all messages for Emacs-related lists mirrored at yhetil.org
 help / color / mirror / code / Atom feed
blob d9f9ec8cd675505ee8810578db3fc40f93c238a8 48587 bytes (raw)
name: src/itree.c 	 # note: path name is non-authoritative(*)

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
 
/* This file implements an efficient interval data-structure.

Copyright (C) 2017-2022  Free Software Foundation, Inc.

This file is part of GNU Emacs.

GNU Emacs is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or (at
your option) any later version.

GNU Emacs is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Emacs.  If not, see <http://www.gnu.org/licenses/>.  */

#include <config.h>
#include <math.h>

#include "itree.h"

/*
   Intervals of the form [BEGIN, END), are stored as nodes inside a RB
   tree, ordered by BEGIN.  The core operation of this tree (besides
   insert, remove, etc.) is finding all intervals intersecting with
   some given interval.  In order to perform this operation
   efficiently, every node stores a third value called LIMIT. (See
   https://en.wikipedia.org/wiki/Interval_tree#Augmented_tree and its
   source Introduction to Algorithms, Cormen et al. .)

   ==== Finding intervals ====

   If we search for all intervals intersecting with (X, Y], we look at
   some node and test whether

   NODE.BEGIN > Y

   Due to the invariant of the search tree, we know, that we may
   safely prune NODE's right subtree if this test succeeds, since all
   intervals begin strictly after Y.

   But we can not make such an assumptions about the left tree, since
   all we know is that the intervals in this subtree must start before
   or at NODE.BEGIN.  So we can't tell, whether they end before X or
   not.  To solve this problem we add another attribute to each node,
   called LIMIT.

   The LIMIT of a node is the largest END value occurring in the nodes
   subtree (including the node itself).  Thus, we may look at the left
   child of some NODE and test whether

   NODE.left.LIMIT < X

   and this tells us, if all intervals in the left subtree of NODE end
   before X and if they can be pruned.

   Conversely, if this inequality is false, the left subtree must
   contain at least one intersecting interval, giving a resulting time
   complexity of O(K*log(N)) for this operation, where K is the size
   of the result set and N the size of the tree.

   ==== FIXME: bug#58342 some important operations remain slow ===

   The amortized costs of Emacs' previous-overlay-change and
   next-overlay-change functions are O(N) with this data structure.
   The root problem is that we only have an order for the BEG field,
   but not the END.  The previous/next overlay change operations need
   to find the nearest point where there is *either* an interval BEG
   or END point, but there is no efficient way to narrow the search
   space over END postions.

   Consider the case where next-overlay-change is called at POS, all
   interval BEG positions are less than pos POS and all interval END
   posistions are after.  These END positions have no order, and so
   *every* interval must be examined.  This is at least O(N).  The
   previous-overlay-change case is similar.  The root issue is that
   the iterative "narrowing" approach is not guaranteed to reduce the
   search space in logarithmic time, since END is not ordered in the
   tree.

   One might argue that the LIMIT value will do this narrowing, but
   this narrowing is O(K*log(N)) where K is the size of the result
   set.  If we are interested in finding the node in a range with the
   smallest END, we might have to examine all K nodes in that range.
   In the case of the *-overlay-channge functions, K may well be equal
   to N.

   Ideally, a tree based data structure for overlays would have
   O(log(N)) performance for previous-overlay-change and
   next-overlay-change, as these are called in performance sensitive
   situations such as redisplay.  The only way I can think of
   achieving this is by keeping one ordering by BEG and a separate
   ordering by END, and then performing logic quite similar to the
   current Emacs overlays-before and overlays-after lists.

   ==== Adjusting intervals ====

   Since this data-structure will be used for overlays in an Emacs
   buffer, a second core operation is the ability to insert and delete
   gaps in the tree.  This models the insertion and deletion of text
   in a buffer and the effects it may have on the positions of
   overlays.

   Consider this: Something gets inserted at position P into a buffer
   and assume that all overlays occur strictly after P.  Ordinarily,
   we would have to iterate all overlays and increment their BEGIN and
   END values accordingly (the insertion of text pushes them back).
   In order to avoid this, we introduce yet another node attribute,
   called OFFSET.

   The OFFSET of some some subtree, represented by its root, is the
   amount of shift that needs to be applied to its BEGIN, END and
   LIMIT values, in order to get to the actual buffer positions.
   Coming back to the example, all we would need to do in this case,
   is to increment the OFFSET of the tree's root, without any
   traversal of the tree itself.

   As a consequence, the real values of BEGIN, END and LIMIT of some
   NODE need to be computed by incrementing them by the sum of NODE's
   OFFSET and all of its ancestors offsets.  Therefore, we store a
   counter (otick) inside every node and also the tree, by which we
   remember the fact, that a node's path to the root has no offsets
   applied (i.e. its values are up to date).  This is the case if some
   node's value differs from the tree's one, the later of which is
   incremented whenever some node's offset has changed.
*/

/* FIXME: The code seems to use "generator" and "iterator"
   inconsistently/interchangeably.  We should fix this naming.  */

static struct interval_node *interval_tree_validate (struct interval_tree *, struct interval_node *);
static bool interval_node_intersects (const struct interval_node *, ptrdiff_t, ptrdiff_t);
static int interval_tree_max_height (const struct interval_tree *);
static void interval_tree_update_limit (struct interval_node *);
static void interval_tree_inherit_offset (uintmax_t otick, struct interval_node *);
static void interval_tree_propagate_limit (struct interval_node *);
static void interval_tree_rotate_left (struct interval_tree *, struct interval_node *);
static void interval_tree_rotate_right (struct interval_tree *, struct interval_node *);
static void interval_tree_insert_fix (struct interval_tree *, struct interval_node *);
static void interval_tree_transplant (struct interval_tree *, struct interval_node *, struct interval_node *);
static struct interval_generator* interval_generator_create (struct interval_tree *);
static void interval_tree_insert (struct interval_tree *, struct interval_node *);

/* The sentinel node, the null node.  */
struct interval_node itree_null = {
  .parent = &itree_null,
  .left = &itree_null,
  .right = &itree_null,
  .begin = PTRDIFF_MIN,
  .end = PTRDIFF_MIN,
  .limit = PTRDIFF_MIN, /* => max(x, null.limit) = x */
  .offset = 0,
  .otick = 0,
  .red = false,
  .rear_advance = false,
  .front_advance = false,
};

static bool
null_is_sane (void)
{
  /* The sentinel node has most of its fields read-only.

