% $Id: natded.pl,v 1.7 2001/04/26 12:22:56 geertk Exp geertk $ % NATURAL DEDUCTION CG PARSER WITH SEMANTICS % ========================================================================= % Bob CARPENTER % Computational Linguistics Program, Department of Philosophy % Carnegie Mellon University, Pittsburgh, PA 15213 % Net: carp+@cmu.edu % Voice: (412) 268-8043 Fax: (412) 268-1440 % Copyright 1995, Bob Carpenter % Written: 12 March 1993 % Revised: 4 February 1994 % Further Revised: 2 May 1994 % Revised for CGI: 16 November 1995 % Revised for Lambek notation: ? Novemeber 1995 % Revised again: 30 November 1995 % Library Includes % ========================================================================= :- use_module(library(system)). % :- use_module(library(random)). % Data Types % ========================================================================= % ::= % | % | @ % | ^ % ::= var() % ::= con() % ::= tree(,,)>) % | ass(,,) % | leaf() % ::= % ::= : % ::= % | / | \ % | scop(,) % | - % ::= bas() % ::= )> % )> % )> % ::= ==> . % ::= empty . % ::= ===> )> if . % ::= % ::= % ::= edge(, , ) % Operator Declarations % ========================================================================= :-op(150,yfx,@). % function application % :-op(200,xfy,^). % lambda abstraction % :-op(400,yfx,/). % forward slash :-op(350,yfx,\). % backward slash :-op(500,xfx,:). % category constructor :-op(600,xfx,==>). % lexical rewriting :-op(600,xfx,===>). % grammar rule :-op(600,fx,empty). % empty categories :- op(600,xfx,macro). % lexical macros :- op(600,xfx,means). % meaning postulates :-op(1200,xfx,if). % conditions on rule schemes :- dynamic edge/3. :- dynamic emptyedge/1. :- dynamic active/3. % Lambda Calculus % ========================================================================= % expandmng(+M:, -MExp:) % ---------------------------------------------------------------------- % MExp is the result of recursively replacing constants with their % definitions in M; disallows non-determinism % ---------------------------------------------------------------------- expandmng(var(V),var(V)). expandmng(con(C),MExp):- con(C) means M, !, expandmng(M,MExp). expandmng(con(C),con(C)). expandmng(V^M,V^MExp):- expandmng(M,MExp). expandmng(M@N,MExp@NExp):- expandmng(M,MExp), expandmng(N,NExp). % normalize(+M:, -MNorm:) % ---------------------------------------------------------------------- % MNorm is the normal form of M; all bound variables renamed % ---------------------------------------------------------------------- normalize(M,MNorm):- fresh_vars(M,MFr), normalize_fresh(MFr,MNorm). % fresh_vars(+M:, -MFr:) % ---------------------------------------------------------------------- % MFr is the result of renaming all bound variables % in M to fresh instances, using alpha-reduction % ---------------------------------------------------------------------- fresh_vars(var(V),var(V)). fresh_vars(con(C),con(C)). fresh_vars(M@N,MFr@NFr):- fresh_vars(M,MFr), fresh_vars(N,NFr). fresh_vars(X^M,var(Y)^MFr):- subst(M,X,var(Y),M2), fresh_vars(M2,MFr). % substitute(+M:, +X:, +N:, -L:) % ---------------------------------------------------------------------- % L = M[X |--> N] % ---------------------------------------------------------------------- subst(var(Y),var(X),M,N):- ( X == Y -> N=M ; N = var(Y) ). subst(con(C),_,_,con(C)). subst(M@L,X,N,M2@L2):- subst(M,X,N,M2), subst(L,X,N,L2). subst(Y^M,X,N,Y^M2):- ( Y == X -> M2 = M ; subst(M,X,N,M2) ). % normalize_fresh(+M:, -N:) % ---------------------------------------------------------------------- % M is normalized to N % -- all bound variables are made fresh % -- cut corresponds to leftmost normalization % ---------------------------------------------------------------------- normalize_fresh(M,N):- reduce_subterm(M,L), !, normalize_fresh(L,N). normalize_fresh(M,M). % reduce_subterm(+M:, -N:) % ---------------------------------------------------------------------- % N is the result of performing one beta- or % eta-reduction on some subterm of M; % -- reduces leftmost subterm first, but provides % all reductions on backtracking % ---------------------------------------------------------------------- reduce_subterm(M,M2):- reduce(M,M2). reduce_subterm(M@N,M2@N):- reduce_subterm(M,M2). reduce_subterm(M@N,M@N2):- reduce_subterm(N,N2). reduce_subterm(X^M,X^N):- reduce_subterm(M,N). % reduce(+M:, -N:) % ---------------------------------------------------------------------- % reduces M to N using beta- or eta-reduction % -- assumes no variable clashes % ---------------------------------------------------------------------- reduce((X^M)@N,L):- % beta reduction subst(M,X,N,L). reduce(X^(M@Y),M):- % eta reduction X == Y, \+ ( free_var(M,Z), Z == X ). % free_var(+M:, -X:) % ---------------------------------------------------------------------- % X is free in M % ---------------------------------------------------------------------- free_var(var(V),var(V)). free_var(M@N,X):- ( free_var(M,X) ; free_var(N,X) ). free_var(X^M,Y):- free_var(M,Y), Y \== X. % free_for(+N:, +X:, +M:) % ---------------------------------------------------------------------- % M is free for X in N % ---------------------------------------------------------------------- free_for(var(_),_,_). free_for(con(_),_,_). free_for(L@K,X,M):- free_for(L,X,M), free_for(K,X,M). free_for(Y^L,X,M):- free_for(L,X,M), ( \+ free_var(L,X) ; \+ free_var(M,Y) ). % Right-Left, Bottom-Up Dynamic Chart Parser (after ALE) % ========================================================================= % Lexical Compiler % ---------------------------------------------------------------------- % compile_lex(+File:) % ---------------------------------------------------------------------- % compiles