/* Utility and Unix shadow routines for GNU Emacs on the Microsoft Windows API. Copyright (C) 1994-1995, 2000-2017 Free Software Foundation, Inc. This file is part of GNU Emacs. GNU Emacs is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. GNU Emacs is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU Emacs. If not, see . */ /* Geoff Voelker (voelker@cs.washington.edu) 7-29-94 */ #include #include /* for offsetof */ #include #include #include /* for DBL_EPSILON */ #include #include #include #include #include #include #include /* must be before nt/inc/sys/time.h, for MinGW64 */ #include #include #include /* must include CRT headers *before* config.h */ #include #include /* for _mbspbrk, _mbslwr, _mbsrchr, ... */ #undef access #undef chdir #undef chmod #undef creat #undef ctime #undef fopen #undef link #undef mkdir #undef open #undef rename #undef rmdir #undef unlink #undef close #undef dup #undef dup2 #undef pipe #undef read #undef write #undef strerror #undef localtime #include "lisp.h" #include "epaths.h" /* for PATH_EXEC */ #include #include /* MinGW64 defines these in its _mingw.h. */ #ifndef _ANONYMOUS_UNION # define _ANONYMOUS_UNION #endif #ifndef _ANONYMOUS_STRUCT # define _ANONYMOUS_STRUCT #endif #include /* Some versions of compiler define MEMORYSTATUSEX, some don't, so we use a different name to avoid compilation problems. */ typedef struct _MEMORY_STATUS_EX { DWORD dwLength; DWORD dwMemoryLoad; DWORDLONG ullTotalPhys; DWORDLONG ullAvailPhys; DWORDLONG ullTotalPageFile; DWORDLONG ullAvailPageFile; DWORDLONG ullTotalVirtual; DWORDLONG ullAvailVirtual; DWORDLONG ullAvailExtendedVirtual; } MEMORY_STATUS_EX,*LPMEMORY_STATUS_EX; /* These are here so that GDB would know about these data types. This allows attaching GDB to Emacs when a fatal exception is triggered and Windows pops up the "application needs to be closed" dialog. At that point, _gnu_exception_handler, the top-level exception handler installed by the MinGW startup code, is somewhere on the call-stack of the main thread, so going to that call frame and looking at the argument to _gnu_exception_handler, which is a PEXCEPTION_POINTERS pointer, can reveal the exception code (excptr->ExceptionRecord->ExceptionCode) and the address where the exception happened (excptr->ExceptionRecord->ExceptionAddress), as well as some additional information specific to the exception. */ PEXCEPTION_POINTERS excptr; PEXCEPTION_RECORD excprec; PCONTEXT ctxrec; #include #include #include #include #ifndef _MSC_VER #include #endif #if _WIN32_WINNT < 0x0500 #if !defined (__MINGW32__) || __W32API_MAJOR_VERSION < 3 || (__W32API_MAJOR_VERSION == 3 && __W32API_MINOR_VERSION < 15) /* This either is not in psapi.h or guarded by higher value of _WIN32_WINNT than what we use. w32api supplied with MinGW 3.15 defines it in psapi.h */ typedef struct _PROCESS_MEMORY_COUNTERS_EX { DWORD cb; DWORD PageFaultCount; SIZE_T PeakWorkingSetSize; SIZE_T WorkingSetSize; SIZE_T QuotaPeakPagedPoolUsage; SIZE_T QuotaPagedPoolUsage; SIZE_T QuotaPeakNonPagedPoolUsage; SIZE_T QuotaNonPagedPoolUsage; SIZE_T PagefileUsage; SIZE_T PeakPagefileUsage; SIZE_T PrivateUsage; } PROCESS_MEMORY_COUNTERS_EX,*PPROCESS_MEMORY_COUNTERS_EX; #endif #endif #include #include #include #include #include /* This is not in MinGW's sddl.h (but they are in MSVC headers), so we define them by hand if not already defined. */ #ifndef SDDL_REVISION_1 #define SDDL_REVISION_1 1 #endif /* SDDL_REVISION_1 */ #if defined(_MSC_VER) || defined(MINGW_W64) /* MSVC and MinGW64 don't provide the definition of REPARSE_DATA_BUFFER and the associated macros, except on ntifs.h, which cannot be included because it triggers conflicts with other Windows API headers. So we define it here by hand. */ typedef struct _REPARSE_DATA_BUFFER { ULONG ReparseTag; USHORT ReparseDataLength; USHORT Reserved; union { struct { USHORT SubstituteNameOffset; USHORT SubstituteNameLength; USHORT PrintNameOffset; USHORT PrintNameLength; ULONG Flags; WCHAR PathBuffer[1]; } SymbolicLinkReparseBuffer; struct { USHORT SubstituteNameOffset; USHORT SubstituteNameLength; USHORT PrintNameOffset; USHORT PrintNameLength; WCHAR PathBuffer[1]; } MountPointReparseBuffer; struct { UCHAR DataBuffer[1]; } GenericReparseBuffer; } DUMMYUNIONNAME; } REPARSE_DATA_BUFFER, *PREPARSE_DATA_BUFFER; #ifndef FILE_DEVICE_FILE_SYSTEM #define FILE_DEVICE_FILE_SYSTEM 9 #endif #ifndef METHOD_BUFFERED #define METHOD_BUFFERED 0 #endif #ifndef FILE_ANY_ACCESS #define FILE_ANY_ACCESS 0x00000000 #endif #ifndef CTL_CODE #define CTL_CODE(t,f,m,a) (((t)<<16)|((a)<<14)|((f)<<2)|(m)) #endif /* MinGW64 defines FSCTL_GET_REPARSE_POINT on winioctl.h. */ #ifndef FSCTL_GET_REPARSE_POINT #define FSCTL_GET_REPARSE_POINT \ CTL_CODE(FILE_DEVICE_FILE_SYSTEM, 42, METHOD_BUFFERED, FILE_ANY_ACCESS) #endif #endif /* TCP connection support. */ #include #undef socket #undef bind #undef connect #undef htons #undef ntohs #undef inet_addr #undef gethostname #undef gethostbyname #undef getservbyname #undef getpeername #undef shutdown #undef setsockopt #undef listen #undef getsockname #undef accept #undef recvfrom #undef sendto #include /* should be after winsock2.h */ #include #include #include "w32.h" #include #include "w32common.h" #include "w32select.h" #include "systime.h" /* for current_timespec, struct timespec */ #include "dispextern.h" /* for xstrcasecmp */ #include "coding.h" /* for Vlocale_coding_system */ #include "careadlinkat.h" #include "allocator.h" /* For Lisp_Process, serial_configure and serial_open. */ #include "process.h" #include "systty.h" typedef HRESULT (WINAPI * ShGetFolderPath_fn) (IN HWND, IN int, IN HANDLE, IN DWORD, OUT char *); void globals_of_w32 (void); static DWORD get_rid (PSID); static int is_symlink (const char *); static char * chase_symlinks (const char *); static int enable_privilege (LPCTSTR, BOOL, TOKEN_PRIVILEGES *); static int restore_privilege (TOKEN_PRIVILEGES *); static BOOL WINAPI revert_to_self (void); static int sys_access (const char *, int); extern void *e_malloc (size_t); extern int sys_select (int, SELECT_TYPE *, SELECT_TYPE *, SELECT_TYPE *, struct timespec *, void *); extern int sys_dup (int); /* Initialization states. WARNING: If you add any more such variables for additional APIs, you MUST add initialization for them to globals_of_w32 below. This is because these variables might get set to non-NULL values during dumping, but the dumped Emacs cannot reuse those values, because it could be run on a different version of the OS, where API addresses are different. */ static BOOL g_b_init_is_windows_9x; static BOOL g_b_init_open_process_token; static BOOL g_b_init_get_token_information; static BOOL g_b_init_lookup_account_sid; static BOOL g_b_init_get_sid_sub_authority; static BOOL g_b_init_get_sid_sub_authority_count; static BOOL g_b_init_get_security_info; static BOOL g_b_init_get_file_security_w; static BOOL g_b_init_get_file_security_a; static BOOL g_b_init_get_security_descriptor_owner; static BOOL g_b_init_get_security_descriptor_group; static BOOL g_b_init_is_valid_sid; static BOOL g_b_init_create_toolhelp32_snapshot; static BOOL g_b_init_process32_first; static BOOL g_b_init_process32_next; static BOOL g_b_init_open_thread_token; static BOOL g_b_init_impersonate_self; static BOOL g_b_init_revert_to_self; static BOOL g_b_init_get_process_memory_info; static BOOL g_b_init_get_process_working_set_size; static BOOL g_b_init_global_memory_status; static BOOL g_b_init_global_memory_status_ex; static BOOL g_b_init_get_length_sid; static BOOL g_b_init_equal_sid; static BOOL g_b_init_copy_sid; static BOOL g_b_init_get_native_system_info; static BOOL g_b_init_get_system_times; static BOOL g_b_init_create_symbolic_link_w; static BOOL g_b_init_create_symbolic_link_a; static BOOL g_b_init_get_security_descriptor_dacl; static BOOL g_b_init_convert_sd_to_sddl; static BOOL g_b_init_convert_sddl_to_sd; static BOOL g_b_init_is_valid_security_descriptor; static BOOL g_b_init_set_file_security_w; static BOOL g_b_init_set_file_security_a; static BOOL g_b_init_set_named_security_info_w; static BOOL g_b_init_set_named_security_info_a; static BOOL g_b_init_get_adapters_info; BOOL g_b_init_compare_string_w; /* BEGIN: Wrapper functions around OpenProcessToken and other functions in advapi32.dll that are only supported in Windows NT / 2k / XP */ /* ** Function pointer typedefs ** */ typedef BOOL (WINAPI * OpenProcessToken_Proc) ( HANDLE ProcessHandle, DWORD DesiredAccess, PHANDLE TokenHandle); typedef BOOL (WINAPI * GetTokenInformation_Proc) ( HANDLE TokenHandle, TOKEN_INFORMATION_CLASS TokenInformationClass, LPVOID TokenInformation, DWORD TokenInformationLength, PDWORD ReturnLength); typedef BOOL (WINAPI * GetProcessTimes_Proc) ( HANDLE process_handle, LPFILETIME creation_time, LPFILETIME exit_time, LPFILETIME kernel_time, LPFILETIME user_time); GetProcessTimes_Proc get_process_times_fn = NULL; #ifdef _UNICODE const char * const LookupAccountSid_Name = "LookupAccountSidW"; #else const char * const LookupAccountSid_Name = "LookupAccountSidA"; #endif typedef BOOL (WINAPI * LookupAccountSid_Proc) ( LPCTSTR lpSystemName, PSID Sid, LPTSTR Name, LPDWORD cbName, LPTSTR DomainName, LPDWORD cbDomainName, PSID_NAME_USE peUse); typedef PDWORD (WINAPI * GetSidSubAuthority_Proc) ( PSID pSid, DWORD n); typedef PUCHAR (WINAPI * GetSidSubAuthorityCount_Proc) ( PSID pSid); typedef DWORD (WINAPI * GetSecurityInfo_Proc) ( HANDLE handle, SE_OBJECT_TYPE ObjectType, SECURITY_INFORMATION SecurityInfo, PSID *ppsidOwner, PSID *ppsidGroup, PACL *ppDacl, PACL *ppSacl, PSECURITY_DESCRIPTOR *ppSecurityDescriptor); typedef BOOL (WINAPI * GetFileSecurityW_Proc) ( LPCWSTR lpFileName, SECURITY_INFORMATION RequestedInformation, PSECURITY_DESCRIPTOR pSecurityDescriptor, DWORD nLength, LPDWORD lpnLengthNeeded); typedef BOOL (WINAPI * GetFileSecurityA_Proc) ( LPCSTR lpFileName, SECURITY_INFORMATION RequestedInformation, PSECURITY_DESCRIPTOR pSecurityDescriptor, DWORD nLength, LPDWORD lpnLengthNeeded); typedef BOOL (WINAPI *SetFileSecurityW_Proc) ( LPCWSTR lpFileName, SECURITY_INFORMATION SecurityInformation, PSECURITY_DESCRIPTOR pSecurityDescriptor); typedef BOOL (WINAPI *SetFileSecurityA_Proc) ( LPCSTR lpFileName, SECURITY_INFORMATION SecurityInformation, PSECURITY_DESCRIPTOR pSecurityDescriptor); typedef DWORD (WINAPI *SetNamedSecurityInfoW_Proc) ( LPCWSTR lpObjectName, SE_OBJECT_TYPE ObjectType, SECURITY_INFORMATION SecurityInformation, PSID psidOwner, PSID psidGroup, PACL pDacl, PACL pSacl); typedef DWORD (WINAPI *SetNamedSecurityInfoA_Proc) ( LPCSTR lpObjectName, SE_OBJECT_TYPE ObjectType, SECURITY_INFORMATION SecurityInformation, PSID psidOwner, PSID psidGroup, PACL pDacl, PACL pSacl); typedef BOOL (WINAPI * GetSecurityDescriptorOwner_Proc) ( PSECURITY_DESCRIPTOR pSecurityDescriptor, PSID *pOwner, LPBOOL lpbOwnerDefaulted); typedef BOOL (WINAPI * GetSecurityDescriptorGroup_Proc) ( PSECURITY_DESCRIPTOR pSecurityDescriptor, PSID *pGroup, LPBOOL lpbGroupDefaulted); typedef BOOL (WINAPI *GetSecurityDescriptorDacl_Proc) ( PSECURITY_DESCRIPTOR pSecurityDescriptor, LPBOOL lpbDaclPresent, PACL *pDacl, LPBOOL lpbDaclDefaulted); typedef BOOL (WINAPI * IsValidSid_Proc) ( PSID sid); typedef HANDLE (WINAPI * CreateToolhelp32Snapshot_Proc) ( DWORD dwFlags, DWORD th32ProcessID); typedef BOOL (WINAPI * Process32First_Proc) ( HANDLE hSnapshot, LPPROCESSENTRY32 lppe); typedef BOOL (WINAPI * Process32Next_Proc) ( HANDLE hSnapshot, LPPROCESSENTRY32 lppe); typedef BOOL (WINAPI * OpenThreadToken_Proc) ( HANDLE ThreadHandle, DWORD DesiredAccess, BOOL OpenAsSelf, PHANDLE TokenHandle); typedef BOOL (WINAPI * ImpersonateSelf_Proc) ( SECURITY_IMPERSONATION_LEVEL ImpersonationLevel); typedef BOOL (WINAPI * RevertToSelf_Proc) (void); typedef BOOL (WINAPI * GetProcessMemoryInfo_Proc) ( HANDLE