* Tensorflow bindings
@ 2018-12-10 21:27 Jan Wedekind
2018-12-10 22:16 ` Aleix Conchillo Flaqué
` (3 more replies)
0 siblings, 4 replies; 8+ messages in thread
From: Jan Wedekind @ 2018-12-10 21:27 UTC (permalink / raw)
To: guile-user
Hi,
The current AIscm source now include Tensorflow bindings [1].
This means that one can now develop machine learning software using Guile
and Tensorflow. More examples to follow ...
Jan
[1] http://wedesoft.github.io/aiscm/tensorflow.html
^ permalink raw reply [flat|nested] 8+ messages in thread
* Re: Tensorflow bindings
2018-12-10 21:27 Tensorflow bindings Jan Wedekind
@ 2018-12-10 22:16 ` Aleix Conchillo Flaqué
2018-12-11 10:17 ` Jérémy Korwin-Zmijowski
2018-12-13 22:46 ` Jan Wedekind
` (2 subsequent siblings)
3 siblings, 1 reply; 8+ messages in thread
From: Aleix Conchillo Flaqué @ 2018-12-10 22:16 UTC (permalink / raw)
To: jan; +Cc: guile-user
On Mon, Dec 10, 2018 at 1:27 PM Jan Wedekind <jan@wedesoft.de> wrote:
>
> Hi,
>
> The current AIscm source now include Tensorflow bindings [1].
> This means that one can now develop machine learning software using Guile
> and Tensorflow. More examples to follow ...
>
> Jan
>
> [1] http://wedesoft.github.io/aiscm/tensorflow.html
>
This is awesome! Thanks!
Aleix
^ permalink raw reply [flat|nested] 8+ messages in thread
* Re: Tensorflow bindings
2018-12-10 22:16 ` Aleix Conchillo Flaqué
@ 2018-12-11 10:17 ` Jérémy Korwin-Zmijowski
0 siblings, 0 replies; 8+ messages in thread
From: Jérémy Korwin-Zmijowski @ 2018-12-11 10:17 UTC (permalink / raw)
To: guile-user, Aleix Conchillo Flaqué, jan; +Cc: guile-user
So cool !
Le 10 décembre 2018 23:16:36 GMT+01:00, "Aleix Conchillo Flaqué" <aconchillo@gmail.com> a écrit :
>On Mon, Dec 10, 2018 at 1:27 PM Jan Wedekind <jan@wedesoft.de> wrote:
>>
>> Hi,
>>
>> The current AIscm source now include Tensorflow bindings [1].
>> This means that one can now develop machine learning software using
>Guile
>> and Tensorflow. More examples to follow ...
>>
>> Jan
>>
>> [1] http://wedesoft.github.io/aiscm/tensorflow.html
>>
>
>This is awesome! Thanks!
>
>Aleix
--
Jeko
^ permalink raw reply [flat|nested] 8+ messages in thread
* Re: Tensorflow bindings
2018-12-10 21:27 Tensorflow bindings Jan Wedekind
2018-12-10 22:16 ` Aleix Conchillo Flaqué
@ 2018-12-13 22:46 ` Jan Wedekind
2018-12-15 13:58 ` Jan Wedekind
2018-12-15 16:31 ` Amirouche Boubekki
2018-12-15 22:55 ` David Pirotte
3 siblings, 1 reply; 8+ messages in thread
From: Jan Wedekind @ 2018-12-13 22:46 UTC (permalink / raw)
To: guile-user
Here follows another example. The MNIST handwritten digit database is a
well-known benchmark for machine learning.
The following code implements a neural network with two convolutional
layers and two fully connected layers. The example achieves an error rate
of 2.75%. I am planning to add regularization which might improve the
result a bit.