lexical entries into file % ---------------------------------------------------------------------- compile_lex(File):- tell(File), write('% Lexical Entries'), nl, write('% ---------------'), nl, nl, lex(W,Syn,Sem), numbervars(lexentry(W,Syn,Sem),0,_), write('lexentry(\''), write(W), write('\','), write(Syn),write(','), write(Sem), write(').'), nl, fail. compile_lex(File):- told, compile(File). % consult_lex % ---------------------------------------------------------------------- % consults lexicon in place % ---------------------------------------------------------------------- consult_lex:- retractall(lexentry(_,_,_)), lex(W,Syn,Sem), assert(lexentry(W,Syn,Sem)), fail. consult_lex. % lex(?W:, ?Syn:, ?Sem:) % ---------------------------------------------------------------------- % word W has syntactic category Syn and smenantic term Sem % ---------------------------------------------------------------------- lex(W,SynOut,Sem):- W ==> Syn : Sem, expandsyn(Syn,SynOut). % expandsyn(+SynIn:, ?SynOut:) % ---------------------------------------------------------------------- % the category SynIn is macro expanded recursively to SynOut % ---------------------------------------------------------------------- expandsyn(Syn,Syn):- var(Syn), !. expandsyn(SynIn,SynOut):- macro(SynIn,SynMid), % cut means unique macro expansion !, expandsyn(SynMid,SynOut). expandsyn(Syn1/Syn2,Syn1Out/Syn2Out):- !, expandsyn(Syn1,Syn1Out), expandsyn(Syn2,Syn2Out). expandsyn(Syn1\Syn2,Syn1Out\Syn2Out):- !, expandsyn(Syn1,Syn1Out), expandsyn(Syn2,Syn2Out). expandsyn(Syn1-Syn2,Syn1Out-Syn2Out):- !, expandsyn(Syn1,Syn1Out), expandsyn(Syn2,Syn2Out). expandsyn(q(Syn1,Syn2,Syn3),q(Syn1Out,Syn2Out,Syn3Out)):- !, expandsyn(Syn1,Syn1Out), expandsyn(Syn2,Syn2Out), expandsyn(Syn3,Syn3Out). expandsyn(Syn,Syn):- bas_syn(Syn). % bas_syn(?Syn:) % ---------------------------------------------------------------------- % Syn is a basic syntactic category % ---------------------------------------------------------------------- bas_syn(n(_)). bas_syn(np(_,_)). bas_syn(s(_)). bas_syn(coor). bas_syn(sc(_)). bas_syn(ex(_)). % Empty Edge Compilation % ---------------------------------------------------------------------- % compile_empty % ---------------------------------------------------------------------- % compiles empty categories, asserting all active and inactive edges % they can produce by themselves; always succeeds % ---------------------------------------------------------------------- compile_empty:- retractall(emptyedge(_)), retractall(active(_,_,_)), empty SynIn:Sem, expandsyn(SynIn,Syn), complete(cat(Syn,Sem,[],[],empty(Syn,Sem))). compile_empty:- bagof(C,emptyedge(C),Cs), length(Cs,N), nl, write(N), write(' complete empty edges'), nl, bagof(D-Ds,G^active(Ds,D,G),Es), length(Es,M), write(M), write(' active rules with empty starts'), nl. % complete_cat(Cat:+) % ---------------------------------------------------------------------- % Cat is asserted as empty, and all current active edges are tested to % see if Cat can extend them; fails for looping % ---------------------------------------------------------------------- complete(Cat):- assert(emptyedge(Cat)), ( (CatM ===> [Cat|Cats] if Goal) ; active(CatM,[Cat|Cats],Goal) ), add_active(Cats,CatM,Goal). % add_active(Cats:+)>, +Cat:, +Goal:) % ---------------------------------------------------------------------- % the active edge Cat --> . Cats is asserted, and any extensions % computed and themselves asserted; fails for looping % ---------------------------------------------------------------------- add_active([],Cat,Goal):- call(Goal), assert(emptyedge(Cat)), complete(Cat). add_active([Cat|Cats],CatM,Goal):- assert(active([Cat|Cats],CatM,Goal)), emptyedge(Cat), add_active(Cats,CatM,Goal). % parse(Ws:+)>, Cat:?) % ---------------------------------------------------------------------- % Cat can be derived from Ws % ---------------------------------------------------------------------- parse(Ws,Cat):- derived_analyses(Ws,WsMid), retractall(edge(_,_,_)), reverse(WsMid,[],WsRev), build(WsRev,0,Length), edge(Length,0,Cat). % derived_analyses(WsIn:+)>, WsOut:-)>) % ---------------------------------------------------------------------- % computes subderivations of WsIn % ---------------------------------------------------------------------- derived_analyses([],[]). derived_analyses([der(Ws)|Ws2],[der(Ws,Ass,Syn,Sem)|DerWs2]):- !, parse(Ws,cat(Syn,Sem,Ass,[],_)), \+ member(abs(_,_,_),Ass), derived_analyses(Ws2,DerWs2). derived_analyses([W|Ws],[W|DerWs]):- derived_analyses(Ws,DerWs). % build(Ws:+)>, Right:+, Left:-) % ---------------------------------------------------------------------- % finishes building chart with Ws as remaing word, starting from % right position Right and finishing on left position Left % -- counts backwards, so Left > Right % ---------------------------------------------------------------------- build([],Left,Left). build([W|Ws],Right,FinalLeft):- RightPlus1 is Right+1, ( buildact(W,Right,RightPlus1) ; build(Ws,RightPlus1,FinalLeft) ). % build_act(+W:, +Left:, +Right:) % ---------------------------------------------------------------------- % take action basedon whether input W is: % [SynCat] assume hypothetical category with syntax SynCat % der(WsSub,Ass,Syn,Sem) add derived result % W treat as input word % ---------------------------------------------------------------------- buildact([SynIn],Right,RightPlus1):- mapsyn(SynIn,Syn), % add unspecified features !, add_edge(RightPlus1,Right,cat(Syn,var(X),[abs(Syn,var(X),N)],[], ass(Syn,var(X),N))). buildact(der(WsSub,Ass,Syn,Sem),Right,RightPlus1):- !, add_edge(RightPlus1,Right,cat(Syn,Sem,Ass,[], tree(der,Syn:Sem,[ders(WsSub)]))). buildact(W,Right,RightPlus1):- lexentry(W,Syn,Sem), add_edge(RightPlus1,Right,cat(Syn,Sem,[l],[],tree(lex,Syn:Sem,[leaf(W)]))). buildact(W,_,_):- \+ (W ==> _), nl, write('Input not recognized: '), write(W), write('