Process, PPROCESS_MEMORY_COUNTERS ppsmemCounters, DWORD cb); typedef BOOL (WINAPI * GetProcessWorkingSetSize_Proc) ( HANDLE hProcess, PSIZE_T lpMinimumWorkingSetSize, PSIZE_T lpMaximumWorkingSetSize); typedef BOOL (WINAPI * GlobalMemoryStatus_Proc) ( LPMEMORYSTATUS lpBuffer); typedef BOOL (WINAPI * GlobalMemoryStatusEx_Proc) ( LPMEMORY_STATUS_EX lpBuffer); typedef BOOL (WINAPI * CopySid_Proc) ( DWORD nDestinationSidLength, PSID pDestinationSid, PSID pSourceSid); typedef BOOL (WINAPI * EqualSid_Proc) ( PSID pSid1, PSID pSid2); typedef DWORD (WINAPI * GetLengthSid_Proc) ( PSID pSid); typedef void (WINAPI * GetNativeSystemInfo_Proc) ( LPSYSTEM_INFO lpSystemInfo); typedef BOOL (WINAPI * GetSystemTimes_Proc) ( LPFILETIME lpIdleTime, LPFILETIME lpKernelTime, LPFILETIME lpUserTime); typedef BOOLEAN (WINAPI *CreateSymbolicLinkW_Proc) ( LPCWSTR lpSymlinkFileName, LPCWSTR lpTargetFileName, DWORD dwFlags); typedef BOOLEAN (WINAPI *CreateSymbolicLinkA_Proc) ( LPCSTR lpSymlinkFileName, LPCSTR lpTargetFileName, DWORD dwFlags); typedef BOOL (WINAPI *ConvertStringSecurityDescriptorToSecurityDescriptor_Proc) ( LPCTSTR StringSecurityDescriptor, DWORD StringSDRevision, PSECURITY_DESCRIPTOR *SecurityDescriptor, PULONG SecurityDescriptorSize); typedef BOOL (WINAPI *ConvertSecurityDescriptorToStringSecurityDescriptor_Proc) ( PSECURITY_DESCRIPTOR SecurityDescriptor, DWORD RequestedStringSDRevision, SECURITY_INFORMATION SecurityInformation, LPTSTR *StringSecurityDescriptor, PULONG StringSecurityDescriptorLen); typedef BOOL (WINAPI *IsValidSecurityDescriptor_Proc) (PSECURITY_DESCRIPTOR); typedef DWORD (WINAPI *GetAdaptersInfo_Proc) ( PIP_ADAPTER_INFO pAdapterInfo, PULONG pOutBufLen); int (WINAPI *pMultiByteToWideChar)(UINT,DWORD,LPCSTR,int,LPWSTR,int); int (WINAPI *pWideCharToMultiByte)(UINT,DWORD,LPCWSTR,int,LPSTR,int,LPCSTR,LPBOOL); DWORD multiByteToWideCharFlags; /* ** A utility function ** */ static BOOL is_windows_9x (void) { static BOOL s_b_ret = 0; OSVERSIONINFO os_ver; if (g_b_init_is_windows_9x == 0) { g_b_init_is_windows_9x = 1; ZeroMemory (&os_ver, sizeof (OSVERSIONINFO)); os_ver.dwOSVersionInfoSize = sizeof (OSVERSIONINFO); if (GetVersionEx (&os_ver)) { s_b_ret = (os_ver.dwPlatformId == VER_PLATFORM_WIN32_WINDOWS); } } return s_b_ret; } static Lisp_Object ltime (ULONGLONG); /* Get total user and system times for get-internal-run-time. Returns a list of integers if the times are provided by the OS (NT derivatives), otherwise it returns the result of current-time. */ Lisp_Object w32_get_internal_run_time (void) { if (get_process_times_fn) { FILETIME create, exit, kernel, user; HANDLE proc = GetCurrentProcess (); if ((*get_process_times_fn) (proc, &create, &exit, &kernel, &user)) { LARGE_INTEGER user_int, kernel_int, total; user_int.LowPart = user.dwLowDateTime; user_int.HighPart = user.dwHighDateTime; kernel_int.LowPart = kernel.dwLowDateTime; kernel_int.HighPart = kernel.dwHighDateTime; total.QuadPart = user_int.QuadPart + kernel_int.QuadPart; return ltime (total.QuadPart); } } return Fcurrent_time (); } /* ** The wrapper functions ** */ static BOOL WINAPI open_process_token (HANDLE ProcessHandle, DWORD DesiredAccess, PHANDLE TokenHandle) { static OpenProcessToken_Proc s_pfn_Open_Process_Token = NULL; HMODULE hm_advapi32 = NULL; if (is_windows_9x () == TRUE) { return FALSE; } if (g_b_init_open_process_token == 0) { g_b_init_open_process_token = 1; hm_advapi32 = LoadLibrary ("Advapi32.dll"); s_pfn_Open_Process_Token = (OpenProcessToken_Proc) GetProcAddress (hm_advapi32, "OpenProcessToken"); } if (s_pfn_Open_Process_Token == NULL) { return FALSE; } return ( s_pfn_Open_Process_Token ( ProcessHandle, DesiredAccess, TokenHandle) ); } static BOOL WINAPI get_token_information (HANDLE TokenHandle, TOKEN_INFORMATION_CLASS TokenInformationClass, LPVOID TokenInformation, DWORD TokenInformationLength, PDWORD ReturnLength) { static GetTokenInformation_Proc s_pfn_Get_Token_Information = NULL; HMODULE hm_advapi32 = NULL; if (is_windows_9x () == TRUE) { return FALSE; } if (g_b_init_get_token_information == 0) { g_b_init_get_token_information = 1; hm_advapi32 = LoadLibrary ("Advapi32.dll"); s_pfn_Get_Token_Information = (GetTokenInformation_Proc) GetProcAddress (hm_advapi32, "GetTokenInformation"); } if (s_pfn_Get_Token_Information == NULL) { return FALSE; } return ( s_pfn_Get_Token_Information ( TokenHandle, TokenInformationClass, TokenInformation, TokenInformationLength, ReturnLength) ); } static BOOL WINAPI lookup_account_sid (LPCTSTR lpSystemName, PSID Sid, LPTSTR Name, LPDWORD cbName, LPTSTR DomainName, LPDWORD cbDomainName, PSID_NAME_USE peUse) { static LookupAccountSid_Proc s_pfn_Lookup_Account_Sid = NULL; HMODULE hm_advapi32 = NULL; if (is_windows_9x () == TRUE) { return FALSE; } if (g_b_init_lookup_account_sid == 0) { g_b_init_lookup_account_sid = 1; hm_advapi32 = LoadLibrary ("Advapi32.dll"); s_pfn_Lookup_Account_Sid = (LookupAccountSid_Proc) GetProcAddress (hm_advapi32, LookupAccountSid_Name); } if (s_pfn_Lookup_Account_Sid == NULL) { return FALSE; } return ( s_pfn_Lookup_Account_Sid ( lpSystemName, Sid, Name, cbName, DomainName, cbDomainName, peUse) ); } static PDWORD WINAPI get_sid_sub_authority (PSID pSid, DWORD n) { static GetSidSubAuthority_Proc s_pfn_Get_Sid_Sub_Authority = NULL; static DWORD zero = 0U; HMODULE hm_advapi32 = NULL; if (is_windows_9x () == TRUE) { return &zero; } if (g_b_init_get_sid_sub_authority == 0) { g_b_init_get_sid_sub_authority = 1; hm_advapi32 = LoadLibrary ("Advapi32.dll"); s_pfn_Get_Sid_Sub_Authority = (GetSidSubAuthority_Proc) GetProcAddress ( hm_advapi32, "GetSidSubAuthority"); } if (s_pfn_Get_Sid_Sub_Authority == NULL) { return &zero; } return (s_pfn_Get_Sid_Sub_Authority (pSid, n)); } static PUCHAR WINAPI get_sid_sub_authority_count (PSID pSid) { static GetSidSubAuthorityCount_Proc s_pfn_Get_Sid_Sub_Authority_Count = NULL; static UCHAR zero = 0U; HMODULE hm_advapi32 = NULL; if (is_windows_9x () == TRUE) { return &zero; } if (g_b_init_get_sid_sub_authority_count == 0) { g_b_init_get_sid_sub_authority_count = 1; hm_advapi32 = LoadLibrary ("Advapi32.dll"); s_pfn_Get_Sid_Sub_Authority_Count = (GetSidSubAuthorityCount_Proc) GetProcAddress ( hm_advapi32, "GetSidSubAuthorityCount"); } if (s_pfn_Get_Sid_Sub_Authority_Count == NULL) { return &zero; } return (s_pfn_Get_Sid_Sub_Authority_Count (pSid)); } static DWORD WINAPI get_security_info (HANDLE handle, SE_OBJECT_TYPE ObjectType, SECURITY_INFORMATION SecurityInfo, PSID *ppsidOwner, PSID *ppsidGroup, PACL *ppDacl, PACL *ppSacl, PSECURITY_DESCRIPTOR *ppSecurityDescriptor) { static GetSecurityInfo_Proc s_pfn_Get_Security_Info = NULL; HMODULE hm_advapi32 = NULL; if (is_windows_9x () == TRUE) { return FALSE; } if (g_b_init_get_security_info == 0) { g_b_init_get_security_info = 1; hm_advapi32 = LoadLibrary ("Advapi32.dll"); s_pfn_Get_Security_Info = (GetSecurityInfo_Proc) GetProcAddress ( hm_advapi32, "GetSecurityInfo"); } if (s_pfn_Get_Security_Info == NULL) { return FALSE; } return (s_pfn_Get_Security_Info (handle, ObjectType, SecurityInfo, ppsidOwner, ppsidGroup, ppDacl, ppSacl, ppSecurityDescriptor)); } static BOOL WINAPI get_file_security (const char *lpFileName, SECURITY_INFORMATION RequestedInformation, PSECURITY_DESCRIPTOR pSecurityDescriptor, DWORD nLength, LPDWORD lpnLengthNeeded) { static GetFileSecurityA_Proc s_pfn_Get_File_SecurityA = NULL; static GetFileSecurityW_Proc s_pfn_Get_File_SecurityW = NULL; HMODULE hm_advapi32 = NULL; if (is_windows_9x () == TRUE) { errno = ENOTSUP; return FALSE; } if (w32_unicode_filenames) { wchar_t filename_w[MAX_PATH]; if (g_b_init_get_file_security_w == 0) { g_b_init_get_file_security_w = 1; hm_advapi32 = LoadLibrary ("Advapi32.dll"); s_pfn_Get_File_SecurityW = (GetFileSecurityW_Proc) GetProcAddress (hm_advapi32, "GetFileSecurityW"); } if (s_pfn_Get_File_SecurityW == NULL) { errno = ENOTSUP; return FALSE; } filename_to_utf16 (lpFileName, filename_w); return (s_pfn_Get_File_SecurityW (filename_w, RequestedInformation, pSecurityDescriptor, nLength, lpnLengthNeeded)); } else { char filename_a[MAX_PATH]; if (g_b_init_get_file_security_a == 0) { g_b_init_get_file_security_a = 1; hm_advapi32 = LoadLibrary ("Advapi32.dll"); s_pfn_Get_File_SecurityA = (GetFileSecurityA_Proc) GetProcAddress (hm_advapi32, "GetFileSecurityA"); } if (s_pfn_Get_File_SecurityA == NULL) { errno = ENOTSUP; return FALSE; } filename_to_ansi (lpFileName, filename_a); return (s_pfn_Get_File_SecurityA (filename_a, RequestedInformation, pSecurityDescriptor, nLength, lpnLengthNeeded)); } } static BOOL WINAPI set_file_security (const char *lpFileName, SECURITY_INFORMATION SecurityInformation, PSECURITY_DESCRIPTOR pSecurityDescriptor) { static SetFileSecurityW_Proc s_pfn_Set_File_SecurityW = NULL; static SetFileSecurityA_Proc s_pfn_Set_File_SecurityA = NULL; HMODULE hm_advapi32 = NULL; if (is_windows_9x () == TRUE) { errno = ENOTSUP; return FALSE; } if (w32_unicode_filenames) { wchar_t filename_w[MAX_PATH]; if (g_b_init_set_file_security_w == 0) { g_b_init_set_file_security_w = 1; hm_advapi32 = LoadLibrary ("Advapi32.dll"); s_pfn_Set_File_SecurityW = (SetFileSecurityW_Proc) GetProcAddress (hm_advapi32, "SetFileSecurityW"); } if (s_pfn_Set_File_SecurityW == NULL) { errno = ENOTSUP; return FALSE; } filename_to_utf16 (lpFileName, filename_w); return (s_pfn_Set_File_SecurityW (filename_w, SecurityInformation, pSecurityDescriptor)); } else { char filename_a[MAX_PATH]; if (g_b_init_set_file_security_a == 0) { g_b_init_set_file_security_a = 1; hm_advapi32 = LoadLibrary ("Advapi32.dll"); s_pfn_Set_File_SecurityA = (SetFileSecurityA_Proc) GetProcAddress (hm_advapi32, "SetFileSecurityA"); } if (s_pfn_Set_File_SecurityA == NULL) { errno = ENOTSUP; return FALSE; } filename_to_ansi (lpFileName, filename_a); return (s_pfn_Set_File_SecurityA (filename_a, SecurityInformation, pSecurityDescriptor)); } } static DWORD WINAPI set_named_security_info (LPCTSTR lpObjectName, SE_OBJECT_TYPE ObjectType, SECURITY_INFORMATION SecurityInformation, PSID psidOwner, PSID psidGroup, PACL pDacl, PACL pSacl) { static SetNamedSecurityInfoW_Proc s_pfn_Set_Named_Security_InfoW = NULL; static SetNamedSecurityInfoA_Proc s_pfn_Set_Named_Security_InfoA = NULL; HMODULE hm_advapi32 = NULL; if (is_windows_9x () == TRUE) { errno = ENOTSUP; return ENOTSUP; } if (w32_unicode_filenames) { wchar_t filename_w[MAX_PATH]; if (g_b_init_set_named_security_info_w == 0) { g_b_init_set_named_security_info_w = 1; hm_advapi32 = LoadLibrary ("Advapi32.dll"); s_pfn_Set_Named_Security_InfoW = (SetNamedSecurityInfoW_Proc) GetProcAddress (hm_advapi32, "SetNamedSecurityInfoW"); } if (s_pfn_Set_Named_Security_InfoW == NULL) { errno = ENOTSUP; return ENOTSUP; } filename_to_utf16 (lpObjectName, filename_w); return (s_pfn_Set_Named_Security_InfoW (filename_w, ObjectType, SecurityInformation, psidOwner, psidGroup, pDacl, pSacl)); } else { char filename_a[MAX_PATH]; if (g_b_init_set_named_security_info_a == 0) { g_b_init_set_named_security_info_a = 1; hm_advapi32 = LoadLibrary ("Advapi32.dll"); s_pfn_Set_Named_Security_InfoA = (SetNamedSecurityInfoA_Proc) GetProcAddress (hm_advapi32, "SetNamedSecurityInfoA"); } if (s_pfn_Set_Named_Security_InfoA == NULL) { errno = ENOTSUP; return ENOTSUP; } filename_to_ansi (lpObjectName, filename_a); return (s_pfn_Set_Named_Security_InfoA (filename_a, ObjectType, SecurityInformation, psidOwner, psidGroup, pDacl, pSacl)); } } static BOOL WINAPI get_security_descriptor_owner (PSECURITY_DESCRIPTOR pSecurityDescriptor, PSID *pOwner, LPBOOL lpbOwnerDefaulted) { static GetSecurityDescriptorOwner_Proc s_pfn_Get_Security_Descriptor_Owner = NULL; HMODULE hm_advapi32 = NULL; if (is_windows_9x () == TRUE) { errno = ENOTSUP; return FALSE; } if (g_b_init_get_security_descriptor_owner == 0) { g_b_init_get_security_descriptor_owner = 1; hm_advapi32 = LoadLibrary ("Advapi32.dll"); s_pfn_Get_Security_Descriptor_Owner = (GetSecurityDescriptorOwner_Proc) GetProcAddress ( hm_advapi32, "GetSecurityDescriptorOwner"); } if (s_pfn_Get_Security_Descriptor_Owner == NULL) { errno = ENOTSUP; return FALSE; } return (s_pfn_Get_Security_Descriptor_Owner (pSecurityDescriptor, pOwner, lpbOwnerDefaulted)); } static BOOL WINAPI get_security_descriptor_group (PSECURITY_DESCRIPTOR pSecurityDescriptor, PSID *pGroup, LPBOOL lpbGroupDefaulted) { static GetSecurityDescriptorGroup_Proc s_pfn_Get_Security_Descriptor_Group = NULL; HMODULE hm_advapi32 = NULL; if (is_windows_9x () == TRUE) { errno = ENOTSUP; return FALSE; } if (g_b_init_get_security_descriptor_group == 0) { g_b_init_get_security_descriptor_group = 1; hm_advapi32 = LoadLibrary ("Advapi32.dll"); s_pfn_Get_Security_Descriptor_Group = (GetSecurityDescriptorGroup_Proc) GetProcAddress ( hm_advapi32, "GetSecurityDescriptorGroup"); } if (s_pfn_Get_Security_Descriptor_Group == NULL) { errno = ENOTSUP; return FALSE; } return (s_pfn_Get_Security_Descriptor_Group (pSecurityDescriptor, pGroup, lpbGroupDefaulted)); } static BOOL WINAPI get_security_descriptor_dacl (PSECURITY_DESCRIPTOR pSecurityDescriptor, LPBOOL lpbDaclPresent, PACL *pDacl, LPBOOL lpbDaclDefaulted) { static GetSecurityDescriptorDacl_Proc s_pfn_Get_Security_Descriptor_Dacl = NULL; HMODULE hm_advapi32 = NULL; if (is_windows_9x () == TRUE) { errno = ENOTSUP; return FALSE; } if (g_b_init_get_security_descriptor_dacl == 0) { g_b_init_get_security_descriptor_dacl = 1; hm_advapi32 = LoadLibrary ("Advapi32.dll"); s_pfn_Get_Security_Descriptor_Dacl = (GetSecurityDescriptorDacl_Proc) GetProcAddress ( hm_advapi32, "GetSecurityDescriptorDacl"); } if (s_pfn_Get_Security_Descriptor_Dacl == NULL) { errno = ENOTSUP; return FALSE; } return (s_pfn_Get_Security_Descriptor_Dacl (pSecurityDescriptor, lpbDaclPresent, pDacl, lpbDaclDefaulted)); } static BOOL WINAPI is_valid_sid (PSID sid) { static IsValidSid_Proc s_pfn_Is_Valid_Sid = NULL; HMODULE hm_advapi32 = NULL; if (is_windows_9x () == TRUE) { return FALSE; } if (g_b_init_is_valid_sid == 0) { g_b_init_is_valid_sid = 1; hm_advapi32 = LoadLibrary ("Advapi32.dll"); s_pfn_Is_Valid_Sid = (IsValidSid_Proc) GetProcAddress ( hm_advapi32, "IsValidSid"); } if (s_pfn_Is_Valid_Sid == NULL) { return FALSE; } return (s_pfn_Is_Valid_Sid (sid)); } static BOOL WINAPI equal_sid (PSID sid1, PSID sid2) { static EqualSid_Proc s_pfn_Equal_Sid = NULL; HMODULE hm_advapi32 = NULL; if (is_windows_9x () == TRUE) { return FALSE; } if (g_b_init_equal_sid == 0) { g_b_init_equal_sid = 1; hm_advapi32 = LoadLibrary ("Advapi32.dll"); s_pfn_Equal_Sid = (EqualSid_Proc) GetProcAddress ( hm_advapi32, "EqualSid"); } if (s_pfn_Equal_Sid == NULL) { return FALSE; } return (s_pfn_Equal_Sid (sid1, sid2)); } static DWORD WINAPI get_length_sid (PSID sid) { static GetLengthSid_Proc s_pfn_Get_Length_Sid = NULL; HMODULE hm_advapi32 = NULL; if (is_windows_9x () == TRUE) { return 0; } if (g_b_init_get_length_sid == 0) { g_b_init_get_length_sid = 1; hm_advapi32 = LoadLibrary ("Advapi32.dll"); s_pfn_Get_Length_Sid = (GetLengthSid_Proc) GetProcAddress ( hm_advapi32, "GetLengthSid"); } if (s_pfn_Get_Length_Sid == NULL) { return 0; } return (s_pfn_Get_Length_Sid (sid)); } static BOOL WINAPI copy_sid (DWORD destlen, PSID dest, PSID src) { static CopySid_Proc s_pfn_Copy_Sid = NULL; HMODULE hm_advapi32 = NULL; if (is_windows_9x () == TRUE) { return FALSE; } if (g_b_init_copy_sid == 0) { g_b_init_copy_sid = 1; hm_advapi32 = LoadLibrary ("Advapi32.dll"); s_pfn_Copy_Sid = (CopySid_Proc) GetProcAddress ( hm_advapi32, "CopySid"); } if (s_pfn_Copy_Sid == NULL) { return FALSE; } return (s_pfn_Copy_Sid (destlen, dest, src)); } /* END: Wrapper functions around OpenProcessToken and other functions in advapi32.dll that are only supported in Windows NT / 2k / XP */ static void WINAPI get_native_system_info (LPSYSTEM_INFO lpSystemInfo) { static GetNativeSystemInfo_Proc s_pfn_Get_Native_System_Info = NULL; if (is_windows_9x () != TRUE) { if (g_b_init_get_native_system_info == 0) { g_b_init_get_native_system_info = 1; s_pfn_Get_Native_System_Info = (GetNativeSystemInfo_Proc)GetProcAddress (GetModuleHandle ("kernel32.dll"), "GetNativeSystemInfo"); } if (s_pfn_Get_Native_System_Info != NULL) s_pfn_Get_Native_System_Info (lpSystemInfo); } else lpSystemInfo->dwNumberOfProcessors = -1; } static BOOL WINAPI get_system_times (LPFILETIME lpIdleTime, LPFILETIME lpKernelTime, LPFILETIME lpUserTime) { static GetSystemTimes_Proc s_pfn_Get_System_times = NULL; if (is_windows_9x () == TRUE) { return FALSE; } if (g_b_init_get_system_times == 0) { g_b_init_get_system_times = 1; s_pfn_Get_System_times = (GetSystemTimes_Proc)GetProcAddress (GetModuleHandle ("kernel32.dll"), "GetSystemTimes"); } if (s_pfn_Get_System_times == NULL) return FALSE; return (s_pfn_Get_System_times (lpIdleTime, lpKernelTime, lpUserTime)); } static BOOLEAN WINAPI create_symbolic_link (LPCSTR lpSymlinkFilename, LPCSTR lpTargetFileName, DWORD dwFlags) { static CreateSymbolicLinkW_Proc s_pfn_Create_Symbolic_LinkW = NULL; static CreateSymbolicLinkA_Proc s_pfn_Create_Symbolic_LinkA = NULL; BOOLEAN retval; if (is_windows_9x () == TRUE) { errno = ENOSYS; return 0; } if (w32_unicode_filenames) { wchar_t symfn_w[MAX_PATH], tgtfn_w[MAX_PATH]; if (g_b_init_create_symbolic_link_w == 0) { g_b_init_create_symbolic_link_w = 1; s_pfn_Create_Symbolic_LinkW = (CreateSymbolicLinkW_Proc)GetProcAddress (GetModuleHandle ("kernel32.dll"), "CreateSymbolicLinkW"); } if (s_pfn_Create_Symbolic_LinkW == NULL) { errno = ENOSYS; return 0; } filename_to_utf16 (lpSymlinkFilename, symfn_w); filename_to_utf16 (lpTargetFileName, tgtfn_w); retval = s_pfn_Create_Symbolic_LinkW (symfn_w, tgtfn_w, dwFlags); /* If we were denied creation of the symlink, try again after enabling the SeCreateSymbolicLinkPrivilege for our process. */ if (!retval) { TOKEN_PRIVILEGES priv_current; if (enable_privilege (SE_CREATE_SYMBOLIC_LINK_NAME, TRUE, &priv_current)) { retval = s_pfn_Create_Symbolic_LinkW (symfn_w, tgtfn_w, dwFlags); restore_privilege (&priv_current); revert_to_self (); } } } else { char symfn_a[MAX_PATH], tgtfn_a[MAX_PATH]; if (g_b_init_create_symbolic_link_a == 0) { g_b_init_create_symbolic_link_a = 1; s_pfn_Create_Symbolic_LinkA = (CreateSymbolicLinkA_Proc)GetProcAddress (GetModuleHandle ("kernel32.dll"), "CreateSymbolicLinkA"); } if (s_pfn_Create_Symbolic_LinkA == NULL) { errno = ENOSYS; return 0; } filename_to_ansi (lpSymlinkFilename, symfn_a); filename_to_ansi (lpTargetFileName, tgtfn_a); retval = s_pfn_Create_Symbolic_LinkA (symfn_a, tgtfn_a, dwFlags); /* If we were denied creation of the symlink, try again after enabling the SeCreateSymbolicLinkPrivilege for our process. */ if (!retval) { TOKEN_PRIVILEGES priv_current; if (enable_privilege (SE_CREATE_SYMBOLIC_LINK_NAME, TRUE, &priv_current)) { retval = s_pfn_Create_Symbolic_LinkA (symfn_a, tgtfn_a, dwFlags); restore_privilege (&priv_current); revert_to_self (); } } } return retval; } static BOOL WINAPI is_valid_security_descriptor (PSECURITY_DESCRIPTOR pSecurityDescriptor) { static IsValidSecurityDescriptor_Proc s_pfn_Is_Valid_Security_Descriptor_Proc = NULL; if (is_windows_9x () == TRUE) { errno = ENOTSUP; return FALSE; } if (g_b_init_is_valid_security_descriptor == 0) { g_b_init_is_valid_security_descriptor = 1; s_pfn_Is_Valid_Security_Descriptor_Proc = (IsValidSecurityDescriptor_Proc)GetProcAddress (GetModuleHandle ("Advapi32.dll"), "IsValidSecurityDescriptor"); } if (s_pfn_Is_Valid_Security_Descriptor_Proc == NULL) { errno = ENOTSUP; return FALSE; } return s_pfn_Is_Valid_Security_Descriptor_Proc (pSecurityDescriptor); } static BOOL WINAPI convert_sd_to_sddl (PSECURITY_DESCRIPTOR SecurityDescriptor, DWORD RequestedStringSDRevision, SECURITY_INFORMATION SecurityInformation, LPTSTR *StringSecurityDescriptor, PULONG StringSecurityDescriptorLen) { static ConvertSecurityDescriptorToStringSecurityDescriptor_Proc s_pfn_Convert_SD_To_SDDL = NULL; BOOL retval; if (is_windows_9x () == TRUE) { errno = ENOTSUP; return FALSE; } if (g_b_init_convert_sd_to_sddl == 0) { g_b_init_convert_sd_to_sddl = 1; #ifdef _UNICODE s_pfn_Convert_SD_To_SDDL = (ConvertSecurityDescriptorToStringSecurityDescriptor_Proc)GetProcAddress (GetModuleHandle ("Advapi32.dll"), "ConvertSecurityDescriptorToStringSecurityDescriptorW"); #else s_pfn_Convert_SD_To_SDDL = (ConvertSecurityDescriptorToStringSecurityDescriptor_Proc)GetProcAddress (GetModuleHandle ("Advapi32.dll"), "ConvertSecurityDescriptorToStringSecurityDescriptorA"); #endif } if (s_pfn_Convert_SD_To_SDDL == NULL) { errno = ENOTSUP; return FALSE; } retval = s_pfn_Convert_SD_To_SDDL (SecurityDescriptor, RequestedStringSDRevision, SecurityInformation, StringSecurityDescriptor, StringSecurityDescriptorLen); return retval; } static BOOL WINAPI convert_sddl_to_sd (LPCTSTR StringSecurityDescriptor, DWORD StringSDRevision, PSECURITY_DESCRIPTOR *SecurityDescriptor, PULONG SecurityDescriptorSize) { static ConvertStringSecurityDescriptorToSecurityDescriptor_Proc s_pfn_Convert_SDDL_To_SD = NULL; BOOL retval; if (is_windows_9x () == TRUE) { errno = ENOTSUP; return FALSE; } if (g_b_init_convert_sddl_to_sd == 0) { g_b_init_convert_sddl_to_sd = 1; #ifdef _UNICODE s_pfn_Convert_SDDL_To_SD = (ConvertStringSecurityDescriptorToSecurityDescriptor_Proc)GetProcAddress (GetModuleHandle ("Advapi32.dll"), "ConvertStringSecurityDescriptorToSecurityDescriptorW"); #else s_pfn_Convert_SDDL_To_SD = (ConvertStringSecurityDescriptorToSecurityDescriptor_Proc)GetProcAddress (GetModuleHandle ("Advapi32.dll"), "ConvertStringSecurityDescriptorToSecurityDescriptorA"); #endif } if (s_pfn_Convert_SDDL_To_SD == NULL) { errno = ENOTSUP; return FALSE; } retval = s_pfn_Convert_SDDL_To_SD (StringSecurityDescriptor, StringSDRevision, SecurityDescriptor, SecurityDescriptorSize); return retval; } static DWORD WINAPI get_adapters_info (PIP_ADAPTER_INFO pAdapterInfo, PULONG pOutBufLen) { static GetAdaptersInfo_Proc s_pfn_Get_Adapters_Info = NULL; HMODULE hm_iphlpapi = NULL; if (is_windows_9x () == TRUE) return ERROR_NOT_SUPPORTED; if (g_b_init_get_adapters_info == 0) { g_b_init_get_adapters_info = 1; hm_iphlpapi = LoadLibrary ("Iphlpapi.dll"); if (hm_iphlpapi) s_pfn_Get_Adapters_Info = (GetAdaptersInfo_Proc) GetProcAddress (hm_iphlpapi, "GetAdaptersInfo"); } if (s_pfn_Get_Adapters_Info == NULL) return ERROR_NOT_SUPPORTED; return s_pfn_Get_Adapters_Info (pAdapterInfo, pOutBufLen); } /* Return 1 if P is a valid pointer to an object of size SIZE. Return 0 if P is NOT a valid pointer. Return -1 if we cannot validate P. This is called from alloc.c:valid_pointer_p. */ int w32_valid_pointer_p (void *p, int size) { SIZE_T done; HANDLE h = OpenProcess (PROCESS_VM_READ, FALSE, GetCurrentProcessId ()); if (h) { unsigned char *buf = alloca (size); int retval = ReadProcessMemory (h, p, buf, size, &done); CloseHandle (h); return retval; } else return -1; } /* Here's an overview of how the Windows build supports file names that cannot be encoded by the current system codepage. From the POV of Lisp and layers of C code above the functions here, Emacs on Windows pretends that its file names are encoded in UTF-8; see encode_file and decode_file on coding.c. Any file name that is passed as a unibyte string to C functions defined here is assumed to be in UTF-8 encoding. Any file name returned by functions defined here must be in UTF-8 encoding, with only a few exceptions reserved for a couple of special cases. (Be sure to use MAX_UTF8_PATH for char arrays that store UTF-8 encoded file names, as they can be much longer than MAX_PATH!) The UTF-8 encoded file names cannot be passed to system APIs, as Windows does not support that. Therefore, they are converted either to UTF-16 or to the ANSI codepage, depending on the value of w32-unicode-filenames, before