(use-modules (oop goops)
(ice-9 binary-ports)
(ice-9 format)
(srfi srfi-1)
(rnrs bytevectors)
(system foreign)
(aiscm core)
(aiscm xorg)
(aiscm tensorflow))
; Get MNIST data at http://yann.lecun.com/exdb/mnist/
(define (read-images file-name)
(let* [(f (open-file file-name "rb"))
(magic (bytevector-u32-ref (get-bytevector-n f 4) 0 (endianness big)))
(n (bytevector-u32-ref (get-bytevector-n f 4) 0 (endianness big)))
(h (bytevector-u32-ref (get-bytevector-n f 4) 0 (endianness big)))
(w (bytevector-u32-ref (get-bytevector-n f 4) 0 (endianness big)))]
(if (not (eqv? magic 2051)) (error "Images file has wrong magic number"))
(let [(bv (get-bytevector-n f (* n h w)))]
(make (multiarray <ubyte> 3) #:memory (bytevector->pointer bv) #:shape (list n h w)))))
(define (read-labels file-name)
(let* [(f (open-file file-name "rb"))
(magic (bytevector-u32-ref (get-bytevector-n f 4) 0 (endianness big)))
(n (bytevector-u32-ref (get-bytevector-n f 4) 0 (endianness big)))]
(if (not (eqv? magic 2049)) (error "Label file has wrong magic number"))
(let [(bv (get-bytevector-n f n))]
(make (multiarray <ubyte> 1) #:memory (bytevector->pointer bv) #:shape (list n)))))
(define f (open-file "train-labels-idx1-ubyte" "rb"))
(define magic (bytevector-u32-ref (get-bytevector-n f 4) 0 (endianness big)))
(if (not (eqv? magic 2049)) (error "Label file has wrong magic number"))
(define n2 (bytevector-u32-ref (get-bytevector-n f 4) 0 (endianness big)))
(if (not (eqv? n n2)) (error "Number of labels does not match number of images"))
(define bv (get-bytevector-n f n))
(define labels (make (multiarray <ubyte> 1) #:memory (bytevector->pointer bv) #:shape (list n)))
(define images (read-images "train-images-idx3-ubyte"))
(define labels (read-labels "train-labels-idx1-ubyte"))
(define n (car (shape images)))
(define s (make-session))
(define x (tf-placeholder #:dtype <ubyte> #:shape '(-1 28 28)))
(define y (tf-placeholder #:dtype <ubyte> #:shape '(-1)))
(define r1 (tf-reshape (tf-sub (tf-mul (/ 1 256) (tf-cast x #:DstT <double>)) 0.5) (arr <int> -1 28 28 1)))
(define k1 (tf-variable #:dtype <double> #:shape '(3 3 1 4)))
(define c1 (tf-conv2d r1 k1 #:strides '(1 1 1 1) #:padding 'VALID))
(define p1 (tf-relu (tf-max-pool c1 #:strides '(1 2 2 1) #:ksize '(1 2 2 1) #:padding 'VALID)))
(define k2 (tf-variable #:dtype <double> #:shape '(3 3 4 16)))
(define c2 (tf-conv2d p1 k2 #:strides '(1 1 1 1) #:padding 'VALID))
(define p2 (tf-relu (tf-max-pool c2 #:strides '(1 2 2 1) #:ksize '(1 2 2 1) #:padding 'VALID)))
(define d (* 5 5 16))
(define r2 (tf-reshape p2 (to-array <int> (list -1 d))))
(define m1 (tf-variable #:dtype <double> #:shape (list d 40)))
(define b1 (tf-variable #:dtype <double> #:shape '(40)))
(define l1 (tf-relu (tf-add (tf-mat-mul r2 m1) b1)))
(define m2 (tf-variable #:dtype <double> #:shape '(40 10)))
(define b2 (tf-variable #:dtype <double> #:shape '(10)))
(define l (tf-softmax (tf-add (tf-mat-mul l1 m2) b2)))
(define prediction (tf-arg-max l 1 #:name "prediction"))
(run s '() (tf-assign k1 (tf-mul (/ 1 9) (tf-random-uniform (arr <int> 3 3 1 4) #:dtype <double>))))
(run s '() (tf-assign k2 (tf-mul (/ 1 9) (tf-random-uniform (arr <int> 3 3 4 16) #:dtype <double>))))
(run s '() (tf-assign m1 (tf-mul (/ 1 n) (tf-random-uniform (to-array <int> (list d 40)) #:dtype <double>))))
(run s '() (tf-assign b1 (fill <double> '(40) 0.0)))
(run s '() (tf-assign m2 (tf-mul (/ 1 40) (tf-random-uniform (arr <int> 40 10) #:dtype <double>))))
(run s '() (tf-assign b2 (fill <double> '(10) 0.0)))
(define vars (list k1 k2 m1 b1 m2 b2))
(define yh (tf-one-hot y 10 1.0 0.0))
