
680 Guile Reference Manual

Here pattern (x y) matches any two-element list, regardless of the types of these ele-
ments. Pattern variables x and y are bound to, respectively, the first and second element
of l.

Patterns can be composed, and nested. For instance, ... (ellipsis) means that the
previous pattern may be matched zero or more times in a list:

(match lst
(((heads tails ...) ...)
heads))

This expression returns the first element of each list within lst. For proper lists of proper
lists, it is equivalent to (map car lst). However, it performs additional checks to make
sure that lst and the lists therein are proper lists, as prescribed by the pattern, raising an
error if they are not.

Compared to hand-written code, pattern matching noticeably improves clarity and
conciseness—no need to resort to series of car and cdr calls when matching lists, for
instance. It also improves robustness, by making sure the input completely matches the
pattern—conversely, hand-written code often trades robustness for conciseness. And of
course, match is a macro, and the code it expands to is just as e�cient as equivalent hand-
written code.

The pattern matcher is defined as follows:

[Scheme Syntax]match exp clause1 clause2 . . .
Match object exp against the patterns in clause1 clause2 . . . in the order in which
they appear. Return the value produced by the first matching clause. If no clause
matches, throw an exception with key match-error.

Each clause has the form (pattern body1 body2 ...). Each pattern must follow
the syntax described below. Each body is an arbitrary Scheme expression, possibly
referring to pattern variables of pattern.

The syntax and interpretation of patterns is as follows:

patterns: matches:

pat ::= identifier anything, and binds identifier
| _ anything
| () the empty list
| #t #t
| #f #f
| string a string
| number a number
| character a character
| ’sexp an s-expression
| ’symbol a symbol (special case of s-expr)
| (pat_1 ... pat_n) list of n elements
| (pat_1 ... pat_n . pat_{n+1}) list of n or more
| (pat_1 ... pat_n pat_n+1 ooo) list of n or more, each element

of remainder must match pat_n+1
| #(pat_1 ... pat_n) vector of n elements

Chapter 7: Guile Modules 681

| #(pat_1 ... pat_n pat_n+1 ooo) vector of n or more, each element
of remainder must match pat_n+1

| #&pat box
| ($ record-name pat_1 ... pat_n) a record
| (= field pat) a ‘‘field’’ of an object
| (and pat_1 ... pat_n) if all of pat_1 thru pat_n match
| (or pat_1 ... pat_n) if any of pat_1 thru pat_n match
| (not pat_1 ... pat_n) if all pat_1 thru pat_n don’t match
| (? predicate pat_1 ... pat_n) if predicate true and all of

pat_1 thru pat_n match
| (set! identifier) anything, and binds setter
| (get! identifier) anything, and binds getter
| ‘qp a quasi-pattern
| (identifier *** pat) matches pat in a tree and binds

identifier to the path leading
to the object that matches pat

ooo ::= ... zero or more
| ___ zero or more
| ..1 1 or more

quasi-patterns: matches:

qp ::= () the empty list
| #t #t
| #f #f
| string a string
| number a number
| character a character
| identifier a symbol
| (qp_1 ... qp_n) list of n elements
| (qp_1 ... qp_n . qp_{n+1}) list of n or more
| (qp_1 ... qp_n qp_n+1 ooo) list of n or more, each element

of remainder must match qp_n+1
| #(qp_1 ... qp_n) vector of n elements
| #(qp_1 ... qp_n qp_n+1 ooo) vector of n or more, each element

of remainder must match qp_n+1
| #&qp box
| ,pat a pattern
| ,@pat a pattern

patterns: matches:

pat ::= identifier anything, and binds identifier
| _ anything
| () the empty list
| #t #t

682 Guile Reference Manual

| #f #f
| string a string
| number a number
| character a character
| ’sexp an s-expression
| ’symbol a symbol (special case of s-expr)
| (pat_1 ... pat_n) list of n elements
| (pat_1 ... pat_n . pat_n+1) list of n or more
| (pat_1 ... pat_n pat_n+1 ooo) list of n or more, each element

of remainder must match pat_n+1
| #(pat_1 ... pat_n) vector of n elements
| #(pat_1 ... pat_n pat_n+1 ooo) vector of n or more, each element

of remainder must match pat_n+1
| #&pat box
| ($ record-name pat_1 ... pat_n) a record
| (= field pat) a ‘‘field’’ of an object
| (and pat_1 ... pat_n) if all of pat_1 thru pat_n match
| (or pat_1 ... pat_n) if any of pat_1 thru pat_n match
| (not pat_1 ... pat_n) if all pat_1 thru pat_n don’t match
| (? predicate pat_1 ... pat_n) if predicate true and all of

pat_1 thru pat_n match
| (set! identifier) anything, and binds setter
| (get! identifier) anything, and binds getter
| ‘qp a quasi-pattern
| (identifier *** pat) matches pat in a tree and binds

identifier to the path leading
to the object that matches pat

patterns:

identifier
anything, and binds identifier

_ anything

() the empty list

#t #t

#f #f

string a string

number a number

character
a character

’sexp an s-expression

’symbol a symbol (special case of s-expr)

(pat_1 ... pat_n)
list of n elements

Chapter 7: Guile Modules 683

(pat_1... pat_n . pat_n+1)
list of n or more

(pat_1... pat_n pat_n+1 ooo)
list of n or more, each element of remainder must match pat n+1

#(pat_1... pat_n)
vector of n elements

#(pat_1... pat_n pat_n+1 ooo)
vector of n or more, each element of remainder must match pat n+1

#&pat box

($ record-name pat_1 ... pat_n)
a record

(= field pat)
a “field” of an object

(and pat_1 ... pat_n)
if all of pat 1 thru pat n match

(or pat_1 ... pat_n)
if any of pat 1 thru pat n match

(not pat_1 ... pat_n)
if all pat 1 thru pat n don’t match

(? predicate pat_1 ... pat_n)
if predicate true and all of pat 1 thru pat n match

(set! identifier)
anything, and binds setter

(get! identifier)
anything, and binds getter

‘qp a quasi-pattern

(identifier *** pat)
matches pat in a tree and binds identifier to the path leading to the object that
matches pat

ooo:

... zero or more

___ zero or more

..1 1 or more

quasi-patterns:

() the empty list

#t #t