calling any system APIs or CRT library functions. The default value of that variable is determined by the OS on which Emacs runs: nil on Windows 9X and t otherwise, but the user can change that default (although I don't see why would she want to). The 4 functions defined below, filename_to_utf16, filename_to_ansi, filename_from_utf16, and filename_from_ansi, are the workhorses of these conversions. They rely on Windows native APIs MultiByteToWideChar and WideCharToMultiByte; we cannot use functions from coding.c here, because they allocate memory, which is a bad idea on the level of libc, which is what the functions here emulate. (If you worry about performance due to constant conversion back and forth from UTF-8 to UTF-16, then don't: first, it was measured to take only a few microseconds on a not-so-fast machine, and second, that's exactly what the ANSI APIs we used before did anyway, because they are just thin wrappers around the Unicode APIs.) The variables file-name-coding-system and default-file-name-coding-system still exist, but are actually used only when a file name needs to be converted to the ANSI codepage. This happens all the time when w32-unicode-filenames is nil, but can also happen from time to time when it is t. Otherwise, these variables have no effect on file-name encoding when w32-unicode-filenames is t; this is similar to selection-coding-system. This arrangement works very well, but it has a few gotchas and limitations: . Lisp code that encodes or decodes file names manually should normally use 'utf-8' as the coding-system on Windows, disregarding file-name-coding-system. This is a somewhat unpleasant consequence, but it cannot be avoided. Fortunately, very few Lisp packages need to do that. More generally, passing to library functions (e.g., fopen or opendir) file names already encoded in the ANSI codepage is explicitly *verboten*, as all those functions, as shadowed and emulated here, assume they will receive UTF-8 encoded file names. For the same reasons, no CRT function or Win32 API can be called directly in Emacs sources, without either converting the file names from UTF-8 to UTF-16 or ANSI codepage, or going through some shadowing function defined here. . Environment variables stored in Vprocess_environment are encoded in the ANSI codepage, so if getenv/egetenv is used for a variable whose value is a file name or a list of directories, it needs to be converted to UTF-8, before it is used as argument to functions or decoded into a Lisp string. . File names passed to external libraries, like the image libraries and GnuTLS, need special handling. These libraries generally don't support UTF-16 or UTF-8 file names, so they must get file names encoded in the ANSI codepage. To facilitate using these libraries with file names that are not encodable in the ANSI codepage, use the function ansi_encode_filename, which will try to use the short 8+3 alias of a file name if that file name is not encodable in the ANSI codepage. See image.c and gnutls.c for examples of how this should be done. . Running subprocesses in non-ASCII directories and with non-ASCII file arguments is limited to the current codepage (even though Emacs is perfectly capable of finding an executable program file in a directory whose name cannot be encoded in the current codepage). This is because the command-line arguments are encoded _before_ they get to the w32-specific level, and the encoding is not known in advance (it doesn't have to be the current ANSI codepage), so w32proc.c functions cannot re-encode them in UTF-16. This should be fixed, but will also require changes in cmdproxy. The current limitation is not terribly bad anyway, since very few, if any, Windows console programs that are likely to be invoked by Emacs support UTF-16 encoded command lines. . For similar reasons, server.el and emacsclient are also limited to the current ANSI codepage for now. . Emacs itself can only handle command-line arguments encoded in the current codepage. . Turning on w32-unicode-filename on Windows 9X (if it at all works) requires UNICOWS.DLL, which is thus a requirement even in non-GUI sessions, something the we previously avoided. */ /* Converting file names from UTF-8 to either UTF-16 or the ANSI codepage defined by file-name-coding-system. */ /* Current codepage for encoding file names. */ static int file_name_codepage; /* Initialize the codepage used for decoding file names. This is needed to undo the value recorded during dumping, which might not be correct when we run the dumped Emacs. */ void w32_init_file_name_codepage (void) { file_name_codepage = CP_ACP; w32_ansi_code_page = CP_ACP; } /* Produce a Windows ANSI codepage suitable for encoding file names. Return the information about that codepage in CP_INFO. */ int codepage_for_filenames (CPINFO *cp_info) { /* A simple cache to avoid calling GetCPInfo every time we need to encode/decode a file name. The file-name encoding is not supposed to be changed too frequently, if ever. */ static Lisp_Object last_file_name_encoding; static CPINFO cp; Lisp_Object current_encoding; current_encoding = Vfile_name_coding_system; if (NILP (current_encoding)) current_encoding = Vdefault_file_name_coding_system; if (!EQ (last_file_name_encoding, current_encoding) || NILP (last_file_name_encoding)) { /* Default to the current ANSI codepage. */ file_name_codepage = w32_ansi_code_page; if (!NILP (current_encoding)) { char *cpname = SSDATA (SYMBOL_NAME (current_encoding)); char *cp = NULL, *end; int cpnum; if (strncmp (cpname, "cp", 2) == 0) cp = cpname + 2; else if (strncmp (cpname, "windows-", 8) == 0) cp = cpname + 8; if (cp) { end = cp; cpnum = strtol (cp, &end, 10); if (cpnum && *end == '\0' && end - cp >= 2) file_name_codepage = cpnum; } } if (!file_name_codepage) file_name_codepage = CP_ACP; /* CP_ACP = 0, but let's not assume that */ if (!GetCPInfo (file_name_codepage, &cp)) { file_name_codepage = CP_ACP; if (!GetCPInfo (file_name_codepage, &cp)) emacs_abort (); } /* Cache the new value. */ last_file_name_encoding = current_encoding; } if (cp_info) *cp_info = cp; return file_name_codepage; } int filename_to_utf16 (const char *fn_in, wchar_t *fn_out) { int result = pMultiByteToWideChar (CP_UTF8, multiByteToWideCharFlags, fn_in, -1, fn_out, MAX_PATH); if (!result) { DWORD err = GetLastError (); switch (err) { case ERROR_INVALID_FLAGS: case ERROR_INVALID_PARAMETER: errno = EINVAL; break; case ERROR_INSUFFICIENT_BUFFER: case ERROR_NO_UNICODE_TRANSLATION: default: errno = ENOENT; break; } return -1; } return 0; } int filename_from_utf16 (const wchar_t *fn_in, char *fn_out) { int result = pWideCharToMultiByte (CP_UTF8, 0, fn_in, -1, fn_out, MAX_UTF8_PATH, NULL, NULL); if (!result) { DWORD err = GetLastError (); switch (err) { case ERROR_INVALID_FLAGS: case ERROR_INVALID_PARAMETER: errno = EINVAL; break; case ERROR_INSUFFICIENT_BUFFER: case ERROR_NO_UNICODE_TRANSLATION: default: errno = ENOENT; break; } return -1; } return 0; } int filename_to_ansi (const char *fn_in, char *fn_out) { wchar_t fn_utf16[MAX_PATH]; if (filename_to_utf16 (fn_in, fn_utf16) == 0) { int result; int codepage = codepage_for_filenames (NULL); result = pWideCharToMultiByte (codepage, 0, fn_utf16, -1, fn_out, MAX_PATH, NULL, NULL); if (!result) { DWORD err = GetLastError (); switch (err) { case ERROR_INVALID_FLAGS: case ERROR_INVALID_PARAMETER: errno = EINVAL; break; case ERROR_INSUFFICIENT_BUFFER: case ERROR_NO_UNICODE_TRANSLATION: default: errno = ENOENT; break; } return -1; } return 0; } return -1; } int filename_from_ansi (const char *fn_in, char *fn_out) { wchar_t fn_utf16[MAX_PATH]; int codepage = codepage_for_filenames (NULL); int result = pMultiByteToWideChar (codepage, multiByteToWideCharFlags, fn_in, -1, fn_utf16, MAX_PATH); if (!result) { DWORD err = GetLastError (); switch (err) { case ERROR_INVALID_FLAGS: case ERROR_INVALID_PARAMETER: errno = EINVAL; break; case ERROR_INSUFFICIENT_BUFFER: case ERROR_NO_UNICODE_TRANSLATION: default: errno = ENOENT; break; } return -1; } return filename_from_utf16 (fn_utf16, fn_out); } /* The directory where we started, in UTF-8. */ static char startup_dir[MAX_UTF8_PATH]; /* Get the current working directory. */ char * getcwd (char *dir, int dirsize) { if (!dirsize) { errno = EINVAL; return NULL; } if (dirsize <= strlen (startup_dir)) { errno = ERANGE; return NULL; } #if 0 if (GetCurrentDirectory (MAXPATHLEN, dir) > 0) return dir; return NULL; #else /* Emacs doesn't actually change directory itself, it stays in the same directory where it was started. */ strcpy (dir, startup_dir); return dir; #endif } /* Emulate getloadavg. */ struct load_sample { time_t sample_time; ULONGLONG idle; ULONGLONG kernel; ULONGLONG user; }; /* Number of processors on this machine. */ static unsigned num_of_processors; /* We maintain 1-sec samples for the last 16 minutes in a circular buffer. */ static struct load_sample samples[16*60]; static int first_idx = -1, last_idx = -1; static int max_idx = ARRAYELTS (samples); static int buf_next (int from) { int next_idx = from + 1; if (next_idx >= max_idx) next_idx = 0; return next_idx; } static int buf_prev (int from) { int prev_idx = from - 1; if (prev_idx < 0) prev_idx = max_idx - 1; return prev_idx; } static void sample_system_load (ULONGLONG *idle, ULONGLONG *kernel, ULONGLONG *user) { SYSTEM_INFO sysinfo; FILETIME ft_idle, ft_user, ft_kernel; /* Initialize the number of processors on this machine. */ if (num_of_processors <= 0) { get_native_system_info (&sysinfo); num_of_processors = sysinfo.dwNumberOfProcessors; if (num_of_processors <= 0) { GetSystemInfo (&sysinfo); num_of_processors = sysinfo.dwNumberOfProcessors; } if (num_of_processors <= 0) num_of_processors = 1; } /* TODO: Take into account threads that are ready to run, by sampling the "\System\Processor Queue Length" performance counter. The code below accounts only for threads that are actually running. */ if (get_system_times (&ft_idle, &ft_kernel, &ft_user)) { ULARGE_INTEGER uidle, ukernel, uuser; memcpy (&uidle, &ft_idle, sizeof (ft_idle)); memcpy (&ukernel, &ft_kernel, sizeof (ft_kernel)); memcpy (&uuser, &ft_user, sizeof (ft_user)); *idle = uidle.QuadPart; *kernel = ukernel.QuadPart; *user = uuser.QuadPart; } else { *idle = 0; *kernel = 0; *user = 0; } } /* Produce the load average for a given time interval, using the samples in the samples[] array. WHICH can be 0, 1, or 2, meaning 1-minute, 5-minute, or 15-minute average, respectively. */ static double getavg (int which) { double retval = -1.0; double tdiff; int idx; double span = (which == 0 ? 1.0 : (which == 1 ? 