(define cost (tf-neg (tf-mean (tf-add (tf-mul yh (tf-log l)) (tf-mul (tf-sub 1.0 yh) (tf-log (tf-sub 1.0 l)))) (arr <int> 0 1))))
(define gradients (tf-add-gradient cost vars))
(define alpha 0.4)
(define step (map (lambda (v g) (tf-assign v (tf-sub v (tf-mul g alpha)))) vars gradients))
(define j 0.0)
(for-each
(lambda (epoch)
(for-each
(lambda (i)
(let* [(range (cons i (+ i 50)))
(batch (list (cons x (unroll (get images range))) (cons y (get labels range))))
(js (run s batch cost))]
(set! j (+ (* 0.99 j) (* 0.01 js)))
(format #t "\r~2d, ~5d/~5d: ~6,4f" epoch i n j)
(run s batch step)))
(iota (/ n 50) 0 50)))
(iota 3))
(define test-images (read-images "t10k-images-idx3-ubyte"))
(define test-labels (read-labels "t10k-labels-idx1-ubyte"))
(define n-test (car (shape test-images)))
(define predicted (run s (list (cons x test-images)) prediction))
(define n-correct (sum (where (eq predicted test-labels) 1 0)))
(format #t "error rate: ~6,4f~&" (- 1.0 (/ n-correct n-test)))
Regards
Jan
^ permalink raw reply [flat|nested] 8+ messages in thread
* Re: Tensorflow bindings
2018-12-13 22:46 ` Jan Wedekind
@ 2018-12-15 13:58 ` Jan Wedekind
0 siblings, 0 replies; 8+ messages in thread
From: Jan Wedekind @ 2018-12-15 13:58 UTC (permalink / raw)
To: guile-user
I updated the MNIST example some more and added a bit of documentation:
(use-modules (oop goops)
(ice-9 binary-ports)
(ice-9 format)
(srfi srfi-1)
(rnrs bytevectors)
(system foreign)
(aiscm core)
(aiscm xorg)
(aiscm util)
(aiscm tensorflow))
(define (read-images file-name)
(let* [(f (open-file file-name "rb"))
(magic (bytevector-u32-ref (get-bytevector-n f 4) 0 (endianness big)))
(n (bytevector-u32-ref (get-bytevector-n f 4) 0 (endianness big)))
(h (bytevector-u32-ref (get-bytevector-n f 4) 0 (endianness big)))
(w (bytevector-u32-ref (get-bytevector-n f 4) 0 (endianness big)))]
(if (not (eqv? magic 2051)) (error "Images file has wrong magic number"))
(let [(bv (get-bytevector-n f (* n h w)))]
(make (multiarray <ubyte> 3) #:memory (bytevector->pointer bv) #:shape (list n h w)))))
(define (read-labels file-name)
(let* [(f (open-file file-name "rb"))
(magic (bytevector-u32-ref (get-bytevector-n f 4) 0 (endianness big)))
(n (bytevector-u32-ref (get-bytevector-n f 4) 0 (endianness big)))]
(if (not (eqv? magic 2049)) (error "Label file has wrong magic number"))
(let [(bv (get-bytevector-n f n))]
(make (multiarray <ubyte> 1) #:memory (bytevector->pointer bv) #:shape (list n)))))
; Load MNIST data set available at http://yann.lecun.com/exdb/mnist/
(define images (read-images "train-images-idx3-ubyte"))
(define labels (read-labels "train-labels-idx1-ubyte"))
(define n (car (shape images)))
; Create Tensorflow session
(define s (make-session))
; Define placeholders for features (images) and labels
(define x (tf-placeholder #:dtype <ubyte> #:shape '(-1 28 28)))
(define y (tf-placeholder #:dtype <ubyte> #:shape '(-1)))
; Determine parameters for feature scaling
(define (sqr x) (* x x))
(define count (apply * (shape images)))
(define average (exact->inexact (/ (sum images) count)))
(define stddev (sqrt (/ (sum (sqr (- images average))) count)))
; Scale features and reshape to 4D array
(define (flt x) (tf-cast x #:DstT <float>))
(define r1 (tf-reshape (tf-mul (flt (/ 1 stddev)) (tf-sub (flt x) (flt average))) (arr <int> -1 28 28 1)))
; First convolutional layer with max-pooling and ReLU activation function.
(define k1 (tf-variable #:dtype <float> #:shape '(3 3 1 4)))
(define c1 (tf-conv2d r1 k1 #:strides '(1 1 1 1) #:padding 'VALID))
(define p1 (tf-relu (tf-max-pool c1 #:strides '(1 2 2 1) #:ksize '(1 2 2 1) #:padding 'VALID)))
; Second convolutional layer with max-pooling and ReLU activation function.