     FIXME: PARENT is still read/write.  It is written to
     ininterval_tree_transplant, and later read.  --matt
  */
  /* eassert (itree_null.parent == &itree_null); */
  eassert (itree_null.left == &itree_null);
  eassert (itree_null.right == &itree_null);
  eassert (itree_null.begin == PTRDIFF_MIN);
  eassert (itree_null.end == PTRDIFF_MIN);
  eassert (itree_null.limit == PTRDIFF_MIN);
  eassert (itree_null.offset == 0);
  eassert (itree_null.otick == 0);
  eassert (itree_null.red == false);
  eassert (itree_null.rear_advance == false);
  eassert (itree_null.front_advance == false);

  /* if we get this far things must be good */
  return true;
}

/* +------------------------------------------------------------------------------------+ */

typedef uintptr_t nodeptr_and_flag;

/* Simple dynamic array. */
struct interval_stack
{
  nodeptr_and_flag *nodes;
  size_t size;
  size_t length;
};

/* State used when iterating interval. */
struct interval_generator
{
  struct interval_stack *stack;
  ptrdiff_t begin;
  ptrdiff_t end;
  uintmax_t otick;              /* A copy of the tree's `otick`.  */
  enum interval_tree_order order;
  bool running;
  const char* file;
  int line;
};

/* Ideally, every iteration would use its own `iter` object, so we could
   have several iterations active at the same time.  In practice, iterations
   are limited by the fact we don't allow modifying the tree at the same
   time, making the use of nested iterations quite rare anyway.
   So we just use a single global iterator instead for now.  */
static struct interval_generator *iter;

static void
itree_init (void)
{
  eassert (null_is_sane ());

  iter = interval_generator_create (NULL);
}

struct check_subtree_result
{
  /* Were all nodes visited?  */
  bool complete;

  /* Computed node count of the tree.  */
  int size;

  /* Computed limit of the tree (max END).  */
  ptrdiff_t limit;

  /* Computed black height of the tree (count of black nodes from the
     bottom up to the root).  */
  int black_height;
};

static struct check_subtree_result
check_subtree (struct interval_node *node,
               bool check_red_black_invariants, uintmax_t tree_otick,
               int max_depth, ptrdiff_t offset, ptrdiff_t min_begin,
               ptrdiff_t max_begin)
{
  struct check_subtree_result result = { .complete = false,
                                         .size = 0,
                                         .limit = PTRDIFF_MIN,
                                         .black_height = 0 };
  if (node == ITREE_NULL)
    {
      /* Every nil node of a Red-Black tree is black */
      result.black_height = 1;
      result.complete = true;
      return result;
    };

  if (max_depth == 0)
    {
      result.complete = false;
      return result;
    }

  /* Validate structure.  */
  eassert (
    node->parent == ITREE_NULL
    || (node->parent->left == node || node->parent->right == node));
  eassert (node->left == ITREE_NULL || node->left->parent == node);
  eassert (node->right == ITREE_NULL || node->right->parent == node);

  /* No red nodes have red parents.  */
  if (check_red_black_invariants && node->parent != ITREE_NULL)
    eassert (!node->red || !node->parent->red);

  /* Validate otick.  A node's otick must be <= to the tree's otick
     and <= to its parent's otick.

     Note: we cannot assert that (NODE.otick == NODE.parent.otick)
     implies (NODE.offset == 0) because interval_tree_inherit_offset()
     doesn't always update otick.  It could, but it is not clear there
     is a need.  */
  eassert (node->otick <= tree_otick);
  eassert (node->parent == ITREE_NULL
           || node->otick <= node->parent->otick);
  eassert (node->otick != tree_otick || node->offset == 0);

  offset += node->offset;
  ptrdiff_t begin = node->begin + offset;
  ptrdiff_t end = node->end + offset;
  ptrdiff_t limit = node->limit + offset;

  eassert (min_begin <= max_begin);
  eassert (min_begin <= begin);
  eassert (begin <= max_begin);
  eassert (end <= limit);

  struct check_subtree_result left_result
    = check_subtree (node->left, check_red_black_invariants,
                     tree_otick, max_depth - 1, offset, min_begin,
                     begin);
  struct check_subtree_result right_result
    = check_subtree (node->right, check_red_black_invariants,
                     tree_otick, max_depth - 1, offset, begin,
                     max_begin);

  eassert (left_result.limit <= limit);
  eassert (right_result.limit <= limit);

  result.complete = left_result.complete && right_result.complete;
  if (result.complete)
    {
      result.size = 1 + left_result.size + right_result.size;
      result.limit
        = max (end, max (left_result.limit, right_result.limit));

      eassert (limit == result.limit);

      if (check_red_black_invariants)
        {
          /* Every path from a node to a descendent leaf contains the
             same number of black nodes.  Often said this way: all
             nodes have the same "black height".  */
          eassert (left_result.black_height
                   == right_result.black_height);
          result.black_height
            = (node->red ? 0 : 1) + left_result.black_height;
        }
    }

  return result;
}

/* Validate invariants for TREE.  If CHECK_RED_BLACK_INVARIANTS, red
   nodes with red children are considered invalid.

