;;; GNU Guix --- Functional package management for GNU ;;; Copyright © 2015, 2016 Ricardo Wurmus ;;; Copyright © 2016 Efraim Flashner ;;; Copyright © 2016 Marius Bakke ;;; ;;; This file is part of GNU Guix. ;;; ;;; GNU Guix is free software; you can redistribute it and/or modify it ;;; under the terms of the GNU General Public License as published by ;;; the Free Software Foundation; either version 3 of the License, or (at ;;; your option) any later version. ;;; ;;; GNU Guix is distributed in the hope that it will be useful, but ;;; WITHOUT ANY WARRANTY; without even the implied warranty of ;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ;;; GNU General Public License for more details. ;;; ;;; You should have received a copy of the GNU General Public License ;;; along with GNU Guix. If not, see . (define-module (gnu packages machine-learning) #:use-module ((guix licenses) #:prefix license:) #:use-module (guix packages) #:use-module (guix utils) #:use-module (guix download) #:use-module (guix svn-download) #:use-module (guix build-system cmake) #:use-module (guix build-system gnu) #:use-module (guix build-system r) #:use-module (gnu packages) #:use-module (gnu packages autotools) #:use-module (gnu packages boost) #:use-module (gnu packages compression) #:use-module (gnu packages dejagnu) #:use-module (gnu packages gcc) #:use-module (gnu packages image) #:use-module (gnu packages maths) #:use-module (gnu packages perl) #:use-module (gnu packages pkg-config) #:use-module (gnu packages python) #:use-module (gnu packages statistics) #:use-module (gnu packages swig) #:use-module (gnu packages xml) #:use-module (gnu packages xorg)) (define-public libsvm (package (name "libsvm") (version "3.20") (source (origin (method url-fetch) (uri (string-append "https://github.com/cjlin1/libsvm/archive/v" (string-delete #\. version) ".tar.gz")) (file-name (string-append name "-" version ".tar.gz")) (sha256 (base32 "1jpjlql3frjza7zxzrqqr2firh44fjb8fqsdmvz6bjz7sb47zgp4")))) (build-system gnu-build-system) (arguments `(#:tests? #f ;no "check" target #:phases (modify-phases %standard-phases (delete 'configure) (replace 'install (lambda* (#:key outputs #:allow-other-keys) (let* ((out (assoc-ref outputs "out")) (bin (string-append out "/bin/"))) (mkdir-p bin) (for-each (lambda (file) (copy-file file (string-append bin file))) '("svm-train" "svm-predict" "svm-scale"))) #t))))) (home-page "http://www.csie.ntu.edu.tw/~cjlin/libsvm/") (synopsis "Library for Support Vector Machines") (description "LIBSVM is a machine learning library for support vector classification, (C-SVC, nu-SVC), regression (epsilon-SVR, nu-SVR) and distribution estimation (one-class SVM). It supports multi-class classification.") (license license:bsd-3))) (define-public python-libsvm (package (inherit libsvm) (name "python-libsvm") (build-system gnu-build-system) (arguments `(#:tests? #f ;no "check" target #:make-flags '("-C" "python") #:phases (modify-phases %standard-phases (delete 'configure) (replace 'install (lambda* (#:key inputs outputs #:allow-other-keys) (let ((site (string-append (assoc-ref outputs "out") "/lib/python" (string-take (string-take-right (assoc-ref inputs "python") 5) 3) "/site-packages/"))) (substitute* "python/svm.py" (("../libsvm.so.2") "libsvm.so.2")) (mkdir-p site) (for-each (lambda (file) (copy-file file (string-append site (basename file)))) (find-files "python" "\\.py")) (copy-file "libsvm.so.2" (string-append site "libsvm.so.2"))) #t))))) (inputs `(("python" ,python))) (synopsis "Python bindings of libSVM"))) (define-public ghmm ;; The latest release candidate is several years and a couple of fixes have ;; been published since. This is why we download the sources from the SVN ;; repository. (let ((svn-revision 2341)) (package (name "ghmm") (version (string-append "0.9-rc3-0." (number->string svn-revision))) (source (origin (method svn-fetch) (uri (svn-reference (url "http://svn.code.sf.net/p/ghmm/code/trunk") (revision svn-revision))) (file-name (string-append name "-" version)) (sha256 (base32 "0qbq1rqp94l530f043qzp8aw5lj7dng9wq0miffd7spd1ff638wq")))) (build-system gnu-build-system) (arguments `(#:phases (modify-phases %standard-phases (add-after 'unpack 'enter-dir (lambda _ (chdir "ghmm") #t)) (add-after 'enter-dir 'fix-PYTHONPATH (lambda* (#:key outputs #:allow-other-keys) ;; The Python tests fail as the library is assumed to be stored ;; in ./build/lib.linux-i686-*. To fix this we detect the CPU ;; and use it in the path. (substitute* "configure.in" (("AM_INIT_AUTOMAKE" line) (string-append line "\nAC_CANONICAL_HOST\n"))) (substitute* "ghmmwrapper/Makefile.am" (("i686") "@host_cpu@")) #t)) (add-after 'enter-dir 'fix-runpath (lambda* (#:key outputs #:allow-other-keys) (substitute* "ghmmwrapper/setup.py" (("^(.