1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
| | /* This file implements an efficient interval data-structure.
Copyright (C) 2017-2022 Free Software Foundation, Inc.
This file is part of GNU Emacs.
GNU Emacs is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or (at
your option) any later version.
GNU Emacs is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
#include <config.h>
#include <math.h>
#include "itree.h"
/*
Intervals of the form [BEGIN, END), are stored as nodes inside a RB
tree, ordered by BEGIN. The core operation of this tree (besides
insert, remove, etc.) is finding all intervals intersecting with
some given interval. In order to perform this operation
efficiently, every node stores a third value called LIMIT. (See
https://en.wikipedia.org/wiki/Interval_tree#Augmented_tree and its
source Introduction to Algorithms, Cormen et al. .)
==== Finding intervals ====
If we search for all intervals intersecting with (X, Y], we look at
some node and test whether
NODE.BEGIN > Y
Due to the invariant of the search tree, we know, that we may
safely prune NODE's right subtree if this test succeeds, since all
intervals begin strictly after Y.
But we can not make such an assumptions about the left tree, since
all we know is that the intervals in this subtree must start before
or at NODE.BEGIN. So we can't tell, whether they end before X or
not. To solve this problem we add another attribute to each node,
called LIMIT.
The LIMIT of a node is the largest END value occurring in the nodes
subtree (including the node itself). Thus, we may look at the left
child of some NODE and test whether
NODE.left.LIMIT < X
and this tells us, if all intervals in the left subtree of NODE end
before X and if they can be pruned.
Conversely, if this inequality is false, the left subtree must
contain at least one intersecting interval, giving a resulting time
complexity of O(K*log(N)) for this operation, where K is the size
of the result set and N the size of the tree.
==== FIXME: bug#58342 some important operations remain slow ===
The amortized costs of Emacs' previous-overlay-change and
next-overlay-change functions are O(N) with this data structure.
The root problem is that we only have an order for the BEG field,
but not the END. The previous/next overlay change operations need
to find the nearest point where there is *either* an interval BEG
or END point, but there is no efficient way to narrow the search
space over END postions.
Consider the case where next-overlay-change is called at POS, all
interval BEG positions are less than pos POS and all interval END
posistions are after. These END positions have no order, and so
*every* interval must be examined. This is at least O(N). The
previous-overlay-change case is similar. The root issue is that
the iterative "narrowing" approach is not guaranteed to reduce the
search space in logarithmic time, since END is not ordered in the
tree.
One might argue that the LIMIT value will do this narrowing, but
this narrowing is O(K*log(N)) where K is the size of the result
set. If we are interested in finding the node in a range with the
smallest END, we might have to examine all K nodes in that range.
In the case of the *-overlay-channge functions, K may well be equal
to N.
Ideally, a tree based data structure for overlays would have
O(log(N)) performance for previous-overlay-change and
next-overlay-change, as these are called in performance sensitive
situations such as redisplay. The only way I can think of
achieving this is by keeping one ordering by BEG and a separate
ordering by END, and then performing logic quite similar to the
current Emacs overlays-before and overlays-after lists.
==== Adjusting intervals ====
Since this data-structure will be used for overlays in an Emacs
buffer, a second core operation is the ability to insert and delete
gaps in the tree. This models the insertion and deletion of text
in a buffer and the effects it may have on the positions of
overlays.
Consider this: Something gets inserted at position P into a buffer
and assume that all overlays occur strictly after P. Ordinarily,
we would have to iterate all overlays and increment their BEGIN and
END values accordingly (the insertion of text pushes them back).
In order to avoid this, we introduce yet another node attribute,
called OFFSET.
The OFFSET of some some subtree, represented by its root, is the
amount of shift that needs to be applied to its BEGIN, END and
LIMIT values, in order to get to the actual buffer positions.
Coming back to the example, all we would need to do in this case,
is to increment the OFFSET of the tree's root, without any
traversal of the tree itself.
As a consequence, the real values of BEGIN, END and LIMIT of some
NODE need to be computed by incrementing them by the sum of NODE's
OFFSET and all of its ancestors offsets. Therefore, we store a
counter (otick) inside every node and also the tree, by which we
remember the fact, that a node's path to the root has no offsets
applied (i.e. its values are up to date). This is the case if some
node's value differs from the tree's one, the later of which is
incremented whenever some node's offset has changed.