   This runs in constant time when ENABLE_OVERLAY_CHECKING is 0
   (i.e. Emacs is not configured with
   "--enable_checking=yes,overlays").  In this mode it can't check all
   the invariants.  When ENABLE_OVERLAY_CHECKING is 1 it checks the
   entire tree and validates all invariants.
*/
static bool
check_tree_common (struct interval_tree *tree,
                   bool check_red_black_invariants)
{
  eassert (null_is_sane ());

  eassert (tree != NULL);
  eassert (tree->size >= 0);
  eassert ((tree->size == 0) == (tree->root == ITREE_NULL));
  if (tree->root == ITREE_NULL)
    return true;

  /* Limit the traversal depth to what 'interval_tree_max_height'
     returns.  Later, verify that this is enough height to traverse
     the complete tree.  */
  const int max_height = interval_tree_max_height (tree);
  eassert (max_height >= 0);
  eassert (max_height <= 120);

  /* NOTE: if this check is too expensive an easy fix is to reduce
     max_height to for large trees, then relax the assertion on
     result.complete.  Assertions in check_subtree will still be made
     at the bottom of the tree (where they are probably most
     interesting), but some will be skipped closer to the root.  */

  struct interval_node *node = tree->root;
  struct check_subtree_result result
    = check_subtree (node, check_red_black_invariants, tree->otick,
                     max_height, node->offset, PTRDIFF_MIN,
                     PTRDIFF_MAX);
  eassert (result.complete);
  eassert (result.size == tree->size);

  /* The only way this function fails is eassert().  */
  return true;
}

/* Check the tree with all invariant checks enabled.  */
static bool
check_tree (struct interval_tree *tree)
{
  return check_tree_common (tree, true);
}

/* Check the tree with all invariant checks enabled, except for the
   red-black tree invariants.  Useful for asserting the other
   invariants while inserting or removing.  */
static bool
check_tree_no_rb (struct interval_tree *tree)
{
  return check_tree_common (tree, false);
}

/* +===================================================================================+
 * | Stack
 * +===================================================================================+ */

static inline nodeptr_and_flag
make_nav (struct interval_node *ptr, bool flag)
{
  uintptr_t v = (uintptr_t) ptr;
  /* We assume alignment imposes the LSB is clear for us to use it.  */
  eassert (!(v & 1));
  return v | !!flag;
}

static inline struct interval_node *
nav_nodeptr (nodeptr_and_flag nav)
{
  return (struct interval_node *) (nav & (~(uintptr_t)1));
}

static inline bool
nav_flag (nodeptr_and_flag nav)
{
  return (bool) (nav & 1);
}

/* This is just a simple dynamic array with stack semantics. */

static struct interval_stack*
interval_stack_create (intmax_t initial_size)
{
  struct interval_stack *stack = xmalloc (sizeof (struct interval_stack));
  stack->size = max (0, initial_size);
  stack->nodes = xmalloc (stack->size * sizeof (struct interval_node*));
  stack->length = 0;
  return stack;
}

static void
interval_stack_destroy (struct interval_stack *stack)
{
  if (! stack)
    return;
  if (stack->nodes)
    xfree (stack->nodes);
  xfree (stack);
}

static void
interval_stack_clear (struct interval_stack *stack)
{
  stack->length = 0;
}

static inline void
interval_stack_ensure_space (struct interval_stack *stack, intmax_t nelements)
{
  if (nelements > stack->size)
    {
      stack->size = (nelements + 1) * 2;
      stack->nodes = xrealloc (stack->nodes,
                               stack->size * sizeof (*stack->nodes));
    }
}

/* Push NODE on the STACK, while settings its visited flag to FLAG. */

static inline void
interval_stack_push_flagged (struct interval_stack *stack,
                             struct interval_node *node, bool flag)
{
  eassert (node && node != ITREE_NULL);

  /* FIXME: While the stack used in the iterator is bounded by the tree
     depth and could be easily pre-allocated to a large enough size to avoid
     this "ensure" check, `interval_stack_push` is also used elsewhere to
     simply collect some subset of the overlays, where it's only bounded by
     the total number of overlays in the buffer (which can be large and thus
     preferably not pre-allocated needlessly).  */
  interval_stack_ensure_space (stack, stack->length + 1);

  stack->nodes[stack->length] = make_nav (node, flag);
  stack->length++;
}

static inline void
interval_stack_push (struct interval_stack *stack, struct interval_node *node)
{
  interval_stack_push_flagged (stack, node, false);
}

static inline nodeptr_and_flag
interval_stack_pop (struct interval_stack *stack)
{
  if (stack->length == 0)
    return make_nav (NULL, false);
  return stack->nodes[--stack->length];
}

\f
/* +===================================================================================+
 * | Tree operations
 * +===================================================================================+ */

/* Initialize an allocated node. */

void
interval_node_init (struct interval_node *node,
                    bool front_advance, bool rear_advance,
                    Lisp_Object data)
{
  node->begin = -1;
  node->end = -1;
  node->front_advance = front_advance;
  node->rear_advance = rear_advance;
  node->data = data;
}

/* Return NODE's begin value, computing it if necessary. */

ptrdiff_t
interval_node_begin (struct interval_tree *tree,
                     struct interval_node *node)
{
  interval_tree_validate (tree, node);
  return node->begin;
}

/* Return NODE's end value, computing it if necessary. */

ptrdiff_t
interval_node_end (struct interval_tree *tree,
                   struct interval_node *node)
{
  interval_tree_validate (tree, node);
  return node->end;
}