5.0 : 15.0)) * 60; time_t now = samples[last_idx].sample_time; if (first_idx != last_idx) { for (idx = buf_prev (last_idx); ; idx = buf_prev (idx)) { tdiff = difftime (now, samples[idx].sample_time); if (tdiff >= span - 2*DBL_EPSILON*now) { long double sys = samples[last_idx].kernel + samples[last_idx].user - (samples[idx].kernel + samples[idx].user); long double idl = samples[last_idx].idle - samples[idx].idle; retval = (1.0 - idl / sys) * num_of_processors; break; } if (idx == first_idx) break; } } return retval; } int getloadavg (double loadavg[], int nelem) { int elem; ULONGLONG idle, kernel, user; time_t now = time (NULL); /* If system time jumped back for some reason, delete all samples whose time is later than the current wall-clock time. This prevents load average figures from becoming frozen for prolonged periods of time, when system time is reset backwards. */ if (last_idx >= 0) { while (difftime (now, samples[last_idx].sample_time) < -1.0) { if (last_idx == first_idx) { first_idx = last_idx = -1; break; } last_idx = buf_prev (last_idx); } } /* Store another sample. We ignore samples that are less than 1 sec apart. */ if (last_idx < 0 || (difftime (now, samples[last_idx].sample_time) >= 1.0 - 2*DBL_EPSILON*now)) { sample_system_load (&idle, &kernel, &user); last_idx = buf_next (last_idx); samples[last_idx].sample_time = now; samples[last_idx].idle = idle; samples[last_idx].kernel = kernel; samples[last_idx].user = user; /* If the buffer has more that 15 min worth of samples, discard the old ones. */ if (first_idx == -1) first_idx = last_idx; while (first_idx != last_idx && (difftime (now, samples[first_idx].sample_time) >= 15.0*60 + 2*DBL_EPSILON*now)) first_idx = buf_next (first_idx); } for (elem = 0; elem < nelem; elem++) { double avg = getavg (elem); if (avg < 0) break; loadavg[elem] = avg; } return elem; } /* Emulate getpwuid, getpwnam and others. */ #define PASSWD_FIELD_SIZE 256 static char dflt_passwd_name[PASSWD_FIELD_SIZE]; static char dflt_passwd_passwd[PASSWD_FIELD_SIZE]; static char dflt_passwd_gecos[PASSWD_FIELD_SIZE]; static char dflt_passwd_dir[MAX_UTF8_PATH]; static char dflt_passwd_shell[MAX_UTF8_PATH]; static struct passwd dflt_passwd = { dflt_passwd_name, dflt_passwd_passwd, 0, 0, 0, dflt_passwd_gecos, dflt_passwd_dir, dflt_passwd_shell, }; static char dflt_group_name[GNLEN+1]; static struct group dflt_group = { /* When group information is not available, we return this as the group for all files. */ dflt_group_name, 0, }; unsigned getuid (void) { return dflt_passwd.pw_uid; } unsigned geteuid (void) { /* I could imagine arguing for checking to see whether the user is in the Administrators group and returning a UID of 0 for that case, but I don't know how wise that would be in the long run. */ return getuid (); } unsigned getgid (void) { return dflt_passwd.pw_gid; } unsigned getegid (void) { return getgid (); } struct passwd * getpwuid (unsigned uid) { if (uid == dflt_passwd.pw_uid) return &dflt_passwd; return NULL; } struct group * getgrgid (gid_t gid) { return &dflt_group; } struct passwd * getpwnam (char *name) { struct passwd *pw; pw = getpwuid (getuid ()); if (!pw) return pw; if (xstrcasecmp (name, pw->pw_name)) return NULL; return pw; } static void init_user_info (void) { /* Find the user's real name by opening the process token and looking up the name associated with the user-sid in that token. Use the relative portion of the identifier authority value from the user-sid as the user id value (same for group id using the primary group sid from the process token). */ char uname[UNLEN+1], gname[GNLEN+1], domain[1025]; DWORD ulength = sizeof (uname), dlength = sizeof (domain), needed; DWORD glength = sizeof (gname); HANDLE token = NULL; SID_NAME_USE user_type; unsigned char *buf = NULL; DWORD blen = 0; TOKEN_USER user_token; TOKEN_PRIMARY_GROUP group_token; BOOL result; result = open_process_token (GetCurrentProcess (), TOKEN_QUERY, &token); if (result) { result = get_token_information (token, TokenUser, NULL, 0, &blen); if (!result && GetLastError () == ERROR_INSUFFICIENT_BUFFER) { buf = xmalloc (blen); result = get_token_information (token, TokenUser, (LPVOID)buf, blen, &needed); if (result) { memcpy (&user_token, buf, sizeof (user_token)); result = lookup_account_sid (NULL, user_token.User.Sid, uname, &ulength, domain, &dlength, &user_type); } } else result = FALSE; } if (result) { strcpy (dflt_passwd.pw_name, uname); /* Determine a reasonable uid value. */ if (xstrcasecmp ("administrator", uname) == 0) { dflt_passwd.pw_uid = 500; /* well-known Administrator uid */ dflt_passwd.pw_gid = 513; /* well-known None gid */ } else { /* Use the last sub-authority value of the RID, the relative portion of the SID, as user/group ID. */ dflt_passwd.pw_uid = get_rid (user_token.User.Sid); /* Get group id and name. */ result = get_token_information (token, TokenPrimaryGroup, (LPVOID)buf, blen, &needed); if (!result && GetLastError () == ERROR_INSUFFICIENT_BUFFER) { buf = xrealloc (buf, blen = needed); result = get_token_information (token, TokenPrimaryGroup, (LPVOID)buf, blen, &needed); } if (result) { memcpy (&group_token, buf, sizeof (group_token)); dflt_passwd.pw_gid = get_rid (group_token.PrimaryGroup); dlength = sizeof (domain); /* If we can get at the real Primary Group name, use that. Otherwise, the default group name was already set to "None" in globals_of_w32. */ if (lookup_account_sid (NULL, group_token.PrimaryGroup, gname, &glength, NULL, &dlength, &user_type)) strcpy (dflt_group_name, gname); } else dflt_passwd.pw_gid = dflt_passwd.pw_uid; } } /* If security calls are not supported (presumably because we are running under Windows 9X), fallback to this: */ else if (GetUserName (uname, &ulength)) { strcpy (dflt_passwd.pw_name, uname); if (xstrcasecmp ("administrator", uname) == 0) dflt_passwd.pw_uid = 0; else dflt_passwd.pw_uid = 123; dflt_passwd.pw_gid = dflt_passwd.pw_uid; } else { strcpy (dflt_passwd.pw_name, "unknown"); dflt_passwd.pw_uid = 123; dflt_passwd.pw_gid = 123; } dflt_group.gr_gid = dflt_passwd.pw_gid; /* Set dir and shell from environment variables. */ if (w32_unicode_filenames) { wchar_t *home = _wgetenv (L"HOME"); wchar_t *shell = _wgetenv (L"SHELL"); /* Ensure HOME and SHELL are defined. */ if (home == NULL) emacs_abort (); if (shell == NULL) emacs_abort (); filename_from_utf16 (home, dflt_passwd.pw_dir); filename_from_utf16 (shell, dflt_passwd.pw_shell); } else { char *home = getenv ("HOME"); char *shell = getenv ("SHELL"); if (home == NULL) emacs_abort (); if (shell == NULL) emacs_abort (); filename_from_ansi (home, dflt_passwd.pw_dir); filename_from_ansi (shell, dflt_passwd.pw_shell); } xfree (buf); if (token) CloseHandle (token); } static HCRYPTPROV w32_crypto_hprov; static int w32_init_crypt_random (void) { if (!CryptAcquireContext (&w32_crypto_hprov, NULL, NULL, PROV_RSA_FULL, CRYPT_VERIFYCONTEXT | CRYPT_SILENT)) { DebPrint (("CryptAcquireContext failed with error %x\n", GetLastError ())); w32_crypto_hprov = 0; return -1; } return 0; } int w32_init_random (void *buf, ptrdiff_t buflen) { if (!w32_crypto_hprov) w32_init_crypt_random (); if (w32_crypto_hprov) { if (CryptGenRandom (w32_crypto_hprov, buflen, (BYTE *)buf)) return 0; } return -1; } int random (void) { /* rand () on NT gives us 15 random bits...hack together 30 bits. */ return ((rand () << 15) | rand ()); } void srandom (int seed) { srand (seed); } /* Return the maximum length in bytes of a multibyte character sequence encoded in the current ANSI codepage. This is required to correctly walk the encoded file names one character at a time. */ static int max_filename_mbslen (void) { CPINFO cp_info; codepage_for_filenames (&cp_info); return cp_info.MaxCharSize; } /* Normalize filename by converting in-place all of its path separators to the separator specified by PATH_SEP. */ static void normalize_filename (register char *fp, char path_sep) { char *p2; /* Always lower-case drive letters a-z, even if the filesystem preserves case in filenames. This is so filenames can be compared by string comparison functions that are case-sensitive. Even case-preserving filesystems do not distinguish case in drive letters. */ p2 = fp + 1; if (*p2 == ':' && *fp >= 'A' && *fp <= 'Z') { *fp += 'a' - 'A'; fp += 2; } while (*fp) { if ((*fp == '/' || *fp == '\\') && *fp != path_sep) *fp = path_sep; fp++; } } /* Destructively turn backslashes into slashes. */ void dostounix_filename (register char *p) { normalize_filename (p, '/'); } /* Destructively turn slashes into backslashes. */ void unixtodos_filename (register char *p) { normalize_filename (p, '\\'); } /* Remove all CR's that are followed by a LF. (From msdos.c...probably should figure out a way to share it, although this code isn't going to ever change.) */ static int crlf_to_lf (register int n, register char *buf) { unsigned char *np = (unsigned char *)buf; unsigned char *startp = np; char *endp = buf + n; if (n == 0) return n; while (buf < endp - 1) { if (*buf == 0x0d) { if (*(++buf) != 0x0a) *np++ = 0x0d; } else *np++ = *buf++; } if (buf < endp) *np++ = *buf++; return np - startp; } /* Parse the root part of file name, if present. Return length and optionally store pointer to char after root. */ static int parse_root (const char * name, const char ** pPath) { const char * start = name; if (name == NULL) return 0; /* find the root name of the volume if given */ if (isalpha (name[0]) && name[1] == ':') { /* skip past drive specifier */ name += 2; if (IS_DIRECTORY_SEP (name[0])) name++; } else if (IS_DIRECTORY_SEP (name[0]) && IS_DIRECTORY_SEP (name[1])) { int slashes = 2; name += 2; do { if (IS_DIRECTORY_SEP (*name) && --slashes == 0) break; name++; } while ( *name ); if (IS_DIRECTORY_SEP (name[0])) name++; } if (pPath) *pPath = name; return name - start; } /* Get long base name for name; name is assumed to be absolute. */ static int get_long_basename (char * name, char * buf, int size) { HANDLE dir_handle = INVALID_HANDLE_VALUE; char fname_utf8[MAX_UTF8_PATH]; int len = 0; int cstatus = -1; /* Must be valid filename, no wild cards or other invalid characters. */ if (strpbrk (name, "*?|<>\"")) return 0; if (w32_unicode_filenames) { wchar_t fname_utf16[MAX_PATH]; WIN32_FIND_DATAW find_data_wide; filename_to_utf16 (name, fname_utf16); dir_handle = FindFirstFileW (fname_utf16, &find_data_wide); if (dir_handle != INVALID_HANDLE_VALUE) cstatus = filename_from_utf16 (find_data_wide.cFileName, fname_utf8); } else { char fname_ansi[MAX_PATH]; WIN32_FIND_DATAA find_data_ansi; filename_to_ansi (name, fname_ansi); /* If the ANSI name includes ? characters, it is not encodable in the ANSI codepage. In that case, we deliver the question marks to the caller; calling FindFirstFileA in this case could return some unrelated file name in the same directory. */ if (_mbspbrk (fname_ansi, "?")) { /* Find the basename of fname_ansi. */ char *p = strrchr (fname_ansi, '\\'); if (!p) p = fname_ansi; else p++; cstatus = filename_from_ansi (p, fname_utf8); } else { dir_handle = FindFirstFileA (fname_ansi, &find_data_ansi); if (dir_handle != INVALID_HANDLE_VALUE) cstatus = filename_from_ansi (find_data_ansi.cFileName, fname_utf8); } } if (cstatus == 0 && (len = strlen (fname_utf8)) < size) memcpy (buf, fname_utf8, len + 1); else len = 0; if (dir_handle != INVALID_HANDLE_VALUE) FindClose (dir_handle); return len; } /* Get long name for file, if possible (assumed to be absolute). */ BOOL w32_get_long_filename (const char * name, char * buf, int size) { char * o = buf; char * p; const char * q; char full[ MAX_UTF8_PATH ]; int len; len = strlen (name); if (len >= MAX_UTF8_PATH) return FALSE; /* Use local copy for destructive modification. */ memcpy (full, name, len+1); unixtodos_filename (full); /* Copy root part verbatim. */ len = parse_root (full, (const char **)&p); memcpy (o, full, len); o += len; *o = '\0'; size -= len; while (p != NULL && *p) { q = p; p = strchr (q, '\\'); if (p) *p = '\0'; len = get_long_basename (full, o, size); if (len > 0) { o += len; size -= len; if (p != NULL) { *p++ = '\\'; if (size < 2) return FALSE; *o++ = '\\'; size--; *o = '\0'; } } else return FALSE; } return TRUE; } unsigned int w32_get_short_filename (const char * name, char * buf, int size) { if (w32_unicode_filenames) { wchar_t name_utf16[MAX_PATH], short_name[MAX_PATH]; unsigned int retval; filename_to_utf16 (name, name_utf16); retval = GetShortPathNameW (name_utf16, short_name, size); if (retval && retval < size) filename_from_utf16 (short_name, buf); return retval; } else { char name_ansi[MAX_PATH]; filename_to_ansi (name, name_ansi); return GetShortPathNameA (name_ansi, buf, size); } } /* Re-encode FILENAME, a UTF-8 encoded unibyte string, using the MS-Windows ANSI codepage. If FILENAME includes characters not supported by the ANSI codepage, return the 8+3 alias of FILENAME, if it exists. This is needed because the w32 build wants to support file names outside of the system locale, but image libraries typically don't support wide (a.k.a. "Unicode") APIs required for that. */ Lisp_Object ansi_encode_filename (Lisp_Object filename) { Lisp_Object encoded_filename; char fname[MAX_PATH]; filename_to_ansi (SSDATA (filename), fname); if (_mbspbrk (fname, "?")) { char shortname[MAX_PATH]; if (w32_get_short_filename (SSDATA (filename), shortname, MAX_PATH)) { dostounix_filename (shortname); encoded_filename = build_string (shortname); } else encoded_filename = build_unibyte_string (fname); } else encoded_filename = build_unibyte_string (fname); return encoded_filename; } static int is_unc_volume (const char *filename) { const char *ptr = filename; if (!IS_DIRECTORY_SEP (ptr[0]) || !IS_DIRECTORY_SEP (ptr[1]) || !ptr[2]) return 0; if (strpbrk (ptr + 2, "*?