1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
| | ;;; cl-seq.el --- Common Lisp features, part 3 -*- lexical-binding: t -*-
;; Copyright (C) 1993, 2001-2023 Free Software Foundation, Inc.
;; Author: Dave Gillespie <daveg@synaptics.com>
;; Old-Version: 2.02
;; Keywords: extensions
;; Package: emacs
;; This file is part of GNU Emacs.
;; GNU Emacs is free software: you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation, either version 3 of the License, or
;; (at your option) any later version.
;; GNU Emacs is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;; You should have received a copy of the GNU General Public License
;; along with GNU Emacs. If not, see <https://www.gnu.org/licenses/>.
;;; Commentary:
;; These are extensions to Emacs Lisp that provide a degree of
;; Common Lisp compatibility, beyond what is already built-in
;; in Emacs Lisp.
;;
;; This package was written by Dave Gillespie; it is a complete
;; rewrite of Cesar Quiroz's original cl.el package of December 1986.
;;
;; Bug reports, comments, and suggestions are welcome!
;; This file contains the Common Lisp sequence and list functions
;; which take keyword arguments.
;; See cl.el for Change Log.
;;; Code:
(require 'cl-lib)
;; Keyword parsing.
;; This is special-cased here so that we can compile
;; this file independent from cl-macs.
(defmacro cl--parsing-keywords (kwords other-keys &rest body)
(declare (indent 2) (debug (sexp sexp &rest form)))
`(let* ,(mapcar
(lambda (x)
(let* ((var (if (consp x) (car x) x))
(mem `(car (cdr (memq ',var cl-keys)))))
(if (eq var :test-not)
(setq mem `(and ,mem (setq cl-test ,mem) t)))
(if (eq var :if-not)
(setq mem `(and ,mem (setq cl-if ,mem) t)))
(list (intern
(format "cl-%s" (substring (symbol-name var) 1)))
(if (consp x) `(or ,mem ,(car (cdr x))) mem))))
kwords)
,@(append
(and (not (eq other-keys t))
(list
(list 'let '((cl-keys-temp cl-keys))
(list 'while 'cl-keys-temp
(list 'or (list 'memq '(car cl-keys-temp)
(list 'quote
(mapcar
(lambda (x)
(if (consp x)
(car x) x))
(append kwords
other-keys))))
'(car (cdr (memq (quote :allow-other-keys)
cl-keys)))
'(error "Bad keyword argument %s"
(car cl-keys-temp)))
'(setq cl-keys-temp (cdr (cdr cl-keys-temp)))))))
body)))
(defmacro cl--check-key (x) ;Expects `cl-key' in context of generated code.
(declare (debug edebug-forms))
`(if cl-key (funcall cl-key ,x) ,x))
(defmacro cl--check-test-nokey (item x) ;cl-test cl-if cl-test-not cl-if-not.
(declare (debug edebug-forms))
`(cond
(cl-test (eq (not (funcall cl-test ,item ,x))
cl-test-not))
(cl-if (eq (not (funcall cl-if ,x)) cl-if-not))
(t (eql ,item ,x))))
(defmacro cl--check-test (item x) ;all of the above.
(declare (debug edebug-forms))
`(cl--check-test-nokey ,item (cl--check-key ,x)))
(defmacro cl--check-match (x y) ;cl-key cl-test cl-test-not
(declare (debug edebug-forms))
(setq x `(cl--check-key ,x) y `(cl--check-key ,y))
`(if cl-test
(eq (not (funcall cl-test ,x ,y)) cl-test-not)
(eql ,x ,y)))
;; Yuck! These vars are set/bound by cl--parsing-keywords to match :if :test
;; and :key keyword args, and they are also accessed (sometimes) via dynamic
;; scoping (and some of those accesses are from macro-expanded code).
(defvar cl-test) (defvar cl-test-not)
(defvar cl-if) (defvar cl-if-not)
(defvar cl-key)
;;;###autoload
(defun cl-endp (x)
"Return true if X is the empty list; false if it is a cons.
Signal an error if X is not a list."
(cl-check-type x list)
(null x))
;;;###autoload
(defun cl-reduce (cl-func cl-seq &rest cl-keys)
"Reduce two-argument FUNCTION across SEQ.
\nKeywords supported: :start :end :from-end :initial-value :key
Return the result of calling FUNCTION with the first and the
second element of SEQ, then calling FUNCTION with that result and
the third element of SEQ, then with that result and the fourth
element of SEQ, etc.
If :INITIAL-VALUE is specified, it is logically added to the
front of SEQ (or the back if :FROM-END is non-nil). If SEQ is
empty, return :INITIAL-VALUE and FUNCTION is not called.
If SEQ is empty and no :INITIAL-VALUE is specified, then return
the result of calling FUNCTION with zero arguments. This is the
only case where FUNCTION is called with fewer than two arguments.
If SEQ contains exactly one element and no :INITIAL-VALUE is
specified, then return that element and FUNCTION is not called.
If :FROM-END is non-nil, the reduction occurs from the back of
the SEQ moving forward, and the order of arguments to the
FUNCTION is also reversed.
\n(fn FUNCTION SEQ [KEYWORD VALUE]...)"
(cl--parsing-keywords (:from-end (:start 0) :end :initial-value :key) ()
(or (listp cl-seq) (setq cl-seq (append cl-seq nil)))
(setq cl-seq (cl-subseq cl-seq cl-start cl-end))
(if cl-from-end (setq cl-seq (nreverse cl-seq)))
(let ((cl-accum (cond ((memq :initial-value cl-keys) cl-initial-value)
(cl-seq (cl--check-key (pop cl-seq)))
(t (funcall cl-func)))))
(if cl-from-end
(while cl-seq
(setq cl-accum (funcall cl-func (cl--check-key (pop cl-seq))
cl-accum)))
(while cl-seq
(setq cl-accum (funcall cl-func cl-accum
(cl--check-key (pop cl-seq))))))
cl-accum)))
;;;###autoload
(defun cl-fill (cl-seq cl-item &rest cl-keys)
"Replace elements of SEQ between START and END with ITEM.
SEQ is a Lisp sequence. It is destructively modified and
returned.
START and END are indexes like in `aref' or `elt'. They
designate the subsequence of SEQ to operate on. If END is nil,
process the sequence to the end. They default to 0 and nil,
respectively, meaning process the whole SEQ.
START and END are keyword arguments. See info node `(cl) Program
Structure > Argument Lists' for details.
\n(fn SEQ ITEM &key START END...)"
