd-3)))

(define-public python-libsvm
  (package (inherit libsvm)
    (name "python-libsvm")
    (build-system gnu-build-system)
    (arguments
     `(#:tests? #f ;no "check" target
       #:make-flags '("-C" "python")
       #:phases
       (modify-phases %standard-phases
         (delete 'configure)
         (replace
          'install
          (lambda* (#:key inputs outputs #:allow-other-keys)
            (let ((site (string-append (assoc-ref outputs "out")
                                       "/lib/python"
                                       (string-take
                                        (string-take-right
                                         (assoc-ref inputs "python") 5) 3)
                                       "/site-packages/")))
              (substitute* "python/svm.py"
                (("../libsvm.so.2") "libsvm.so.2"))
              (mkdir-p site)
              (for-each (lambda (file)
                          (copy-file file (string-append site (basename file))))
                        (find-files "python" "\\.py"))
              (copy-file "libsvm.so.2"
                         (string-append site "libsvm.so.2")))
            #t)))))
    (inputs
     `(("python" ,python)))))

(define-public randomjungle
  (package
    (name "randomjungle")
    (version "2.1.0")
    (source
     (origin
       (method url-fetch)
       (uri (string-append
             "http://www.imbs-luebeck.de/imbs/sites/default/files/u59/"
             "randomjungle-" version ".tar_.gz"))
       (sha256
        (base32
         "12c8rf30cla71swx2mf4ww9mfd8jbdw5lnxd7dxhyw1ygrvg6y4w"))))
    (build-system gnu-build-system)
    (arguments
     `(#:configure-flags
       (list (string-append "--with-boost="
                            (assoc-ref %build-inputs "boost")))
       #:phases
       (modify-phases %standard-phases
         (add-before
          'configure 'set-CXXFLAGS
          (lambda _
            (setenv "CXXFLAGS" "-fpermissive ")
            #t)))))
    (inputs
     `(("boost" ,boost)
       ("gsl" ,gsl)
       ("libxml2" ,libxml2)
       ("zlib" ,zlib)))
    (native-inputs
     `(("gfortran" ,gfortran-4.8)))
    (home-page "http://www.imbs-luebeck.de/imbs/de/node/227/")
    (synopsis "Implementation of the Random Forests machine learning method")
    (description
     "Random Jungle is an implementation of Random Forests.  It is supposed to
analyse high dimensional data.  In genetics, it can be used for analysing big
Genome Wide Association (GWA) data.  Random Forests is a powerful machine
learning method.  Most interesting features are variable selection, missing
value imputation, classifier creation, generalization error estimation and
sample proximities between pairs of cases.")
    (license license:gpl3+)))

debug log:

solving 37e1c94 ...
found 37e1c94 in https://yhetil.org/guix-devel/idj8uc1f1ji.fsf@bimsb-sys02.mdc-berlin.net/
found 3b4af19 in https://yhetil.org/guix-devel/idja8whf1vf.fsf@bimsb-sys02.mdc-berlin.net/
found c1a33de in https://yhetil.org/guix-devel/idja8whf1vf.fsf@bimsb-sys02.mdc-berlin.net/

applying [1/3] https://yhetil.org/guix-devel/idja8whf1vf.fsf@bimsb-sys02.mdc-berlin.net/
diff --git a/gnu/packages/machine-learning.scm b/gnu/packages/machine-learning.scm
new file mode 100644
index 0000000..c1a33de


applying [2/3] https://yhetil.org/guix-devel/idja8whf1vf.fsf@bimsb-sys02.mdc-berlin.net/
diff --git a/gnu/packages/machine-learning.scm b/gnu/packages/machine-learning.scm
index c1a33de..3b4af19 100644


applying [3/3] https://yhetil.org/guix-devel/idj8uc1f1ji.fsf@bimsb-sys02.mdc-berlin.net/
diff --git a/gnu/packages/machine-learning.scm b/gnu/packages/machine-learning.scm
index 3b4af19..37e1c94 100644

Checking patch gnu/packages/machine-learning.scm...
Applied patch gnu/packages/machine-learning.scm cleanly.
Checking patch gnu/packages/machine-learning.scm...
Applied patch gnu/packages/machine-learning.scm cleanly.
Checking patch gnu/packages/machine-learning.scm...
Applied patch gnu/packages/machine-learning.scm cleanly.

index at:
100644 37e1c943e5e470b90d687f9421ec6d42823d52ab	gnu/packages/machine-learning.scm

(*) Git path names are given by the tree(s) the blob belongs to.
    Blobs themselves have no identifier aside from the hash of its contents.^

Code repositories for project(s) associated with this public inbox

	https://git.savannah.gnu.org/cgit/guix.git

This is a public inbox, see mirroring instructions
for how to clone and mirror all data and code used for this inbox;
as well as URLs for read-only IMAP folder(s) and NNTP newsgroup(s).