*)extra_compile_args = \\[" line indent) (string-append indent "extra_link_args = [\"-Wl,-rpath=" (assoc-ref outputs "out") "/lib\"],\n" line "\"-Wl,-rpath=" (assoc-ref outputs "out") "/lib\", "))) #t)) (add-after 'enter-dir 'disable-broken-tests (lambda _ (substitute* "tests/Makefile.am" ;; GHMM_SILENT_TESTS is assumed to be a command. (("TESTS_ENVIRONMENT.*") "") ;; Do not build broken tests. (("chmm .*") "") (("read_fa .*") "") (("mcmc .*") "") (("label_higher_order_test.*$") "label_higher_order_test\n")) ;; These Python unittests are broken as there is no gato. ;; See https://sourceforge.net/p/ghmm/support-requests/3/ (substitute* "ghmmwrapper/ghmmunittests.py" (("^(.*)def (testNewXML|testMultipleTransitionClasses|testNewXML)" line indent) (string-append indent "@unittest.skip(\"Disabled by Guix\")\n" line))) #t)) (add-before 'configure 'autogen (lambda _ (zero? (system* "bash" "./autogen.sh"))))))) (inputs `(("python" ,python-2) ; only Python 2 is supported ("libxml2" ,libxml2))) (native-inputs `(("pkg-config" ,pkg-config) ("dejagnu" ,dejagnu) ("swig" ,swig) ("autoconf" ,autoconf) ("automake" ,automake) ("libtool" ,libtool))) (home-page "http://ghmm.org") (synopsis "Hidden Markov Model library") (description "The General Hidden Markov Model library (GHMM) is a C library with additional Python bindings implementing a wide range of types of @dfn{Hidden Markov Models} (HMM) and algorithms: discrete, continous emissions, basic training, HMM clustering, HMM mixtures.") (license license:lgpl2.0+)))) (define-public mcl (package (name "mcl") (version "14.137") (source (origin (method url-fetch) (uri (string-append "http://micans.org/mcl/src/mcl-" (string-replace-substring version "." "-") ".tar.gz")) (sha256 (base32 "15xlax3z31lsn62vlg94hkm75nm40q4679amnfg13jm8m2bnhy5m")))) (build-system gnu-build-system) (arguments `(#:configure-flags (list "--enable-blast"))) (inputs `(("perl" ,perl))) (home-page "http://micans.org/mcl/") (synopsis "Clustering algorithm for graphs") (description "The MCL algorithm is short for the @dfn{Markov Cluster Algorithm}, a fast and scalable unsupervised cluster algorithm for graphs (also known as networks) based on simulation of (stochastic) flow in graphs.") ;; In the LICENCE file and web page it says "The software is licensed ;; under the GNU General Public License, version 3.", but in several of ;; the source code files it suggests GPL3 or later. ;; http://listserver.ebi.ac.uk/pipermail/mcl-users/2016/000376.html (license license:gpl3))) (define-public randomjungle (package (name "randomjungle") (version "2.1.0") (source (origin (method url-fetch) (uri (string-append "http://www.imbs-luebeck.de/imbs/sites/default/files/u59/" "randomjungle-" version ".tar_.gz")) (sha256 (base32 "12c8rf30cla71swx2mf4ww9mfd8jbdw5lnxd7dxhyw1ygrvg6y4w")))) (build-system gnu-build-system) (arguments `(#:configure-flags (list (string-append "--with-boost=" (assoc-ref %build-inputs "boost"))) #:phases (modify-phases %standard-phases (add-before 'configure 'set-CXXFLAGS (lambda _ (setenv "CXXFLAGS" "-fpermissive ") #t))))) (inputs `(("boost" ,boost) ("gsl" ,gsl) ("libxml2" ,libxml2) ("zlib" ,zlib))) (native-inputs `(("gfortran" ,gfortran) ("gfortran:lib" ,gfortran "lib"))) (home-page "http://www.imbs-luebeck.de/imbs/de/node/227/") (synopsis "Implementation of the Random Forests machine learning method") (description "Random Jungle is an implementation of Random Forests. It is supposed to analyse high dimensional data. In genetics, it can be used for analysing big Genome Wide Association (GWA) data. Random Forests