(cl--parsing-keywords ((:start 0) :end) ()
(if (listp cl-seq)
(let ((p (nthcdr cl-start cl-seq))
(n (and cl-end (- cl-end cl-start))))
(while (and p (or (null n) (>= (cl-decf n) 0)))
(setcar p cl-item)
(setq p (cdr p))))
(or cl-end (setq cl-end (length cl-seq)))
(if (and (= cl-start 0) (= cl-end (length cl-seq)))
(fillarray cl-seq cl-item)
(while (< cl-start cl-end)
(aset cl-seq cl-start cl-item)
(setq cl-start (1+ cl-start)))))
cl-seq))
;;;###autoload
(defun cl-replace (cl-seq1 cl-seq2 &rest cl-keys)
"Replace the elements of SEQ1 with elements of SEQ2.
SEQ1 and SEQ2 are both Lisp sequences. SEQ1 is destructively
modified and returned.
START1, END1, START2 and END2 can be indexes like in `aref' or
`elt'. Each pair designates two subsequences of SEQ1 and SEQ2,
respectively, to operate on. If END1 or END2 is nil, consider
the respective sequences to the end.
Consecutive elements of the subsequence of SEQ1 are replaced by
consecutive elements of the subsequence of SEQ2.
If the subsequences vary in length, the shorter one determines
how many elements are replaced. Extra elements in either
subsequence are ignored.
START1 and START2 default to 0, END1 and END2 default to nil,
meaning replace as much of SEQ1 as possible with elements from
SEQ2.
START1, END1, START2 and END2 are keyword arguments. See info
node `(cl) Program Structure > Argument Lists' for details.
\n(fn SEQ1 SEQ2 &key START1 END1 START2 END2...)"
(cl--parsing-keywords ((:start1 0) :end1 (:start2 0) :end2) ()
(if (and (eq cl-seq1 cl-seq2) (<= cl-start2 cl-start1))
(or (= cl-start1 cl-start2)
(let* ((cl-len (length cl-seq1))
(cl-n (min (- (or cl-end1 cl-len) cl-start1)
(- (or cl-end2 cl-len) cl-start2))))
(while (>= (setq cl-n (1- cl-n)) 0)
(setf (elt cl-seq1 (+ cl-start1 cl-n))
(elt cl-seq2 (+ cl-start2 cl-n))))))
(if (listp cl-seq1)
(let ((cl-p1 (nthcdr cl-start1 cl-seq1))
(cl-n1 (and cl-end1 (- cl-end1 cl-start1))))
(if (listp cl-seq2)
(let ((cl-p2 (nthcdr cl-start2 cl-seq2))
(cl-n (cond ((and cl-n1 cl-end2)
(min cl-n1 (- cl-end2 cl-start2)))
((and cl-n1 (null cl-end2)) cl-n1)
((and (null cl-n1) cl-end2) (- cl-end2 cl-start2)))))
(while (and cl-p1 cl-p2 (or (null cl-n) (>= (cl-decf cl-n) 0)))
(setcar cl-p1 (car cl-p2))
(setq cl-p1 (cdr cl-p1) cl-p2 (cdr cl-p2))))
(setq cl-end2 (if (null cl-n1)
(or cl-end2 (length cl-seq2))
(min (or cl-end2 (length cl-seq2))
(+ cl-start2 cl-n1))))
(while (and cl-p1 (< cl-start2 cl-end2))
(setcar cl-p1 (aref cl-seq2 cl-start2))
(setq cl-p1 (cdr cl-p1) cl-start2 (1+ cl-start2)))))
(setq cl-end1 (min (or cl-end1 (length cl-seq1))
(+ cl-start1 (- (or cl-end2 (length cl-seq2))
cl-start2))))
(if (listp cl-seq2)
(let ((cl-p2 (nthcdr cl-start2 cl-seq2)))
(while (< cl-start1 cl-end1)
(aset cl-seq1 cl-start1 (car cl-p2))
(setq cl-p2 (cdr cl-p2) cl-start1 (1+ cl-start1))))
(while (< cl-start1 cl-end1)
(aset cl-seq1 cl-start1 (aref cl-seq2 cl-start2))
(setq cl-start2 (1+ cl-start2) cl-start1 (1+ cl-start1))))))
cl-seq1))
;;;###autoload
(defun cl-remove (cl-item cl-seq &rest cl-keys)
"Remove all occurrences of ITEM in SEQ.
This is a non-destructive function; it makes a copy of SEQ if necessary
to avoid corrupting the original SEQ.
\nKeywords supported: :test :test-not :key :count :start :end :from-end
\n(fn ITEM SEQ [KEYWORD VALUE]...)"
(cl--parsing-keywords (:test :test-not :key :if :if-not :count :from-end
(:start 0) :end) ()
(let ((len (length cl-seq)))
(if (<= (or cl-count (setq cl-count len)) 0)
cl-seq
(if (or (nlistp cl-seq) (and cl-from-end (< cl-count (/ len 2))))
(let ((cl-i (cl--position cl-item cl-seq cl-start cl-end
cl-from-end)))
(if cl-i
(let ((cl-res (apply 'cl-delete cl-item (append cl-seq nil)
(append (if cl-from-end
(list :end (1+ cl-i))
(list :start cl-i))
cl-keys))))
(if (listp cl-seq) cl-res
(if (stringp cl-seq) (concat cl-res) (vconcat cl-res))))
cl-seq))
(setq cl-end (- (or cl-end len) cl-start))
(if (= cl-start 0)
(while (and cl-seq (> cl-end 0)
(cl--check-test cl-item (car cl-seq))
(setq cl-end (1- cl-end) cl-seq (cdr cl-seq))
(> (setq cl-count (1- cl-count)) 0))))
(if (and (> cl-count 0) (> cl-end 0))
(let ((cl-p (if (> cl-start 0) (nthcdr cl-start cl-seq)
(setq cl-end (1- cl-end)) (cdr cl-seq))))
(while (and cl-p (> cl-end 0)
(not (cl--check-test cl-item (car cl-p))))
(setq cl-p (cdr cl-p) cl-end (1- cl-end)))
(if (and cl-p (> cl-end 0))
(nconc (cl-ldiff cl-seq cl-p)
(if (= cl-count 1) (cdr cl-p)
(and (cdr cl-p)
(apply 'cl-delete cl-item
(copy-sequence (cdr cl-p))
:start 0 :end (1- cl-end)
:count (1- cl-count) cl-keys))))
cl-seq))
cl-seq))))))
;;;###autoload
(defun cl-remove-if (cl-pred cl-list &rest cl-keys)
"Remove all items satisfying PREDICATE in SEQ.
This is a non-destructive function; it makes a copy of SEQ if necessary
to avoid corrupting the original SEQ.
\nKeywords supported: :key :count :start :end :from-end
\n(fn PREDICATE SEQ [KEYWORD VALUE]...)"
(apply 'cl-remove nil cl-list :if cl-pred cl-keys))
;;;###autoload
(defun cl-remove-if-not (cl-pred cl-list &rest cl-keys)
"Remove all items not satisfying PREDICATE in SEQ.
This is a non-destructive function; it makes a copy of SEQ if necessary
to avoid corrupting the original SEQ.
\nKeywords supported: :key :count :start :end :from-end
\n(fn PREDICATE SEQ [KEYWORD VALUE]...)"
(apply 'cl-remove nil cl-list :if-not cl-pred cl-keys))
;;;###autoload
(defun cl-delete (cl-item cl-seq &rest cl-keys)
"Remove all occurrences of ITEM in SEQ.
This is a destructive function; it reuses the storage of SEQ whenever possible.
\nKeywords supported: :test :test-not :key :count :start :end :from-end
\n(fn ITEM SEQ [KEYWORD VALUE]...)"
(cl--parsing-keywords (:test :test-not :key :if :if-not :count :from-end
(:start 0) :end) ()
(let ((len (length cl-seq)))
(if (<= (or cl-count (setq cl-count len)) 0)
cl-seq
(if (listp cl-seq)
(if (and cl-from-end (< cl-count (/ len 2)))
(let (cl-i)
(while (and (>= (setq cl-count (1- cl-count)) 0)
(setq cl-i (cl--position cl-item cl-seq cl-start
cl-end cl-from-end)))
(if (= cl-i 0) (setq cl-seq (cdr cl-seq))
(let ((cl-tail (nthcdr (1- cl-i) cl-seq)))
(setcdr cl-tail (cdr (cdr cl-tail)))))
(setq cl-end cl-i))
cl-seq)
(setq cl-end (- (or cl-end len) cl-start))
(if (= cl-start 0)
(progn
(while (and cl-seq
(> cl-end 0)
(cl--check-test cl-item (car cl-seq))
(setq cl-end (1- cl-end) cl-seq (cdr cl-seq))
(> (setq cl-count (1- cl-count)) 0)))
(setq cl-end (1- cl-end)))
(setq cl-start (1- cl-start)))
(if (and (> cl-count 0) (> cl-end 0))
(let ((cl-p (nthcdr cl-start cl-seq)))
(while (and (cdr cl-p) (> cl-end 0))
(if (cl--check-test cl-item (car (cdr cl-p)))
(progn
(setcdr cl-p (cdr (cdr cl-p)))
(if (= (setq cl-count (1- cl-count)) 0)
(setq cl-end 1)))
(setq cl-p (cdr cl-p)))
(setq cl-end (1- cl-end)))))
cl-seq)
(apply 'cl-remove cl-item cl-seq cl-keys))))))
;;;###autoload
(defun cl-delete-if (cl-pred cl-list &rest cl-keys)
"Remove all items satisfying PREDICATE in SEQ.
This is a destructive function; it reuses the storage of SEQ whenever possible.
\nKeywords supported: :key :count :start :end :from-end
\n(fn PREDICATE SEQ [KEYWORD VALUE]...)"
(apply 'cl-delete nil cl-list :if cl-pred cl-keys))
;;;###autoload
(defun cl-delete-if-not (cl-pred cl-list &rest cl-keys)
"Remove all items not satisfying PREDICATE in SEQ.
This is a destructive function; it reuses the storage of SEQ whenever possible.
\nKeywords supported: :key :count :start :end :from-end
\n(fn PREDICATE SEQ [KEYWORD VALUE]...)"
(apply 'cl-delete nil cl-list :if-not cl-pred cl-keys))
;;;###autoload
(defun cl-remove-duplicates (cl-seq &rest cl-keys)
"Return a copy of SEQ with all duplicate elements removed.
\nKeywords supported: :test :test-not :key :start :end :from-end
\n(fn SEQ [KEYWORD VALUE]...)"
(cl--delete-duplicates cl-seq cl-keys t))
;;;###autoload
(defun cl-delete-duplicates (cl-seq &rest cl-keys)
"Remove all duplicate elements from SEQ (destructively).
\nKeywords supported: :test :test-not :key :start :end :from-end
\n(fn SEQ [KEYWORD VALUE]...)"
(cl--delete-duplicates cl-seq cl-keys nil))
(defun cl--delete-duplicates (cl-seq cl-keys cl-copy)
(if (listp cl-seq)
(cl--parsing-keywords
;; We need to parse :if, otherwise `cl-if' is unbound.
(:test :test-not :key (:start 0) :end :from-end :if)
()
(if cl-from-end
(let ((cl-p (nthcdr cl-start cl-seq)) cl-i)
(setq cl-end (- (or cl-end (length cl-seq)) cl-start))
(while (> cl-end 1)
(setq cl-i 0)
(while (setq cl-i (cl--position (cl--check-key (car cl-p))
(cdr cl-p) cl-i (1- cl-end)))
(if cl-copy (setq cl-seq (copy-sequence cl-seq)
cl-p (nthcdr cl-start cl-seq) cl-copy nil))
(let ((cl-tail (nthcdr cl-i cl-p)))
(setcdr cl-tail (cdr (cdr cl-tail))))
(setq cl-end (1- cl-end)))
(setq cl-p (cdr cl-p) cl-end (1- cl-end)
cl-start (1+ cl-start)))
cl-seq)
(setq cl-end (- (or cl-end (length cl-seq)) cl-start))
(while (and (cdr cl-seq) (= cl-start 0) (> cl-end 1)
(cl--position (cl--check-key (car cl-seq))
(cdr cl-seq) 0 (1- cl-end)))
(setq cl-seq (cdr cl-seq) cl-end (1- cl-end)))
(let ((cl-p (if (> cl-start 0) (nthcdr (1- cl-start) cl-seq)
(setq cl-end (1- cl-end) cl-start 1) cl-seq)))
(while (and (cdr (cdr cl-p)) (> cl-end 1))
(if (cl--position (cl--check-key (car (cdr cl-p)))
(cdr (cdr cl-p)) 0 (1- cl-end))
(progn
(if cl-copy (setq cl-seq (copy-sequence cl-seq)
cl-p (nthcdr (1- cl-start) cl-seq)
cl-copy nil))
(setcdr cl-p (cdr (cdr cl-p))))
(setq cl-p (cdr cl-p)))
(setq cl-end (1- cl-end) cl-start (1+ cl-start)))
cl-seq)))
(let ((cl-res (cl--delete-duplicates (append cl-seq nil) cl-keys nil)))
(if (stringp cl-seq) (concat cl-res) (vconcat cl-res)))))
;;;###autoload
(defun cl-substitute (cl-new cl-old cl-seq &rest cl-keys)
"Substitute NEW for OLD in SEQ.
This is a non-destructive function; it makes a copy of SEQ if necessary
to avoid corrupting the original SEQ.
\nKeywords supported: :test :test-not :key :count :start :end :from-end
\n(fn NEW OLD SEQ [KEYWORD VALUE]...)"
(cl--parsing-keywords (:test :test-not :key :if :if-not :count
(:start 0) :end :from-end) ()
(if (or (eq cl-old cl-new)
(<= (or cl-count (setq cl-from-end nil
cl-count (length cl-seq))) 0))
cl-seq
(let ((cl-i (cl--position cl-old cl-seq cl-start cl-end)))
(if (not cl-i)
cl-seq
(setq cl-seq (copy-sequence cl-seq))
(unless cl-from-end
(setf (elt cl-seq cl-i) cl-new)
(cl-incf cl-i)
(cl-decf cl-count))
(apply 'cl-nsubstitute cl-new cl-old cl-seq :count cl-count
:start cl-i cl-keys))))))
;;;###autoload
(defun cl-substitute-if (cl-new cl-pred cl-list &rest cl-keys)
"Substitute NEW for all items satisfying PREDICATE in SEQ.
This is a non-destructive function; it makes a copy of SEQ if necessary
to avoid corrupting the original SEQ.
\nKeywords supported: :key :count :start :end :from-end
\n(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)"
(apply 'cl-substitute cl-new nil cl-list :if cl-pred cl-keys))
;;;###autoload
(defun cl-substitute-if-not (cl-new cl-pred cl-list &rest cl-keys)
"Substitute NEW for all items not satisfying PREDICATE in SEQ.
This is a non-destructive function; it makes a copy of SEQ if necessary
to avoid corrupting the original SEQ.
\nKeywords supported: :key :count :start :end :from-end
\n(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)"
(apply 'cl-substitute cl-new nil cl-list :if-not cl-pred cl-keys))
;;;###autoload
(defun cl-nsubstitute (cl-new cl-old cl-seq &rest cl-keys)
"Substitute NEW for OLD in SEQ.
This is a destructive function; it reuses the storage of SEQ whenever possible.
\nKeywords supported: :test :test-not :key :count :start :end :from-end
\n(fn NEW OLD SEQ [KEYWORD VALUE]...)"
(cl--parsing-keywords (:test :test-not :key :if :if-not :count
(:start 0) :end :from-end) ()
(let ((len (length cl-seq)))
(or (eq cl-old cl-new) (<= (or cl-count (setq cl-count len)) 0)
(if (and (listp cl-seq) (or (not cl-from-end) (> cl-count (/ len 2))))
(let ((cl-p (nthcdr cl-start cl-seq)))
(setq cl-end (- (or cl-end len) cl-start))
(while (and cl-p (> cl-end 0) (> cl-count 0))
(if (cl--check-test cl-old (car cl-p))
(progn
(setcar cl-p cl-new)
(setq cl-count (1- cl-count))))
(setq cl-p (cdr cl-p) cl-end (1- cl-end))))
(or cl-end (setq cl-end len))
(if cl-from-end
(while (and (< cl-start cl-end) (> cl-count 0))
(setq cl-end (1- cl-end))
(if (cl--check-test cl-old (elt cl-seq cl-end))
(progn
(setf (elt cl-seq cl-end) cl-new)
(setq cl-count (1- cl-count)))))
(while (and (< cl-start cl-end) (> cl-count 0))
(if (cl--check-test cl-old (aref cl-seq cl-start))
(progn
(aset cl-seq cl-start cl-new)
(setq cl-count (1- cl-count))))
(setq cl-start (1+ cl-start)))))))
cl-seq))
;;;###autoload
(defun cl-nsubstitute-if (cl-new cl-pred cl-list &rest cl-keys)
"Substitute NEW for all items satisfying PREDICATE in SEQ.
This is a destructive function; it reuses the storage of SEQ whenever possible.
\nKeywords supported: :key :count :start :end :from-end
\n(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)"
(apply 'cl-nsubstitute cl-new nil cl-list :if cl-pred cl-keys))
;;;###autoload
(defun cl-nsubstitute-if-not (cl-new cl-pred cl-list &rest cl-keys)
"Substitute NEW for all items not satisfying PREDICATE in SEQ.
This is a destructive function; it reuses the storage of SEQ whenever possible.
\nKeywords supported: :key :count :start :end :from-end
\n(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)"
(apply 'cl-nsubstitute cl-new nil cl-list :if-not cl-pred cl-keys))
;;;###autoload
(defun cl-find (cl-item cl-seq &rest cl-keys)
"Find the first occurrence of ITEM in SEQ.
Return the matching ITEM, or nil if not found.
\nKeywords supported: :test :test-not :key :start :end :from-end
\n(fn ITEM SEQ [KEYWORD VALUE]...)"
(let ((cl-pos (apply 'cl-position cl-item cl-seq cl-keys)))
(and cl-pos (elt cl-seq cl-pos))))
;;;###autoload
(defun cl-find-if (cl-pred cl-list &rest cl-keys)
"Find the first item satisfying PREDICATE in SEQ.
Return the matching item, or nil if not found.
\nKeywords supported: :key :start :end :from-end
\n(fn PREDICATE SEQ [KEYWORD VALUE]...)"
(apply 'cl-find nil cl-list :if cl-pred cl-keys))
;;;###autoload
(defun cl-find-if-not (cl-pred cl-list &rest cl-keys)
"Find the first item not satisfying PREDICATE in SEQ.
Return the matching item, or nil if not found.
\nKeywords supported: :key :start :end :from-end
\n(fn PREDICATE SEQ [KEYWORD VALUE]...)"
(apply 'cl-find nil cl-list :if-not cl-pred cl-keys))
;;;###autoload
(defun cl-position (cl-item cl-seq &rest cl-keys)
"Find the first occurrence of ITEM in SEQ.
Return the index of the matching item, or nil if not found.
\nKeywords supported: :test :test-not :key :start :end :from-end
\n(fn ITEM SEQ [KEYWORD VALUE]...)"
(cl--parsing-keywords (:test :test-not :key :if :if-not
(:start 0) :end :from-end) ()
(cl--position cl-item cl-seq cl-start cl-end cl-from-end)))
(defun cl--position (cl-item cl-seq cl-start &optional cl-end cl-from-end)
(if (listp cl-seq)
(let ((cl-p (nthcdr cl-start cl-seq))
cl-res)
(while (and cl-p (or (null cl-end) (< cl-start cl-end)) (or (null cl-res) cl-from-end))
(if (cl--check-test cl-item (car cl-p))
(setq cl-res cl-start))
(setq cl-p (cdr cl-p) cl-start (1+ cl-start)))
cl-res)
(or cl-end (setq cl-end (length cl-seq)))
(if cl-from-end
(progn
(while (and (>= (setq cl-end (1- cl-end)) cl-start)
(not (cl--check-test cl-item (aref cl-seq cl-end)))))
(and (>= cl-end cl-start) cl-end))
(while (and (< cl-start cl-end)
(not (cl--check-test cl-item (aref cl-seq cl-start))))
(setq cl-start (1+ cl-start)))
(and (< cl-start cl-end) cl-start))))
;;;###autoload
(defun cl-position-if (cl-pred cl-list &rest cl-keys)
"Find the first item satisfying PREDICATE in SEQ.
Return the index of the matching item, or nil if not found.
\nKeywords supported: :key :start :end :from-end
\n(fn PREDICATE SEQ [KEYWORD VALUE]...)"
(apply 'cl-position nil cl-list :if cl-pred cl-keys))
;;;###autoload
(defun cl-position-if-not (cl-pred cl-list &rest cl-keys)
"Find the first item not satisfying PREDICATE in SEQ.
Return the index of the matching item, or nil if not found.
\nKeywords supported: :key :start :end :from-end
\n(fn PREDICATE SEQ [KEYWORD VALUE]...)"
(apply 'cl-position nil cl-list :if-not cl-pred cl-keys))
;;;###autoload
(defun cl-count (cl-item cl-seq &rest cl-keys)
"Count the number of occurrences of ITEM in SEQ.
\nKeywords supported: :test :test-not :key :start :end
\n(fn ITEM SEQ [KEYWORD VALUE]...)"
(cl--parsing-keywords (:test :test-not :key :if :if-not (:start 0) :end) ()
(let ((cl-count 0) cl-x)
(or cl-end (setq cl-end (length cl-seq)))
(if (consp cl-seq) (setq cl-seq (nthcdr cl-start cl-seq)))
(while (< cl-start cl-end)
(setq cl-x (if (consp cl-seq) (pop cl-seq) (aref cl-seq cl-start)))
(if (cl--check-test cl-item cl-x) (setq cl-count (1+ cl-count)))
(setq cl-start (1+ cl-start)))
cl-count)))
;;;###autoload
(defun cl-count-if (cl-pred cl-list &rest cl-keys)
"Count the number of items satisfying PREDICATE in SEQ.
\nKeywords supported: :key :start :end
\n(fn PREDICATE SEQ [KEYWORD VALUE]...)"
(apply 'cl-count nil cl-list :if cl-pred cl-keys))
;;;###autoload
(defun cl-count-if-not (cl-pred cl-list &rest cl-keys)
"Count the number of items not satisfying PREDICATE in SEQ.
\nKeywords supported: :key :start :end
\n(fn PREDICATE SEQ [KEYWORD VALUE]...)"
(apply 'cl-count nil cl-list :if-not cl-pred cl-keys))
;;;###autoload
(defun cl-mismatch (cl-seq1 cl-seq2 &rest cl-keys)
"Compare SEQ1 with SEQ2, return index of first mismatching element.
Return nil if the sequences match. If one sequence is a prefix of the
other, the return value indicates the end of the shorter sequence.
\nKeywords supported: :test :test-not :key :start1 :end1 :start2 :end2 :from-end
\n(fn SEQ1 SEQ2 [KEYWORD VALUE]...)"
(cl--parsing-keywords (:test :test-not :key :from-end
(:start1 0) :end1 (:start2 0) :end2) ()
(or cl-end1 (setq cl-end1 (length cl-seq1)))
(or cl-end2 (setq cl-end2 (length cl-seq2)))
(if cl-from-end
(progn
(while (and (< cl-start1 cl-end1) (< cl-start2 cl-end2)
(cl--check-match (elt cl-seq1 (1- cl-end1))
(elt cl-seq2 (1- cl-end2))))
(setq cl-end1 (1- cl-end1) cl-end2 (1- cl-end2)))
(and (or (< cl-start1 cl-end1) (< cl-start2 cl-end2))
(1- cl-end1)))
(let ((cl-p1 (and (listp cl-seq1) (nthcdr cl-start1 cl-seq1)))
(cl-p2 (and (listp cl-seq2) (nthcdr cl-start2 cl-seq2))))
(while (and (< cl-start1 cl-end1) (< cl-start2 cl-end2)
(cl--check-match (if cl-p1 (car cl-p1)
(aref cl-seq1 cl-start1))
(if cl-p2 (car cl-p2)
(aref cl-seq2 cl-start2))))
(setq cl-p1 (cdr cl-p1) cl-p2 (cdr cl-p2)
cl-start1 (1+ cl-start1) cl-start2 (1+ cl-start2)))
(and (or (< cl-start1 cl-end1) (< cl-start2 cl-end2))
cl-start1)))))
;;;###autoload
(defun cl-search (cl-seq1 cl-seq2 &rest cl-keys)
"Search for SEQ1 as a subsequence of SEQ2.
Return the index of the leftmost element of the first match found;
return nil if there are no matches.
\nKeywords supported: :test :test-not :key :start1 :end1 :start2 :end2 :from-end
\n(fn SEQ1 SEQ2 [KEYWORD VALUE]...)"
(cl--parsing-keywords (:test :test-not :key :from-end
(:start1 0) :end1 (:start2 0) :end2) ()
(or cl-end1 (setq cl-end1 (length cl-seq1)))
(or cl-end2 (setq cl-end2 (length cl-seq2)))
(if (>= cl-start1 cl-end1)
(if cl-from-end cl-end2 cl-start2)
(let* ((cl-len (- cl-end1 cl-start1))
(cl-first (cl--check-key (elt cl-seq1 cl-start1)))
(cl-if nil) cl-pos)
(setq cl-end2 (- cl-end2 (1- cl-len)))
(while (and (< cl-start2 cl-end2)
(setq cl-pos (cl--position cl-first cl-seq2
cl-start2 cl-end2 cl-from-end))
(apply 'cl-mismatch cl-seq1 cl-seq2
:start1 (1+ cl-start1) :end1 cl-end1
:start2 (1+ cl-pos) :end2 (+ cl-pos cl-len)
:from-end nil cl-keys))
(if cl-from-end (setq cl-end2 cl-pos) (setq cl-start2 (1+ cl-pos))))
(and (< cl-start2 cl-end2) cl-pos)))))
;;;###autoload
(defun cl-sort (cl-seq cl-pred &rest cl-keys)
"Sort the argument SEQ according to PREDICATE.
This is a destructive function; it reuses the storage of SEQ if possible.
\nKeywords supported: :key
\n(fn SEQ PREDICATE [KEYWORD VALUE]...)"
(if (nlistp cl-seq)
(cl-replace cl-seq (apply 'cl-sort (append cl-seq nil) cl-pred cl-keys))
(cl--parsing-keywords (:key) ()
(if (memq cl-key '(nil identity))
(sort cl-seq cl-pred)
(sort cl-seq (lambda (cl-x cl-y)
(funcall cl-pred (funcall cl-key cl-x)
(funcall cl-key cl-y))))))))
;;;###autoload
(defun cl-stable-sort (cl-seq cl-pred &rest cl-keys)
"Sort the argument SEQ stably according to PREDICATE.
This is a destructive function; it reuses the storage of SEQ if possible.
\nKeywords supported: :key
\n(fn SEQ PREDICATE [KEYWORD VALUE]...)"
(apply 'cl-sort cl-seq cl-pred cl-keys))
;;;###autoload
(defun cl-merge (cl-type cl-seq1 cl-seq2 cl-pred &rest cl-keys)
"Destructively merge the two sequences to produce a new sequence.
TYPE is the sequence type to return, SEQ1 and SEQ2 are the two argument
sequences, and PREDICATE is a `less-than' predicate on the elements.
\nKeywords supported: :key
\n(fn TYPE SEQ1 SEQ2 PREDICATE [KEYWORD VALUE]...)"
(or (listp cl-seq1) (setq cl-seq1 (append cl-seq1 nil)))
(or (listp cl-seq2) (setq cl-seq2 (append cl-seq2 nil)))
(cl--parsing-keywords (:key) ()
(let ((cl-res nil))
(while (and cl-seq1 cl-seq2)
(if (funcall cl-pred (cl--check-key (car cl-seq2))
(cl--check-key (car cl-seq1)))
(push (pop cl-seq2) cl-res)
(push (pop cl-seq1) cl-res)))
(cl-coerce (nconc (nreverse cl-res) cl-seq1 cl-seq2) cl-type))))
;;;###autoload
(defun cl-member (cl-item cl-list &rest cl-keys)
"Find the first occurrence of ITEM in LIST.
Return the sublist of LIST whose car is ITEM.
\nKeywords supported: :test :test-not :key
\n(fn ITEM LIST [KEYWORD VALUE]...)"
(declare (compiler-macro cl--compiler-macro-member))
(if cl-keys
(cl--parsing-keywords (:test :test-not :key :if :if-not) ()
(while (and cl-list (not (cl--check-test cl-item (car cl-list))))
(setq cl-list (cdr cl-list)))
cl-list)
(memql cl-item cl-list)))
(autoload 'cl--compiler-macro-member "cl-macs")
;;;###autoload
(defun cl-member-if (cl-pred cl-list &rest cl-keys)
"Find the first item satisfying PREDICATE in LIST.
Return the sublist of LIST whose car matches.
\nKeywords supported: :key
\n(fn PREDICATE LIST [KEYWORD VALUE]...)"
(apply 'cl-member nil cl-list :if cl-pred cl-keys))
;;;###autoload
(defun cl-member-if-not (cl-pred cl-list &rest cl-keys)
"Find the first item not satisfying PREDICATE in LIST.
Return the sublist of LIST whose car matches.
\nKeywords supported: :key
\n(fn PREDICATE LIST [KEYWORD VALUE]...)"
(apply 'cl-member nil cl-list :if-not cl-pred cl-keys))
;;;###autoload
(defun cl--adjoin (cl-item cl-list &rest cl-keys)
(if (cl--parsing-keywords (:key) t
(apply 'cl-member (cl--check-key cl-item) cl-list cl-keys))
cl-list
(cons cl-item cl-list)))
;;;###autoload
(defun cl-assoc (cl-item cl-alist &rest cl-keys)
"Find the first item whose car matches ITEM in LIST.
\nKeywords supported: :test :test-not :key
\n(fn ITEM LIST [KEYWORD VALUE]...)"
(declare (compiler-macro cl--compiler-macro-assoc))
(if cl-keys
(cl--parsing-keywords (:test :test-not :key :if :if-not) ()
(while (and cl-alist
(or (not (consp (car cl-alist)))
(not (cl--check-test cl-item (car (car cl-alist))))))
(setq cl-alist (cdr cl-alist)))
(and cl-alist (car cl-alist)))
(if (and (numberp cl-item) (not (fixnump cl-item)))
(assoc cl-item cl-alist)
(assq cl-item cl-alist))))
(autoload 'cl--compiler-macro-assoc "cl-macs")
;;;###autoload
(defun cl-assoc-if (cl-pred cl-list &rest cl-keys)
"Find the first item whose car satisfies PREDICATE in LIST.
\nKeywords supported: :key
\n(fn PREDICATE LIST [KEYWORD VALUE]...)"
(apply 'cl-assoc nil cl-list :if cl-pred cl-keys))
;;;###autoload
(defun cl-assoc-if-not (cl-pred cl-list &rest cl-keys)
"Find the first item whose car does not satisfy PREDICATE in LIST.
\nKeywords supported: :key
\n(fn PREDICATE LIST [KEYWORD VALUE]...)"
(apply 'cl-assoc nil cl-list :if-not cl-pred cl-keys))
;;;###autoload
(defun cl-rassoc (cl-item cl-alist &rest cl-keys)
"Find the first item whose cdr matches ITEM in LIST.
\nKeywords supported: :test :test-not :key
\n(fn ITEM LIST [KEYWORD VALUE]...)"
(if (or cl-keys (numberp cl-item))
(cl--parsing-keywords (:test :test-not :key :if :if-not) ()
(while (and cl-alist
(or (not (consp (car cl-alist)))
(not (cl--check-test cl-item (cdr (car cl-alist))))))
(setq cl-alist (cdr cl-alist)))
(and cl-alist (car cl-alist)))
(rassq cl-item cl-alist)))
;;;###autoload
(defun cl-rassoc-if (cl-pred cl-list &rest cl-keys)
"Find the first item whose cdr satisfies PREDICATE in LIST.
\nKeywords supported: :key
\n(fn PREDICATE LIST [KEYWORD VALUE]...)"
(apply 'cl-rassoc nil cl-list :if cl-pred cl-keys))
;;;###autoload
(defun cl-rassoc-if-not (cl-pred cl-list &rest cl-keys)
"Find the first item whose cdr does not satisfy PREDICATE in LIST.
\nKeywords supported: :key
\n(fn PREDICATE LIST [KEYWORD VALUE]...)"
(apply 'cl-rassoc nil cl-list :if-not cl-pred cl-keys))
;;;###autoload
(defun cl-union (cl-list1 cl-list2 &rest cl-keys)
"Combine LIST1 and LIST2 using a set-union operation.
The resulting list contains all items that appear in either LIST1 or LIST2.
This is a non-destructive function; it makes a copy of the data if necessary
to avoid corrupting the original LIST1 and LIST2.
\nKeywords supported: :test :test-not :key
\n(fn LIST1 LIST2 [KEYWORD VALUE]...)"
(cond ((null cl-list1) cl-list2) ((null cl-list2) cl-list1)
((and (not cl-keys) (equal cl-list1 cl-list2)) cl-list1)
(t
(or (>= (length cl-list1) (length cl-list2))
(setq cl-list1 (prog1 cl-list2 (setq cl-list2 cl-list1))))
(while cl-list2
(if (or cl-keys (numberp (car cl-list2)))
(setq cl-list1
(apply 'cl-adjoin (car cl-list2) cl-list1 cl-keys))
(or (memq (car cl-list2) cl-list1)
(push (car cl-list2) cl-list1)))
(pop cl-list2))
cl-list1)))
;;;###autoload
(defun cl-nunion (cl-list1 cl-list2 &rest cl-keys)
"Combine LIST1 and LIST2 using a set-union operation.
The resulting list contains all items that appear in either LIST1 or LIST2.
This is a destructive function; it reuses the storage of LIST1 and LIST2
whenever possible.
\nKeywords supported: :test :test-not :key
\n(fn LIST1 LIST2 [KEYWORD VALUE]...)"
(cond ((null cl-list1) cl-list2) ((null cl-list2) cl-list1)
(t (apply 'cl-union cl-list1 cl-list2 cl-keys))))
;;;###autoload
(defun cl-intersection (cl-list1 cl-list2 &rest cl-keys)
"Combine LIST1 and LIST2 using a set-intersection operation.
The resulting list contains all items that appear in both LIST1 and LIST2.
This is a non-destructive function; it makes a copy of the data if necessary
to avoid corrupting the original LIST1 and LIST2.
\nKeywords supported: :test :test-not :key
\n(fn LIST1 LIST2 [KEYWORD VALUE]...)"
(and cl-list1 cl-list2
(if (equal cl-list1 cl-list2) cl-list1
(cl--parsing-keywords (:key) (:test :test-not)
(let ((cl-res nil))
(or (>= (length cl-list1) (length cl-list2))
(setq cl-list1 (prog1 cl-list2 (setq cl-list2 cl-list1))))
(while cl-list2
(if (if (or cl-keys (numberp (car cl-list2)))
(apply 'cl-member (cl--check-key (car cl-list2))
cl-list1 cl-keys)
(memq (car cl-list2) cl-list1))
(push (car cl-list2) cl-res))
(pop cl-list2))
cl-res)))))
;;;###autoload
(defun cl-nintersection (cl-list1 cl-list2 &rest cl-keys)
"Combine LIST1 and LIST2 using a set-intersection operation.
The resulting list contains all items that appear in both LIST1 and LIST2.
This is a destructive function; it reuses the storage of LIST1 and LIST2
whenever possible.
\nKeywords supported: :test :test-not :key
\n(fn LIST1 LIST2 [KEYWORD VALUE]...)"
(and cl-list1 cl-list2 (apply 'cl-intersection cl-list1 cl-list2 cl-keys)))
;;;###autoload
(defun cl-set-difference (cl-list1 cl-list2 &rest cl-keys)
"Combine LIST1 and LIST2 using a set-difference operation.
The resulting list contains all items that appear in LIST1 but not LIST2.
This is a non-destructive function; it makes a copy of the data if necessary
to avoid corrupting the original LIST1 and LIST2.
\nKeywords supported: :test :test-not :key
\n(fn LIST1 LIST2 [KEYWORD VALUE]...)"
(if (or (null cl-list1) (null cl-list2)) cl-list1
(cl--parsing-keywords (:key) (:test :test-not)
(let ((cl-res nil))
(while cl-list1
(or (if (or cl-keys (numberp (car cl-list1)))
(apply 'cl-member (cl--check-key (car cl-list1))
cl-list2 cl-keys)
(memq (car cl-list1) cl-list2))
(push (car cl-list1) cl-res))
(pop cl-list1))
(nreverse cl-res)))))
;;;###autoload
(defun cl-nset-difference (cl-list1 cl-list2 &rest cl-keys)
"Combine LIST1 and LIST2 using a set-difference operation.
The resulting list contains all items that appear in LIST1 but not LIST2.
This is a destructive function; it reuses the storage of LIST1 and LIST2
whenever possible.
\nKeywords supported: :test :test-not :key
\n(fn LIST1 LIST2 [KEYWORD VALUE]...)"
(if (or (null cl-list1) (null cl-list2)) cl-list1
(apply 'cl-set-difference cl-list1 cl-list2 cl-keys)))
;;;###autoload
(defun cl-set-exclusive-or (cl-list1 cl-list2 &rest cl-keys)
"Combine LIST1 and LIST2 using a set-exclusive-or operation.
The resulting list contains all items appearing in exactly one of LIST1, LIST2.
This is a non-destructive function; it makes a copy of the data if necessary
to avoid corrupting the original LIST1 and LIST2.
\nKeywords supported: :test :test-not :key
\n(fn LIST1 LIST2 [KEYWORD VALUE]...)"
(cond ((null cl-list1) cl-list2) ((null cl-list2) cl-list1)
((equal cl-list1 cl-list2) nil)
(t (append (apply 'cl-set-difference cl-list1 cl-list2 cl-keys)
(apply 'cl-set-difference cl-list2 cl-list1 cl-keys)))))
;;;###autoload
(defun cl-nset-exclusive-or (cl-list1 cl-list2 &rest cl-keys)
"Combine LIST1 and LIST2 using a set-exclusive-or operation.
The resulting list contains all items appearing in exactly one of LIST1, LIST2.
This is a destructive function; it reuses the storage of LIST1 and LIST2
whenever possible.
\nKeywords supported: :test :test-not :key
\n(fn LIST1 LIST2 [KEYWORD VALUE]...)"
(cond ((null cl-list1) cl-list2) ((null cl-list2) cl-list1)
((equal cl-list1 cl-list2) nil)
(t (nconc (apply 'cl-nset-difference cl-list1 cl-list2 cl-keys)
(apply 'cl-nset-difference cl-list2 cl-list1 cl-keys)))))
;;;###autoload
(defun cl-subsetp (cl-list1 cl-list2 &rest cl-keys)
"Return true if LIST1 is a subset of LIST2.
I.e., if every element of LIST1 also appears in LIST2.
\nKeywords supported: :test :test-not :key
\n(fn LIST1 LIST2 [KEYWORD VALUE]...)"
(cond ((null cl-list1) t) ((null cl-list2) nil)
((equal cl-list1 cl-list2) t)
(t (cl--parsing-keywords (:key) (:test :test-not)
(while (and cl-list1
(apply 'cl-member (cl--check-key (car cl-list1))
cl-list2 cl-keys))
(pop cl-list1))
(null cl-list1)))))
;;;###autoload
(defun cl-subst-if (cl-new cl-pred cl-tree &rest cl-keys)
"Substitute NEW for elements matching PREDICATE in TREE (non-destructively).
Return a copy of TREE with all matching elements replaced by NEW.
\nKeywords supported: :key
\n(fn NEW PREDICATE TREE [KEYWORD VALUE]...)"
(apply 'cl-sublis (list (cons nil cl-new)) cl-tree :if cl-pred cl-keys))
;;;###autoload
(defun cl-subst-if-not (cl-new cl-pred cl-tree &rest cl-keys)
"Substitute NEW for elts not matching PREDICATE in TREE (non-destructively).
Return a copy of TREE with all non-matching elements replaced by NEW.
\nKeywords supported: :key
\n(fn NEW PREDICATE TREE [KEYWORD VALUE]...)"
(apply 'cl-sublis (list (cons nil cl-new)) cl-tree :if-not cl-pred cl-keys))
;;;###autoload
(defun cl-nsubst (cl-new cl-old cl-tree &rest cl-keys)
"Substitute NEW for OLD everywhere in TREE (destructively).
Any element of TREE which is `eql' to OLD is changed to NEW (via a call
to `setcar').
\nKeywords supported: :test :test-not :key
\n(fn NEW OLD TREE [KEYWORD VALUE]...)"
(apply 'cl-nsublis (list (cons cl-old cl-new)) cl-tree cl-keys))
;;;###autoload
(defun cl-nsubst-if (cl-new cl-pred cl-tree &rest cl-keys)
"Substitute NEW for elements matching PREDICATE in TREE (destructively).
Any element of TREE which matches is changed to NEW (via a call to `setcar').
\nKeywords supported: :key
\n(fn NEW PREDICATE TREE [KEYWORD VALUE]...)"
(apply 'cl-nsublis (list (cons nil cl-new)) cl-tree :if cl-pred cl-keys))
;;;###autoload
(defun cl-nsubst-if-not (cl-new cl-pred cl-tree &rest cl-keys)
"Substitute NEW for elements not matching PREDICATE in TREE (destructively).
Any element of TREE which matches is changed to NEW (via a call to `setcar').
\nKeywords supported: :key
\n(fn NEW PREDICATE TREE [KEYWORD VALUE]...)"
(apply 'cl-nsublis (list (cons nil cl-new)) cl-tree :if-not cl-pred cl-keys))
(defvar cl--alist)
;;;###autoload
(defun cl-sublis (cl-alist cl-tree &rest cl-keys)
"Perform substitutions indicated by ALIST in TREE (non-destructively).
Return a copy of TREE with all matching elements replaced.
\nKeywords supported: :test :test-not :key
\n(fn ALIST TREE [KEYWORD VALUE]...)"
(cl--parsing-keywords (:test :test-not :key :if :if-not) ()
(let ((cl--alist cl-alist))
(cl--sublis-rec cl-tree))))
(defun cl--sublis-rec (cl-tree) ;Uses cl--alist cl-key/test*/if*.
(let ((cl-temp (cl--check-key cl-tree)) (cl-p cl--alist))
(while (and cl-p (not (cl--check-test-nokey (car (car cl-p)) cl-temp)))
(setq cl-p (cdr cl-p)))
(if cl-p (cdr (car cl-p))
(if (consp cl-tree)
(let ((cl-a (cl--sublis-rec (car cl-tree)))
(cl-d (cl--sublis-rec (cdr cl-tree))))
(if (and (eq cl-a (car cl-tree)) (eq cl-d (cdr cl-tree)))
cl-tree
(cons cl-a cl-d)))
cl-tree))))
;;;###autoload
(defun cl-nsublis (cl-alist cl-tree &rest cl-keys)
"Perform substitutions indicated by ALIST in TREE (destructively).
Any matching element of TREE is changed via a call to `setcar'.
\nKeywords supported: :test :test-not :key
\n(fn ALIST TREE [KEYWORD VALUE]...)"
(cl--parsing-keywords (:test :test-not :key :if :if-not) ()
(let ((cl-hold (list cl-tree))
(cl--alist cl-alist))
(cl--nsublis-rec cl-hold)
(car cl-hold))))
(defun cl--nsublis-rec (cl-tree) ;Uses cl--alist cl-key/test*/if*.
(while (consp cl-tree)
(let ((cl-temp (cl--check-key (car cl-tree))) (cl-p cl--alist))
(while (and cl-p (not (cl--check-test-nokey (car (car cl-p)) cl-temp)))
(setq cl-p (cdr cl-p)))
(if cl-p (setcar cl-tree (cdr (car cl-p)))
(if (consp (car cl-tree)) (cl--nsublis-rec (car cl-tree))))
(setq cl-temp (cl--check-key (cdr cl-tree)) cl-p cl--alist)
(while (and cl-p (not (cl--check-test-nokey (car (car cl-p)) cl-temp)))
(setq cl-p (cdr cl-p)))
(if cl-p
(progn (setcdr cl-tree (cdr (car cl-p))) (setq cl-tree nil))
(setq cl-tree (cdr cl-tree))))))
;;;###autoload
(defun cl-tree-equal (cl-x cl-y &rest cl-keys)
"Return t if trees TREE1 and TREE2 have `eql' leaves.
Atoms are compared by `eql'; cons cells are compared recursively.
\nKeywords supported: :test :test-not :key
\n(fn TREE1 TREE2 [KEYWORD VALUE]...)"
(cl--parsing-keywords (:test :test-not :key) ()
(cl--tree-equal-rec cl-x cl-y)))
(defun cl--tree-equal-rec (cl-x cl-y) ;Uses cl-key/test*.
(while (and (consp cl-x) (consp cl-y)
(cl--tree-equal-rec (car cl-x) (car cl-y)))
(setq cl-x (cdr cl-x) cl-y (cdr cl-y)))
(and (not (consp cl-x)) (not (consp cl-y)) (cl--check-match cl-x cl-y)))
(make-obsolete-variable 'cl-seq-load-hook
"use `with-eval-after-load' instead." "28.1")
(run-hooks 'cl-seq-load-hook)
;; Local variables:
;; generated-autoload-file: "cl-loaddefs.el"
;; End:
(provide 'cl-seq)
;;; cl-seq.el ends here
|