|<>\"\\/")) return 0; return 1; } /* Emulate the Posix unsetenv. */ int unsetenv (const char *name) { char *var; size_t name_len; if (name == NULL || *name == '\0' || strchr (name, '=') != NULL) { errno = EINVAL; return -1; } name_len = strlen (name); /* MS docs says an environment variable cannot be longer than 32K. */ if (name_len > 32767) { errno = ENOMEM; return 0; } /* It is safe to use 'alloca' with 32K size, since the stack is at least 2MB, and we set it to 8MB in the link command line. */ var = alloca (name_len + 2); strncpy (var, name, name_len); var[name_len++] = '='; var[name_len] = '\0'; return _putenv (var); } /* MS _putenv doesn't support removing a variable when the argument does not include the '=' character, so we fix that here. */ int sys_putenv (char *str) { const char *const name_end = strchr (str, '='); if (name_end == NULL) { /* Remove the variable from the environment. */ return unsetenv (str); } return _putenv (str); } #define REG_ROOT "SOFTWARE\\GNU\\Emacs" LPBYTE w32_get_resource (char *key, LPDWORD lpdwtype) { LPBYTE lpvalue; HKEY hrootkey = NULL; DWORD cbData; /* Check both the current user and the local machine to see if we have any resources. */ if (RegOpenKeyEx (HKEY_CURRENT_USER, REG_ROOT, 0, KEY_READ, &hrootkey) == ERROR_SUCCESS) { lpvalue = NULL; if (RegQueryValueEx (hrootkey, key, NULL, NULL, NULL, &cbData) == ERROR_SUCCESS && (lpvalue = xmalloc (cbData)) != NULL && RegQueryValueEx (hrootkey, key, NULL, lpdwtype, lpvalue, &cbData) == ERROR_SUCCESS) { RegCloseKey (hrootkey); return (lpvalue); } xfree (lpvalue); RegCloseKey (hrootkey); } if (RegOpenKeyEx (HKEY_LOCAL_MACHINE, REG_ROOT, 0, KEY_READ, &hrootkey) == ERROR_SUCCESS) { lpvalue = NULL; if (RegQueryValueEx (hrootkey, key, NULL, NULL, NULL, &cbData) == ERROR_SUCCESS && (lpvalue = xmalloc (cbData)) != NULL && RegQueryValueEx (hrootkey, key, NULL, lpdwtype, lpvalue, &cbData) == ERROR_SUCCESS) { RegCloseKey (hrootkey); return (lpvalue); } xfree (lpvalue); RegCloseKey (hrootkey); } return (NULL); } /* The argv[] array holds ANSI-encoded strings, and so this function works with ANS_encoded strings. */ void init_environment (char ** argv) { static const char * const tempdirs[] = { "$TMPDIR", "$TEMP", "$TMP", "c:/" }; int i; const int imax = ARRAYELTS (tempdirs); /* Implementation note: This function explicitly works with ANSI file names, not with UTF-8 encoded file names. This is because this function pushes variables into the Emacs's environment, and the environment variables are always assumed to be in the locale-specific encoding. Do NOT call any functions that accept UTF-8 file names from this function! */ /* Make sure they have a usable $TMPDIR. Many Emacs functions use temporary files and assume "/tmp" if $TMPDIR is unset, which will break on DOS/Windows. Refuse to work if we cannot find a directory, not even "c:/", usable for that purpose. */ for (i = 0; i < imax ; i++) { const char *tmp = tempdirs[i]; if (*tmp == '$') tmp = getenv (tmp + 1); /* Note that `access' can lie to us if the directory resides on a read-only filesystem, like CD-ROM or a write-protected floppy. The only way to be really sure is to actually create a file and see if it succeeds. But I think that's too much to ask. */ /* MSVCRT's _access crashes with D_OK, so we use our replacement. */ if (tmp && sys_access (tmp, D_OK) == 0) { char * var = alloca (strlen (tmp) + 8); sprintf (var, "TMPDIR=%s", tmp); _putenv (strdup (var)); break; } } if (i >= imax) cmd_error_internal (Fcons (Qerror, Fcons (build_string ("no usable temporary directories found!!"), Qnil)), "While setting TMPDIR: "); /* Check for environment variables and use registry settings if they don't exist. Fallback on default values where applicable. */ { int i; LPBYTE lpval; DWORD dwType; char locale_name[32]; char default_home[MAX_PATH]; int appdata = 0; static const struct env_entry { char * name; char * def_value; } dflt_envvars[] = { /* If the default value is NULL, we will use the value from the outside environment or the Registry, but will not push the variable into the Emacs environment if it is defined neither in the Registry nor in the outside environment. */ {"HOME", "C:/"}, {"PRELOAD_WINSOCK", NULL}, {"emacs_dir", "C:/emacs"}, {"EMACSLOADPATH", NULL}, {"SHELL", "cmdproxy.exe"}, /* perhaps it is somewhere on PATH */ {"EMACSDATA", NULL}, {"EMACSPATH", NULL}, {"INFOPATH", NULL}, {"EMACSDOC", NULL}, {"TERM", "cmd"}, {"LANG", NULL}, }; #define N_ENV_VARS ARRAYELTS (dflt_envvars) /* We need to copy dflt_envvars[] and work on the copy because we don't want the dumped Emacs to inherit the values of environment variables we saw during dumping (which could be on a different system). The defaults above must be left intact. */ struct env_entry env_vars[N_ENV_VARS]; for (i = 0; i < N_ENV_VARS; i++) env_vars[i] = dflt_envvars[i]; /* For backwards compatibility, check if a .emacs file exists in C:/ If not, then we can try to default to the appdata directory under the user's profile, which is more likely to be writable. */ if (sys_access ("C:/.emacs", F_OK) != 0) { HRESULT profile_result; /* Dynamically load ShGetFolderPath, as it won't exist on versions of Windows 95 and NT4 that have not been updated to include MSIE 5. */ ShGetFolderPath_fn get_folder_path; get_folder_path = (ShGetFolderPath_fn) GetProcAddress (GetModuleHandle ("shell32.dll"), "SHGetFolderPathA"); if (get_folder_path != NULL) { profile_result = get_folder_path (NULL, CSIDL_APPDATA, NULL, 0, default_home); /* If we can't get the appdata dir, revert to old behavior. */ if (profile_result == S_OK) { env_vars[0].def_value = default_home; appdata = 1; } } } /* Get default locale info and use it for LANG. */ if (GetLocaleInfo (LOCALE_USER_DEFAULT, LOCALE_SABBREVLANGNAME | LOCALE_USE_CP_ACP, locale_name, sizeof (locale_name))) { for (i = 0; i < N_ENV_VARS; i++) { if (strcmp (env_vars[i].name, "LANG") == 0) { env_vars[i].def_value = locale_name; break; } } } #define SET_ENV_BUF_SIZE (4 * MAX_PATH) /* to cover EMACSLOADPATH */ /* Treat emacs_dir specially: set it unconditionally based on our location. */ { char *p; char modname[MAX_PATH]; if (!GetModuleFileNameA (NULL, modname, MAX_PATH)) emacs_abort (); if ((p = _mbsrchr (modname, '\\')) == NULL) emacs_abort (); *p = 0; if ((p = _mbsrchr (modname, '\\')) /* From bin means installed Emacs, from src means uninstalled. */ && (xstrcasecmp (p, "\\bin") == 0 || xstrcasecmp (p, "\\src") == 0)) { char buf[SET_ENV_BUF_SIZE]; int within_build_tree = xstrcasecmp (p, "\\src") == 0; *p = 0; for (p = modname; *p; p = CharNext (p)) if (*p == '\\') *p = '/'; _snprintf (buf, sizeof (buf)-1, "emacs_dir=%s", modname); _putenv (strdup (buf)); /* If we are running from the Posix-like build tree, define SHELL to point to our own cmdproxy. The loop below will then disregard PATH_EXEC and the default value. */ if (within_build_tree) { _snprintf (buf, sizeof (buf) - 1, "SHELL=%s/nt/cmdproxy.exe", modname); _putenv (strdup (buf)); } } } for (i = 0; i < N_ENV_VARS; i++) { if (!getenv (env_vars[i].name)) { int dont_free = 0; char bufc[SET_ENV_BUF_SIZE]; if ((lpval = w32_get_resource (env_vars[i].name, &dwType)) == NULL /* Also ignore empty environment variables. */ || *lpval == 0) { xfree (lpval); dont_free = 1; if (strcmp (env_vars[i].name, "SHELL") == 0) { /* Look for cmdproxy.exe in every directory in PATH_EXEC. FIXME: This does not find cmdproxy in nt/ when we run uninstalled. */ char fname[MAX_PATH]; const char *pstart = PATH_EXEC, *pend; do { pend = _mbschr (pstart, ';'); if (!pend) pend = pstart + strlen (pstart); /* Be defensive against series of ;;; characters. */ if (pend > pstart) { strncpy (fname, pstart, pend - pstart); fname[pend - pstart] = '/'; strcpy (&fname[pend - pstart + 1], "cmdproxy.exe"); ExpandEnvironmentStrings ((LPSTR) fname, bufc, sizeof (bufc)); if (sys_access (bufc, F_OK) == 0) { lpval = bufc; dwType = REG_SZ; break; } } if (*pend) pstart = pend + 1; else pstart = pend; if (!*pstart) { /* If not found in any directory, use the default as the last resort. */ lpval = env_vars[i].def_value; dwType = REG_EXPAND_SZ; } } while (*pstart); } else { lpval = env_vars[i].def_value; dwType = REG_EXPAND_SZ; } if (strcmp (env_vars[i].name, "HOME") == 0 && !appdata) Vdelayed_warnings_list = Fcons (listn (CONSTYPE_HEAP, 2, intern ("initialization"), build_string ("Use of `C:\\.emacs' without defining `HOME'\n" "in the environment is deprecated, " "see `Windows HOME' in the Emacs manual.")), Vdelayed_warnings_list); } if (lpval) { char buf1[SET_ENV_BUF_SIZE], buf2[SET_ENV_BUF_SIZE]; if (dwType == REG_EXPAND_SZ) ExpandEnvironmentStrings ((LPSTR) lpval, buf1, sizeof (buf1)); else if (dwType == REG_SZ) strcpy (buf1, lpval); if (dwType == REG_EXPAND_SZ || dwType == REG_SZ) { _snprintf (buf2, sizeof (buf2)-1, "%s=%s", env_vars[i].name, buf1); _putenv (strdup (buf2)); } if (!dont_free) xfree (lpval); } } } } /* Rebuild system configuration to reflect invoking system. */ Vsystem_configuration = build_string (EMACS_CONFIGURATION); /* Another special case: on NT, the PATH variable is actually named "Path" although cmd.exe (perhaps NT itself) arranges for environment variable lookup and setting to be case insensitive. However, Emacs assumes a fully case sensitive environment, so we need to change "Path" to "PATH" to match the expectations of various elisp packages. We do this by the sneaky method of modifying the string in the C runtime environ entry. The same applies to COMSPEC. */ { char ** envp; for (envp = environ; *envp; envp++) if (_strnicmp (*envp, "PATH=", 5) == 0) memcpy (*envp, "PATH=", 5); else if (_strnicmp (*envp, "COMSPEC=", 8) == 0) memcpy (*envp, "COMSPEC=", 8); } /* Remember the initial working directory for getcwd. */ /* FIXME: Do we need to resolve possible symlinks in startup_dir? Does it matter anywhere in Emacs? */ if (w32_unicode_filenames) { wchar_t wstartup_dir[MAX_PATH]; if (!GetCurrentDirectoryW (MAX_PATH, wstartup_dir)) emacs_abort (); filename_from_utf16 (wstartup_dir, startup_dir); } else { char astartup_dir[MAX_PATH]; if (!GetCurrentDirectoryA (MAX_PATH, astartup_dir)) emacs_abort (); filename_from_ansi (astartup_dir, startup_dir); } { static char modname[MAX_PATH]; if (!GetModuleFileNameA (NULL, modname, MAX_PATH)) emacs_abort (); argv[0] = modname; } /* Determine if there is a middle mouse button, to allow parse_button to decide whether right mouse events should be mouse-2 or mouse-3. */ w32_num_mouse_buttons = GetSystemMetrics (SM_CMOUSEBUTTONS); init_user_info (); } /* Called from expand-file-name when default-directory is not a string. */ char * emacs_root_dir (void) { static char root_dir[MAX_UTF8_PATH]; const char *p; p = getenv ("emacs_dir"); if (p == NULL) emacs_abort (); filename_from_ansi (p, root_dir); root_dir[parse_root (root_dir, NULL)] = '\0'; dostounix_filename (root_dir); return root_dir; } #include /* Emulate gettimeofday (Ulrich Leodolter, 1/11/95). */ int gettimeofday (struct timeval *__restrict tv, struct timezone *__restrict tz) { struct _timeb tb; _ftime (&tb); tv->tv_sec = tb.time; tv->tv_usec = tb.millitm * 