(define k2 (tf-variable #:dtype <float> #:shape '(3 3 4 16)))
(define c2 (tf-conv2d p1 k2 #:strides '(1 1 1 1) #:padding 'VALID))
(define p2 (tf-relu (tf-max-pool c2 #:strides '(1 2 2 1) #:ksize '(1 2 2 1) #:padding 'VALID)))
; Reshape to 2D array
(define d (* 5 5 16))
(define r2 (tf-reshape p2 (to-array <int> (list -1 d))))
; First fully connected layer with bias units and ReLU activation function.
(define m1 (tf-variable #:dtype <float> #:shape (list d 40)))
(define b1 (tf-variable #:dtype <float> #:shape '(40)))
(define l1 (tf-relu (tf-add (tf-mat-mul r2 m1) b1)))
; Second fully connected layer with bias units and softmax activation function.
(define m2 (tf-variable #:dtype <float> #:shape '(40 10)))
(define b2 (tf-variable #:dtype <float> #:shape '(10)))
(define l (tf-softmax (tf-add (tf-mat-mul l1 m2) b2)))
; Classification result of neural network.
(define prediction (tf-arg-max l 1 #:name "prediction"))
; Random initialization of network parameters
(define initializers
(list (tf-assign k1 (tf-mul (flt (/ 1 9)) (tf-random-uniform (arr <int> 3 3 1 4) #:dtype <float>)))
(tf-assign k2 (tf-mul (flt (/ 1 9)) (tf-random-uniform (arr <int> 3 3 4 16) #:dtype <float>)))
(tf-assign m1 (tf-mul (flt (/ 1 n)) (tf-random-uniform (to-array <int> (list d 40)) #:dtype <float>)))
(tf-assign b1 (fill <float> '(40) 0.0))
(tf-assign m2 (tf-mul (flt (/ 1 40)) (tf-random-uniform (arr <int> 40 10) #:dtype <float>)))
(tf-assign b2 (fill <float> '(10) 0.0))))
(run s '() initializers)
; List of all network parameters
(define vars (list k1 k2 m1 b1 m2 b2))
; Logistic loss function
(define yh (tf-one-hot y 10 (flt 1.0) (flt 0.0)))
(define (safe-log x) (tf-log (tf-maximum x (flt 1e-10))))
(define (invert x) (tf-sub (flt 1.0) x))
(define loss (tf-neg (tf-mean (tf-add (tf-mul yh (safe-log l)) (tf-mul (invert yh) (safe-log (invert l)))) (arr <int> 0 1))))
; Regularization term
(define regularization (tf-add (tf-mean (tf-square (tf-abs m1)) (arr <int> 0 1)) (tf-mean (tf-square (tf-abs m2)) (arr <int> 0 1))))
; Overall cost
(define la 0.02)
(define cost (tf-add loss (tf-mul (flt la) regularization)))
; Implement gradient descent step
(define gradients (tf-add-gradient cost vars))
(define alpha 0.4)
(define step (map (lambda (v g) (tf-assign v (tf-sub v (tf-mul g (flt alpha))))) vars gradients))
; Perform gradient descent
(define j 0.0)
(for-each
(lambda (epoch)
(for-each
(lambda (i)
(let* [(range (cons i (+ i 50)))
(batch (list (cons x (unroll (get images range))) (cons y (get labels range))))
(js (run s batch cost))]
(set! j (+ (* 0.99 j) (* 0.01 js)))
(format #t "\r~2d, ~5d/~5d: ~6,4f" epoch i n j)
(run s batch step)))
(iota (/ n 50) 0 50)))
(iota 3))
(format #t "~&")
; Load MNIST test data.
(define test-images (read-images "t10k-images-idx3-ubyte"))
(define test-labels (read-labels "t10k-labels-idx1-ubyte"))
(define n-test (car (shape test-images)))
; Display cost function result for (part of) training and test data
(define j (run s (list (cons x (unroll (get images '(0 . 10000)))) (cons y (get labels '(0 . 10000)))) loss))
(define jt (run s (list (cons x test-images) (cons y test-labels)) loss))
(format #t "train: ~6,4f; test: ~6,4f~&" j jt)
; Determine error rate
(define predicted (run s (list (cons x test-images)) prediction))
(define n-correct (sum (where (eq predicted test-labels) 1 0)))
(format #t "error rate: ~6,4f~&" (- 1.0 (/ n-correct n-test)))
; Display individual results
(define time (clock))
(define i -1)
(show
(lambda (dsp)
(set! i (1+ i))
(let* [(image (get test-images (modulo i 10000)))
(pred (get (run s (list (cons x image)) prediction) 0))]
(synchronise image (- i (elapsed time)) (event-loop dsp))
(format #t "~a~&" pred)
image))
#:width 280)
^ permalink raw reply [flat|nested] 8+ messages in thread
* Re: Tensorflow bindings
2018-12-10 21:27 Tensorflow bindings Jan Wedekind
2018-12-10 22:16 ` Aleix Conchillo Flaqué
2018-12-13 22:46 ` Jan Wedekind
@ 2018-12-15 16:31 ` Amirouche Boubekki
2018-12-15 22:55 ` David Pirotte
3 siblings, 0 replies; 8+ messages in thread
From: Amirouche Boubekki @ 2018-12-15 16:31 UTC (permalink / raw)
To: Jan Wedekind; +Cc: guile-user, guile-user
On 2018-12-10 22:27, Jan Wedekind wrote:
> Hi,
>
> The current AIscm source now include Tensorflow bindings [1].