'). % mapsyn(+SynCat:, -SynCatOut:, Right:+, Cat:+) % ---------------------------------------------------------------------- % asserts edge into chart and then tries to extend it in all possible ways % -- always fails to force backgracking % ---------------------------------------------------------------------- add_edge(Left,Right,Cat):- asserta(edge(Left,Right,Cat)), ( (MotherCat ===> [Cat|Cats] if Goal) ; active([Cat|Cats],MotherCat,Goal) ), findcats(Cats,Right,NewRight), call(Goal), add_edge(Left,NewRight,MotherCat). % findcats(Left:+, Cats:+, Right:-) % ---------------------------------------------------------------------- % Cats is a list of categories spanning Left to Right % ---------------------------------------------------------------------- findcats([],Left,Left). findcats([Cat|Cats],Left,Right):- ( edge(Left,Mid,Cat), findcats(Cats,Mid,Right) ; emptyedge(Cat), findcats(Cats,Left,Right) ). % edge(Left:?, Right:?, Cat:?) (dynamic) % ---------------------------------------------------------------------- % There is an edge with category Cat from Left to Right; % ---------------------------------------------------------------------- % normalize_tree(+TreeIn:, -TreeOut:) % ---------------------------------------------------------------------- % TreeOut is isomorphic to TreeIn, with normalized semantics at % every node % ---------------------------------------------------------------------- normalize_tree(tree(Rule,Syn:Sem,Trees), tree(Rule,Syn:SemNorm,TreesNorm)):- normalize_fresh(Sem,SemNorm), normalize_trees(Trees,TreesNorm). normalize_tree(ass(Syn,Var,Index),ass(Syn,Var,Index)). normalize_tree(leaf(Word),leaf(Word)). normalize_tree(ders(Word),ders(Word)). normalize_tree(empty(Syn,Sem),empty(Syn,SemNorm)):- normalize_fresh(Sem,SemNorm). normalize_trees([],[]). normalize_trees([T|Ts],[TNorm|TsNorm]):- normalize_tree(T,TNorm), normalize_trees(Ts,TsNorm). % expandmng_tree(+TreeIn:, -TreeOut:) % ---------------------------------------------------------------------- % TreeOut is isomorphic to TreeIn, with expanded semantics % every node % ---------------------------------------------------------------------- expandmng_tree(tree(Rule,Syn:Sem,Trees), tree(Rule,Syn:SemNorm,TreesNorm)):- expandmng(Sem,SemNorm), expandmng_trees(Trees,TreesNorm). expandmng_tree(ass(Syn,Var,Index),ass(Syn,Var,Index)). expandmng_tree(leaf(Word),leaf(Word)). expandmng_tree(ders(Word),ders(Word)). expandmng_tree(empty(Syn,Sem),empty(Syn,SemNorm)):- expandmng(Sem,SemNorm). expandmng_trees([],[]). expandmng_trees([T|Ts],[TExp|TsExp]):- expandmng_tree(T,TExp), expandmng_trees(Ts,TsExp). % Grammar Rules % ========================================================================= % C:<-cat> ===> Cs:<+list()> % ---------------------------------------------------------------------- % C can be composed of Cs; may be conditions % / elimination % ------------- cat(A, Alpha@Beta, Ass3, Qs3, tree(fe,A:Alpha@Beta,[T1,T2])) ===> [ cat(A/B, Alpha, Ass1, Qs1, T1), cat(B, Beta, Ass2, Qs2, T2) ] if append(Ass1,Ass2,Ass3), append(Qs1,Qs2,Qs3). % \ elimination % ------------- cat(A, Alpha@Beta, Ass3, Qs3, tree(be,A:Alpha@Beta,[T1,T2])) ===> [ cat(B, Beta, Ass1, Qs1, T1), cat(B\A, Alpha, Ass2, Qs2, T2) ] if append(Ass1,Ass2,Ass3), append(Qs1,Qs2,Qs3). % \ introduction % -------------- cat(B\A, X^Alpha, Ass, Qs, tree(bi(N),B\A:X^Alpha,[T1])) ===> [ cat(A, Alpha, [abs(B,X,N)|Ass], Qs, T1) ] if \+ T1 = tree(be,_,[_,ass(_,_,N)]), % normal at_least_one_member(l,Ass), % non-empty condition \+ ( subtree(tree(AssumeM,_,Ts),T1), % properly nested member(TMid,Ts), subtree(ass(_,_,'$VAR'(J)),TMid), J == N, hypothetical_mem(AssumeM,Ass,Qs) ). % / introduction % -------------- cat(A/B, X^Alpha, Ass2, Qs, tree(fi(N),A/B:X^Alpha,[T1])) ===> [ cat(A,Alpha,Ass1,Qs,T1) ] if \+ T1 = tree(fe,_,[_,ass(_,_,N)]), % normal at_least_one_member(l,Ass1), % non-empty condition select_last(Ass1,abs(B,X,N),Ass2), \+ ( subtree(tree(AssumeM,_,Ts),T1), % properly nested member(TMid,Ts), subtree(ass(_,_,'$VAR'(J)),TMid), J == N, hypothetical_mem(AssumeM,Ass1,Qs) ). % - introduction % -------------- cat(A-B, X^Alpha, Ass2, Qs, tree(gi(N),(A-B):X^Alpha,[T1])) ===> [ cat(A, Alpha, Ass1, Qs, T1) ] if at_least_one_member(l,Ass1), % non-empty condition select(abs(B,X,N),Ass1,Ass2), \+ ( subtree(tree(AssumeM,_,Ts),T1), % normalized? member(TMid,Ts), subtree(ass(_,_,'$VAR'(J)),TMid), J == N, hypothetical_mem(AssumeM,Ass1,Qs) ). % q quantifier pushing (q-elimination part 1) % ---------------------------------------------------------------------- cat(C, var(X), Ass, [gq(B,A,Q,var(X),N)|Qs], tree(qqpush(N),C:var(X),[T1])) ===> [ cat(q(C,B,A), Q, Ass, Qs, T1) ] if \+ T1 = tree(qqi,_,_). % normal % q quantifier popping (q-elimination part 2) % ---------------------------------------------------------------------- cat(A, Q@(X^Alpha), Ass, Qs2, tree(qqpop(N),A:Q@(X^Alpha),[T1])) ===> [ cat(B,Alpha,Ass,Qs1,T1) ] if select(gq(B,A,Q,X,N),Qs1,Qs2), \+ ( subtree(tree(AssumeM,_,Ts),T1), member(TMid,Ts), subtree(tree(qqpush(J),_,_),TMid), J == N, hypothetical_mem(AssumeM,Ass,Qs1) ). % q quantifier introduction [restricted to q(np,s,s)] % ---------------------------------------------------------------------- % restricted to A = s(_), B=np case for termination cat(q(np(ind(Num),Case),s(VF),s(VF)), var(P)^(var(P)@Alpha), Ass, Qs1, tree(qqi,q(np(ind(Num),Case),s(VF),s(VF)):var(P)^var(P)@Alpha,[T1])) ===> [ cat(np(ind(Num),Case),Alpha,Ass,Qs1,T1) ] if true. % coordination elimination % ---------------------------------------------------------------------- cat(C, Sem, [], [], tree(coel,C:Sem,[T1,T2,T3])) ===> [ cat(C, Sem1, Ass1, [], T1), cat(coor, Alpha, Ass2, [],T2), cat(C, Sem2, Ass3, [], T3) ] if \+ member(abs(_,_,_),Ass1), % coordination condition \+ member(abs(_,_,_),Ass2), \+ member(abs(_,_,_),Ass3), \+ T1 = tree(coel,_,_), \+ T2 = tree(coel,_,_), make_coor(C,Alpha,Sem1,Sem2,Sem). % non-boolean coordination % ---------------------------------------------------------------------- %cat(np(pl,-), con(union)@Alpha1P@Alpha3P, [], [], % tree(nbc,np(pl,-):con(union)@Alpha1P@Alpha3P,[T1,T2,T3])) %===> %[ cat(NP1, Alpha1, Ass1, [], T1), % cat(coor, nbc, Ass2, [],T2), % cat(NP3, Alpha3, Ass3, [], T3) % ]:- % \+ member(abs(_,_,_),Ass1), % coordination condition % \+ member(abs(_,_,_),Ass2), % \+ member(abs(_,_,_),Ass3), % make_nb_coor(NP1,Alpha1,Alpha1P), % make_nb_coor(NP3,Alpha3,Alpha3P). % % make_nb_coor(np,Alpha,con(singleton)@Alpha). % make_nb_coor(np(pl,+),Alpha,con(singleton)@Alpha). % make_nb_coor(np(pl,-),Alpha,Alpha). % subtree(-TSub:, +T:) % ---------------------------------------------------------------------- % TSub is a subtree of T % ---------------------------------------------------------------------- subtree(T,T). subtree(T,tree(_,_,Ts)):- member(T2,Ts), subtree(T,T2). % hypothetical_mem(Rule,Assumptions,Qs) % ---------------------------------------------------------------------- % Rule is a member of the assumptions % ---------------------------------------------------------------------- hypothetical_mem(fi(N),Ass,_):- member(abs(_,_,M),Ass), N == M. hypothetical_mem(bi(N),Ass,_):- member(abs(_,_,M),Ass), N == M. hypothetical_mem(gi(N),Ass,_):- member(abs(_,_,M),Ass), N == M. hypothetical_mem(qqpush(N),_,Qs):- member(gq(_,_,_,_,M),Qs), N == M. % make_coor(Cat,CoorSem,Sem1,Sem2,SemOut) % ---------------------------------------------------------------------- % generalized coordination semantics CoorSem is applied to % Sem1 and Sem2 of type Cat, with result SemOut % ---------------------------------------------------------------------- make_coor(s(_),Alpha,Sem1,Sem2,Alpha@Sem1@Sem2). make_coor(n(_),Alpha,Sem1,Sem2,var(X)^Alpha@(Sem1@var(X))@(Sem2@var(X))). make_coor(A/_,Alpha,Sem1,Sem2,var(X)^Sem):- make_coor(A,Alpha,Sem1@var(X),Sem2@var(X),Sem). make_coor(_\A,Alpha,Sem1,Sem2,var(X)^Sem):- make_coor(A,Alpha,Sem1@var(X),Sem2@var(X),Sem). make_coor(A-_,Alpha,Sem1,Sem2,var(X)^Sem):- make_coor(A,Alpha,Sem1@var(X),Sem2@var(X),Sem). make_coor(q(_,_,A),Alpha,Sem1,Sem2,var(X)^Sem):- make_coor(A,Alpha,Sem1@var(X),Sem2@var(X),Sem). % General CGI Handling % ========================================================================= % start_up % ---------------------------------------------------------------------- % executed when saved state is restarted; % tokenizes, parses and sends off input for handling; % halts on termination % ---------------------------------------------------------------------- start_up:- % getenv('QUERY_STRING', Arg), prolog_flag(argv,[Arg]), % write('

'), write(Arg), nl, ttyflush, ( tokenizeatom(Arg,TokenList) % ,write('

'), write(TokenList), ttyflush ; write('Input '), write(Arg), write(' could not be tokenized'), ttyflush, halt ), ( parse_cgi(TokenList,KeyVals) % , write('

'), write(KeyVals), ttyflush ; write('Tokens '), write(TokenList), write(' could not be parsed'), halt ), ( action(KeyVals) ; told, write('Action '), write(KeyVals), write(' could not be executed') ), halt. % tokenizeatom(+Input:, -Tokens:)>) % ---------------------------------------------------------------------- % breaks input Input into list of tokens; % ---------------------------------------------------------------------- tokenizeatom(Atom,Ws):- name(Atom,Cs), tokenize(Cs,Xs-Xs,Ws). % tokenize(+Chars:)>, +CharsSoFar:)>, % -Tokens:)>) % ---------------------------------------------------------------------- % Tokens is the list of tokens retrieved from Chars; ChrsSoFar % accumulates prefixes of atoms being recognized % ---------------------------------------------------------------------- tokenize([C1,C2,C3|Cs],Xs-Ys,TsResult):- % special symbol name('%',[C1]), specialsymbol(C2,C3,SpecialSymbol), !, ( Xs = [] -> TsResult = [SpecialSymbol|TsOut] ; Ys = [], name(CsAtom,Xs), TsResult = [CsAtom,SpecialSymbol|TsOut] ), tokenize(Cs,Zs-Zs,TsOut). tokenize([C|Cs],Xs-Ys,TsResult):- % one-character operator isoperator(C), !, name(OpToken,[C]), ( Xs = [] -> TsResult = [OpToken|Ts] ; Ys = [], name(CsAtom,Xs), TsResult = [CsAtom,OpToken|Ts] ), tokenize(Cs,Zs-Zs,Ts). tokenize([C|Cs],Xs-[C|Ys],Ts):- % more of string tokenize(Cs,Xs-Ys,Ts). tokenize([],Xs-_,[]):- % no more input; nothing accum. Xs = [], !. tokenize([],Xs-[],[CsAtom]):- % no more input; stringg accum. name(CsAtom,Xs). % isoperator(+Char:) % ---------------------------------------------------------------------- % Char is the name of an operator character % ---------------------------------------------------------------------- isoperator(Char):- name(Op,[Char]), isoptab(Op). isoptab('%'). isoptab('+'). isoptab('&'). isoptab('='). % specialsymbol(+C1:, +C2:, -S:) % ---------------------------------------------------------------------- % C1 and C2 are the names of characters completing a % special symbol % ---------------------------------------------------------------------- specialsymbol(C1,C2,S):- name(N1,[C1]), name(N2,[C2]), ( sstab(N1,N2,S), ! ; S = spec(N1,N2) ). sstab(2,'C',','). sstab(2,'F','/'). sstab(2,8,'('). sstab(2,9,')'). sstab(5,'B','['). sstab(5,'C','\\'). sstab(5,'D',']'). sstab(3,'D','='). sstab(3,'E','>'). % parse_cgi(+TokenList:)>, -KeyVals:)>) % ---------------------------------------------------------------------- % KeyVals is Key/Val list