is a powerful machine learning method. Most interesting features are variable selection, missing value imputation, classifier creation, generalization error estimation and sample proximities between pairs of cases.") (license license:gpl3+))) (define-public shogun (package (name "shogun") (version "4.0.0") (source (origin (method url-fetch) (uri (string-append "ftp://shogun-toolbox.org/shogun/releases/" (version-major+minor version) "/sources/shogun-" version ".tar.bz2")) (sha256 (base32 "159nlijnb7mnrv9za80wnm1shwvy45hgrqzn51hxy7gw4z6d6fdb")) (modules '((guix build utils) (ice-9 rdelim))) (snippet '(begin ;; Remove non-free sources and files referencing them (for-each delete-file (find-files "src/shogun/classifier/svm/" "SVMLight\\.(cpp|h)")) (for-each delete-file (find-files "examples/undocumented/libshogun/" (string-append "(classifier_.*svmlight.*|" "evaluation_cross_validation_locked_comparison).cpp"))) ;; Remove non-free functions. (define (delete-ifdefs file) (with-atomic-file-replacement file (lambda (in out) (let loop ((line (read-line in 'concat)) (skipping? #f)) (if (eof-object? line) #t (let ((skip-next? (or (and skipping? (not (string-prefix? "#endif //USE_SVMLIGHT" line))) (string-prefix? "#ifdef USE_SVMLIGHT" line)))) (when (or (not skipping?) (and skipping? (not skip-next?))) (display line out)) (loop (read-line in 'concat) skip-next?))))))) (for-each delete-ifdefs (find-files "src/shogun/kernel/" "^Kernel\\.(cpp|h)")))))) (build-system cmake-build-system) (arguments '(#:tests? #f ;no check target #:phases (alist-cons-after 'unpack 'delete-broken-symlinks (lambda _ (for-each delete-file '("applications/arts/data" "applications/asp/data" "applications/easysvm/data" "applications/msplicer/data" "applications/ocr/data" "examples/documented/data" "examples/documented/matlab_static" "examples/documented/octave_static" "examples/undocumented/data" "examples/undocumented/matlab_static" "examples/undocumented/octave_static" "tests/integration/data" "tests/integration/matlab_static" "tests/integration/octave_static" "tests/integration/python_modular/tests")) #t) (alist-cons-after 'unpack 'change-R-target-path (lambda* (#:key outputs #:allow-other-keys) (substitute* '("src/interfaces/r_modular/CMakeLists.txt" "src/interfaces/r_static/CMakeLists.txt" "examples/undocumented/r_modular/CMakeLists.txt") (("\\$\\{R_COMPONENT_LIB_PATH\\}") (string-append (assoc-ref outputs "out") "/lib/R/library/"))) #t) (alist-cons-after 'unpack 'fix-octave-modules (lambda* (#:key outputs #:allow-other-keys) (substitute* '("src/interfaces/octave_modular/CMakeLists.txt" "src/interfaces/octave_static/CMakeLists.txt") (("^include_directories\\(\\$\\{OCTAVE_INCLUDE_DIRS\\}") "include_directories(${OCTAVE_INCLUDE_DIRS} ${OCTAVE_INCLUDE_DIRS}/octave")) ;; change target directory (substitute* "src/interfaces/octave_modular/CMakeLists.txt" (("\\$\\{OCTAVE_OCT_LOCAL_API_FILE_DIR\\}") (string-append (assoc-ref outputs "out") "/share/octave/packages"))) #t) (alist-cons-before 'build 'set-HOME ;; $HOME needs to be set at some point during the build phase (lambda _ (setenv "HOME" "/tmp") #t) %standard-phases)))) #:configure-flags (list "-DCMAKE_BUILD_WITH_INSTALL_RPATH=TRUE" "-DUSE_SVMLIGHT=OFF" ;disable proprietary SVMLIGHT ;;"-DJavaModular=ON" ;requires unpackaged jblas ;;"-DRubyModular=ON" ;requires unpackaged ruby-narray ;;"-DPerlModular=ON" ;"FindPerlLibs" does not exist ;;"-DLuaModular=ON" ;fails because lua doesn't build pkgconfig file "-DOctaveModular=ON" "-DOctaveStatic=ON" "-DPythonModular=ON" "-DPythonStatic=ON" "-DRModular=ON" "-DRStatic=ON" "-DCmdLineStatic=ON"))) (inputs `(("python" ,python) ("numpy" ,python-numpy) ("r" ,r) ("octave" ,octave) ("swig" ,swig) ("hdf5" ,hdf5) ("atlas" ,atlas) ("arpack" ,arpack-ng) ("lapack" ,lapack) ("glpk" ,glpk) ("libxml2" ,libxml2) ("lzo" ,lzo) ("zlib" ,zlib))) (native-inputs `(("pkg-config" ,pkg-config))) ;; Non-portable SSE instructions are used so building fails on platforms ;; other than x86_64. (supported-systems '("x86_64-linux")) (home-page "http://shogun-toolbox.org/") (synopsis "Machine learning toolbox") (description "The Shogun Machine learning toolbox provides a wide