1000L; /* Implementation note: _ftime sometimes doesn't update the dstflag according to the new timezone when the system timezone is changed. We could fix that by using GetSystemTime and GetTimeZoneInformation, but that doesn't seem necessary, since Emacs always calls gettimeofday with the 2nd argument NULL (see current_emacs_time). */ if (tz) { tz->tz_minuteswest = tb.timezone; /* minutes west of Greenwich */ tz->tz_dsttime = tb.dstflag; /* type of dst correction */ } return 0; } /* Emulate fdutimens. */ /* Set the access and modification time stamps of FD (a.k.a. FILE) to be TIMESPEC[0] and TIMESPEC[1], respectively. FD must be either negative -- in which case it is ignored -- or a file descriptor that is open on FILE. If FD is nonnegative, then FILE can be NULL, which means use just futimes instead of utimes. If TIMESPEC is null, FAIL. Return 0 on success, -1 (setting errno) on failure. */ int fdutimens (int fd, char const *file, struct timespec const timespec[2]) { if (!timespec) { errno = ENOSYS; return -1; } if (fd < 0 && !file) { errno = EBADF; return -1; } /* _futime's prototype defines 2nd arg as having the type 'struct _utimbuf', while utime needs to accept 'struct utimbuf' for compatibility with Posix. So we need to use 2 different (but equivalent) types to avoid compiler warnings, sigh. */ if (fd >= 0) { struct _utimbuf _ut; _ut.actime = timespec[0].tv_sec; _ut.modtime = timespec[1].tv_sec; return _futime (fd, &_ut); } else { struct utimbuf ut; ut.actime = timespec[0].tv_sec; ut.modtime = timespec[1].tv_sec; /* Call 'utime', which is implemented below, not the MS library function, which fails on directories. */ return utime (file, &ut); } } /* ------------------------------------------------------------------------- */ /* IO support and wrapper functions for the Windows API. */ /* ------------------------------------------------------------------------- */ /* Place a wrapper around the MSVC version of ctime. It returns NULL on network directories, so we handle that case here. (Ulrich Leodolter, 1/11/95). */ char * sys_ctime (const time_t *t) { char *str = (char *) ctime (t); return (str ? str : "Sun Jan 01 00:00:00 1970"); } /* Emulate sleep...we could have done this with a define, but that would necessitate including windows.h in the files that used it. This is much easier. */ void sys_sleep (int seconds) { Sleep (seconds * 1000); } /* Internal MSVC functions for low-level descriptor munging */ extern int __cdecl _set_osfhnd (int fd, long h); extern int __cdecl _free_osfhnd (int fd); /* parallel array of private info on file handles */ filedesc fd_info [ MAXDESC ]; typedef struct volume_info_data { struct volume_info_data * next; /* time when info was obtained */ DWORD timestamp; /* actual volume info */ char * root_dir; DWORD serialnum; DWORD maxcomp; DWORD flags; char * name; char * type; } volume_info_data; /* Global referenced by various functions. */ static volume_info_data volume_info; /* Vector to indicate which drives are local and fixed (for which cached data never expires). */ static BOOL fixed_drives[26]; /* Consider cached volume information to be stale if older than 10s, at least for non-local drives. Info for fixed drives is never stale. */ #define DRIVE_INDEX( c ) ( (c) <= 'Z' ? (c) - 'A' : (c) - 'a' ) #define VOLINFO_STILL_VALID( root_dir, info ) \ ( ( isalpha (root_dir[0]) && \ fixed_drives[ DRIVE_INDEX (root_dir[0]) ] ) \ || GetTickCount () - info->timestamp < 10000 ) /* Cache support functions. */ /* Simple linked list with linear search is sufficient. */ static volume_info_data *volume_cache = NULL; static volume_info_data * lookup_volume_info (char * root_dir) { volume_info_data * info; for (info = volume_cache; info; info = info->next) if (xstrcasecmp (info->root_dir, root_dir) == 0) break; return info; } static void add_volume_info (char * root_dir, volume_info_data * info) { info->root_dir = xstrdup (root_dir); unixtodos_filename (info->root_dir); info->next = volume_cache; volume_cache = info; } /* Wrapper for GetVolumeInformation, which uses caching to avoid performance penalty (~2ms on 486 for local drives, 7.5ms for local cdrom drive, ~5-10ms or more for remote drives on LAN). */ static volume_info_data * GetCachedVolumeInformation (char * root_dir) { volume_info_data * info; char default_root[ MAX_UTF8_PATH ]; char name[MAX_PATH+1]; char type[MAX_PATH+1]; /* NULL for root_dir means use root from current directory. */ if (root_dir == NULL) { if (w32_unicode_filenames) { wchar_t curdirw[MAX_PATH]; if (GetCurrentDirectoryW (MAX_PATH, curdirw) == 0) return NULL; filename_from_utf16 (curdirw, default_root); } else { char curdira[MAX_PATH]; if (GetCurrentDirectoryA (MAX_PATH, curdira) == 0) return NULL; filename_from_ansi (curdira, default_root); } parse_root (default_root, (const char **)&root_dir); *root_dir = 0; root_dir = default_root; } /* Local fixed drives can be cached permanently. Removable drives cannot be cached permanently, since the volume name and serial number (if nothing else) can change. Remote drives should be treated as if they are removable, since there is no sure way to tell whether they are or not. Also, the UNC association of drive letters mapped to remote volumes can be changed at any time (even by other processes) without notice. As a compromise, so we can benefit from caching info for remote volumes, we use a simple expiry mechanism to invalidate cache entries that are more than ten seconds old. */ #if 0 /* No point doing this, because WNetGetConnection is even slower than GetVolumeInformation, consistently taking ~50ms on a 486 (FWIW, GetDriveType is about the only call of this type which does not involve network access, and so is extremely quick). */ /* Map drive letter to UNC if remote. */ if (isalpha (root_dir[0]) && !fixed[DRIVE_INDEX (root_dir[0])]) { char remote_name[ 256 ]; char drive[3] = { root_dir[0], ':' }; if (WNetGetConnection (drive, remote_name, sizeof (remote_name)) == NO_ERROR) /* do something */ ; } #endif info = lookup_volume_info (root_dir); if (info == NULL || ! VOLINFO_STILL_VALID (root_dir, info)) { DWORD serialnum; DWORD maxcomp; DWORD flags; /* Info is not cached, or is stale. */ if (w32_unicode_filenames) { wchar_t root_w[MAX_PATH]; wchar_t name_w[MAX_PATH+1]; wchar_t type_w[MAX_PATH+1]; filename_to_utf16 (root_dir, root_w); if (!GetVolumeInformationW (root_w, name_w, sizeof (name_w), &serialnum, &maxcomp, &flags, type_w, sizeof (type_w))) return NULL; /* Hmm... not really 100% correct, as these 2 are not file names... */ filename_from_utf16 (name_w, name); filename_from_utf16 (type_w, type); } else { char root_a[MAX_PATH]; char name_a[MAX_PATH+1]; char type_a[MAX_PATH+1]; filename_to_ansi (root_dir, root_a); if (!GetVolumeInformationA (root_a, name_a, sizeof (name_a), &serialnum, &maxcomp, &flags, type_a, sizeof (type_a))) return NULL; filename_from_ansi (name_a, name); filename_from_ansi (type_a, type); } /* Cache the volume information for future use, overwriting existing entry if present. */ if (info == NULL) { info = xmalloc (sizeof (volume_info_data)); add_volume_info (root_dir, info); } else { xfree (info->name); xfree (info->type); } info->name = xstrdup (name); unixtodos_filename (info->name); info->serialnum = serialnum; info->maxcomp = maxcomp; info->flags = flags; info->type = xstrdup (type); info->timestamp = GetTickCount (); } return info; } /* Get information on the volume where NAME is held; set path pointer to start of pathname in NAME (past UNC header\volume header if present), if pPath is non-NULL. Note: if NAME includes symlinks, the information is for the volume of the symlink, not of its target. That's because, even though GetVolumeInformation returns information about the symlink target of its argument, we only pass the root directory to GetVolumeInformation, not the full NAME. */ static int get_volume_info (const char * name, const char ** pPath) { char temp[MAX_UTF8_PATH]; char *rootname = NULL; /* default to current volume */ volume_info_data * info; int root_len = parse_root (name, pPath); if (name == NULL) return FALSE; /* Copy the root name of the volume, if given. */ if (root_len) { strncpy (temp, name, root_len); temp[root_len] = '\0'; unixtodos_filename (temp); rootname = temp; } info = GetCachedVolumeInformation (rootname); if (info != NULL) { /* Set global referenced by other functions. */ volume_info = *info; return TRUE; } return FALSE; } /* Determine if volume is FAT format (ie. only supports short 8.3 names); also set path pointer to start of pathname in name, if pPath is non-NULL. */ static int is_fat_volume (const char * name, const char ** pPath) { if (get_volume_info (name, pPath)) return (volume_info.maxcomp == 12); return FALSE; } /* Convert all slashes in a filename to backslashes, and map filename to a valid 8.3 name if necessary. The result is a pointer to a static buffer, so CAVEAT EMPTOR! */ const char * map_w32_filename (const char * name, const char ** pPath) { static char shortname[MAX_UTF8_PATH]; char * str = shortname; char c; char * path; const char * save_name = name; if (strlen (name) >= sizeof (shortname)) { /* Return a filename which will cause callers to fail. */ strcpy (shortname, "?"); return shortname; } if (!fatal_error_in_progress /* disable fancy processing during crash */ && is_fat_volume (name, (const char **)&path)) /* truncate to 8.3 */ { register int left = 8; /* maximum number of chars in part */ register int extn = 0; /* extension added? */ register int dots = 2; /* maximum number of dots allowed */ while (name < path) *str++ = *name++; /* skip past UNC header */ while ((c = *name++)) { switch ( c ) { case ':': case '\\': case '/': *str++ = (c == ':' ? ':' : '\\'); extn = 0; /* reset extension flags */ dots = 2; /* max 2 dots */ left = 8; /* max length 8 for main part */ break; case '.': if ( dots ) { /* Convert path components of the form .xxx to _xxx, but leave . and .. as they are. This allows .emacs to be read as _emacs, for example. */ if (! *name || *name == '.' || IS_DIRECTORY_SEP (*name)) { *str++ = '.'; dots--; } else { *str++ = '_'; left--; dots = 0; } } else if ( !extn ) { *str++ = '.'; extn = 1; /* we've got an extension */ left = 3; /* 3 chars in extension */ } else { /* any embedded dots after the first are converted to _ */ *str++ = '_'; } break; case '~': case '#': /* don't lose these, they're important */ if ( ! left ) str[-1] = c; /* replace last character of part */ /* FALLTHRU */ default: if ( left && 'A' <= c && c <= 'Z' ) { *str++ = tolower (c); /* map to lower case (looks nicer) */ left--; dots = 0; /* started a path component */ } break; } } *str = '\0'; } else { strcpy (shortname, name); unixtodos_filename (shortname); } if (pPath) *pPath = shortname + (path - save_name); return shortname; } static int is_exec (const char * name) { char * p = strrchr (name, '.'); return (p != NULL && (xstrcasecmp (p, ".exe") == 0 || xstrcasecmp (p, ".com") == 0 || xstrcasecmp (p, ".bat") == 0 || xstrcasecmp (p, ".cmd") == 0)); } /* Emulate the Unix directory procedures opendir, closedir, and readdir. We rename them to sys_* names because some versions of MinGW startup code call opendir and readdir to glob wildcards, and the code that calls them doesn't grok UTF-8 encoded file names we produce in dirent->d_name[]. */ struct dirent dir_static; /* simulated directory contents */ static HANDLE dir_find_handle = INVALID_HANDLE_VALUE; static int dir_is_fat; static char dir_pathname[MAX_UTF8_PATH]; static WIN32_FIND_DATAW dir_find_data_w; static WIN32_FIND_DATAA dir_find_data_a; #define DIR_FIND_DATA_W 1 #define DIR_FIND_DATA_A 2 static int last_dir_find_data = -1; /* Support shares on a network resource as subdirectories of a read-only root directory. */ static HANDLE wnet_enum_handle = INVALID_HANDLE_VALUE; static HANDLE open_unc_volume (const char *); static void *read_unc_volume (HANDLE, wchar_t *, char *, int); static void close_unc_volume (HANDLE); DIR * sys_opendir (const char *filename) { DIR *dirp; /* Opening is done by FindFirstFile. However, a read is inherent to this operation, so we defer the open until read time. */ if (dir_find_handle != INVALID_HANDLE_VALUE) return NULL; if (wnet_enum_handle != INVALID_HANDLE_VALUE) return NULL; /* Note: We don't support traversal of UNC volumes via symlinks. Doing so would mean punishing 99.99% of use cases by resolving all the possible symlinks in FILENAME, recursively. */ if (is_unc_volume (filename)) { wnet_enum_handle = open_unc_volume (filename); if (wnet_enum_handle == INVALID_HANDLE_VALUE) return NULL; } if (!