> This means that one can now develop machine learning software using
> Guile and Tensorflow. More examples to follow ...
>
> Jan
>
> [1] http://wedesoft.github.io/aiscm/tensorflow.html
Great! Thanks for sharing :)
--
Amirouche ~ amz3 ~ http://www.hyperdev.fr
^ permalink raw reply [flat|nested] 8+ messages in thread
* Re: Tensorflow bindings
2018-12-10 21:27 Tensorflow bindings Jan Wedekind
` (2 preceding siblings ...)
2018-12-15 16:31 ` Amirouche Boubekki
@ 2018-12-15 22:55 ` David Pirotte
2018-12-26 12:15 ` Jan Wedekind
3 siblings, 1 reply; 8+ messages in thread
From: David Pirotte @ 2018-12-15 22:55 UTC (permalink / raw)
To: Jan Wedekind; +Cc: guile-user
[-- Attachment #1: Type: text/plain, Size: 471 bytes --]
Hello Jan,
> The current AIscm source now include Tensorflow bindings [1].
> This means that one can now develop machine learning software using Guile
> and Tensorflow. More examples to follow ...
This is excellent news!
I've had no time (yet), but I'm interested to see what approach you used to bind it
(you did bind the C++ lib right?), and how aiscm leads with errors (C++ exceptions)
With proper config, I guess it uses all available GPUs?
David
[-- Attachment #2: OpenPGP digital signature --]
[-- Type: application/pgp-signature, Size: 488 bytes --]
^ permalink raw reply [flat|nested] 8+ messages in thread
* Re: Tensorflow bindings
2018-12-15 22:55 ` David Pirotte
@ 2018-12-26 12:15 ` Jan Wedekind
0 siblings, 0 replies; 8+ messages in thread
From: Jan Wedekind @ 2018-12-26 12:15 UTC (permalink / raw)
To: David Pirotte; +Cc: guile-user
Hello David,
Sorry for the late response. The bindings use the C library (not C++). Tensorflow has a Protocol Buffer description of the bindings. Using it one can generate bindings with relatively little effort.
I don't have a GPU. So I only have tested it using CPUs.
Regards
Jan
On 15 December 2018 22:55:06 GMT+00:00, David Pirotte <david@altosw.be> wrote:
>Hello Jan,
>
>> The current AIscm source now include Tensorflow bindings [1].
>> This means that one can now develop machine learning software using
>Guile
>> and Tensorflow. More examples to follow ...
>
>This is excellent news!
>
>I've had no time (yet), but I'm interested to see what approach you
>used to bind it
>(you did bind the C++ lib right?), and how aiscm leads with errors (C++
>exceptions)
>
>With proper config, I guess it uses all available GPUs?
>
>David
--
Diese Nachricht wurde von meinem Android-Gerät mit K-9 Mail gesendet.
^ permalink raw reply [flat|nested] 8+ messages in thread
end of thread, other threads:[~2018-12-26 12:15 UTC | newest]
Thread overview: 8+ messages (download: mbox.gz follow: Atom feed
-- links below jump to the message on this page --
2018-12-10 21:27 Tensorflow bindings Jan Wedekind
2018-12-10 22:16 ` Aleix Conchillo Flaqué
2018-12-11 10:17 ` Jérémy Korwin-Zmijowski
2018-12-13 22:46 ` Jan Wedekind
2018-12-15 13:58 ` Jan Wedekind
2018-12-15 16:31 ` Amirouche Boubekki
2018-12-15 22:55 ` David Pirotte
2018-12-26 12:15 ` Jan Wedekind
This is a public inbox, see mirroring instructions
for how to clone and mirror all data and code used for this inbox;
as well as URLs for read-only IMAP folder(s) and NNTP newsgroup(s).