*/
/* FIXME: The code seems to use "generator" and "iterator"
inconsistently/interchangeably. We should fix this naming. */
static struct interval_node *interval_tree_validate (struct interval_tree *, struct interval_node *);
static bool interval_node_intersects (const struct interval_node *, ptrdiff_t, ptrdiff_t);
static int interval_tree_max_height (const struct interval_tree *);
static void interval_tree_update_limit (struct interval_node *);
static void interval_tree_inherit_offset (uintmax_t otick, struct interval_node *);
static void interval_tree_propagate_limit (struct interval_node *);
static void interval_tree_rotate_left (struct interval_tree *, struct interval_node *);
static void interval_tree_rotate_right (struct interval_tree *, struct interval_node *);
static void interval_tree_insert_fix (struct interval_tree *, struct interval_node *);
static void interval_tree_transplant (struct interval_tree *, struct interval_node *, struct interval_node *);
static struct interval_generator* interval_generator_create (struct interval_tree *);
static void interval_tree_insert (struct interval_tree *, struct interval_node *);
/* The sentinel node, the null node. */
struct interval_node itree_null = {
.parent = NULL, /* never accessed */
.left = &itree_null,
.right = &itree_null,
.begin = PTRDIFF_MIN,
.end = PTRDIFF_MIN,
.limit = PTRDIFF_MIN, /* => max(x, null.limit) = x */
.offset = 0,
.otick = 0,
.red = false,
.rear_advance = false,
.front_advance = false,
};
static bool
null_is_sane (void)
{
/* All sentinel node fields are read-only. */
eassert (itree_null.parent == NULL);
eassert (itree_null.left == &itree_null);
eassert (itree_null.right == &itree_null);
eassert (itree_null.begin == PTRDIFF_MIN);
eassert (itree_null.end == PTRDIFF_MIN);
eassert (itree_null.limit == PTRDIFF_MIN);
eassert (itree_null.offset == 0);
eassert (itree_null.otick == 0);
eassert (itree_null.red == false);
eassert (itree_null.rear_advance == false);
eassert (itree_null.front_advance == false);
/* if we get this far things must be good */
return true;
}
/* +------------------------------------------------------------------------------------+ */
typedef uintptr_t nodeptr_and_flag;
/* Simple dynamic array. */
struct interval_stack
{
nodeptr_and_flag *nodes;
size_t size;
size_t length;
};
/* State used when iterating interval. */
struct interval_generator
{
struct interval_stack *stack;
ptrdiff_t begin;
ptrdiff_t end;
uintmax_t otick; /* A copy of the tree's `otick`. */
enum interval_tree_order order;
bool running;
const char* file;
int line;
};
/* Ideally, every iteration would use its own `iter` object, so we could
have several iterations active at the same time. In practice, iterations
are limited by the fact we don't allow modifying the tree at the same
time, making the use of nested iterations quite rare anyway.
So we just use a single global iterator instead for now. */
static struct interval_generator *iter;
static void
itree_init (void)
{
eassert (null_is_sane ());
iter = interval_generator_create (NULL);
}
struct check_subtree_result
{
int size; /* Node count of the tree. */
ptrdiff_t limit; /* Limit of the tree (max END). */
int black_height; /* Black height of the tree. */
};
static struct check_subtree_result
check_subtree (struct interval_node *node,
bool check_red_black_invariants, uintmax_t tree_otick,
ptrdiff_t offset, ptrdiff_t min_begin,
ptrdiff_t max_begin)
{
struct check_subtree_result result = { .size = 0,
.limit = PTRDIFF_MIN,
.black_height = 0 };
if (node == ITREE_NULL)
return result;
/* Validate structure. */
eassert (node->left == ITREE_NULL || node->left->parent == node);
eassert (node->right == ITREE_NULL || node->right->parent == node);
/* Validate otick. A node's otick must be <= to the tree's otick
and <= to its parent's otick.
Note: we cannot assert that (NODE.otick == NODE.parent.otick)
implies (NODE.offset == 0) because interval_tree_inherit_offset()
doesn't always update otick. It could, but it is not clear there
is a need. */
eassert (node->otick <= tree_otick);
eassert (node->parent == ITREE_NULL || node->otick <= node->parent->otick);
eassert (node->otick != tree_otick || node->offset == 0);
offset += node->offset;
ptrdiff_t begin = node->begin + offset;
ptrdiff_t end = node->end + offset;
ptrdiff_t limit = node->limit + offset;
eassert (min_begin <= max_begin);
eassert (min_begin <= begin);
eassert (begin <= max_begin);
eassert (end <= limit);
struct check_subtree_result left_result
= check_subtree (node->left, check_red_black_invariants,
tree_otick, offset, min_begin, begin);
struct check_subtree_result right_result
= check_subtree (node->right, check_red_black_invariants,
tree_otick, offset, begin, max_begin);
eassert (left_result.limit <= limit);
eassert (right_result.limit <= limit);
eassert (limit == max (end, max (left_result.limit, right_result.limit)));
if (check_red_black_invariants)
{
eassert (left_result.black_height == right_result.black_height);
eassert (node->parent != ITREE_NULL || !node->red || !node->parent->red);
}
result.size = 1 + left_result.size + right_result.size;
result.limit = limit;
result.black_height = (node->red ? 0 : 1) + left_result.black_height;
return result;
}
/* Validate invariants for TREE. If CHECK_RED_BLACK_INVARIANTS, red
nodes with red children are considered invalid.
This runs in constant time when ENABLE_OVERLAY_CHECKING is 0
(i.e. Emacs is not configured with
"--enable_checking=yes,overlays"). In this mode it can't check all
the invariants. When ENABLE_OVERLAY_CHECKING is 1 it checks the
entire tree and validates all invariants.