resulting from parsing TokenList using % the compiled DCG to perform a top-down parse % ---------------------------------------------------------------------- parse_cgi(TokenList,KeyVals):- keyvalseq(KeyVals,TokenList,[]). % Grammar for Parser % ---------------------------------------------------------------------- keyvalseq([KeyVal|KeyVals]) --> keyval(KeyVal), andkeyvalseq(KeyVals). keyvalseq([]) --> []. andkeyvalseq(KeyVals) --> ['&'], keyvalseq(KeyVals). andkeyvalseq([]) --> []. keyval(key(Key,Val)) --> [Key,'='], valseq(Val). % valseq(rec(Ws,Cat)) --> valseq(Ws), as(Cat). % as('$ANY') --> []. % as(Cat) --> optplus, ['=','>'], optplus, val(Cat). % valseq([]) --> []. % subsumed by plusvalseq([]) --> [] valseq([Val|Vals]) --> val(Val), plusvalseq(Vals). valseq(Vals) --> plusvalseq(Vals). plusvalseq([]) --> []. plusvalseq(Vals) --> ['+'], valseq(Vals). optplus --> []. optplus --> ['+']. val(X) --> ['['], valseq(X), [']']. val(der(X)) --> [der,'('], valseq(X), [')']. val(X) --> atomval(X). val(X/Y) --> atomval(X), ['/'], atomval(Y). val(Y\X) --> atomval(Y), ['\\'], atomval(X). val(X-Y) --> atomval(Y), ['-'], atomval(X). val(Term) --> atom(Fun), ['('], argvals(Args), [')'], {Term =.. [Fun|Args]}. argvals([]) --> []. argvals([Arg|Args]) --> val(Arg), commaargvals(Args). commaargvals(Args) --> [','], argvals(Args). commaargvals([]) --> []. atomval(X) --> atom(X). atomval(X) --> ['('], val(X), [')']. atom(X) --> [X], {atomic(X)}. % Specific CGI Query Handling % ========================================================================= % action(+KeyVals:)>) % ---------------------------------------------------------------------- % take an action based on list of KeyVals % ---------------------------------------------------------------------- action(KeyVals):- retractall(keyvalscgi(_)), assert(keyvalscgi(KeyVals)), member(key(inputfrom,[InputFrom]),KeyVals), ( InputFrom = 'Typing' -> member(key(parsestringone,Ws),KeyVals) ; InputFrom = 'Corpus' -> member(key(parsestringtwo,Ws),KeyVals) ), % write('

'), write(Ws), nl, nl, write('PARSE RESULTS FOR: '), writelist(Ws), write('

'), nl, member(key(outputform,[OutForm]),KeyVals), member(key(outputsyn,OutSynSym),KeyVals), outsyn(OutSynSym,OutSyn), act(OutForm,OutSyn,Ws). keyvalcgi(Key,Val):- keyvalscgi(KeyVals), member(key(Key,Val),KeyVals). outsyn(['Any'],_). outsyn(['Finite','S'],s(fin)). outsyn(['Noun','Phrase'],np(_,_)). % act(+Form:

, ?Syn:, +Ws:)>) % ---------------------------------------------------------------------- % the input Ws is parsed and output in form Form; % ---------------------------------------------------------------------- act(OutForm,OutSyn,Ws):- findall(Tree, ( parse(Ws,cat(OutSyn,_,Ass,[],Tree)), \+ member(abs(_,_,_),Ass) ), Trees), % all parses ( Trees = [], !, write('
No Parses Found') % none found ; ( keyvalcgi(expandmng,['Yes']), !, expandmng_trees(Trees,Trees2) ; Trees2 = Trees ), ( keyvalcgi(normalize,['Yes']), !, normalize_trees(Trees2,Trees3) ; Trees3 = Trees2 ), write('parse('), write_term(Ws,[quoted(true)]), write(',Cat).
'), nl, actout(OutForm,Trees3) ). % actout(+Form:, +Ts:)>) % ---------------------------------------------------------------------- % return output for list of trees Ts in form Form % ---------------------------------------------------------------------- actout('Text',Trees):- write('
'), nl,  
  texttreelist(Trees),
  nl, write('
'). actout('Prawitz',Ts):- htmltreelist(Ts). actout('Fitch',Ts):- fitchtreelist(Ts). texttreelist([]). texttreelist([T|Ts]):- pp_tree(T), nl, write('
'), nl, texttreelist(Ts). htmltreelist([]). htmltreelist([T|Ts]):- pp_html_table_tree(T), nl, write('
'), nl, htmltreelist(Ts). fitchtreelist([]). fitchtreelist([T|Ts]):- pp_html_table_fitch_tree(T), nl, write('
'), nl, fitchtreelist(Ts). % PRETTY PRINTING ROUTINES % ====================================================================== % pp_html_table_tree(+Tree:) % ---------------------------------------------------------------------- % Tree is output as an HTML table; first numbered % ---------------------------------------------------------------------- pp_html_table_tree(T):- numbervars(T), % nl, % write_term(T,[quoted(true)]), % nl, write('

'), pp_html_tree(T). % pp_html_tree(+Tree:) % ---------------------------------------------------------------------- % Tree is output as an HTML table; assume numbered % ---------------------------------------------------------------------- pp_html_tree(ass(Syn,V,'$VAR'(N))):- write('['), pp_cat(Syn:V), write(']'), write(N), write(''). pp_html_tree(leaf(Word)):- pp_word(Word). pp_html_tree(ders(Words)):- pp_word_list(Words). pp_html_tree(empty(Syn,Sem)):- nl, write(''), nl, write(''), nl, write(''), nl, write('
- Nil
'), pp_cat(Syn:Sem), write('
'). pp_html_tree(tree(Rule,Root,SubTrees)):- nl, write(''), nl, write(''), nl, pp_html_trees(SubTrees,0,N), nl, ( Rule = lex -> true ; write('') ), write(''), write(''), nl, write('
'), pp_rule(Rule), write('
'), pp_cat(Root), write('
'). % pp_html_trees(+Trees: )>,+N:,-M:) % ---------------------------------------------------------------------- % prints the trees in Trees, where (M-N) is the length of the list (N % acts as an accumulator, initialized to 0 % ---------------------------------------------------------------------- pp_html_trees([T|Ts],N,M):- write(''), pp_html_tree(T), write(''), K is N+1, pp_html_trees(Ts,K,M). pp_html_trees([],N,N). % pp_html_table_fitch_tree(+T:) % ---------------------------------------------------------------------- % T is numbered and output as a table Fitch-style % ---------------------------------------------------------------------- pp_html_table_fitch_tree(T):- numbervars(T), nl, write(''), pp_html_fitch_tree(T,1,_,_,_,[],_), nl, write('