range of unified and efficient Machine Learning (ML) methods. The toolbox seamlessly allows to combine multiple data representations, algorithm classes, and general purpose tools. This enables both rapid prototyping of data pipelines and extensibility in terms of new algorithms.") (license license:gpl3+))) (define-public r-adaptivesparsity (package (name "r-adaptivesparsity") (version "1.4") (source (origin (method url-fetch) (uri (cran-uri "AdaptiveSparsity" version)) (sha256 (base32 "1az7isvalf3kmdiycrfl6s9k9xqk22k1mc6rh8v0jmcz402qyq8z")))) (properties `((upstream-name . "AdaptiveSparsity"))) (build-system r-build-system) (arguments `(#:phases (modify-phases %standard-phases (add-after 'unpack 'link-against-armadillo (lambda _ (substitute* "src/Makevars" (("PKG_LIBS=" prefix) (string-append prefix "-larmadillo")))))))) (propagated-inputs `(("r-rcpp" ,r-rcpp) ("r-rcpparmadillo" ,r-rcpparmadillo))) (home-page "http://cran.r-project.org/web/packages/AdaptiveSparsity") (synopsis "Adaptive sparsity models") (description "This package implements the Figueiredo machine learning algorithm for adaptive sparsity and the Wong algorithm for adaptively sparse gaussian geometric models.") (license license:lgpl3+))) (define-public r-nnet (package (name "r-nnet") (version "7.3-12") (source (origin (method url-fetch) (uri (cran-uri "nnet" version)) (sha256 (base32 "17amqnw9dpap2w8ivx53hxha2xrm0drwfnj32li0xk41hlz548r7")))) (build-system r-build-system) (home-page "http://www.stats.ox.ac.uk/pub/MASS4/") (synopsis "Feed-forward neural networks and multinomial log-linear models") (description "This package provides functions for feed-forward neural networks with a single hidden layer, and for multinomial log-linear models.") (license (list license:gpl2+ license:gpl3+)))) (define-public dlib (package (name "dlib") (version "19.1") (source (origin (method url-fetch) (uri (string-append "http://dlib.net/files/dlib-" version ".tar.bz2")) (sha256 (base32 "0p2pvcdalc6jhb6r99ybvjd9x74sclr0ngswdg9j2xl5pj7knbr4")) (modules '((guix build utils))) (snippet '(begin ;; Delete ~13MB of bundled dependencies. (delete-file-recursively "dlib/external") (delete-file-recursively "docs/dlib/external"))))) (build-system cmake-build-system) (arguments `(#:phases (modify-phases %standard-phases (add-after 'unpack 'disable-asserts (lambda _ ;; config.h recommends explicitly enabling or disabling asserts ;; when building as a shared library. By default neither is set. (substitute* "dlib/config.h" (("^//#define DLIB_DISABLE_ASSERTS") "#define DLIB_DISABLE_ASSERTS")) #t)) (add-after 'disable-asserts 'disable-failing-tests ;; A number of tests are known to fail on 32-bit platforms in 19.1. ;; See https://github.com/davisking/dlib/issues/197 for details. (lambda _ (for-each (lambda (test) (substitute* "dlib/test/makefile" (((string-append "SRC \\+= " test "\\.cpp")) "")) #t) (list "learning_to_track" "max_cost_assignment" ; armhf "optimization" "matrix2" "mpc" ; i686 "empirical_map" ; may segfault with < openblas-0.2.18 "object_detector")))) ; timeout on mips64el (replace 'check (lambda _ ;; No test target, so we build and run the unit tests here. (let ((test-dir (string-append "../dlib-" ,version "/dlib/test"))) (with-directory-excursion test-dir (setenv "CXXFLAGS" "-std=gnu++11") (and (zero? (system* "make" "-j" (number->string (parallel-job-count)))) (zero? (system* "./dtest" "--runall"))))))) (add-after 'install 'delete-static-library (lambda* (#:key outputs #:allow-other-keys) (delete-file (string-append (assoc-ref outputs "out") "/lib/libdlib.a"))))))) (native-inputs `(("pkg-config" ,pkg-config))) (inputs `(("giflib" ,giflib) ("lapack" ,lapack) ("libjpeg" ,libjpeg) ("libpng" ,libpng) ("libx11" ,libx11) ("openblas" ,openblas) ("zlib" ,zlib))) (synopsis "Toolkit for making machine learning and data analysis applications in C++") (description "Dlib is a modern C++ toolkit containing machine learning algorithms and tools. It is used in both industry and academia in a wide range of domains including robotics, embedded devices, mobile phones, and large high performance computing environments.") (home-page "http://dlib.net") (license license:boost1.0)))