*/
static bool
check_tree (struct interval_tree *tree,
bool check_red_black_invariants)
{
eassert (null_is_sane ());
eassert (tree != NULL);
eassert (tree->size >= 0);
eassert ((tree->size == 0) == (tree->root == ITREE_NULL));
if (tree->root == ITREE_NULL)
return true;
eassert (tree->root->parent == ITREE_NULL);
eassert (!check_red_black_invariants || !tree->root->red);
struct interval_node *node = tree->root;
struct check_subtree_result result
= check_subtree (node, check_red_black_invariants, tree->otick,
node->offset, PTRDIFF_MIN,
PTRDIFF_MAX);
eassert (result.size == tree->size);
/* The only way this function fails is eassert(). */
return true;
}
/* +===================================================================================+
* | Stack
* +===================================================================================+ */
static inline nodeptr_and_flag
make_nav (struct interval_node *ptr, bool flag)
{
uintptr_t v = (uintptr_t) ptr;
/* We assume alignment imposes the LSB is clear for us to use it. */
eassert (!(v & 1));
return v | !!flag;
}
static inline struct interval_node *
nav_nodeptr (nodeptr_and_flag nav)
{
return (struct interval_node *) (nav & (~(uintptr_t)1));
}
static inline bool
nav_flag (nodeptr_and_flag nav)
{
return (bool) (nav & 1);
}
/* This is just a simple dynamic array with stack semantics. */
static struct interval_stack*
interval_stack_create (intmax_t initial_size)
{
struct interval_stack *stack = xmalloc (sizeof (struct interval_stack));
stack->size = max (0, initial_size);
stack->nodes = xmalloc (stack->size * sizeof (struct interval_node*));
stack->length = 0;
return stack;
}
static void
interval_stack_destroy (struct interval_stack *stack)
{
if (! stack)
return;
if (stack->nodes)
xfree (stack->nodes);
xfree (stack);
}
static void
interval_stack_clear (struct interval_stack *stack)
{
stack->length = 0;
}
static inline void
interval_stack_ensure_space (struct interval_stack *stack, intmax_t nelements)
{
if (nelements > stack->size)
{
stack->size = (nelements + 1) * 2;
stack->nodes = xrealloc (stack->nodes,
stack->size * sizeof (*stack->nodes));
}
}
/* Push NODE on the STACK, while settings its visited flag to FLAG. */
static inline void
interval_stack_push_flagged (struct interval_stack *stack,
struct interval_node *node, bool flag)
{
eassert (node && node != ITREE_NULL);
/* FIXME: While the stack used in the iterator is bounded by the tree
depth and could be easily pre-allocated to a large enough size to avoid
this "ensure" check, `interval_stack_push` is also used elsewhere to
simply collect some subset of the overlays, where it's only bounded by
the total number of overlays in the buffer (which can be large and thus
preferably not pre-allocated needlessly). */
interval_stack_ensure_space (stack, stack->length + 1);
stack->nodes[stack->length] = make_nav (node, flag);
stack->length++;
}
static inline void
interval_stack_push (struct interval_stack *stack, struct interval_node *node)
{
interval_stack_push_flagged (stack, node, false);
}
static inline nodeptr_and_flag
interval_stack_pop (struct interval_stack *stack)
{
if (stack->length == 0)
return make_nav (NULL, false);
return stack->nodes[--stack->length];
}
\f
/* +===================================================================================+
* | Tree operations
* +===================================================================================+ */
/* Initialize an allocated node. */
void
interval_node_init (struct interval_node *node,
bool front_advance, bool rear_advance,
Lisp_Object data)
{
node->begin = -1;
node->end = -1;
node->front_advance = front_advance;
node->rear_advance = rear_advance;
node->data = data;
}
/* Return NODE's begin value, computing it if necessary. */
ptrdiff_t
interval_node_begin (struct interval_tree *tree,
struct interval_node *node)
{
interval_tree_validate (tree, node);
return node->begin;
}
/* Return NODE's end value, computing it if necessary. */
ptrdiff_t
interval_node_end (struct interval_tree *tree,
struct interval_node *node)
{
interval_tree_validate (tree, node);
return node->end;
}
/* Safely modify a node's interval. */
void
interval_node_set_region (struct interval_tree *tree,
struct interval_node *node,
ptrdiff_t begin, ptrdiff_t end)
{
interval_tree_validate (tree, node);
if (begin != node->begin)
{
interval_tree_remove (tree, node);
node->begin = min (begin, PTRDIFF_MAX - 1);
node->end = max (node->begin, end);
interval_tree_insert (tree, node);
}
else if (end != node->end)
{
node->end = max (node->begin, end);
eassert (node != ITREE_NULL);
interval_tree_propagate_limit (node);
}
}
/* Allocate an interval_tree. Free with interval_tree_destroy. */
struct interval_tree*
interval_tree_create (void)
{
/* FIXME? Maybe avoid the initialization of itree_null in the same
way that is used to call mem_init in alloc.c? It's not really
important though. */
itree_init ();
struct interval_tree *tree = xmalloc (sizeof (*tree));
interval_tree_clear (tree);
return tree;
}
/* Reset the tree TREE to its empty state. */
void
interval_tree_clear (struct interval_tree *tree)
{
tree->root = ITREE_NULL;
tree->otick = 1;
tree->size = 0;
}
#ifdef ITREE_TESTING
/* Initialize a pre-allocated tree (presumably on the stack). */
static void
interval_tree_init (struct interval_tree *tree)
{
interval_tree_clear (tree);
/* tree->iter = interval_generator_create (tree); */
}
#endif
/* Release a tree, freeing its allocated memory. */
void
interval_tree_destroy (struct interval_tree *tree)
{
eassert (tree->root == ITREE_NULL);
/* if (tree->iter)
* interval_generator_destroy (tree->iter); */
xfree (tree);
}
/* Return the number of nodes in TREE. */
intmax_t
interval_tree_size (struct interval_tree *tree)
{
return tree->size;
}
/* Insert a NODE into the TREE.