/* Safely modify a node's interval. */

void
interval_node_set_region (struct interval_tree *tree,
                          struct interval_node *node,
                          ptrdiff_t begin, ptrdiff_t end)
{
  interval_tree_validate (tree, node);
  if (begin != node->begin)
    {
      interval_tree_remove (tree, node);
      node->begin = min (begin, PTRDIFF_MAX - 1);
      node->end = max (node->begin, end);
      interval_tree_insert (tree, node);
    }
  else if (end != node->end)
    {
      node->end = max (node->begin, end);
      eassert (node != ITREE_NULL);
      interval_tree_propagate_limit (node);
    }
}

/* Allocate an interval_tree. Free with interval_tree_destroy. */

struct interval_tree*
interval_tree_create (void)
{
  /* FIXME?  Maybe avoid the initialization of itree_null in the same
     way that is used to call mem_init in alloc.c?  It's not really
     important though.  */
  itree_init ();

  struct interval_tree *tree = xmalloc (sizeof (*tree));
  interval_tree_clear (tree);
  return tree;
}

/* Reset the tree TREE to its empty state.  */

void
interval_tree_clear (struct interval_tree *tree)
{
  tree->root = ITREE_NULL;
  tree->otick = 1;
  tree->size = 0;
}

#ifdef ITREE_TESTING
/* Initialize a pre-allocated tree (presumably on the stack).  */

static void
interval_tree_init (struct interval_tree *tree)
{
  interval_tree_clear (tree);
  /* tree->iter = interval_generator_create (tree); */
}
#endif

/* Release a tree, freeing its allocated memory.  */
void
interval_tree_destroy (struct interval_tree *tree)
{
  eassert (tree->root == ITREE_NULL);
  /* if (tree->iter)
   *   interval_generator_destroy (tree->iter); */
  xfree (tree);
}

/* Return the number of nodes in TREE.  */

intmax_t
interval_tree_size (struct interval_tree *tree)
{
  return tree->size;
}

/* Insert a NODE into the TREE.

   Note, that inserting a node twice results in undefined behaviour.
*/

static void
interval_tree_insert (struct interval_tree *tree, struct interval_node *node)
{
  eassert (node && node->begin <= node->end && node != ITREE_NULL);
  eassert (check_tree (tree));

  struct interval_node *parent = ITREE_NULL;
  struct interval_node *child = tree->root;
  uintmax_t otick = tree->otick;
  /* It's the responsability of the caller to set `otick` on the node,
     to "confirm" that the begin/end fields are uptodate.  */
  eassert (node->otick == otick);

  /* Find the insertion point, accumulate node's offset and update
     ancestors limit values.  */
  while (child != ITREE_NULL)
    {
      interval_tree_inherit_offset (otick, child);
      parent = child;
      eassert (child->offset == 0);
      child->limit = max (child->limit, node->end);
      /* This suggests that nodes in the right subtree are strictly
         greater.  But this is not true due to later rotations.  */
      child = node->begin <= child->begin ? child->left : child->right;
    }

  /* Insert the node */
  if (parent == ITREE_NULL)
    tree->root = node;
  else if (node->begin <= parent->begin)
    parent->left = node;
  else
    parent->right = node;

  /* Init the node */
  node->parent = parent;
  node->left = ITREE_NULL;
  node->right = ITREE_NULL;
  node->red = true;
  node->offset = 0;
  node->limit = node->end;
  eassert (node->parent == ITREE_NULL || node->parent->otick >= node->otick);

  /* Fix/update the tree */
  ++tree->size;
  eassert (check_tree_no_rb (tree));
  interval_tree_insert_fix (tree, node);
}

void
itree_insert_node (struct interval_tree *tree, struct interval_node *node,
                   ptrdiff_t begin, ptrdiff_t end)
{
  node->begin = begin;
  node->end = end;
  node->otick = tree->otick;
  interval_tree_insert (tree, node);
}

/* Return true, if NODE is a member of TREE. */

static bool
interval_tree_contains (struct interval_tree *tree, struct interval_node *node)
{
  eassert (node);
  struct interval_node *other;
  ITREE_FOREACH (other, tree, node->begin, PTRDIFF_MAX, ASCENDING)
    if (other == node)
      {
        ITREE_FOREACH_ABORT ();
        return true;
      }

  return false;
}

static inline ptrdiff_t
itree_newlimit (struct interval_node *node)
{
  eassert (node != ITREE_NULL);
  return max (node->end,
              max (node->left->limit + node->left->offset,
                   node->right->limit + node->right->offset));
}

static bool
itree_limit_is_stable (struct interval_node *node)
{
  if (node == ITREE_NULL)
    return true;
  ptrdiff_t newlimit = itree_newlimit (node);
  return (newlimit == node->limit);
}

static struct interval_node*
interval_tree_subtree_min (uintmax_t otick, struct interval_node *node)
{
  if (node == ITREE_NULL)
    return node;
  while ((interval_tree_inherit_offset (otick, node),
          node->left != ITREE_NULL))
    node = node->left;
  return node;
}

/* Repair the tree after a deletion.
   The black-depth of NODE is one less than that of its sibling,
   so re-balance the parents to re-establish the RB invariants.  */

static void
interval_tree_remove_fix (struct interval_tree *tree,
                          struct interval_node *node,
                          struct interval_node *parent)
{
  eassert (node == ITREE_NULL || node->parent == parent);
  eassert (parent == ITREE_NULL
           || node == parent->left || node == parent->right);

  while (parent != ITREE_NULL && !node->red)
    {
      if (node == parent->left)
	{
	  struct interval_node *other = parent->right;

	  if (other->red) /* case 1.a */
	    {
	      other->red = false;
	      parent->red = true;
	      interval_tree_rotate_left (tree, parent);
	      parent = node->parent;
	      other = parent->right;
            }