'). % pp_html_fitch_tree(+Tree:, +Start:, -Next:, -Me:, % +Exp:, % +AssIn:)>, -AssOut:)>) % ---------------------------------------------------------------------- % the rows of the table for Tree are printed; % Start is where the numbering begins; Next is the next available number % after last one used; Me is the row representing the output of the % derivation; Exp is the expression corresponding to Tree; % AssIn are existing assignments coming in and AssOut are assignments % going out (an is a pair ass(M,X) where M is a row number on the % table and X is the abstracted variable) % ---------------------------------------------------------------------- pp_html_fitch_tree(tree(der,Root,[ders(Words)]),M,N,M,Exp,Ass,Ass):- !, nl, write(''), write(M), write(''), map_word(Words,Exp), pp_exp(Exp), write('-'), pp_cat(Root), write(''), write('Der'), write(''), nl, N is M+1. pp_html_fitch_tree(tree(lex,Root,[leaf(Word)]),M,N,M,Word,Ass,Ass):- !, nl, write(''), write(M), write(''), pp_exp(Word), write('-'), pp_cat(Root), write(''), write('Lex'), write(''), nl, N is M+1. pp_html_fitch_tree(tree(fe,Root,[T1,T2]),M,N,L,Exp1+Exp2,AssIn,AssOut):- !, pp_html_fitch_tree(T1,M,K,Source1,Exp1,AssIn,AssMid), pp_html_fitch_tree(T2,K,L,Source2,Exp2,AssMid,AssOut), nl, write(''), write(L), write(''), pp_exp(Exp1+Exp2), write('-'), pp_cat(Root), write(''), write('E/ '), write((Source1,Source2)), write(''), nl, N is L + 1. pp_html_fitch_tree(tree(be,Root,[T1,T2]),M,N,L,Exp1+Exp2,AssIn,AssOut):- !, pp_html_fitch_tree(T1,M,K,Source1,Exp1,AssIn,AssMid), pp_html_fitch_tree(T2,K,L,Source2,Exp2,AssMid,AssOut), nl, write(''), write(L), write(''), pp_exp(Exp1+Exp2), write('-'), pp_cat(Root), write(''), write('E\\ '), write((Source1,Source2)), write(''), nl, N is L + 1. pp_html_fitch_tree(tree(qqi,Root,[T]),M,Next,Me,Exp,AssIn,AssOut):- !, pp_html_fitch_tree(T,M,Me,Source,Exp,AssIn,AssOut), nl, write(''), write(Me), write(''), pp_exp(Exp), write('-'), pp_cat(Root), write(''), write('q I '), write(Source), write(''), nl, Next is Me+1. pp_html_fitch_tree(tree(coel,Root,[T1,T2,T3]),M,N,L,Exp1+Exp2+Exp3,AssIn,AssOut):- !, pp_html_fitch_tree(T1,M,K,Source1,Exp1,AssIn,AssMid), pp_html_fitch_tree(T2,K,L1,Source2,Exp2,AssMid,AssMid2), pp_html_fitch_tree(T3,L1,L,Source3,Exp3,AssMid2,AssOut), nl, write(''), write(L), write(''), pp_exp(Exp1+Exp2+Exp3), write('-'), pp_cat(Root), write(''), write('E co '), write((Source1,Source2,Source3)), write(''), nl, N is L + 1. pp_html_fitch_tree(tree(fi(_),(C1/C2):(var(X)^Sem),[T]),M,Q,N,ExpNew,AssIn,AssOut):- K is M+1, write(''), write(''), pp_html_fitch_tree(T,K,N,L, Exp, [ass(M,X)|AssIn],AssOut), write(''), write('
'), write(M), write(''), X = '$VAR'(Num), cat_atoms(Num,'',ExpMid), cat_atoms('e',ExpMid,ExpNum), pp_exp(ExpNum), write(' - '), pp_cat(C2:var(X)), write(''), write('Assume
'), write(N), write(''), removeexp(ExpNum,Exp,ExpNew), pp_exp(ExpNew), write(' - '), pp_cat(C1/C2:var(X)^Sem), write(''), write('/I '), write((M,L)), write('
'), Q is N+1. pp_html_fitch_tree(tree(bi(_),(C2\C1):(var(X)^Sem),[T]),M,Q,N,ExpNew,AssIn,AssOut):- K is M+1, write(''), write(''), pp_html_fitch_tree(T,K,N,L, Exp, [ass(M,X)|AssIn],AssOut), write(''), write('
'), write(M), write(''), X = '$VAR'(Num), cat_atoms(Num,'',ExpMid), cat_atoms('e',ExpMid,ExpNum), pp_exp(ExpNum), write(' - '), pp_cat(C2:var(X)), write(''), write('Assume
'), write(N), write(''), removeexp(ExpNum,Exp,ExpNew), pp_exp(ExpNew), write(' - '), pp_cat(C2\C1:var(X)^Sem), write(''), write('/I '), write((M,L)), write('
'), Q is N+1. pp_html_fitch_tree(tree(gi(_),(C1-C2):var(X)^Sem,[T]),M,Q,N,ExpNew,AssIn,AssOut):- K is M+1, write(''), write(''), pp_html_fitch_tree(T,K,N,L,Exp, [ass(M,X)|AssIn],AssOut), write(''), write('
'), write(M), write(''), X = '$VAR'(Num), cat_atoms(Num,'',ExpMid), cat_atoms('e',ExpMid,ExpNum), pp_exp(ExpNum), write(' - '), pp_cat(C2:var(X)), write(''), write('Assume
'), write(N), write(''), splitexp(ExpNum,Exp,ExpNew), pp_exp(ExpNew), write(' - '), pp_cat((C1-C2):var(X)^Sem), write(''), write('I- '), write((M,L)), write('
'), Q is N+1. % pp_html_fitch_tree(tree(qqpop(N),A:(Q@(X^Alpha)),[T1]),M,N,K,Exp,Ass,Ass):- % !, replace_qtree(qqpush(N),T1,T1Mid,T1Extract), % pp_html_fitch_tree(T1Extract,M,L,J,_,_,_), % pp_html_fitch_tree(T1Mid,L,P,I,_,_,_), % write(''), write(P), write(''), % pp_exp(Exp), write(' - '), % pp_cat(A:(Q@(X^Alpha))), write(''), % write(' '). pp_html_fitch_tree(empty(Syn,Sem),M,N,M,[],Ass,Ass):- !, nl, write(''), write(M), write(''), write('NIL'), write(' '), pp_cat(Syn:Sem), write(''), write('Empty'), write(''), nl, N is M+1. pp_html_fitch_tree(ass(_Syn,var(Var),_),N,N,M,Exp,Ass,Ass):- member(ass(M,Var),Ass), Var = '$VAR'(Num), cat_atoms(Num,'',ExpMid), cat_atoms('e',ExpMid,Exp). % removexp(+ExpRem:,+Exp:,-ExpOut:) % ---------------------------------------------------------------------- % he expression ExpRem is removed from Exp with result ExpOut % ---------------------------------------------------------------------- removeexp(E,E,'NIL'):-!. removeexp(E,E+E2,E2):-!. removeexp(E,E2+E,E2):-!. removeexp(E,E2+E3,E2New+E3New):- !, removeexp(E,E2,E2New), removeexp(E,E3,E3New). removeexp(_,E2,E2). % splitexp(+ExpRem:, +Exp:, -ExpOut:) % ---------------------------------------------------------------------- % ExpRem is removed from Exp with ExpOut left over; the extraction % site is represented as a split point % ---------------------------------------------------------------------- splitexp(E,E,('NIL','NIL')):-!. splitexp(E,E+E2,('NIL',E2)):-!. splitexp(E,E2+E,(E2,'NIL')):-!. splitexp(E,E1+E2,(E3,E4+E2)):- splitexp(E,E1,(E3,E4)), !. splitexp(E,E1+E2,(E1+E3,E4)):- splitexp(E,E2,(E3,E4)). % pp_exp(+Exp:) % ---------------------------------------------------------------------- % the