Note, that inserting a node twice results in undefined behaviour.
*/
static void
interval_tree_insert (struct interval_tree *tree, struct interval_node *node)
{
eassert (node && node->begin <= node->end && node != ITREE_NULL);
eassert (check_tree (tree, true)); /* FIXME: Too expensive. */
struct interval_node *parent = ITREE_NULL;
struct interval_node *child = tree->root;
uintmax_t otick = tree->otick;
/* It's the responsability of the caller to set `otick` on the node,
to "confirm" that the begin/end fields are uptodate. */
eassert (node->otick == otick);
/* Find the insertion point, accumulate node's offset and update
ancestors limit values. */
while (child != ITREE_NULL)
{
interval_tree_inherit_offset (otick, child);
parent = child;
eassert (child->offset == 0);
child->limit = max (child->limit, node->end);
/* This suggests that nodes in the right subtree are strictly
greater. But this is not true due to later rotations. */
child = node->begin <= child->begin ? child->left : child->right;
}
/* Insert the node */
if (parent == ITREE_NULL)
tree->root = node;
else if (node->begin <= parent->begin)
parent->left = node;
else
parent->right = node;
/* Init the node */
node->parent = parent;
node->left = ITREE_NULL;
node->right = ITREE_NULL;
node->red = true;
node->offset = 0;
node->limit = node->end;
eassert (node->parent == ITREE_NULL || node->parent->otick >= node->otick);
/* Fix/update the tree */
++tree->size;
eassert (check_tree (tree, false)); /* FIXME: Too expensive. */
interval_tree_insert_fix (tree, node);
}
void
itree_insert_node (struct interval_tree *tree, struct interval_node *node,
ptrdiff_t begin, ptrdiff_t end)
{
node->begin = begin;
node->end = end;
node->otick = tree->otick;
interval_tree_insert (tree, node);
}
/* Return true, if NODE is a member of TREE. */
static bool
interval_tree_contains (struct interval_tree *tree, struct interval_node *node)
{
eassert (node);
struct interval_node *other;
ITREE_FOREACH (other, tree, node->begin, PTRDIFF_MAX, ASCENDING)
if (other == node)
{
ITREE_FOREACH_ABORT ();
return true;
}
return false;
}
static inline ptrdiff_t
itree_newlimit (struct interval_node *node)
{
eassert (node != ITREE_NULL);
return max (node->end,
max (node->left->limit + node->left->offset,
node->right->limit + node->right->offset));
}
static bool
itree_limit_is_stable (struct interval_node *node)
{
if (node == ITREE_NULL)
return true;
ptrdiff_t newlimit = itree_newlimit (node);
return (newlimit == node->limit);
}
static struct interval_node*
interval_tree_subtree_min (uintmax_t otick, struct interval_node *node)
{
if (node == ITREE_NULL)
return node;
while ((interval_tree_inherit_offset (otick, node),
node->left != ITREE_NULL))
node = node->left;
return node;
}
/* Repair the tree after a deletion.
The black-depth of NODE is one less than that of its sibling,
so re-balance the parents to re-establish the RB invariants. */
static void
interval_tree_remove_fix (struct interval_tree *tree,
struct interval_node *node,
struct interval_node *parent)
{
eassert (node == ITREE_NULL || node->parent == parent);
eassert (parent == ITREE_NULL
|| node == parent->left || node == parent->right);
while (parent != ITREE_NULL && !node->red)
{
if (node == parent->left)
{
struct interval_node *other = parent->right;
if (other->red) /* case 1.a */
{
other->red = false;
parent->red = true;
interval_tree_rotate_left (tree, parent);
other = parent->right;
}
if (!other->left->red /* 2.a */
&& !other->right->red)
{
other->red = true;
node = parent;
eassert (node != ITREE_NULL);
parent = node->parent;
}
else
{
if (!other->right->red) /* 3.a */
{
other->left->red = false;
other->red = true;
interval_tree_rotate_right (tree, other);
other = parent->right;
}
other->red = parent->red; /* 4.a */
parent->red = false;
other->right->red = false;
interval_tree_rotate_left (tree, parent);
node = tree->root;
parent = ITREE_NULL;
}
}
else
{
struct interval_node *other = parent->left;
if (other->red) /* 1.b */
{
other->red = false;
parent->red = true;
interval_tree_rotate_right (tree, parent);
other = parent->left;
}
if (!other->right->red /* 2.b */
&& !other->left->red)
{
other->red = true;
node = parent;
eassert (node != ITREE_NULL);
parent = node->parent;
}
else
{
if (!other->left->red) /* 3.b */
{
other->right->red = false;
other->red = true;
interval_tree_rotate_left (tree, other);
other = parent->left;
}
other->red = parent->red; /* 4.b */
parent->red = false;
other->left->red = false;
interval_tree_rotate_right (tree, parent);
node = tree->root;
parent = ITREE_NULL;
}
}
}
node->red = false;
}
/* Remove NODE from TREE and return it. NODE must exist in TREE. */
struct interval_node*
interval_tree_remove (struct interval_tree *tree, struct interval_node *node)
{
eassert (interval_tree_contains (tree, node));
eassert (check_tree (tree, true)); /* FIXME: Too expensive. */
/* `broken`, if non-NULL, holds a node that's being moved up to where a black
node used to be, which may thus require further fixups in its parents
(done in `interval_tree_remove_fix`). */
struct interval_node *broken = NULL;
/* `broken` may be null but `interval_tree_remove_fix` still
needs to know its "parent".