	  if (!other->left->red /* 2.a */
              && !other->right->red)
	    {
	      other->red = true;
	      node = parent;
	      eassert (node != ITREE_NULL);
	      parent = node->parent;
            }
	  else
	    {
	      if (!other->right->red) /* 3.a */
		{
		  other->left->red = false;
		  other->red = true;
		  interval_tree_rotate_right (tree, other);
		  parent = node->parent;
		  other = parent->right;
                }
	      other->red = parent->red; /* 4.a */
	      parent->red = false;
	      other->right->red = false;
	      interval_tree_rotate_left (tree, parent);
	      node = tree->root;
	      parent = ITREE_NULL;
            }
        }
      else
	{
	  struct interval_node *other = parent->left;

	  if (other->red) /* 1.b */
	    {
	      other->red = false;
	      parent->red = true;
	      interval_tree_rotate_right (tree, parent);
	      parent = node->parent;
	      other = parent->left;
            }

	  if (!other->right->red /* 2.b */
              && !other->left->red)
	    {
	      other->red = true;
	      node = parent;
	      eassert (node != ITREE_NULL);
	      parent = node->parent;
            }
	  else
	    {
	      if (!other->left->red) /* 3.b */
		{
		  other->right->red = false;
		  other->red = true;
		  interval_tree_rotate_left (tree, other);
		  parent = node->parent;
		  other = parent->left;
                }

	      other->red = parent->red; /* 4.b */
	      parent->red = false;
	      other->left->red = false;
	      interval_tree_rotate_right (tree, parent);
	      node = tree->root;
	      parent = ITREE_NULL;
            }
        }
    }

  node->red = false;
}

/* Remove NODE from TREE and return it.  NODE must exist in TREE.  */

struct interval_node*
interval_tree_remove (struct interval_tree *tree, struct interval_node *node)
{
  eassert (interval_tree_contains (tree, node));
  eassert (check_tree (tree));

  /* `broken`, if non-NULL, holds a node that's being moved up to where a black
     node used to be, which may thus require further fixups in its parents
     (done in `interval_tree_remove_fix`).  */
  struct interval_node *broken = NULL;
  /* `broken` may be null but `interval_tree_remove_fix` still
     needs to know its "parent".
     Cormen et al.'s Introduction to Algorithms uses a trick where
     they rely on the null sentinel node's `parent` field to hold
     the right value.  While this works, it breaks the rule that
     the `parent` field is write-only making correctness much more tricky
     and introducing a dependency on a global state (which is incompatible
     with concurrency among other things), so instead we keep track of
     `broken`'s parent manually.  */
  struct interval_node *broken_parent = NULL;

  interval_tree_inherit_offset (tree->otick, node);
  if (node->left == ITREE_NULL || node->right == ITREE_NULL)
    {
      struct interval_node *subst
	= node->right == ITREE_NULL ? node->left : node->right;
      if (!node->red)
        {
          broken = subst;
          broken_parent = node->parent; /* The future parent.  */
        }
      interval_tree_transplant (tree, subst, node);
    }
  else
    {
      struct interval_node *min
        = interval_tree_subtree_min (tree->otick, node->right);
      struct interval_node *min_right = min->right;
      struct interval_node *min_parent = min->parent;

      if (!min->red)
        broken = min_right;
      eassert (min != ITREE_NULL);
      /* `min` should not have any offsets any more so we can move nodes
         underneath it without risking changing their begin/end.  */
      eassert (min->offset == 0);
      if (min->parent == node)
        broken_parent = min; /* The future parent.  */
      else
        {
          interval_tree_transplant (tree, min_right, min);
          broken_parent = min->parent; /* The parent.  */
          min->right = node->right;
        }
      min->left = node->left;
      min->left->parent = min;
      min->red = node->red;
      /* FIXME: At this point node->right->parent = min but node->right
         is a parent of `min` so total_offsets gets stuck in an inf-loop!  */
      interval_tree_transplant (tree, min, node);
      /* We set min->right->parent after `interval_tree_transplant` so
         that calls to `itree_total_offset` don't get stuck in an inf-loop.  */
      min->right->parent = min;
      interval_tree_update_limit (min);
      /* This call "belongs" with the first `interval_tree_transplant`
         (of `min_right`, done earlier in the `if`) but we prefer to do it
         here ("late") because otherwise it would sometimes update part of
         the tree with values that would be invalidated by the second
         `interval_tree_transplant`.  */
      interval_tree_propagate_limit (min_parent);
    }
  interval_tree_propagate_limit (node->parent);

  if (broken)
    interval_tree_remove_fix (tree, broken, broken_parent);

  node->right = node->left = node->parent = NULL;
  --tree->size;

  eassert ((tree->size == 0) == (tree->root == ITREE_NULL));
  eassert (check_tree (tree));

  return node;
}

static struct interval_node*
interval_tree_validate (struct interval_tree *tree, struct interval_node *node)
{

  if (tree->otick == node->otick || node == ITREE_NULL)
    return node;
  if (node != tree->root)
    interval_tree_validate (tree, node->parent);

  interval_tree_inherit_offset (tree->otick, node);
  return node;
}

bool
itree_busy_p (void)
{
  return (iter && iter->running);
}

/* Start a generator iterating all intervals in [BEGIN,END) in the
   given ORDER. Only one iterator per tree can be running at any
   time.
*/

struct interval_generator *
interval_tree_iter_start (struct interval_tree *tree,
                          ptrdiff_t begin, ptrdiff_t end,
                          enum interval_tree_order order,
			  const char* file, int line)
{
  eassert (null_is_sane ());
  /* struct interval_generator *iter = tree->iter; */
  if (iter->running)
    {
      fprintf (stderr,
               "Detected nested iteration!\nOuter: %s:%d\nInner: %s:%d\n",
               iter->file, iter->line, file, line);
      emacs_abort ();
    }
  iter->begin = begin;
  iter->end = end;
  iter->otick = tree->otick;
  iter->order = order;
  interval_stack_clear (iter->stack);
  if (begin <= end && tree->root != ITREE_NULL)
    interval_stack_push_flagged (iter->stack, tree->root, false);
  iter->file = file;
  iter->line = line;
  iter->running = true;
  /* interval_stack_ensure_space (iter->stack,
                                  2 * interval_tree_max_height (tree)); */
  return iter;
}

/* Stop using the iterator. */

void
interval_tree_iter_finish (struct interval_generator *iter)
{
  eassert (iter->running);
  iter->running = false;
}

static int
interval_tree_max_height (const struct interval_tree *tree)
{
  return 2 * log (tree->size + 1) / log (2) + 0.5;
}

\f
/* +===================================================================================+
 * | Insert/Delete Gaps
 * +===================================================================================+ */

/* Insert a gap at POS of length LENGTH expanding all intervals
   intersecting it, while respecting their rear_advance and
   front_advance setting. */

void
interval_tree_insert_gap (struct interval_tree *tree, ptrdiff_t pos, ptrdiff_t length)
{
  if (length <= 0 || tree->root == ITREE_NULL)
    return;
  uintmax_t ootick = tree->otick;

  /* FIXME: Don't allocate generator/stack anew every time. */

  /* Nodes with front_advance starting at pos may mess up the tree
     order, so we need to remove them first. */
  struct interval_stack *saved = interval_stack_create (0);
  struct interval_node *node = NULL;
  ITREE_FOREACH (node, tree, pos, pos + 1, PRE_ORDER)
    {
      if (node->begin == pos && node->front_advance
          && (node->begin != node->end || node->rear_advance))
        interval_stack_push (saved, node);
    }
  for (int i = 0; i < saved->length; ++i)
    interval_tree_remove (tree, nav_nodeptr (saved->nodes[i]));

  /* We can't use a generator here, because we can't effectively
     narrow AND shift some subtree at the same time. */
  if (tree->root != ITREE_NULL)
    {
      const int size = interval_tree_max_height (tree) + 1;
      struct interval_stack *stack = interval_stack_create (size);
      interval_stack_push (stack, tree->root);
      nodeptr_and_flag nav;
      while ((nav = interval_stack_pop (stack),
              node = nav_nodeptr (nav)))
        {
          /* Process in pre-order. */
          interval_tree_inherit_offset (tree->otick, node);
          if (node->right != ITREE_NULL)
            {
              if (node->begin > pos)
                {
                  /* All nodes in this subtree are shifted by length. */
                  node->right->offset += length;
                  ++tree->otick;
                }
              else
                interval_stack_push (stack, node->right);
            }
          if (node->left != ITREE_NULL
              && pos <= node->left->limit + node->left->offset)
            interval_stack_push (stack, node->left);

          /* node->begin == pos implies no front-advance. */
          if (node->begin > pos)
            node->begin += length;
          if (node->end > pos || (node->end == pos && node->rear_advance))
            {
              node->end += length;
              eassert (node != ITREE_NULL);
              interval_tree_propagate_limit (node);
            }
        }
      interval_stack_destroy (stack);
    }

  /* Reinsert nodes starting at POS having front-advance. */
  uintmax_t notick = tree->otick;
  nodeptr_and_flag nav;
  while ((nav = interval_stack_pop (saved),
          node = nav_nodeptr (nav)))
    {
      eassert (node->otick == ootick);
      node->begin += length;
      if (node->end != pos || node->rear_advance)
        node->end += length;
      node->otick = notick;
      interval_tree_insert (tree, node);
    }

  interval_stack_destroy (saved);
}

/* Delete a gap at POS of length LENGTH, contracting all intervals
   intersecting it. */

void
interval_tree_delete_gap (struct interval_tree *tree, ptrdiff_t pos, ptrdiff_t length)
{
  if (length <= 0 || tree->root == ITREE_NULL)
    return;

  /* FIXME: Don't allocate stack anew every time. */

  /* Can't use the generator here, because by decrementing begin, we
     might unintentionally bring shifted nodes back into our search
     space. */
  const int size = interval_tree_max_height (tree) + 1;
  struct interval_stack *stack = interval_stack_create (size);
  struct interval_node *node;

  interval_stack_push (stack, tree->root);
  nodeptr_and_flag nav;
  while ((nav = interval_stack_pop (stack)))
    {
      node = nav_nodeptr (nav);
      interval_tree_inherit_offset (tree->otick, node);
      if (node->right != ITREE_NULL)
        {
          if (node->begin > pos + length)
            {
              /* Shift right subtree to the left. */
              node->right->offset -= length;
              ++tree->otick;
            }
          else
            interval_stack_push (stack, node->right);
        }
      if (node->left != ITREE_NULL
          && pos <= node->left->limit + node->left->offset)
        interval_stack_push (stack, node->left);

      if (pos < node->begin)
        node->begin = max (pos, node->begin - length);
      if (node->end > pos)
        {
          node->end = max (pos , node->end - length);
          eassert (node != ITREE_NULL);
          interval_tree_propagate_limit (node);
        }
    }
  interval_stack_destroy (stack);
}


\f
/* +===================================================================================+
 * | Generator
 * +===================================================================================+ */

/* Allocate a new generator for TREE. */

static struct interval_generator *
interval_generator_create (struct interval_tree *tree)
{
  struct interval_generator *g = xmalloc (sizeof *g);
  /* 19 here just avoids starting with a silly-small stack.
     FIXME: Since this stack only needs to be about 2*max_depth
     in the worst case, we could completely pre-allocate it to something
     like word-bit-size * 2 and then never worry about growing it.  */
  const int size = (tree ? interval_tree_max_height (tree) : 19) + 1;

  g->stack = interval_stack_create (size);
  g->running = false;
  g->begin = 0;
  g->end = 0;
  g->file = NULL;
  g->line = 0;
  return g;
}

/* Return true, if NODE's interval intersects with [BEGIN, END).
   Note: We always include empty nodes at BEGIN (and not at END),
   but if BEGIN==END, then we don't include non-empty nodes starting
   at BEGIN or ending at END.  This seems to match the behavior of the
   old overlays code but it's not clear if it's The Right Thing
   (e.g. it breaks the expectation that if NODE1 is included, then
   a NODE2 strictly bigger than NODE1 should also be included).  */

static inline bool
interval_node_intersects (const struct interval_node *node,
                          ptrdiff_t begin, ptrdiff_t end)
{
  return (begin < node->end && node->begin < end)
    || (node->begin == node->end && begin == node->begin);
}

/* Return the next node of the iterator in the order given when it was
   started; or NULL if there are no more nodes. */

inline struct interval_node*
interval_generator_next (struct interval_generator *g)
{
  eassert (g->running);

  struct interval_node * const null = ITREE_NULL;
  struct interval_node *node;

  /* The `visited` flag stored in each node is used here (and only here):
     We keep a "workstack" of nodes we need to consider.  This stack
     consist of nodes of two types: nodes that we have decided
     should be returned by the generator, and nodes which we may
     need to consider (including checking their children).
     We start an iteration with a stack containing just the root
     node marked as "not visited" which means that it (and its children)
     needs to be considered but we haven't yet decided whether it's included
     in the generator's output.  */

  do {
    nodeptr_and_flag nav;
    bool visited;
    while ((nav = interval_stack_pop (g->stack),
            node = nav_nodeptr (nav),
            visited = nav_flag (nav),
            node && !visited))
      {
        struct interval_node * const left = node->left;
        struct interval_node * const right = node->right;

        interval_tree_inherit_offset (g->otick, node);
        eassert (itree_limit_is_stable (node));
        switch (g->order)
          {
          case ITREE_ASCENDING:
            if (right != null && node->begin <= g->end)
              interval_stack_push_flagged (g->stack, right, false);
            if (interval_node_intersects (node, g->begin, g->end))
              interval_stack_push_flagged (g->stack, node, true);
            /* Node's children may still be off-set and we need to add it. */
            if (left != null && g->begin <= left->limit + left->offset)
              interval_stack_push_flagged (g->stack, left, false);
            break;
          case ITREE_DESCENDING:
            if (left != null && g->begin <= left->limit + left->offset)
              interval_stack_push_flagged (g->stack, left, false);
            if (interval_node_intersects (node, g->begin, g->end))
              interval_stack_push_flagged (g->stack, node, true);
            if (right != null && node->begin <= g->end)
              interval_stack_push_flagged (g->stack, right, false);
            break;
          case ITREE_PRE_ORDER:
            if (right != null && node->begin <= g->end)
              interval_stack_push_flagged (g->stack, right, false);
            if (left != null && g->begin <= left->limit + left->offset)
              interval_stack_push_flagged (g->stack, left, false);
            if (interval_node_intersects (node, g->begin, g->end))
              interval_stack_push_flagged (g->stack, node, true);
            break;
          }
      }
    /* Node may have been invalidated by interval_generator_narrow
       after it was pushed: Check if it still intersects. */
  } while (node && ! interval_node_intersects (node, g->begin, g->end));

  return node;
}

/* Limit G to the new interval [BEGIN, END), which must be a subset of
   the current one.  I.E. it can't grow on either side. */

inline void
interval_generator_narrow (struct interval_generator *g,
                           ptrdiff_t begin, ptrdiff_t end)
{
  eassert (g->running);
  eassert (begin >= g->begin);
  eassert (end <= g->end);
  g->begin =  max (begin, g->begin);
  g->end =  min (end, g->end);
}

\f
/* +===================================================================================+
 * | Internal Functions
 * +===================================================================================+ */

/* Update NODE's limit attribute according to its children. */

static void
interval_tree_update_limit (struct interval_node *node)
{
  if (node == ITREE_NULL)
    return;

  node->limit = itree_newlimit (node);
}

/* Apply NODE's offset to its begin, end and limit values and
   propagate it to its children.

   Does nothing, if NODE is clean, i.e. NODE.otick = tree.otick .
*/

static void
interval_tree_inherit_offset (uintmax_t otick, struct interval_node *node)
{
  eassert (node->parent == ITREE_NULL || node->parent->otick >= node->otick);
  if (node->otick == otick)
    {
      eassert (node->offset == 0);
      return;
    }

  /* Offsets can be inherited from dirty nodes (with out of date
     otick) during removal, since we do not travel down from the root
     in that case.  In this case rotations are performed on
     potentially "dirty" nodes, where we only need to make sure the
     *local* offsets are zero.  */

  if (node->offset)
    {
      node->begin += node->offset;
      node->end   += node->offset;
      node->limit += node->offset;
      if (node->left != ITREE_NULL)
        node->left->offset += node->offset;
      if (node->right != ITREE_NULL)
        node->right->offset += node->offset;
      node->offset = 0;
    }
  /* The only thing that matters about `otick` is whether it's equal to
     that of the tree.  We could also "blindly" inherit from parent->otick,
     but we need to tree's `otick` anyway for when there's no parent.  */
  if (node->parent == ITREE_NULL || node->parent->otick == otick)
    node->otick = otick;
}

/* Update limit of NODE and its ancestors.  Stop when it becomes
   stable, i.e. new_limit = old_limit.

   NODE may also be the null node, in which case its parent is
   used. (This feature is due to the RB algorithm.)
*/

static void
interval_tree_propagate_limit (struct interval_node *node)
{
  if (node == ITREE_NULL)
    return;

  while (1) {
    ptrdiff_t newlimit = itree_newlimit (node);
    if (newlimit == node->limit)
      break;
    node->limit = newlimit;
    if (node->parent == ITREE_NULL)
      break;
    node = node->parent;
  }
}

/* Perform the familiar left-rotation on node NODE. */

static void
interval_tree_rotate_left (struct interval_tree *tree, struct interval_node *node)
{
  eassert (node->right != ITREE_NULL);

  struct interval_node *right = node->right;

  interval_tree_inherit_offset (tree->otick, node);
  interval_tree_inherit_offset (tree->otick, right);

  /* Turn right's left subtree into node's right subtree.  */
  node->right = right->left;
  if (right->left != ITREE_NULL)
    right->left->parent = node;

  /* right's parent was node's parent.  */
  if (right != ITREE_NULL)
    right->parent = node->parent;

  /* Get the parent to point to right instead of node.  */
  if (node != tree->root)
    {
      if (node == node->parent->left)
	node->parent->left = right;
      else
	node->parent->right = right;
    }
  else
    tree->root = right;

  /* Put node on right's left.  */
  right->left = node;
  if (node != ITREE_NULL)
    node->parent = right;

  /* Order matters here. */
  interval_tree_update_limit (node);
  interval_tree_update_limit (right);
}

/* Perform the familiar right-rotation on node NODE. */

static void
interval_tree_rotate_right (struct interval_tree *tree, struct interval_node *node)
{
  eassert (tree && node && node->left != ITREE_NULL);

  struct interval_node *left = node->left;

  interval_tree_inherit_offset (tree->otick, node);
  interval_tree_inherit_offset (tree->otick, left);

  node->left = left->right;
  if (left->right != ITREE_NULL)
    left->right->parent = node;

  if (left != ITREE_NULL)
    left->parent = node->parent;
  if (node != tree->root)
    {
      if (node == node->parent->right)
	node->parent->right = left;
      else
	node->parent->left = left;
    }
  else
    tree->root = left;

  left->right = node;
  if (node != ITREE_NULL)
    node->parent = left;

  interval_tree_update_limit (left);
  interval_tree_update_limit (node);
}

/* Repair the tree after an insertion.
   The new NODE was added as red, so we may have 2 reds in a row.
   Rebalance the parents as needed to re-establish the RB invariants. */

static void
interval_tree_insert_fix (struct interval_tree *tree, struct interval_node *node)
{
  while (node->parent->red)
    {
      /* NODE is red and its parent is red.  This is a violation of
	 red-black tree property #3.  */
      eassert (node->red);

      if (node->parent == node->parent->parent->left)
	{
	  /* We're on the left side of our grandparent, and OTHER is
	     our "uncle".  */
	  struct interval_node *uncle = node->parent->parent->right;

	  if (uncle->red) /* case 1.a */
	    {
	      /* Uncle and parent are red but should be black because
		 NODE is red.  Change the colors accordingly and
		 proceed with the grandparent.  */
	      node->parent->red = false;
	      uncle->red = false;
	      node->parent->parent->red = true;
	      node = node->parent->parent;
            }
	  else
	    {
	      /* Parent and uncle have different colors; parent is
		 red, uncle is black.  */
	      if (node == node->parent->right) /* case 2.a */
		{
		  node = node->parent;
		  interval_tree_rotate_left (tree, node);
                }
              /* case 3.a */
	      node->parent->red = false;
	      node->parent->parent->red = true;
	      interval_tree_rotate_right (tree, node->parent->parent);
            }
        }
      else
	{
	  /* This is the symmetrical case of above.  */
	  struct interval_node *uncle = node->parent->parent->left;

	  if (uncle->red) /* case 1.b */
	    {
	      node->parent->red = false;
	      uncle->red = false;
	      node->parent->parent->red = true;
	      node = node->parent->parent;
            }
	  else
	    {
	      if (node == node->parent->left) /* case 2.b */
		{
		  node = node->parent;
		  interval_tree_rotate_right (tree, node);
		}
              /* case 3.b */
	      node->parent->red = false;
	      node->parent->parent->red = true;
	      interval_tree_rotate_left (tree, node->parent->parent);
            }
        }
    }

  /* The root may have been changed to red due to the algorithm.  Set
     it to black so that property #5 is satisfied.  */
  tree->root->red = false;
  eassert (check_tree (tree));
}

/* Return accumulated offsets of NODE's parents.  */
static ptrdiff_t
itree_total_offset (struct interval_node *node)
{
  eassert (node != ITREE_NULL);
  ptrdiff_t offset = 0;
  while (node->parent != ITREE_NULL)
    {
      node = node->parent;
      offset += node->offset;
    }
  return offset;
}

/* Link node SOURCE in DEST's place.
   It's the caller's responsability to refresh the `limit`s
   of DEST->parents afterwards.  */

static void
interval_tree_transplant (struct interval_tree *tree, struct interval_node *source,
                          struct interval_node *dest)
{
  eassert (tree && source && dest && dest != ITREE_NULL);
  eassert (source == ITREE_NULL
           || itree_total_offset (source) == itree_total_offset (dest));

  if (dest == tree->root)
    tree->root = source;
  else if (dest == dest->parent->left)
    dest->parent->left = source;
  else
    dest->parent->right = source;

  source->parent = dest->parent;
}

\f
/* +===================================================================================+
 * | Debugging
 * +===================================================================================+ */

/* See Foverlay_tree in buffer.c */

debug log:

solving d9f9ec8cd6 ...
found d9f9ec8cd6 in https://git.savannah.gnu.org/cgit/emacs.git

(*) Git path names are given by the tree(s) the blob belongs to.
    Blobs themselves have no identifier aside from the hash of its contents.^

Code repositories for project(s) associated with this external index

	https://git.savannah.gnu.org/cgit/emacs.git
	https://git.savannah.gnu.org/cgit/emacs/org-mode.git

This is an external index of several public inboxes,
see mirroring instructions on how to clone and mirror
all data and code used by this external index.