expression Exp is output; concatenations are represented as % spaces and split points by (_,_) and empty by '0' % ---------------------------------------------------------------------- pp_exp('NIL'):- !, write(0). pp_exp(A+'NIL'):- !, pp_exp(A). pp_exp(B+'NIL'):- !, pp_exp(B). pp_exp(A+B):- !, pp_exp(A), write(' '), pp_exp(B). pp_exp((A,B)):- !, write('('), pp_exp(A), write(', '), pp_exp(B), write(')'). pp_exp(A):- pp_word(A). map_word([[_]|Ws],Exp):- !, map_word(Ws,Exp). map_word([W|Ws],Exp):- map_word(Ws,W,Exp). map_word([],'NIL'). map_word(Ws,[_],W):- !, map_word(Ws,W). map_word([],W,W). map_word([W|Ws],W1,W1+Exp):- map_word(Ws,W,Exp). pp_exps([]). pp_exps([Exp|Exps]):- pp_exp(Exp), write('+'), pp_exp(Exps). % pp_tree(+T:) % ---------------------------------------------------------------------- % tree T is output in indented list notation; first number % ---------------------------------------------------------------------- pp_tree(T):- numbervars(T), pp_tree(T,0). % pp_tree(+T:, +Col:) % ---------------------------------------------------------------------- % print tree T beginning at column Col % ---------------------------------------------------------------------- pp_tree(empty(Syn,Sem),Col):- nl, tab(Col), pp_cat(Syn:Sem), write(' via empty'). pp_tree(ass(Syn,V,'$VAR'(N)),Column):- nl, tab(Column), write('['), pp_cat(Syn:V), write(']'), write(''), write(N), write(''). pp_tree(leaf(Word),Column):- nl, tab(Column), pp_word(Word). pp_tree(ders(Words),Column):- nl, tab(Column), pp_word_list(Words). pp_tree(tree(Rule,Root,SubTrees),Column):- nl, tab(Column), pp_cat(Root), write(' via '), pp_rule(Rule), NewColumn is Column + 2, pp_trees(SubTrees,NewColumn). % pp_trees(+Ts:)>, +Col:) % ---------------------------------------------------------------------- % print tree list Ts beginning at column Col % ---------------------------------------------------------------------- pp_trees([T|Ts],Column):- pp_tree(T,Column), pp_trees(Ts,Column). pp_trees([],_). % pp_word_list(+Ws:)>) % ---------------------------------------------------------------------- % the list of words Ws is output, ignoring non-atoms % ---------------------------------------------------------------------- pp_word_list([]). pp_word_list([W|Ws]):- atom(W), !, pp_word(W), pp_word_list_rest(Ws). pp_word_list([_|Ws]):- pp_word_list(Ws). pp_word(W):- write(''), write(W), write(''). % pp_word_list_rest(+Ws:)>) % ---------------------------------------------------------------------- % word list Ws is output with an initial blank if Ws is non-empty % ---------------------------------------------------------------------- pp_word_list_rest([]). pp_word_list_rest([W|Ws]):- atom(W), !, write(' '), pp_word(W), pp_word_list_rest(Ws). pp_word_list_rest([_|Ws]):- pp_word_list_rest(Ws). % pp_cat(Cat:) % ---------------------------------------------------------------------- % pretty print category Cat % ---------------------------------------------------------------------- pp_cat(Syn:Sem):- pp_lam(Sem), write(' : '), pp_syn(Syn). % pp_syn(SynCat:) % ---------------------------------------------------------------------- % pretty print syntactic category % ---------------------------------------------------------------------- pp_syn(A/B):- !, pp_syn(A), write('/'), pp_syn_paren(B). pp_syn(A-B):- !, pp_syn(A), write('-'), pp_syn_paren(B). pp_syn(B\A):- !, pp_syn_paren(B), write('\\'), pp_syn_back(A). pp_syn(q(A,B,B)):- !, pp_syn(scop(A,B)). pp_syn(q(A,B,C)):- !, write('q('), pp_syn(A), write(','), pp_syn(B), write(','), pp_syn(C), write(')'). pp_syn(scop(A,B)):- !, pp_syn(A), write('^^'), pp_syn(B). pp_syn(C):- pp_bas_cat(C). % pp_syn_paren(SynCat:) % ---------------------------------------------------------------------- % pretty print syntactic category with enclosing parens if it % is functional (used for arguments) % ---------------------------------------------------------------------- pp_syn_paren(A/B):- !, pp_paren(A/B). pp_syn_paren(A-B):- !, pp_paren(A-B). pp_syn_paren(B\A):- !, pp_paren(B\A). pp_syn_paren(q(A,B,B)):- !, pp_paren(q(A,B,B)). pp_syn_paren(q(A,B,C)):- !, pp_syn(q(A,B,C)). pp_syn_paren(C):- pp_bas_cat(C). % pp_paren(+C:) % ---------------------------------------------------------------------- % category Cat is pretty printed with surrounding parens % ---------------------------------------------------------------------- pp_paren(C):- write('('), pp_syn(C), write(')'). % pp_syn_back(+Cat:) % ---------------------------------------------------------------------- % Cat is pretty printed as the result of a backward functor % ---------------------------------------------------------------------- pp_syn_back(A/B):- !, pp_syn_paren(A/B). pp_syn_back(A-B):- !, pp_syn_paren(A-B). pp_syn_back(A):- pp_syn(A). % pp_bas_cat(+BasCat:) % ---------------------------------------------------------------------- % the basic category BasCat is pretty printed % ---------------------------------------------------------------------- pp_bas_cat(Cat):- writecat(Cat,Atom,Subs,Sups), write(Atom), writesubs(Subs), writesups(Sups). % writecat(+BasCat:,-Root:,-Subs:,-Sups:) % ---------------------------------------------------------------------- % basic category BasCat is printed as Root with superscripts Sups % and subscripts Subs % ---------------------------------------------------------------------- writecat(np(ind(sng),nm(_)),np,[],[]):-!. writecat(np(ind(sng),pp(C)),np,[C],[]):-!. writecat(np(ind(plu),nm(_)),np,[p],[]):-!. writecat(np(ind(plu),pp(C)),np,[p,C],[]):-!. writecat(np(ind(_),nm(_)),np,[],[]):-!. writecat(np(set,nm(_)),np,[p],['*']):-!. writecat(np(set,pp(C)),np,[p,C],['*']):-!. writecat(np(_,_),np,[],[]):-!. writecat(s(fin),s,[],[]):-!. writecat(s('$VAR'(_)),s,[],[]):-!. writecat(s(V),s,[V],[]):-!. writecat(n(ind(plu)),n,[p],[]):-!. writecat(n(set),n,[p],['*']):-!. writecat(n(ind(sng)),n,[],[]):-!. writecat(n(_),n,[],[]):-!. writecat(sc(th(fin)),sc,[th,fin],[]):-!. writecat(sc(th(bse)),sc,[th,bse],[]):-!. writecat(sc(wh),sc,[wh],[]):-!. writecat(sc(if),sc,[if],[]):-!. writecat(sc(_),sc,[],[]):-!. writecat(ex(it),ex,[it],[]):-!. writecat(ex(th(_)),ex,[th],[]):-!. writecat(ex(_),ex,[],[]):-!. writecat(C,C,[],[]). % writesubs(+List:) % ---------------------------------------------------------------------- % List is output as a subscript % ---------------------------------------------------------------------- writesubs([]). writesubs([X|Xs]):- write(''), writelistsubs(Xs,X), write(''). % writesups(+List:) % ---------------------------------------------------------------------- % List is output as a superscript % ---------------------------------------------------------------------- writesups([]). writesups([X|Xs]):- write(''), writelistsubs(Xs,X), write(''). % writelistsubs(+Xs:, +X:) % ---------------------------------------------------------------------- % Xs is written as a list with commas as separators % ---------------------------------------------------------------------- writelistsubs([],X):- write(X). writelistsubs([X|Xs],Y):- write(Y), write(' ,'), writelistsubs(Xs,X). % pp_lam(+Term:) % ---------------------------------------------------------------------- % lambda term Term is pretty printed % ---------------------------------------------------------------------- pp_lam(Var^Alpha):- !, pp_lam(Var), write('. '), pp_lam(Alpha). pp_lam(con(and)@Alpha@Beta):- !, pp_lam_paren(Alpha), write(' & '), pp_lam_paren(Beta). pp_lam(con(or)@Alpha@Beta):- !, pp_lam_paren(Alpha), write(' or '), pp_lam_paren(Beta). pp_lam(con(not)@Alpha):- !, write(' ¬ '), write('('), pp_lam_paren(Alpha), write(')'). pp_lam(Alpha@Beta):- !, pp_lam_bracket(Alpha), write('('), pp_lam(Beta), write(')'). pp_lam(var('$VAR'(N))):- !, write(''), write(x), write(''), write(N), write(''). pp_lam(con(Con)):- write(''), write(Con), write(''). pp_lam_bracket(A^B):- !, write('('), pp_lam(A^B), write(')'). pp_lam_bracket(A):- pp_lam(A). % pp_lam_paren(+Term:) % ---------------------------------------------------------------------- % lambda term Term is pretty printed % ---------------------------------------------------------------------- pp_lam_paren(Var^Alpha):- !, pp_lam(Var), write('. '), pp_lam(Alpha). pp_lam_paren(con(and)@Alpha@Beta):- !, write('('), pp_lam_paren(Alpha), write(' & '), pp_lam_paren(Beta), write(')'). pp_lam_paren(con(or)@Alpha@Beta):- !, write('('), pp_lam_paren(Alpha), write(' or '), pp_lam_paren(Beta), write(')'). pp_lam_paren(con(not)@Alpha):- !, write(' ¬ '), write('('), pp_lam_paren(Alpha), write(')'). pp_lam_paren(Alpha@Beta):- !, pp_lam(Alpha), write('('), pp_lam(Beta), write(')'). pp_lam_paren(var('$VAR'(N))):- !, write(''), write(x), write(''), write(N), write(''). pp_lam_paren(con(Con)):- write(''), write(Con), write(''). % pp_rule(+Rule:) % ---------------------------------------------------------------------- % rule Rule is pretty printed % ---------------------------------------------------------------------- pp_rule(fe):-write('/E'). pp_rule(be):-write('\\E'). pp_rule(fi('$VAR'(N))):-write('/I'), write(N), write(''). pp_rule(bi('$VAR'(N))):-write('\\I'), write(N), write(''). pp_rule(gi('$VAR'(N))):-write('-I'), write(N), write(''). pp_rule(qqpush('$VAR'(N))):-write('qE'), write(N), write(''). pp_rule(qqpop('$VAR'(N))):-write(N). pp_rule(qqi):-write(qI). pp_rule(coel):-write('coE'). pp_rule(lex):-write('L'). pp_rule(der):-write('D'). pp_rule(nbc):-write('NBC'). pp_rule(qi):-write('qI'). % Standard Utilities % ====================================================================== member(X,[X|_]). member(X,[_|Xs]):- member(X,Xs). append_list([],[]). append_list([Xs|Xss],Ys):- append(Xs,Zs,Ys), append_list(Xss,Zs). append([],Xs,Xs). append([X|Xs],Ys,[X|Zs]):- append(Xs,Ys,Zs). at_least_one_member(X,[X|_]):-!. at_least_one_member(X,[_|Xs]):- at_least_one_member(X,Xs). numbervars(X):- numbervars(X,0,_). reverse([],Ws,Ws). reverse([W|Ws],WsAcc,WsRev):- reverse(Ws,[W|WsAcc],WsRev). select(X,[X|Xs],Xs). select(X,[Y|Xs],[Y|Zs]):- select(X,Xs,Zs). select_last([X],X,[]). select_last([X|Xs],Y,[X|Zs]):- select_last(Xs,Y,Zs). cat_atoms(A1,A2,A3):- name(A1,L1), name(A2,L2), append(L1,L2,L3), name(A3,L3). writelist([der(Ws)|Ws2]):- !, writelist(Ws), write(' '), writelist(Ws2). writelist([W|Ws]):- write(W), write(' '), writelist(Ws). writelist([]). write_lex_cat(File):- tell(File), write('Natural Deduction CG Parser LEXICON

'), nl, nl, setof(lexe(W,Syn:Sem),lexentry(W,Syn,Sem),Ws), !, writebreaklex(Ws), nl, write(''), nl, told. writebreaklex([]). writebreaklex([W|Ws]):- writebreaklex(Ws,W). writebreaklex([],lexe(W,Cat)):- write(W), write(' ==> '), pp_cat(Cat), nl. writebreaklex([W2|Ws],lexe(W,Cat)):- write(W), write(' ==> '), pp_cat(Cat), write('
'), nl, writebreaklex(Ws,W2). write_lex(File):- tell(File), write('Natural Deduction CG Parser LEXICON

'), nl, setof(W,C^(W==>C),Ws), !, writebreak(Ws), nl, write('
'), nl, told. writebreak([]). writebreak([W|Ws]):- writebreak(Ws,W). writebreak([],W):- write(W), nl. writebreak([W2|Ws],W):- write(W), write('
'), nl, writebreak(Ws,W2). tt:- consult(natded), consult(lexicon), consult_lex, compile_empty. mt:- consult(natded), consult(lexicon), consult_lex, compile_empty, save(test3), start_up. cmt:- compile(natded), compile(lexicon), compile_lex('compilelex.pl'), compile_empty, save(test3), start_up. %%% Local Variables: %%% mode: prolog %%% prolog-indent-width: 2 %%% tab-width: 2 %%% End: