all messages for Emacs-related lists mirrored at yhetil.org
 help / color / mirror / code / Atom feed
blob dd9f37b0a826564939f467c1dc2c582edef7491e 44051 bytes (raw)
name: lisp/emacs-lisp/cl-seq.el 	 # note: path name is non-authoritative(*)

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
 
;;; cl-seq.el --- Common Lisp features, part 3  -*- lexical-binding: t -*-

;; Copyright (C) 1993, 2001-2023 Free Software Foundation, Inc.

;; Author: Dave Gillespie <daveg@synaptics.com>
;; Old-Version: 2.02
;; Keywords: extensions
;; Package: emacs

;; This file is part of GNU Emacs.

;; GNU Emacs is free software: you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation, either version 3 of the License, or
;; (at your option) any later version.

;; GNU Emacs is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
;; GNU General Public License for more details.

;; You should have received a copy of the GNU General Public License
;; along with GNU Emacs.  If not, see <https://www.gnu.org/licenses/>.

;;; Commentary:

;; These are extensions to Emacs Lisp that provide a degree of
;; Common Lisp compatibility, beyond what is already built-in
;; in Emacs Lisp.
;;
;; This package was written by Dave Gillespie; it is a complete
;; rewrite of Cesar Quiroz's original cl.el package of December 1986.
;;
;; Bug reports, comments, and suggestions are welcome!

;; This file contains the Common Lisp sequence and list functions
;; which take keyword arguments.

;; See cl.el for Change Log.


;;; Code:

(require 'cl-lib)

;; Keyword parsing.
;; This is special-cased here so that we can compile
;; this file independent from cl-macs.

(defmacro cl--parsing-keywords (kwords other-keys &rest body)
  (declare (indent 2) (debug (sexp sexp &rest form)))
  `(let* ,(mapcar
           (lambda (x)
             (let* ((var (if (consp x) (car x) x))
                    (mem `(car (cdr (memq ',var cl-keys)))))
               (if (eq var :test-not)
                   (setq mem `(and ,mem (setq cl-test ,mem) t)))
               (if (eq var :if-not)
                   (setq mem `(and ,mem (setq cl-if ,mem) t)))
               (list (intern
                      (format "cl-%s" (substring (symbol-name var) 1)))
                     (if (consp x) `(or ,mem ,(car (cdr x))) mem))))
           kwords)
     ,@(append
        (and (not (eq other-keys t))
             (list
              (list 'let '((cl-keys-temp cl-keys))
                    (list 'while 'cl-keys-temp
                          (list 'or (list 'memq '(car cl-keys-temp)
                                          (list 'quote
                                                (mapcar
                                                 (lambda (x)
                                                   (if (consp x)
                                                       (car x) x))
                                                 (append kwords
                                                         other-keys))))
                                '(car (cdr (memq (quote :allow-other-keys)
                                                 cl-keys)))
                                '(error "Bad keyword argument %s"
                                        (car cl-keys-temp)))
                          '(setq cl-keys-temp (cdr (cdr cl-keys-temp)))))))
        body)))

(defmacro cl--check-key (x)     ;Expects `cl-key' in context of generated code.
  (declare (debug edebug-forms))
  `(if cl-key (funcall cl-key ,x) ,x))

(defmacro cl--check-test-nokey (item x) ;cl-test cl-if cl-test-not cl-if-not.
  (declare (debug edebug-forms))
  `(cond
    (cl-test (eq (not (funcall cl-test ,item ,x))
                 cl-test-not))
    (cl-if (eq (not (funcall cl-if ,x)) cl-if-not))
    (t (eql ,item ,x))))

(defmacro cl--check-test (item x)       ;all of the above.
  (declare (debug edebug-forms))
  `(cl--check-test-nokey ,item (cl--check-key ,x)))

(defmacro cl--check-match (x y)         ;cl-key cl-test cl-test-not
  (declare (debug edebug-forms))
  (setq x `(cl--check-key ,x) y `(cl--check-key ,y))
  `(if cl-test
       (eq (not (funcall cl-test ,x ,y)) cl-test-not)
     (eql ,x ,y)))

;; Yuck!  These vars are set/bound by cl--parsing-keywords to match :if :test
;; and :key keyword args, and they are also accessed (sometimes) via dynamic
;; scoping (and some of those accesses are from macro-expanded code).
(defvar cl-test) (defvar cl-test-not)
(defvar cl-if) (defvar cl-if-not)
(defvar cl-key)

;;;###autoload
(defun cl-endp (x)
  "Return true if X is the empty list; false if it is a cons.
Signal an error if X is not a list."
  (cl-check-type x list)
  (null x))

;;;###autoload
(defun cl-reduce (cl-func cl-seq &rest cl-keys)
  "Reduce two-argument FUNCTION across SEQ.
\nKeywords supported:  :start :end :from-end :initial-value :key

Return the result of calling FUNCTION with the first and the
second element of SEQ, then calling FUNCTION with that result and
the third element of SEQ, then with that result and the fourth
element of SEQ, etc.

If :INITIAL-VALUE is specified, it is logically added to the
front of SEQ (or the back if :FROM-END is non-nil).  If SEQ is
empty, return :INITIAL-VALUE and FUNCTION is not called.

If SEQ is empty and no :INITIAL-VALUE is specified, then return
the result of calling FUNCTION with zero arguments.  This is the
only case where FUNCTION is called with fewer than two arguments.

If SEQ contains exactly one element and no :INITIAL-VALUE is
specified, then return that element and FUNCTION is not called.

If :FROM-END is non-nil, the reduction occurs from the back of
the SEQ moving forward, and the order of arguments to the
FUNCTION is also reversed.

\n(fn FUNCTION SEQ [KEYWORD VALUE]...)"
  (cl--parsing-keywords (:from-end (:start 0) :end :initial-value :key) ()
    (or (listp cl-seq) (setq cl-seq (append cl-seq nil)))
    (setq cl-seq (cl-subseq cl-seq cl-start cl-end))
    (if cl-from-end (setq cl-seq (nreverse cl-seq)))
    (let ((cl-accum (cond ((memq :initial-value cl-keys) cl-initial-value)
			  (cl-seq (cl--check-key (pop cl-seq)))
			  (t (funcall cl-func)))))
      (if cl-from-end
	  (while cl-seq
	    (setq cl-accum (funcall cl-func (cl--check-key (pop cl-seq))
				    cl-accum)))
	(while cl-seq
	  (setq cl-accum (funcall cl-func cl-accum
				  (cl--check-key (pop cl-seq))))))
      cl-accum)))

;;;###autoload
(defun cl-fill (cl-seq cl-item &rest cl-keys)
  "Replace elements of SEQ between START and END with ITEM.
SEQ is a Lisp sequence.  It is destructively modified and
returned.

START and END are indexes like in `aref' or `elt'.  They
designate the subsequence of SEQ to operate on.  If END is nil,
process the sequence to the end. They default to 0 and nil,
respectively, meaning process the whole SEQ.

START and END are keyword arguments.  See info node `(cl) Program
Structure > Argument Lists' for details.

\n(fn SEQ ITEM &key START END...)"
  (cl--parsing-keywords ((:start 0) :end) ()
    (if (listp cl-seq)
	(let ((p (nthcdr cl-start cl-seq))
	      (n (and cl-end (- cl-end cl-start))))
	  (while (and p (or (null n) (>= (cl-decf n) 0)))
	    (setcar p cl-item)
	    (setq p (cdr p))))
      (or cl-end (setq cl-end (length cl-seq)))
      (if (and (= cl-start 0) (= cl-end (length cl-seq)))
	  (fillarray cl-seq cl-item)
	(while (< cl-start cl-end)
	  (aset cl-seq cl-start cl-item)
	  (setq cl-start (1+ cl-start)))))
    cl-seq))

;;;###autoload
(defun cl-replace (cl-seq1 cl-seq2 &rest cl-keys)
  "Replace the elements of SEQ1 with elements of SEQ2.
SEQ1 and SEQ2 are both Lisp sequences.  SEQ1 is destructively
modified and returned.

START1, END1, START2 and END2 can be indexes like in `aref' or
`elt'.  Each pair designates two subsequences of SEQ1 and SEQ2,
respectively, to operate on.  If END1 or END2 is nil, consider
the respective sequences to the end.

Consecutive elements of the subsequence of SEQ1 are replaced by
consecutive elements of the subsequence of SEQ2.

If the subsequences vary in length, the shorter one determines
how many elements are replaced.  Extra elements in either
subsequence are ignored.

START1 and START2 default to 0, END1 and END2 default to nil,
meaning replace as much of SEQ1 as possible with elements from
SEQ2.

START1, END1, START2 and END2 are keyword arguments.  See info
node `(cl) Program Structure > Argument Lists' for details.

\n(fn SEQ1 SEQ2 &key START1 END1 START2 END2...)"
  (cl--parsing-keywords ((:start1 0) :end1 (:start2 0) :end2) ()
    (if (and (eq cl-seq1 cl-seq2) (<= cl-start2 cl-start1))
	(or (= cl-start1 cl-start2)
	    (let* ((cl-len (length cl-seq1))
		   (cl-n (min (- (or cl-end1 cl-len) cl-start1)
			      (- (or cl-end2 cl-len) cl-start2))))
	      (while (>= (setq cl-n (1- cl-n)) 0)
		(setf (elt cl-seq1 (+ cl-start1 cl-n))
			    (elt cl-seq2 (+ cl-start2 cl-n))))))
      (if (listp cl-seq1)
	  (let ((cl-p1 (nthcdr cl-start1 cl-seq1))
		(cl-n1 (and cl-end1 (- cl-end1 cl-start1))))
	    (if (listp cl-seq2)
		(let ((cl-p2 (nthcdr cl-start2 cl-seq2))
		      (cl-n (cond ((and cl-n1 cl-end2)
				   (min cl-n1 (- cl-end2 cl-start2)))
				  ((and cl-n1 (null cl-end2)) cl-n1)
				  ((and (null cl-n1) cl-end2) (- cl-end2 cl-start2)))))
		  (while (and cl-p1 cl-p2 (or (null cl-n) (>= (cl-decf cl-n) 0)))
		    (setcar cl-p1 (car cl-p2))
		    (setq cl-p1 (cdr cl-p1) cl-p2 (cdr cl-p2))))
	      (setq cl-end2 (if (null cl-n1)
				(or cl-end2 (length cl-seq2))
			      (min (or cl-end2 (length cl-seq2))
				   (+ cl-start2 cl-n1))))
	      (while (and cl-p1 (< cl-start2 cl-end2))
		(setcar cl-p1 (aref cl-seq2 cl-start2))
		(setq cl-p1 (cdr cl-p1) cl-start2 (1+ cl-start2)))))
	(setq cl-end1 (min (or cl-end1 (length cl-seq1))
			   (+ cl-start1 (- (or cl-end2 (length cl-seq2))
					   cl-start2))))
	(if (listp cl-seq2)
	    (let ((cl-p2 (nthcdr cl-start2 cl-seq2)))
	      (while (< cl-start1 cl-end1)
		(aset cl-seq1 cl-start1 (car cl-p2))
		(setq cl-p2 (cdr cl-p2) cl-start1 (1+ cl-start1))))
	  (while (< cl-start1 cl-end1)
	    (aset cl-seq1 cl-start1 (aref cl-seq2 cl-start2))
	    (setq cl-start2 (1+ cl-start2) cl-start1 (1+ cl-start1))))))
    cl-seq1))

;;;###autoload
(defun cl-remove (cl-item cl-seq &rest cl-keys)
  "Remove all occurrences of ITEM in SEQ.
This is a non-destructive function; it makes a copy of SEQ if necessary
to avoid corrupting the original SEQ.
\nKeywords supported:  :test :test-not :key :count :start :end :from-end
\n(fn ITEM SEQ [KEYWORD VALUE]...)"
  (cl--parsing-keywords (:test :test-not :key :if :if-not :count :from-end
			(:start 0) :end) ()
    (let ((len (length cl-seq)))
      (if (<= (or cl-count (setq cl-count len)) 0)
	cl-seq
        (if (or (nlistp cl-seq) (and cl-from-end (< cl-count (/ len 2))))
	  (let ((cl-i (cl--position cl-item cl-seq cl-start cl-end
                                    cl-from-end)))
	    (if cl-i
		(let ((cl-res (apply 'cl-delete cl-item (append cl-seq nil)
				     (append (if cl-from-end
						 (list :end (1+ cl-i))
					       (list :start cl-i))
					     cl-keys))))
		  (if (listp cl-seq) cl-res
		    (if (stringp cl-seq) (concat cl-res) (vconcat cl-res))))
	      cl-seq))
	  (setq cl-end (- (or cl-end len) cl-start))
	(if (= cl-start 0)
	    (while (and cl-seq (> cl-end 0)
			(cl--check-test cl-item (car cl-seq))
			(setq cl-end (1- cl-end) cl-seq (cdr cl-seq))
			(> (setq cl-count (1- cl-count)) 0))))
	(if (and (> cl-count 0) (> cl-end 0))
	    (let ((cl-p (if (> cl-start 0) (nthcdr cl-start cl-seq)
			  (setq cl-end (1- cl-end)) (cdr cl-seq))))
	      (while (and cl-p (> cl-end 0)
			  (not (cl--check-test cl-item (car cl-p))))
		(setq cl-p (cdr cl-p) cl-end (1- cl-end)))
	      (if (and cl-p (> cl-end 0))
		  (nconc (cl-ldiff cl-seq cl-p)
			 (if (= cl-count 1) (cdr cl-p)
			   (and (cdr cl-p)
				(apply 'cl-delete cl-item
				       (copy-sequence (cdr cl-p))
				       :start 0 :end (1- cl-end)
				       :count (1- cl-count) cl-keys))))
		cl-seq))
	  cl-seq))))))

;;;###autoload
(defun cl-remove-if (cl-pred cl-list &rest cl-keys)
  "Remove all items satisfying PREDICATE in SEQ.
This is a non-destructive function; it makes a copy of SEQ if necessary
to avoid corrupting the original SEQ.
\nKeywords supported:  :key :count :start :end :from-end
\n(fn PREDICATE SEQ [KEYWORD VALUE]...)"
  (apply 'cl-remove nil cl-list :if cl-pred cl-keys))

;;;###autoload
(defun cl-remove-if-not (cl-pred cl-list &rest cl-keys)
  "Remove all items not satisfying PREDICATE in SEQ.
This is a non-destructive function; it makes a copy of SEQ if necessary
to avoid corrupting the original SEQ.
\nKeywords supported:  :key :count :start :end :from-end
\n(fn PREDICATE SEQ [KEYWORD VALUE]...)"
  (apply 'cl-remove nil cl-list :if-not cl-pred cl-keys))

;;;###autoload
(defun cl-delete (cl-item cl-seq &rest cl-keys)
  "Remove all occurrences of ITEM in SEQ.
This is a destructive function; it reuses the storage of SEQ whenever possible.
\nKeywords supported:  :test :test-not :key :count :start :end :from-end
\n(fn ITEM SEQ [KEYWORD VALUE]...)"
  (cl--parsing-keywords (:test :test-not :key :if :if-not :count :from-end
			(:start 0) :end) ()
    (let ((len (length cl-seq)))
      (if (<= (or cl-count (setq cl-count len)) 0)
	cl-seq
      (if (listp cl-seq)
	  (if (and cl-from-end (< cl-count (/ len 2)))
	      (let (cl-i)
		(while (and (>= (setq cl-count (1- cl-count)) 0)
			    (setq cl-i (cl--position cl-item cl-seq cl-start
						     cl-end cl-from-end)))
		  (if (= cl-i 0) (setq cl-seq (cdr cl-seq))
		    (let ((cl-tail (nthcdr (1- cl-i) cl-seq)))
		      (setcdr cl-tail (cdr (cdr cl-tail)))))
		  (setq cl-end cl-i))
		cl-seq)
	    (setq cl-end (- (or cl-end len) cl-start))
	    (if (= cl-start 0)
		(progn
		  (while (and cl-seq
			      (> cl-end 0)
			      (cl--check-test cl-item (car cl-seq))
			      (setq cl-end (1- cl-end) cl-seq (cdr cl-seq))
			      (> (setq cl-count (1- cl-count)) 0)))
		  (setq cl-end (1- cl-end)))
	      (setq cl-start (1- cl-start)))
	    (if (and (> cl-count 0) (> cl-end 0))
		(let ((cl-p (nthcdr cl-start cl-seq)))
		  (while (and (cdr cl-p) (> cl-end 0))
		    (if (cl--check-test cl-item (car (cdr cl-p)))
			(progn
			  (setcdr cl-p (cdr (cdr cl-p)))
			  (if (= (setq cl-count (1- cl-count)) 0)
			      (setq cl-end 1)))
		      (setq cl-p (cdr cl-p)))
		    (setq cl-end (1- cl-end)))))
	    cl-seq)
	(apply 'cl-remove cl-item cl-seq cl-keys))))))

;;;###autoload
(defun cl-delete-if (cl-pred cl-list &rest cl-keys)
  "Remove all items satisfying PREDICATE in SEQ.
This is a destructive function; it reuses the storage of SEQ whenever possible.
\nKeywords supported:  :key :count :start :end :from-end
\n(fn PREDICATE SEQ [KEYWORD VALUE]...)"
  (apply 'cl-delete nil cl-list :if cl-pred cl-keys))

;;;###autoload
(defun cl-delete-if-not (cl-pred cl-list &rest cl-keys)
  "Remove all items not satisfying PREDICATE in SEQ.
This is a destructive function; it reuses the storage of SEQ whenever possible.
\nKeywords supported:  :key :count :start :end :from-end
\n(fn PREDICATE SEQ [KEYWORD VALUE]...)"
  (apply 'cl-delete nil cl-list :if-not cl-pred cl-keys))

;;;###autoload
(defun cl-remove-duplicates (cl-seq &rest cl-keys)
  "Return a copy of SEQ with all duplicate elements removed.
\nKeywords supported:  :test :test-not :key :start :end :from-end
\n(fn SEQ [KEYWORD VALUE]...)"
  (cl--delete-duplicates cl-seq cl-keys t))

;;;###autoload
(defun cl-delete-duplicates (cl-seq &rest cl-keys)
  "Remove all duplicate elements from SEQ (destructively).
\nKeywords supported:  :test :test-not :key :start :end :from-end
\n(fn SEQ [KEYWORD VALUE]...)"
  (cl--delete-duplicates cl-seq cl-keys nil))

(defun cl--delete-duplicates (cl-seq cl-keys cl-copy)
  (if (listp cl-seq)
      (cl--parsing-keywords
          ;; We need to parse :if, otherwise `cl-if' is unbound.
          (:test :test-not :key (:start 0) :end :from-end :if)
	  ()
	(if cl-from-end
	    (let ((cl-p (nthcdr cl-start cl-seq)) cl-i)
	      (setq cl-end (- (or cl-end (length cl-seq)) cl-start))
	      (while (> cl-end 1)
		(setq cl-i 0)
		(while (setq cl-i (cl--position (cl--check-key (car cl-p))
                                                (cdr cl-p) cl-i (1- cl-end)))
		  (if cl-copy (setq cl-seq (copy-sequence cl-seq)
				    cl-p (nthcdr cl-start cl-seq) cl-copy nil))
		  (let ((cl-tail (nthcdr cl-i cl-p)))
		    (setcdr cl-tail (cdr (cdr cl-tail))))
		  (setq cl-end (1- cl-end)))
		(setq cl-p (cdr cl-p) cl-end (1- cl-end)
		      cl-start (1+ cl-start)))
	      cl-seq)
	  (setq cl-end (- (or cl-end (length cl-seq)) cl-start))
	  (while (and (cdr cl-seq) (= cl-start 0) (> cl-end 1)
		      (cl--position (cl--check-key (car cl-seq))
                                    (cdr cl-seq) 0 (1- cl-end)))
	    (setq cl-seq (cdr cl-seq) cl-end (1- cl-end)))
	  (let ((cl-p (if (> cl-start 0) (nthcdr (1- cl-start) cl-seq)
			(setq cl-end (1- cl-end) cl-start 1) cl-seq)))
	    (while (and (cdr (cdr cl-p)) (> cl-end 1))
	      (if (cl--position (cl--check-key (car (cdr cl-p)))
                                (cdr (cdr cl-p)) 0 (1- cl-end))
		  (progn
		    (if cl-copy (setq cl-seq (copy-sequence cl-seq)
				      cl-p (nthcdr (1- cl-start) cl-seq)
				      cl-copy nil))
		    (setcdr cl-p (cdr (cdr cl-p))))
		(setq cl-p (cdr cl-p)))
	      (setq cl-end (1- cl-end) cl-start (1+ cl-start)))
	    cl-seq)))
    (let ((cl-res (cl--delete-duplicates (append cl-seq nil) cl-keys nil)))
      (if (stringp cl-seq) (concat cl-res) (vconcat cl-res)))))

;;;###autoload
(defun cl-substitute (cl-new cl-old cl-seq &rest cl-keys)
  "Substitute NEW for OLD in SEQ.
This is a non-destructive function; it makes a copy of SEQ if necessary
to avoid corrupting the original SEQ.
\nKeywords supported:  :test :test-not :key :count :start :end :from-end
\n(fn NEW OLD SEQ [KEYWORD VALUE]...)"
  (cl--parsing-keywords (:test :test-not :key :if :if-not :count
			(:start 0) :end :from-end) ()
    (if (or (eq cl-old cl-new)
	    (<= (or cl-count (setq cl-from-end nil
				   cl-count (length cl-seq))) 0))
	cl-seq
      (let ((cl-i (cl--position cl-old cl-seq cl-start cl-end)))
	(if (not cl-i)
	    cl-seq
	  (setq cl-seq (copy-sequence cl-seq))
	  (unless cl-from-end
	    (setf (elt cl-seq cl-i) cl-new)
	    (cl-incf cl-i)
	    (cl-decf cl-count))
	  (apply 'cl-nsubstitute cl-new cl-old cl-seq :count cl-count
		 :start cl-i cl-keys))))))

;;;###autoload
(defun cl-substitute-if (cl-new cl-pred cl-list &rest cl-keys)
  "Substitute NEW for all items satisfying PREDICATE in SEQ.
This is a non-destructive function; it makes a copy of SEQ if necessary
to avoid corrupting the original SEQ.
\nKeywords supported:  :key :count :start :end :from-end
\n(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)"
  (apply 'cl-substitute cl-new nil cl-list :if cl-pred cl-keys))

;;;###autoload
(defun cl-substitute-if-not (cl-new cl-pred cl-list &rest cl-keys)
  "Substitute NEW for all items not satisfying PREDICATE in SEQ.
This is a non-destructive function; it makes a copy of SEQ if necessary
to avoid corrupting the original SEQ.
\nKeywords supported:  :key :count :start :end :from-end
\n(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)"
  (apply 'cl-substitute cl-new nil cl-list :if-not cl-pred cl-keys))

;;;###autoload
(defun cl-nsubstitute (cl-new cl-old cl-seq &rest cl-keys)
  "Substitute NEW for OLD in SEQ.
This is a destructive function; it reuses the storage of SEQ whenever possible.
\nKeywords supported:  :test :test-not :key :count :start :end :from-end
\n(fn NEW OLD SEQ [KEYWORD VALUE]...)"
  (cl--parsing-keywords (:test :test-not :key :if :if-not :count
			(:start 0) :end :from-end) ()
    (let ((len (length cl-seq)))
      (or (eq cl-old cl-new) (<= (or cl-count (setq cl-count len)) 0)
	  (if (and (listp cl-seq) (or (not cl-from-end) (> cl-count (/ len 2))))
	    (let ((cl-p (nthcdr cl-start cl-seq)))
	      (setq cl-end (- (or cl-end len) cl-start))
	      (while (and cl-p (> cl-end 0) (> cl-count 0))
		(if (cl--check-test cl-old (car cl-p))
		    (progn
		      (setcar cl-p cl-new)
		      (setq cl-count (1- cl-count))))
		(setq cl-p (cdr cl-p) cl-end (1- cl-end))))
	    (or cl-end (setq cl-end len))
	  (if cl-from-end
	      (while (and (< cl-start cl-end) (> cl-count 0))
		(setq cl-end (1- cl-end))
		(if (cl--check-test cl-old (elt cl-seq cl-end))
		    (progn
		      (setf (elt cl-seq cl-end) cl-new)
		      (setq cl-count (1- cl-count)))))
	    (while (and (< cl-start cl-end) (> cl-count 0))
	      (if (cl--check-test cl-old (aref cl-seq cl-start))
		  (progn
		    (aset cl-seq cl-start cl-new)
		    (setq cl-count (1- cl-count))))
	      (setq cl-start (1+ cl-start)))))))
    cl-seq))

;;;###autoload
(defun cl-nsubstitute-if (cl-new cl-pred cl-list &rest cl-keys)
  "Substitute NEW for all items satisfying PREDICATE in SEQ.
This is a destructive function; it reuses the storage of SEQ whenever possible.
\nKeywords supported:  :key :count :start :end :from-end
\n(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)"
  (apply 'cl-nsubstitute cl-new nil cl-list :if cl-pred cl-keys))

;;;###autoload
(defun cl-nsubstitute-if-not (cl-new cl-pred cl-list &rest cl-keys)
  "Substitute NEW for all items not satisfying PREDICATE in SEQ.
This is a destructive function; it reuses the storage of SEQ whenever possible.
\nKeywords supported:  :key :count :start :end :from-end
\n(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)"
  (apply 'cl-nsubstitute cl-new nil cl-list :if-not cl-pred cl-keys))

;;;###autoload
(defun cl-find (cl-item cl-seq &rest cl-keys)
  "Find the first occurrence of ITEM in SEQ.
Return the matching ITEM, or nil if not found.
\nKeywords supported:  :test :test-not :key :start :end :from-end
\n(fn ITEM SEQ [KEYWORD VALUE]...)"
  (let ((cl-pos (apply 'cl-position cl-item cl-seq cl-keys)))
    (and cl-pos (elt cl-seq cl-pos))))

;;;###autoload
(defun cl-find-if (cl-pred cl-list &rest cl-keys)
  "Find the first item satisfying PREDICATE in SEQ.
Return the matching item, or nil if not found.
\nKeywords supported:  :key :start :end :from-end
\n(fn PREDICATE SEQ [KEYWORD VALUE]...)"
  (apply 'cl-find nil cl-list :if cl-pred cl-keys))

;;;###autoload
(defun cl-find-if-not (cl-pred cl-list &rest cl-keys)
  "Find the first item not satisfying PREDICATE in SEQ.
Return the matching item, or nil if not found.
\nKeywords supported:  :key :start :end :from-end
\n(fn PREDICATE SEQ [KEYWORD VALUE]...)"
  (apply 'cl-find nil cl-list :if-not cl-pred cl-keys))

;;;###autoload
(defun cl-position (cl-item cl-seq &rest cl-keys)
  "Find the first occurrence of ITEM in SEQ.
Return the index of the matching item, or nil if not found.
\nKeywords supported:  :test :test-not :key :start :end :from-end
\n(fn ITEM SEQ [KEYWORD VALUE]...)"
  (cl--parsing-keywords (:test :test-not :key :if :if-not
			(:start 0) :end :from-end) ()
    (cl--position cl-item cl-seq cl-start cl-end cl-from-end)))

(defun cl--position (cl-item cl-seq cl-start &optional cl-end cl-from-end)
  (if (listp cl-seq)
      (let ((cl-p (nthcdr cl-start cl-seq))
	    cl-res)
	(while (and cl-p (or (null cl-end) (< cl-start cl-end)) (or (null cl-res) cl-from-end))
	    (if (cl--check-test cl-item (car cl-p))
		(setq cl-res cl-start))
	    (setq cl-p (cdr cl-p) cl-start (1+ cl-start)))
	cl-res)
    (or cl-end (setq cl-end (length cl-seq)))
    (if cl-from-end
	(progn
	  (while (and (>= (setq cl-end (1- cl-end)) cl-start)
		      (not (cl--check-test cl-item (aref cl-seq cl-end)))))
	  (and (>= cl-end cl-start) cl-end))
      (while (and (< cl-start cl-end)
		  (not (cl--check-test cl-item (aref cl-seq cl-start))))
	(setq cl-start (1+ cl-start)))
      (and (< cl-start cl-end) cl-start))))

;;;###autoload
(defun cl-position-if (cl-pred cl-list &rest cl-keys)
  "Find the first item satisfying PREDICATE in SEQ.
Return the index of the matching item, or nil if not found.
\nKeywords supported:  :key :start :end :from-end
\n(fn PREDICATE SEQ [KEYWORD VALUE]...)"
  (apply 'cl-position nil cl-list :if cl-pred cl-keys))

;;;###autoload
(defun cl-position-if-not (cl-pred cl-list &rest cl-keys)
  "Find the first item not satisfying PREDICATE in SEQ.
Return the index of the matching item, or nil if not found.
\nKeywords supported:  :key :start :end :from-end
\n(fn PREDICATE SEQ [KEYWORD VALUE]...)"
  (apply 'cl-position nil cl-list :if-not cl-pred cl-keys))

;;;###autoload
(defun cl-count (cl-item cl-seq &rest cl-keys)
  "Count the number of occurrences of ITEM in SEQ.
\nKeywords supported:  :test :test-not :key :start :end
\n(fn ITEM SEQ [KEYWORD VALUE]...)"
  (cl--parsing-keywords (:test :test-not :key :if :if-not (:start 0) :end) ()
    (let ((cl-count 0) cl-x)
      (or cl-end (setq cl-end (length cl-seq)))
      (if (consp cl-seq) (setq cl-seq (nthcdr cl-start cl-seq)))
      (while (< cl-start cl-end)
	(setq cl-x (if (consp cl-seq) (pop cl-seq) (aref cl-seq cl-start)))
	(if (cl--check-test cl-item cl-x) (setq cl-count (1+ cl-count)))
	(setq cl-start (1+ cl-start)))
      cl-count)))

;;;###autoload
(defun cl-count-if (cl-pred cl-list &rest cl-keys)
  "Count the number of items satisfying PREDICATE in SEQ.
\nKeywords supported:  :key :start :end
\n(fn PREDICATE SEQ [KEYWORD VALUE]...)"
  (apply 'cl-count nil cl-list :if cl-pred cl-keys))

;;;###autoload
(defun cl-count-if-not (cl-pred cl-list &rest cl-keys)
  "Count the number of items not satisfying PREDICATE in SEQ.
\nKeywords supported:  :key :start :end
\n(fn PREDICATE SEQ [KEYWORD VALUE]...)"
  (apply 'cl-count nil cl-list :if-not cl-pred cl-keys))

;;;###autoload
(defun cl-mismatch (cl-seq1 cl-seq2 &rest cl-keys)
  "Compare SEQ1 with SEQ2, return index of first mismatching element.
Return nil if the sequences match.  If one sequence is a prefix of the
other, the return value indicates the end of the shorter sequence.
\nKeywords supported:  :test :test-not :key :start1 :end1 :start2 :end2 :from-end
\n(fn SEQ1 SEQ2 [KEYWORD VALUE]...)"
  (cl--parsing-keywords (:test :test-not :key :from-end
			(:start1 0) :end1 (:start2 0) :end2) ()
    (or cl-end1 (setq cl-end1 (length cl-seq1)))
    (or cl-end2 (setq cl-end2 (length cl-seq2)))
    (if cl-from-end
	(progn
	  (while (and (< cl-start1 cl-end1) (< cl-start2 cl-end2)
		      (cl--check-match (elt cl-seq1 (1- cl-end1))
				      (elt cl-seq2 (1- cl-end2))))
	    (setq cl-end1 (1- cl-end1) cl-end2 (1- cl-end2)))
	  (and (or (< cl-start1 cl-end1) (< cl-start2 cl-end2))
	       (1- cl-end1)))
      (let ((cl-p1 (and (listp cl-seq1) (nthcdr cl-start1 cl-seq1)))
	    (cl-p2 (and (listp cl-seq2) (nthcdr cl-start2 cl-seq2))))
	(while (and (< cl-start1 cl-end1) (< cl-start2 cl-end2)
		    (cl--check-match (if cl-p1 (car cl-p1)
				      (aref cl-seq1 cl-start1))
				    (if cl-p2 (car cl-p2)
				      (aref cl-seq2 cl-start2))))
	  (setq cl-p1 (cdr cl-p1) cl-p2 (cdr cl-p2)
		cl-start1 (1+ cl-start1) cl-start2 (1+ cl-start2)))
	(and (or (< cl-start1 cl-end1) (< cl-start2 cl-end2))
	     cl-start1)))))

;;;###autoload
(defun cl-search (cl-seq1 cl-seq2 &rest cl-keys)
  "Search for SEQ1 as a subsequence of SEQ2.
Return the index of the leftmost element of the first match found;
return nil if there are no matches.
\nKeywords supported:  :test :test-not :key :start1 :end1 :start2 :end2 :from-end
\n(fn SEQ1 SEQ2 [KEYWORD VALUE]...)"
  (cl--parsing-keywords (:test :test-not :key :from-end
			(:start1 0) :end1 (:start2 0) :end2) ()
    (or cl-end1 (setq cl-end1 (length cl-seq1)))
    (or cl-end2 (setq cl-end2 (length cl-seq2)))
    (if (>= cl-start1 cl-end1)
	(if cl-from-end cl-end2 cl-start2)
      (let* ((cl-len (- cl-end1 cl-start1))
	     (cl-first (cl--check-key (elt cl-seq1 cl-start1)))
	     (cl-if nil) cl-pos)
	(setq cl-end2 (- cl-end2 (1- cl-len)))
	(while (and (< cl-start2 cl-end2)
		    (setq cl-pos (cl--position cl-first cl-seq2
                                               cl-start2 cl-end2 cl-from-end))
		    (apply 'cl-mismatch cl-seq1 cl-seq2
			   :start1 (1+ cl-start1) :end1 cl-end1
			   :start2 (1+ cl-pos) :end2 (+ cl-pos cl-len)
			   :from-end nil cl-keys))
	  (if cl-from-end (setq cl-end2 cl-pos) (setq cl-start2 (1+ cl-pos))))
	(and (< cl-start2 cl-end2) cl-pos)))))

;;;###autoload
(defun cl-sort (cl-seq cl-pred &rest cl-keys)
  "Sort the argument SEQ according to PREDICATE.
This is a destructive function; it reuses the storage of SEQ if possible.
\nKeywords supported:  :key
\n(fn SEQ PREDICATE [KEYWORD VALUE]...)"
  (if (nlistp cl-seq)
      (cl-replace cl-seq (apply 'cl-sort (append cl-seq nil) cl-pred cl-keys))
    (cl--parsing-keywords (:key) ()
      (if (memq cl-key '(nil identity))
	  (sort cl-seq cl-pred)
        (sort cl-seq (lambda (cl-x cl-y)
                       (funcall cl-pred (funcall cl-key cl-x)
                                (funcall cl-key cl-y))))))))

;;;###autoload
(defun cl-stable-sort (cl-seq cl-pred &rest cl-keys)
  "Sort the argument SEQ stably according to PREDICATE.
This is a destructive function; it reuses the storage of SEQ if possible.
\nKeywords supported:  :key
\n(fn SEQ PREDICATE [KEYWORD VALUE]...)"
  (apply 'cl-sort cl-seq cl-pred cl-keys))

;;;###autoload
(defun cl-merge (cl-type cl-seq1 cl-seq2 cl-pred &rest cl-keys)
  "Destructively merge the two sequences to produce a new sequence.
TYPE is the sequence type to return, SEQ1 and SEQ2 are the two argument
sequences, and PREDICATE is a `less-than' predicate on the elements.
\nKeywords supported:  :key
\n(fn TYPE SEQ1 SEQ2 PREDICATE [KEYWORD VALUE]...)"
  (or (listp cl-seq1) (setq cl-seq1 (append cl-seq1 nil)))
  (or (listp cl-seq2) (setq cl-seq2 (append cl-seq2 nil)))
  (cl--parsing-keywords (:key) ()
    (let ((cl-res nil))
      (while (and cl-seq1 cl-seq2)
	(if (funcall cl-pred (cl--check-key (car cl-seq2))
		     (cl--check-key (car cl-seq1)))
	    (push (pop cl-seq2) cl-res)
	  (push (pop cl-seq1) cl-res)))
      (cl-coerce (nconc (nreverse cl-res) cl-seq1 cl-seq2) cl-type))))

;;;###autoload
(defun cl-member (cl-item cl-list &rest cl-keys)
  "Find the first occurrence of ITEM in LIST.
Return the sublist of LIST whose car is ITEM.
\nKeywords supported:  :test :test-not :key
\n(fn ITEM LIST [KEYWORD VALUE]...)"
  (declare (compiler-macro cl--compiler-macro-member))
  (if cl-keys
      (cl--parsing-keywords (:test :test-not :key :if :if-not) ()
	(while (and cl-list (not (cl--check-test cl-item (car cl-list))))
	  (setq cl-list (cdr cl-list)))
	cl-list)
    (memql cl-item cl-list)))
(autoload 'cl--compiler-macro-member "cl-macs")

;;;###autoload
(defun cl-member-if (cl-pred cl-list &rest cl-keys)
  "Find the first item satisfying PREDICATE in LIST.
Return the sublist of LIST whose car matches.
\nKeywords supported:  :key
\n(fn PREDICATE LIST [KEYWORD VALUE]...)"
  (apply 'cl-member nil cl-list :if cl-pred cl-keys))

;;;###autoload
(defun cl-member-if-not (cl-pred cl-list &rest cl-keys)
  "Find the first item not satisfying PREDICATE in LIST.
Return the sublist of LIST whose car matches.
\nKeywords supported:  :key
\n(fn PREDICATE LIST [KEYWORD VALUE]...)"
  (apply 'cl-member nil cl-list :if-not cl-pred cl-keys))

;;;###autoload
(defun cl--adjoin (cl-item cl-list &rest cl-keys)
  (if (cl--parsing-keywords (:key) t
	(apply 'cl-member (cl--check-key cl-item) cl-list cl-keys))
      cl-list
    (cons cl-item cl-list)))

;;;###autoload
(defun cl-assoc (cl-item cl-alist &rest cl-keys)
  "Find the first item whose car matches ITEM in LIST.
\nKeywords supported:  :test :test-not :key
\n(fn ITEM LIST [KEYWORD VALUE]...)"
  (declare (compiler-macro cl--compiler-macro-assoc))
  (if cl-keys
      (cl--parsing-keywords (:test :test-not :key :if :if-not) ()
	(while (and cl-alist
		    (or (not (consp (car cl-alist)))
			(not (cl--check-test cl-item (car (car cl-alist))))))
	  (setq cl-alist (cdr cl-alist)))
	(and cl-alist (car cl-alist)))
    (if (and (numberp cl-item) (not (fixnump cl-item)))
	(assoc cl-item cl-alist)
      (assq cl-item cl-alist))))
(autoload 'cl--compiler-macro-assoc "cl-macs")

;;;###autoload
(defun cl-assoc-if (cl-pred cl-list &rest cl-keys)
  "Find the first item whose car satisfies PREDICATE in LIST.
\nKeywords supported:  :key
\n(fn PREDICATE LIST [KEYWORD VALUE]...)"
  (apply 'cl-assoc nil cl-list :if cl-pred cl-keys))

;;;###autoload
(defun cl-assoc-if-not (cl-pred cl-list &rest cl-keys)
  "Find the first item whose car does not satisfy PREDICATE in LIST.
\nKeywords supported:  :key
\n(fn PREDICATE LIST [KEYWORD VALUE]...)"
  (apply 'cl-assoc nil cl-list :if-not cl-pred cl-keys))

;;;###autoload
(defun cl-rassoc (cl-item cl-alist &rest cl-keys)
  "Find the first item whose cdr matches ITEM in LIST.
\nKeywords supported:  :test :test-not :key
\n(fn ITEM LIST [KEYWORD VALUE]...)"
  (if (or cl-keys (numberp cl-item))
      (cl--parsing-keywords (:test :test-not :key :if :if-not) ()
	(while (and cl-alist
		    (or (not (consp (car cl-alist)))
			(not (cl--check-test cl-item (cdr (car cl-alist))))))
	  (setq cl-alist (cdr cl-alist)))
	(and cl-alist (car cl-alist)))
    (rassq cl-item cl-alist)))

;;;###autoload
(defun cl-rassoc-if (cl-pred cl-list &rest cl-keys)
  "Find the first item whose cdr satisfies PREDICATE in LIST.
\nKeywords supported:  :key
\n(fn PREDICATE LIST [KEYWORD VALUE]...)"
  (apply 'cl-rassoc nil cl-list :if cl-pred cl-keys))

;;;###autoload
(defun cl-rassoc-if-not (cl-pred cl-list &rest cl-keys)
  "Find the first item whose cdr does not satisfy PREDICATE in LIST.
\nKeywords supported:  :key
\n(fn PREDICATE LIST [KEYWORD VALUE]...)"
  (apply 'cl-rassoc nil cl-list :if-not cl-pred cl-keys))

;;;###autoload
(defun cl-union (cl-list1 cl-list2 &rest cl-keys)
  "Combine LIST1 and LIST2 using a set-union operation.
The resulting list contains all items that appear in either LIST1 or LIST2.
This is a non-destructive function; it makes a copy of the data if necessary
to avoid corrupting the original LIST1 and LIST2.
\nKeywords supported:  :test :test-not :key
\n(fn LIST1 LIST2 [KEYWORD VALUE]...)"
  (cond ((null cl-list1) cl-list2) ((null cl-list2) cl-list1)
	((and (not cl-keys) (equal cl-list1 cl-list2)) cl-list1)
	(t
	 (or (>= (length cl-list1) (length cl-list2))
	     (setq cl-list1 (prog1 cl-list2 (setq cl-list2 cl-list1))))
	 (while cl-list2
	   (if (or cl-keys (numberp (car cl-list2)))
	       (setq cl-list1
                     (apply 'cl-adjoin (car cl-list2) cl-list1 cl-keys))
	     (or (memq (car cl-list2) cl-list1)
		 (push (car cl-list2) cl-list1)))
	   (pop cl-list2))
	 cl-list1)))

;;;###autoload
(defun cl-nunion (cl-list1 cl-list2 &rest cl-keys)
  "Combine LIST1 and LIST2 using a set-union operation.
The resulting list contains all items that appear in either LIST1 or LIST2.
This is a destructive function; it reuses the storage of LIST1 and LIST2
whenever possible.
\nKeywords supported:  :test :test-not :key
\n(fn LIST1 LIST2 [KEYWORD VALUE]...)"
  (cond ((null cl-list1) cl-list2) ((null cl-list2) cl-list1)
	(t (apply 'cl-union cl-list1 cl-list2 cl-keys))))

;;;###autoload
(defun cl-intersection (cl-list1 cl-list2 &rest cl-keys)
  "Combine LIST1 and LIST2 using a set-intersection operation.
The resulting list contains all items that appear in both LIST1 and LIST2.
This is a non-destructive function; it makes a copy of the data if necessary
to avoid corrupting the original LIST1 and LIST2.
\nKeywords supported:  :test :test-not :key
\n(fn LIST1 LIST2 [KEYWORD VALUE]...)"
  (and cl-list1 cl-list2
       (if (equal cl-list1 cl-list2) cl-list1
	 (cl--parsing-keywords (:key) (:test :test-not)
	   (let ((cl-res nil))
	     (or (>= (length cl-list1) (length cl-list2))
		 (setq cl-list1 (prog1 cl-list2 (setq cl-list2 cl-list1))))
	     (while cl-list2
	       (if (if (or cl-keys (numberp (car cl-list2)))
		       (apply 'cl-member (cl--check-key (car cl-list2))
			      cl-list1 cl-keys)
		     (memq (car cl-list2) cl-list1))
		   (push (car cl-list2) cl-res))
	       (pop cl-list2))
	     cl-res)))))

;;;###autoload
(defun cl-nintersection (cl-list1 cl-list2 &rest cl-keys)
  "Combine LIST1 and LIST2 using a set-intersection operation.
The resulting list contains all items that appear in both LIST1 and LIST2.
This is a destructive function; it reuses the storage of LIST1 and LIST2
whenever possible.
\nKeywords supported:  :test :test-not :key
\n(fn LIST1 LIST2 [KEYWORD VALUE]...)"
  (and cl-list1 cl-list2 (apply 'cl-intersection cl-list1 cl-list2 cl-keys)))

;;;###autoload
(defun cl-set-difference (cl-list1 cl-list2 &rest cl-keys)
  "Combine LIST1 and LIST2 using a set-difference operation.
The resulting list contains all items that appear in LIST1 but not LIST2.
This is a non-destructive function; it makes a copy of the data if necessary
to avoid corrupting the original LIST1 and LIST2.
\nKeywords supported:  :test :test-not :key
\n(fn LIST1 LIST2 [KEYWORD VALUE]...)"
  (if (or (null cl-list1) (null cl-list2)) cl-list1
    (cl--parsing-keywords (:key) (:test :test-not)
      (let ((cl-res nil))
	(while cl-list1
	  (or (if (or cl-keys (numberp (car cl-list1)))
		  (apply 'cl-member (cl--check-key (car cl-list1))
			 cl-list2 cl-keys)
		(memq (car cl-list1) cl-list2))
	      (push (car cl-list1) cl-res))
	  (pop cl-list1))
        (nreverse cl-res)))))

;;;###autoload
(defun cl-nset-difference (cl-list1 cl-list2 &rest cl-keys)
  "Combine LIST1 and LIST2 using a set-difference operation.
The resulting list contains all items that appear in LIST1 but not LIST2.
This is a destructive function; it reuses the storage of LIST1 and LIST2
whenever possible.
\nKeywords supported:  :test :test-not :key
\n(fn LIST1 LIST2 [KEYWORD VALUE]...)"
  (if (or (null cl-list1) (null cl-list2)) cl-list1
    (apply 'cl-set-difference cl-list1 cl-list2 cl-keys)))

;;;###autoload
(defun cl-set-exclusive-or (cl-list1 cl-list2 &rest cl-keys)
  "Combine LIST1 and LIST2 using a set-exclusive-or operation.
The resulting list contains all items appearing in exactly one of LIST1, LIST2.
This is a non-destructive function; it makes a copy of the data if necessary
to avoid corrupting the original LIST1 and LIST2.
\nKeywords supported:  :test :test-not :key
\n(fn LIST1 LIST2 [KEYWORD VALUE]...)"
  (cond ((null cl-list1) cl-list2) ((null cl-list2) cl-list1)
	((equal cl-list1 cl-list2) nil)
	(t (append (apply 'cl-set-difference cl-list1 cl-list2 cl-keys)
		   (apply 'cl-set-difference cl-list2 cl-list1 cl-keys)))))

;;;###autoload
(defun cl-nset-exclusive-or (cl-list1 cl-list2 &rest cl-keys)
  "Combine LIST1 and LIST2 using a set-exclusive-or operation.
The resulting list contains all items appearing in exactly one of LIST1, LIST2.
This is a destructive function; it reuses the storage of LIST1 and LIST2
whenever possible.
\nKeywords supported:  :test :test-not :key
\n(fn LIST1 LIST2 [KEYWORD VALUE]...)"
  (cond ((null cl-list1) cl-list2) ((null cl-list2) cl-list1)
	((equal cl-list1 cl-list2) nil)
	(t (nconc (apply 'cl-nset-difference cl-list1 cl-list2 cl-keys)
		  (apply 'cl-nset-difference cl-list2 cl-list1 cl-keys)))))

;;;###autoload
(defun cl-subsetp (cl-list1 cl-list2 &rest cl-keys)
  "Return true if LIST1 is a subset of LIST2.
I.e., if every element of LIST1 also appears in LIST2.
\nKeywords supported:  :test :test-not :key
\n(fn LIST1 LIST2 [KEYWORD VALUE]...)"
  (cond ((null cl-list1) t) ((null cl-list2) nil)
	((equal cl-list1 cl-list2) t)
	(t (cl--parsing-keywords (:key) (:test :test-not)
	     (while (and cl-list1
			 (apply 'cl-member (cl--check-key (car cl-list1))
				cl-list2 cl-keys))
	       (pop cl-list1))
	     (null cl-list1)))))

;;;###autoload
(defun cl-subst-if (cl-new cl-pred cl-tree &rest cl-keys)
  "Substitute NEW for elements matching PREDICATE in TREE (non-destructively).
Return a copy of TREE with all matching elements replaced by NEW.
\nKeywords supported:  :key
\n(fn NEW PREDICATE TREE [KEYWORD VALUE]...)"
  (apply 'cl-sublis (list (cons nil cl-new)) cl-tree :if cl-pred cl-keys))

;;;###autoload
(defun cl-subst-if-not (cl-new cl-pred cl-tree &rest cl-keys)
  "Substitute NEW for elts not matching PREDICATE in TREE (non-destructively).
Return a copy of TREE with all non-matching elements replaced by NEW.
\nKeywords supported:  :key
\n(fn NEW PREDICATE TREE [KEYWORD VALUE]...)"
  (apply 'cl-sublis (list (cons nil cl-new)) cl-tree :if-not cl-pred cl-keys))

;;;###autoload
(defun cl-nsubst (cl-new cl-old cl-tree &rest cl-keys)
  "Substitute NEW for OLD everywhere in TREE (destructively).
Any element of TREE which is `eql' to OLD is changed to NEW (via a call
to `setcar').
\nKeywords supported:  :test :test-not :key
\n(fn NEW OLD TREE [KEYWORD VALUE]...)"
  (apply 'cl-nsublis (list (cons cl-old cl-new)) cl-tree cl-keys))

;;;###autoload
(defun cl-nsubst-if (cl-new cl-pred cl-tree &rest cl-keys)
  "Substitute NEW for elements matching PREDICATE in TREE (destructively).
Any element of TREE which matches is changed to NEW (via a call to `setcar').
\nKeywords supported:  :key
\n(fn NEW PREDICATE TREE [KEYWORD VALUE]...)"
  (apply 'cl-nsublis (list (cons nil cl-new)) cl-tree :if cl-pred cl-keys))

;;;###autoload
(defun cl-nsubst-if-not (cl-new cl-pred cl-tree &rest cl-keys)
  "Substitute NEW for elements not matching PREDICATE in TREE (destructively).
Any element of TREE which matches is changed to NEW (via a call to `setcar').
\nKeywords supported:  :key
\n(fn NEW PREDICATE TREE [KEYWORD VALUE]...)"
  (apply 'cl-nsublis (list (cons nil cl-new)) cl-tree :if-not cl-pred cl-keys))

(defvar cl--alist)

;;;###autoload
(defun cl-sublis (cl-alist cl-tree &rest cl-keys)
  "Perform substitutions indicated by ALIST in TREE (non-destructively).
Return a copy of TREE with all matching elements replaced.
\nKeywords supported:  :test :test-not :key
\n(fn ALIST TREE [KEYWORD VALUE]...)"
  (cl--parsing-keywords (:test :test-not :key :if :if-not) ()
    (let ((cl--alist cl-alist))
      (cl--sublis-rec cl-tree))))

(defun cl--sublis-rec (cl-tree)   ;Uses cl--alist cl-key/test*/if*.
  (let ((cl-temp (cl--check-key cl-tree)) (cl-p cl--alist))
    (while (and cl-p (not (cl--check-test-nokey (car (car cl-p)) cl-temp)))
      (setq cl-p (cdr cl-p)))
    (if cl-p (cdr (car cl-p))
      (if (consp cl-tree)
	  (let ((cl-a (cl--sublis-rec (car cl-tree)))
		(cl-d (cl--sublis-rec (cdr cl-tree))))
	    (if (and (eq cl-a (car cl-tree)) (eq cl-d (cdr cl-tree)))
		cl-tree
	      (cons cl-a cl-d)))
	cl-tree))))

;;;###autoload
(defun cl-nsublis (cl-alist cl-tree &rest cl-keys)
  "Perform substitutions indicated by ALIST in TREE (destructively).
Any matching element of TREE is changed via a call to `setcar'.
\nKeywords supported:  :test :test-not :key
\n(fn ALIST TREE [KEYWORD VALUE]...)"
  (cl--parsing-keywords (:test :test-not :key :if :if-not) ()
    (let ((cl-hold (list cl-tree))
          (cl--alist cl-alist))
      (cl--nsublis-rec cl-hold)
      (car cl-hold))))

(defun cl--nsublis-rec (cl-tree)   ;Uses cl--alist cl-key/test*/if*.
  (while (consp cl-tree)
    (let ((cl-temp (cl--check-key (car cl-tree))) (cl-p cl--alist))
      (while (and cl-p (not (cl--check-test-nokey (car (car cl-p)) cl-temp)))
	(setq cl-p (cdr cl-p)))
      (if cl-p (setcar cl-tree (cdr (car cl-p)))
	(if (consp (car cl-tree)) (cl--nsublis-rec (car cl-tree))))
      (setq cl-temp (cl--check-key (cdr cl-tree)) cl-p cl--alist)
      (while (and cl-p (not (cl--check-test-nokey (car (car cl-p)) cl-temp)))
	(setq cl-p (cdr cl-p)))
      (if cl-p
	  (progn (setcdr cl-tree (cdr (car cl-p))) (setq cl-tree nil))
	(setq cl-tree (cdr cl-tree))))))

;;;###autoload
(defun cl-tree-equal (cl-x cl-y &rest cl-keys)
  "Return t if trees TREE1 and TREE2 have `eql' leaves.
Atoms are compared by `eql'; cons cells are compared recursively.
\nKeywords supported:  :test :test-not :key
\n(fn TREE1 TREE2 [KEYWORD VALUE]...)"
  (cl--parsing-keywords (:test :test-not :key) ()
    (cl--tree-equal-rec cl-x cl-y)))

(defun cl--tree-equal-rec (cl-x cl-y)   ;Uses cl-key/test*.
  (while (and (consp cl-x) (consp cl-y)
	      (cl--tree-equal-rec (car cl-x) (car cl-y)))
    (setq cl-x (cdr cl-x) cl-y (cdr cl-y)))
  (and (not (consp cl-x)) (not (consp cl-y)) (cl--check-match cl-x cl-y)))


(make-obsolete-variable 'cl-seq-load-hook
                        "use `with-eval-after-load' instead." "28.1")
(run-hooks 'cl-seq-load-hook)

;; Local variables:
;; generated-autoload-file: "cl-loaddefs.el"
;; End:

(provide 'cl-seq)

;;; cl-seq.el ends here

debug log:

solving dd9f37b0a82 ...
found dd9f37b0a82 in https://yhetil.org/emacs/CALDnm50H5NJLkc0=aiQFWCtJAUTOTdHcbWsDXu1T8pzNaWko+w@mail.gmail.com/
found ec481121ae6 in https://git.savannah.gnu.org/cgit/emacs.git
preparing index
index prepared:
100644 ec481121ae6b5631896ef1de04f8c9b1c5b3db75	lisp/emacs-lisp/cl-seq.el

applying [1/1] https://yhetil.org/emacs/CALDnm50H5NJLkc0=aiQFWCtJAUTOTdHcbWsDXu1T8pzNaWko+w@mail.gmail.com/
diff --git a/lisp/emacs-lisp/cl-seq.el b/lisp/emacs-lisp/cl-seq.el
index ec481121ae6..dd9f37b0a82 100644

Checking patch lisp/emacs-lisp/cl-seq.el...
Applied patch lisp/emacs-lisp/cl-seq.el cleanly.

index at:
100644 dd9f37b0a826564939f467c1dc2c582edef7491e	lisp/emacs-lisp/cl-seq.el

(*) Git path names are given by the tree(s) the blob belongs to.
    Blobs themselves have no identifier aside from the hash of its contents.^

Code repositories for project(s) associated with this external index

	https://git.savannah.gnu.org/cgit/emacs.git
	https://git.savannah.gnu.org/cgit/emacs/org-mode.git

This is an external index of several public inboxes,
see mirroring instructions on how to clone and mirror
all data and code used by this external index.