Cormen et al.'s Introduction to Algorithms uses a trick where
they rely on the null sentinel node's `parent` field to hold
the right value. While this works, it breaks the rule that
the `parent` field is write-only making correctness much more tricky
and introducing a dependency on a global state (which is incompatible
with concurrency among other things), so instead we keep track of
`broken`'s parent manually. */
struct interval_node *broken_parent = NULL;
interval_tree_inherit_offset (tree->otick, node);
if (node->left == ITREE_NULL || node->right == ITREE_NULL)
{
struct interval_node *subst
= node->right == ITREE_NULL ? node->left : node->right;
if (!node->red)
{
broken = subst;
broken_parent = node->parent; /* The future parent. */
}
interval_tree_transplant (tree, subst, node);
}
else
{
struct interval_node *min
= interval_tree_subtree_min (tree->otick, node->right);
struct interval_node *min_right = min->right;
struct interval_node *min_parent = min->parent;
if (!min->red)
broken = min_right;
eassert (min != ITREE_NULL);
/* `min` should not have any offsets any more so we can move nodes
underneath it without risking changing their begin/end. */
eassert (min->offset == 0);
if (min->parent == node)
broken_parent = min; /* The future parent. */
else
{
interval_tree_transplant (tree, min_right, min);
broken_parent = min->parent; /* The parent. */
min->right = node->right;
}
min->left = node->left;
min->left->parent = min;
min->red = node->red;
/* FIXME: At this point node->right->parent = min but node->right
is a parent of `min` so total_offsets gets stuck in an inf-loop! */
interval_tree_transplant (tree, min, node);
/* We set min->right->parent after `interval_tree_transplant` so
that calls to `itree_total_offset` don't get stuck in an inf-loop. */
if (min->right != ITREE_NULL)
min->right->parent = min;
interval_tree_update_limit (min);
/* This call "belongs" with the first `interval_tree_transplant`
(of `min_right`, done earlier in the `if`) but we prefer to do it
here ("late") because otherwise it would sometimes update part of
the tree with values that would be invalidated by the second
`interval_tree_transplant`. */
interval_tree_propagate_limit (min_parent);
}
interval_tree_propagate_limit (node->parent);
--tree->size;
if (broken)
{
eassert (check_tree (tree, false)); /* FIXME: Too expensive. */
interval_tree_remove_fix (tree, broken, broken_parent);
}
node->right = node->left = node->parent = NULL;
eassert ((tree->size == 0) == (tree->root == ITREE_NULL));
eassert (check_tree (tree, true)); /* FIXME: Too expensive. */
return node;
}
static struct interval_node*
interval_tree_validate (struct interval_tree *tree, struct interval_node *node)
{
if (tree->otick == node->otick || node == ITREE_NULL)
return node;
if (node != tree->root)
interval_tree_validate (tree, node->parent);
interval_tree_inherit_offset (tree->otick, node);
return node;
}
bool
itree_busy_p (void)
{
return (iter && iter->running);
}
/* Start a generator iterating all intervals in [BEGIN,END) in the
given ORDER. Only one iterator per tree can be running at any
time.
*/
struct interval_generator *
interval_tree_iter_start (struct interval_tree *tree,
ptrdiff_t begin, ptrdiff_t end,
enum interval_tree_order order,
const char* file, int line)
{
eassert (null_is_sane ());
/* struct interval_generator *iter = tree->iter; */
if (iter->running)
{
fprintf (stderr,
"Detected nested iteration!\nOuter: %s:%d\nInner: %s:%d\n",
iter->file, iter->line, file, line);
emacs_abort ();
}
iter->begin = begin;
iter->end = end;
iter->otick = tree->otick;
iter->order = order;
interval_stack_clear (iter->stack);
if (begin <= end && tree->root != ITREE_NULL)
interval_stack_push_flagged (iter->stack, tree->root, false);
iter->file = file;
iter->line = line;
iter->running = true;
/* interval_stack_ensure_space (iter->stack,
2 * interval_tree_max_height (tree)); */
return iter;
}
/* Stop using the iterator. */
void
interval_tree_iter_finish (struct interval_generator *iter)
{
eassert (iter->running);
iter->running = false;
}
static int
interval_tree_max_height (const struct interval_tree *tree)
{
return 2 * log (tree->size + 1) / log (2) + 0.5;
}
\f
/* +===================================================================================+
* | Insert/Delete Gaps
* +===================================================================================+ */
/* Insert a gap at POS of length LENGTH expanding all intervals
intersecting it, while respecting their rear_advance and
front_advance setting. */
void
interval_tree_insert_gap (struct interval_tree *tree, ptrdiff_t pos, ptrdiff_t length)
{
if (length <= 0 || tree->root == ITREE_NULL)
return;
uintmax_t ootick = tree->otick;
/* FIXME: Don't allocate generator/stack anew every time. */
/* Nodes with front_advance starting at pos may mess up the tree
order, so we need to remove them first. */
struct interval_stack *saved = interval_stack_create (0);
struct interval_node *node = NULL;
ITREE_FOREACH (node, tree, pos, pos + 1, PRE_ORDER)
{
if (node->begin == pos && node->front_advance
&& (node->begin != node->end || node->rear_advance))
interval_stack_push (saved, node);
}
for (int i = 0; i < saved->length; ++i)
interval_tree_remove (tree, nav_nodeptr (saved->nodes[i]));
/* We can't use a generator here, because we can't effectively
narrow AND shift some subtree at the same time. */
if (tree->root != ITREE_NULL)
{
const int size = interval_tree_max_height (tree) + 1;
struct interval_stack *stack = interval_stack_create (size);
interval_stack_push (stack, tree->root);
nodeptr_and_flag nav;
while ((nav = interval_stack_pop (stack),
node = nav_nodeptr (nav)))
{
/* Process in pre-order. */
interval_tree_inherit_offset (tree->otick, node);
if (node->right != ITREE_NULL)
{
if (node->begin > pos)
{
/* All nodes in this subtree are shifted by length. */
node->right->offset += length;
++tree->otick;
}
else
interval_stack_push (stack, node->right);
}
if (node->left != ITREE_NULL
&& pos <= node->left->limit + node->left->offset)
interval_stack_push (stack, node->left);
/* node->begin == pos implies no front-advance. */
if (node->begin > pos)
node->begin += length;
if (node->end > pos || (node->end == pos && node->rear_advance))
{
node->end += length;
eassert (node != ITREE_NULL);
interval_tree_propagate_limit (node);
}
}
interval_stack_destroy (stack);
}
/* Reinsert nodes starting at POS having front-advance. */
uintmax_t notick = tree->otick;
nodeptr_and_flag nav;
while ((nav = interval_stack_pop (saved),
node = nav_nodeptr (nav)))
{
eassert (node->otick == ootick);
node->begin += length;
if (node->end != pos || node->rear_advance)
node->end += length;
node->otick = notick;
interval_tree_insert (tree, node);
}
interval_stack_destroy (saved);
}
/* Delete a gap at POS of length LENGTH, contracting all intervals
intersecting it. */
void
interval_tree_delete_gap (struct interval_tree *tree, ptrdiff_t pos, ptrdiff_t length)
{
if (length <= 0 || tree->root == ITREE_NULL)
return;
/* FIXME: Don't allocate stack anew every time. */
/* Can't use the generator here, because by decrementing begin, we
might unintentionally bring shifted nodes back into our search
space. */
const int size = interval_tree_max_height (tree) + 1;
struct interval_stack *stack = interval_stack_create (size);
struct interval_node *node;
interval_stack_push (stack, tree->root);
nodeptr_and_flag nav;
while ((nav = interval_stack_pop (stack)))
{
node = nav_nodeptr (nav);
interval_tree_inherit_offset (tree->otick, node);
if (node->right != ITREE_NULL)
{
if (node->begin > pos + length)
{
/* Shift right subtree to the left. */
node->right->offset -= length;
++tree->otick;
}
else
interval_stack_push (stack, node->right);
}
if (node->left != ITREE_NULL
&& pos <= node->left->limit + node->left->offset)
interval_stack_push (stack, node->left);
if (pos < node->begin)
node->begin = max (pos, node->begin - length);
if (node->end > pos)
{
node->end = max (pos , node->end - length);
eassert (node != ITREE_NULL);
interval_tree_propagate_limit (node);
}
}
interval_stack_destroy (stack);
}
\f
/* +===================================================================================+
* | Generator
* +===================================================================================+ */
/* Allocate a new generator for TREE. */
static struct interval_generator *
interval_generator_create (struct interval_tree *tree)
{
struct interval_generator *g = xmalloc (sizeof *g);
/* 19 here just avoids starting with a silly-small stack.
FIXME: Since this stack only needs to be about 2*max_depth
in the worst case, we could completely pre-allocate it to something
like word-bit-size * 2 and then never worry about growing it. */
const int size = (tree ? interval_tree_max_height (tree) : 19) + 1;
g->stack = interval_stack_create (size);
g->running = false;
g->begin = 0;
g->end = 0;
g->file = NULL;
g->line = 0;
return g;
}
/* Return true, if NODE's interval intersects with [BEGIN, END).
Note: We always include empty nodes at BEGIN (and not at END),
but if BEGIN==END, then we don't include non-empty nodes starting
at BEGIN or ending at END. This seems to match the behavior of the
old overlays code but it's not clear if it's The Right Thing
(e.g. it breaks the expectation that if NODE1 is included, then
a NODE2 strictly bigger than NODE1 should also be included). */
static inline bool
interval_node_intersects (const struct interval_node *node,
ptrdiff_t begin, ptrdiff_t end)
{
return (begin < node->end && node->begin < end)
|| (node->begin == node->end && begin == node->begin);
}
/* Return the next node of the iterator in the order given when it was
started; or NULL if there are no more nodes. */
inline struct interval_node*
interval_generator_next (struct interval_generator *g)
{
eassert (g->running);
struct interval_node * const null = ITREE_NULL;
struct interval_node *node;
/* The `visited` flag stored in each node is used here (and only here):
We keep a "workstack" of nodes we need to consider. This stack
consist of nodes of two types: nodes that we have decided
should be returned by the generator, and nodes which we may
need to consider (including checking their children).
We start an iteration with a stack containing just the root
node marked as "not visited" which means that it (and its children)
needs to be considered but we haven't yet decided whether it's included
in the generator's output. */
do {
nodeptr_and_flag nav;
bool visited;
while ((nav = interval_stack_pop (g->stack),
node = nav_nodeptr (nav),
visited = nav_flag (nav),
node && !visited))
{
struct interval_node * const left = node->left;
struct interval_node * const right = node->right;
interval_tree_inherit_offset (g->otick, node);
eassert (itree_limit_is_stable (node));
switch (g->order)
{
case ITREE_ASCENDING:
if (right != null && node->begin <= g->end)
interval_stack_push_flagged (g->stack, right, false);
if (interval_node_intersects (node, g->begin, g->end))
interval_stack_push_flagged (g->stack, node, true);
/* Node's children may still be off-set and we need to add it. */
if (left != null && g->begin <= left->limit + left->offset)
interval_stack_push_flagged (g->stack, left, false);
break;
case ITREE_DESCENDING:
if (left != null && g->begin <= left->limit + left->offset)
interval_stack_push_flagged (g->stack, left, false);
if (interval_node_intersects (node, g->begin, g->end))
interval_stack_push_flagged (g->stack, node, true);
if (right != null && node->begin <= g->end)
interval_stack_push_flagged (g->stack, right, false);
break;
case ITREE_PRE_ORDER:
if (right != null && node->begin <= g->end)
interval_stack_push_flagged (g->stack, right, false);
if (left != null && g->begin <= left->limit + left->offset)
interval_stack_push_flagged (g->stack, left, false);
if (interval_node_intersects (node, g->begin, g->end))
interval_stack_push_flagged (g->stack, node, true);
break;
}
}
/* Node may have been invalidated by interval_generator_narrow
after it was pushed: Check if it still intersects. */
} while (node && ! interval_node_intersects (node, g->begin, g->end));
return node;
}
/* Limit G to the new interval [BEGIN, END), which must be a subset of
the current one. I.E. it can't grow on either side. */
inline void
interval_generator_narrow (struct interval_generator *g,
ptrdiff_t begin, ptrdiff_t end)
{
eassert (g->running);
eassert (begin >= g->begin);
eassert (end <= g->end);
g->begin = max (begin, g->begin);
g->end = min (end, g->end);
}
\f
/* +===================================================================================+
* | Internal Functions
* +===================================================================================+ */
/* Update NODE's limit attribute according to its children. */
static void
interval_tree_update_limit (struct interval_node *node)
{
if (node == ITREE_NULL)
return;
node->limit = itree_newlimit (node);
}
/* Apply NODE's offset to its begin, end and limit values and
propagate it to its children.
Does nothing, if NODE is clean, i.e. NODE.otick = tree.otick .
*/
static void
interval_tree_inherit_offset (uintmax_t otick, struct interval_node *node)
{
eassert (node->parent == ITREE_NULL || node->parent->otick >= node->otick);
if (node->otick == otick)
{
eassert (node->offset == 0);
return;
}
/* Offsets can be inherited from dirty nodes (with out of date
otick) during removal, since we do not travel down from the root
in that case. In this case rotations are performed on
potentially "dirty" nodes, where we only need to make sure the
*local* offsets are zero. */
if (node->offset)
{
node->begin += node->offset;
node->end += node->offset;
node->limit += node->offset;
if (node->left != ITREE_NULL)
node->left->offset += node->offset;
if (node->right != ITREE_NULL)
node->right->offset += node->offset;
node->offset = 0;
}
/* The only thing that matters about `otick` is whether it's equal to
that of the tree. We could also "blindly" inherit from parent->otick,
but we need to tree's `otick` anyway for when there's no parent. */
if (node->parent == ITREE_NULL || node->parent->otick == otick)
node->otick = otick;
}
/* Update limit of NODE and its ancestors. Stop when it becomes
stable, i.e. new_limit = old_limit.
NODE may also be the null node, in which case its parent is
used. (This feature is due to the RB algorithm.)
*/
static void
interval_tree_propagate_limit (struct interval_node *node)
{
if (node == ITREE_NULL)
return;
while (1) {
ptrdiff_t newlimit = itree_newlimit (node);
if (newlimit == node->limit)
break;
node->limit = newlimit;
if (node->parent == ITREE_NULL)
break;
node = node->parent;
}
}
/* Perform the familiar left-rotation on node NODE. */
static void
interval_tree_rotate_left (struct interval_tree *tree, struct interval_node *node)
{
eassert (node->right != ITREE_NULL);
struct interval_node *right = node->right;
interval_tree_inherit_offset (tree->otick, node);
interval_tree_inherit_offset (tree->otick, right);
/* Turn right's left subtree into node's right subtree. */
node->right = right->left;
if (right->left != ITREE_NULL)
right->left->parent = node;
/* right's parent was node's parent. */
if (right != ITREE_NULL)
right->parent = node->parent;
/* Get the parent to point to right instead of node. */
if (node != tree->root)
{
if (node == node->parent->left)
node->parent->left = right;
else
node->parent->right = right;
}
else
tree->root = right;
/* Put node on right's left. */
right->left = node;
if (node != ITREE_NULL)
node->parent = right;
/* Order matters here. */
interval_tree_update_limit (node);
interval_tree_update_limit (right);
}
/* Perform the familiar right-rotation on node NODE. */
static void
interval_tree_rotate_right (struct interval_tree *tree, struct interval_node *node)
{
eassert (tree && node && node->left != ITREE_NULL);
struct interval_node *left = node->left;
interval_tree_inherit_offset (tree->otick, node);
interval_tree_inherit_offset (tree->otick, left);
node->left = left->right;
if (left->right != ITREE_NULL)
left->right->parent = node;
if (left != ITREE_NULL)
left->parent = node->parent;
if (node != tree->root)
{
if (node == node->parent->right)
node->parent->right = left;
else
node->parent->left = left;
}
else
tree->root = left;
left->right = node;
if (node != ITREE_NULL)
node->parent = left;
interval_tree_update_limit (left);
interval_tree_update_limit (node);
}
/* Repair the tree after an insertion.
The new NODE was added as red, so we may have 2 reds in a row.
Rebalance the parents as needed to re-establish the RB invariants. */
static void
interval_tree_insert_fix (struct interval_tree *tree, struct interval_node *node)
{
while (node->parent->red)
{
/* NODE is red and its parent is red. This is a violation of
red-black tree property #3. */
eassert (node->red);
if (node->parent == node->parent->parent->left)
{
/* We're on the left side of our grandparent, and OTHER is
our "uncle". */
struct interval_node *uncle = node->parent->parent->right;
if (uncle->red) /* case 1.a */
{
/* Uncle and parent are red but should be black because
NODE is red. Change the colors accordingly and
proceed with the grandparent. */
node->parent->red = false;
uncle->red = false;
node->parent->parent->red = true;
node = node->parent->parent;
}
else
{
/* Parent and uncle have different colors; parent is
red, uncle is black. */
if (node == node->parent->right) /* case 2.a */
{
node = node->parent;
interval_tree_rotate_left (tree, node);
}
/* case 3.a */
node->parent->red = false;
node->parent->parent->red = true;
interval_tree_rotate_right (tree, node->parent->parent);
}
}
else
{
/* This is the symmetrical case of above. */
struct interval_node *uncle = node->parent->parent->left;
if (uncle->red) /* case 1.b */
{
node->parent->red = false;
uncle->red = false;
node->parent->parent->red = true;
node = node->parent->parent;
}
else
{
if (node == node->parent->left) /* case 2.b */
{
node = node->parent;
interval_tree_rotate_right (tree, node);
}
/* case 3.b */
node->parent->red = false;
node->parent->parent->red = true;
interval_tree_rotate_left (tree, node->parent->parent);
}
}
}
/* The root may have been changed to red due to the algorithm.
Set it to black so that property #5 is satisfied. */
tree->root->red = false;
eassert (check_tree (tree, true)); /* FIXME: Too expensive. */
}
/* Return accumulated offsets of NODE's parents. */
static ptrdiff_t
itree_total_offset (struct interval_node *node)
{
eassert (node != ITREE_NULL);
ptrdiff_t offset = 0;
while (node->parent != ITREE_NULL)
{
node = node->parent;
offset += node->offset;
}
return offset;
}
/* Link node SOURCE in DEST's place.
It's the caller's responsability to refresh the `limit`s
of DEST->parents afterwards. */
static void
interval_tree_transplant (struct interval_tree *tree, struct interval_node *source,
struct interval_node *dest)
{
eassert (tree && source && dest && dest != ITREE_NULL);
eassert (source == ITREE_NULL
|| itree_total_offset (source) == itree_total_offset (dest));
if (dest == tree->root)
tree->root = source;
else if (dest == dest->parent->left)
dest->parent->left = source;
else
dest->parent->right = source;
if (source != ITREE_NULL)
source->parent = dest->parent;
}
\f
/* +===================================================================================+
* | Debugging
* +===================================================================================+ */
/* See Foverlay_tree in buffer.c */
|