(dirp = (DIR *) malloc (sizeof (DIR)))) return NULL; dirp->dd_fd = 0; dirp->dd_loc = 0; dirp->dd_size = 0; strncpy (dir_pathname, map_w32_filename (filename, NULL), MAX_UTF8_PATH - 1); dir_pathname[MAX_UTF8_PATH - 1] = '\0'; /* Note: We don't support symlinks to file names on FAT volumes. Doing so would mean punishing 99.99% of use cases by resolving all the possible symlinks in FILENAME, recursively. */ dir_is_fat = is_fat_volume (filename, NULL); return dirp; } void sys_closedir (DIR *dirp) { /* If we have a find-handle open, close it. */ if (dir_find_handle != INVALID_HANDLE_VALUE) { FindClose (dir_find_handle); dir_find_handle = INVALID_HANDLE_VALUE; } else if (wnet_enum_handle != INVALID_HANDLE_VALUE) { close_unc_volume (wnet_enum_handle); wnet_enum_handle = INVALID_HANDLE_VALUE; } xfree ((char *) dirp); } struct dirent * sys_readdir (DIR *dirp) { int downcase = !NILP (Vw32_downcase_file_names); if (wnet_enum_handle != INVALID_HANDLE_VALUE) { if (!read_unc_volume (wnet_enum_handle, dir_find_data_w.cFileName, dir_find_data_a.cFileName, MAX_PATH)) return NULL; } /* If we aren't dir_finding, do a find-first, otherwise do a find-next. */ else if (dir_find_handle == INVALID_HANDLE_VALUE) { char filename[MAX_UTF8_PATH]; int ln; bool last_slash = true; /* Note: We don't need to worry about dir_pathname being longer than MAX_UTF8_PATH, as sys_opendir already took care of that when it called map_w32_filename: that function will put a "?" in its return value in that case, thus failing all the calls below. */ strcpy (filename, dir_pathname); ln = strlen (filename); if (!IS_DIRECTORY_SEP (filename[ln - 1])) last_slash = false; /* Note: No need to resolve symlinks in FILENAME, because FindFirst opens the directory that is the target of a symlink. */ if (w32_unicode_filenames) { wchar_t fnw[MAX_PATH + 2]; filename_to_utf16 (filename, fnw); if (!last_slash) wcscat (fnw, L"\\"); wcscat (fnw, L"*"); dir_find_handle = FindFirstFileW (fnw, &dir_find_data_w); } else { char fna[MAX_PATH + 2]; filename_to_ansi (filename, fna); if (!last_slash) strcat (fna, "\\"); strcat (fna, "*"); /* If FILENAME is not representable by the current ANSI codepage, we don't want FindFirstFileA to interpret the '?' characters as a wildcard. */ if (_mbspbrk (fna, "?")) dir_find_handle = INVALID_HANDLE_VALUE; else dir_find_handle = FindFirstFileA (fna, &dir_find_data_a); } if (dir_find_handle == INVALID_HANDLE_VALUE) { /* Any changes in the value of errno here should be in sync with what directory_files_internal does when it calls readdir. */ switch (GetLastError ()) { /* Windows uses this value when FindFirstFile finds no files that match the wildcard. This is not supposed to happen, since our wildcard is "*", but just in case, if there's some weird empty directory with not even "." and ".." entries... */ case ERROR_FILE_NOT_FOUND: errno = 0; /* FALLTHRU */ default: break; case ERROR_ACCESS_DENIED: case ERROR_NETWORK_ACCESS_DENIED: errno = EACCES; break; case ERROR_PATH_NOT_FOUND: case ERROR_INVALID_DRIVE: case ERROR_NOT_READY: case ERROR_BAD_NETPATH: case ERROR_BAD_NET_NAME: errno = ENOENT; break; } return NULL; } } else if (w32_unicode_filenames) { if (!FindNextFileW (dir_find_handle, &dir_find_data_w)) { errno = 0; return NULL; } } else { if (!FindNextFileA (dir_find_handle, &dir_find_data_a)) { errno = 0; return NULL; } } /* Emacs never uses this value, so don't bother making it match value returned by stat(). */ dir_static.d_ino = 1; if (w32_unicode_filenames) { if (downcase || dir_is_fat) { wchar_t tem[MAX_PATH]; wcscpy (tem, dir_find_data_w.cFileName); CharLowerW (tem); filename_from_utf16 (tem, dir_static.d_name); } else filename_from_utf16 (dir_find_data_w.cFileName, dir_static.d_name); last_dir_find_data = DIR_FIND_DATA_W; } else { char tem[MAX_PATH]; /* If the file name in cFileName[] includes `?' characters, it means the original file name used characters that cannot be represented by the current ANSI codepage. To avoid total lossage, retrieve the short 8+3 alias of the long file name. */ if (_mbspbrk (dir_find_data_a.cFileName, "?")) { strcpy (tem, dir_find_data_a.cAlternateFileName); /* 8+3 aliases are returned in all caps, which could break various alists that look at filenames' extensions. */ downcase = 1; } else if (downcase || dir_is_fat) strcpy (tem, dir_find_data_a.cFileName); else filename_from_ansi (dir_find_data_a.cFileName, dir_static.d_name); if (downcase || dir_is_fat) { _mbslwr (tem); filename_from_ansi (tem, dir_static.d_name); } last_dir_find_data = DIR_FIND_DATA_A; } dir_static.d_namlen = strlen (dir_static.d_name); dir_static.d_reclen = sizeof (struct dirent) - MAX_UTF8_PATH + 3 + dir_static.d_namlen - dir_static.d_namlen % 4; return &dir_static; } static HANDLE open_unc_volume (const char *path) { const char *fn = map_w32_filename (path, NULL); DWORD result; HANDLE henum; if (w32_unicode_filenames) { NETRESOURCEW nrw; wchar_t fnw[MAX_PATH]; nrw.dwScope = RESOURCE_GLOBALNET; nrw.dwType = RESOURCETYPE_DISK; nrw.dwDisplayType = RESOURCEDISPLAYTYPE_SERVER; nrw.dwUsage = RESOURCEUSAGE_CONTAINER; nrw.lpLocalName = NULL; filename_to_utf16 (fn, fnw); nrw.lpRemoteName = fnw; nrw.lpComment = NULL; nrw.lpProvider = NULL; result = WNetOpenEnumW (RESOURCE_GLOBALNET, RESOURCETYPE_DISK, RESOURCEUSAGE_CONNECTABLE, &nrw, &henum); } else { NETRESOURCEA nra; char fna[MAX_PATH]; nra.dwScope = RESOURCE_GLOBALNET; nra.dwType = RESOURCETYPE_DISK; nra.dwDisplayType = RESOURCEDISPLAYTYPE_SERVER; nra.dwUsage = RESOURCEUSAGE_CONTAINER; nra.lpLocalName = NULL; filename_to_ansi (fn, fna); nra.lpRemoteName = fna; nra.lpComment = NULL; nra.lpProvider = NULL; result = WNetOpenEnumA (RESOURCE_GLOBALNET, RESOURCETYPE_DISK, RESOURCEUSAGE_CONNECTABLE, &nra, &henum); } if (result == NO_ERROR) return henum; else { /* Make sure directory_files_internal reports a sensible error. */ errno = ENOENT; return INVALID_HANDLE_VALUE; } } static void * read_unc_volume (HANDLE henum, wchar_t *fname_w, char *fname_a, int size) { DWORD count; int result; char *buffer; DWORD bufsize = 512; void *retval; count = 1; if (w32_unicode_filenames) { wchar_t *ptrw; bufsize *= 2; buffer = alloca (bufsize); result = WNetEnumResourceW (henum, &count, buffer, &bufsize); if (result != NO_ERROR) return NULL; /* WNetEnumResource returns \\resource\share...skip forward to "share". */ ptrw = ((LPNETRESOURCEW) buffer)->lpRemoteName; ptrw += 2; while (*ptrw && *ptrw != L'/' && *ptrw != L'\\') ptrw++; ptrw++; wcsncpy (fname_w, ptrw, size); retval = fname_w; } else { int dbcs_p = max_filename_mbslen () > 1; char *ptra; buffer = alloca (bufsize); result = WNetEnumResourceA (henum, &count, buffer, &bufsize); if (result != NO_ERROR) return NULL; ptra = ((LPNETRESOURCEA) buffer)->lpRemoteName; ptra += 2; if (!dbcs_p) while (*ptra && !IS_DIRECTORY_SEP (*ptra)) ptra++; else { while (*ptra && !IS_DIRECTORY_SEP (*ptra)) ptra = CharNextExA (file_name_codepage, ptra, 0); } ptra++; strncpy (fname_a, ptra, size); retval = fname_a; } return retval; } static void close_unc_volume (HANDLE henum) { if (henum != INVALID_HANDLE_VALUE) WNetCloseEnum (henum); } static DWORD unc_volume_file_attributes (const char *path) { HANDLE henum; DWORD attrs; henum = open_unc_volume (path); if (henum == INVALID_HANDLE_VALUE) return -1; attrs = FILE_ATTRIBUTE_READONLY | FILE_ATTRIBUTE_DIRECTORY; close_unc_volume (henum); return attrs; } /* Ensure a network connection is authenticated. */ static void logon_network_drive (const char *path) { char share[MAX_UTF8_PATH]; int n_slashes; char drive[4]; UINT drvtype; char *p; DWORD val; if (IS_DIRECTORY_SEP (path[0]) && IS_DIRECTORY_SEP (path[1])) drvtype = DRIVE_REMOTE; else if (path[0] == '\0' || path[1] != ':') drvtype = GetDriveType (NULL); else { drive[0] = path[0]; drive[1] = ':'; drive[2] = '\\'; drive[3] = '\0'; drvtype = GetDriveType (drive); } /* Only logon to networked drives. */ if (drvtype != DRIVE_REMOTE) return; n_slashes = 2; strncpy (share, path, MAX_UTF8_PATH); /* Truncate to just server and share name. */ for (p = share + 2; *p && p < share + MAX_UTF8_PATH; p++) { if (IS_DIRECTORY_SEP (*p) && ++n_slashes > 3) { *p = '\0'; break; } } if (w32_unicode_filenames) { NETRESOURCEW resourcew; wchar_t share_w[MAX_PATH]; resourcew.dwScope = RESOURCE_GLOBALNET; resourcew.dwType = RESOURCETYPE_DISK; resourcew.dwDisplayType = RESOURCEDISPLAYTYPE_SHARE; resourcew.dwUsage = RESOURCEUSAGE_CONTAINER; resourcew.lpLocalName = NULL; filename_to_utf16 (share, share_w); resourcew.lpRemoteName = share_w; resourcew.lpProvider = NULL; val = WNetAddConnection2W (&resourcew, NULL, NULL, CONNECT_INTERACTIVE); } else { NETRESOURCEA resourcea; char share_a[MAX_PATH]; resourcea.dwScope = RESOURCE_GLOBALNET; resourcea.dwType = RESOURCETYPE_DISK; resourcea.dwDisplayType = RESOURCEDISPLAYTYPE_SHARE; resourcea.dwUsage = RESOURCEUSAGE_CONTAINER; resourcea.lpLocalName = NULL; filename_to_ansi (share, share_a); resourcea.lpRemoteName = share_a; resourcea.lpProvider = NULL; val = WNetAddConnection2A (&resourcea, NULL, NULL, CONNECT_INTERACTIVE); } switch (val) { case NO_ERROR: case ERROR_ALREADY_ASSIGNED: break; case ERROR_ACCESS_DENIED: case ERROR_LOGON_FAILURE: errno = EACCES; break; case ERROR_BUSY: errno = EAGAIN; break; case ERROR_BAD_NET_NAME: case ERROR_NO_NET_OR_BAD_PATH: case ERROR_NO_NETWORK: case ERROR_CANCELLED: default: errno = ENOENT; break; } } /* Emulate faccessat(2). */ int faccessat (int dirfd, const char * path, int mode, int flags) { DWORD attributes; if (dirfd != AT_FDCWD && !(IS_DIRECTORY_SEP (path[0]) || IS_DEVICE_SEP (path[1]))) { errno = EBADF; return -1; } /* MSVCRT implementation of 'access' doesn't recognize D_OK, and its newer versions blow up when passed D_OK. */ path = map_w32_filename (path, NULL); /* If the last element of PATH is a symlink, we need to resolve it to get the attributes of its target file. Note: any symlinks in PATH elements other than the last one are transparently resolved by GetFileAttributes below. */ if ((volume_info.flags & FILE_SUPPORTS_REPARSE_POINTS) != 0 && (flags & AT_SYMLINK_NOFOLLOW) == 0) path = chase_symlinks (path); if (w32_unicode_filenames) { wchar_t path_w[MAX_PATH]; filename_to_utf16 (path, path_w); attributes = GetFileAttributesW (path_w); } else { char path_a[MAX_PATH]; filename_to_ansi (path, path_a); attributes = GetFileAttributesA (path_a); } if (attributes == -1) { DWORD w32err = GetLastError (); switch (w32err) { case ERROR_INVALID_NAME: case ERROR_BAD_PATHNAME: if (is_unc_volume (path)) { attributes = unc_volume_file_attributes (path); if (attributes == -1) { errno = EACCES; return -1; } goto check_attrs; } /* FALLTHROUGH */ case ERROR_FILE_NOT_FOUND: case ERROR_BAD_NETPATH: errno = ENOENT; break; default: errno = EACCES; break; } return -1; } check_attrs: if ((mode & X_OK) != 0 && !(is_exec (path) || (attributes & FILE_ATTRIBUTE_DIRECTORY) != 0)) { errno = EACCES; return -1; } if ((mode & W_OK) != 0 && (attributes & FILE_ATTRIBUTE_READONLY) != 0) { errno = EACCES; return -1; } if ((mode & D_OK) != 0 && (attributes & FILE_ATTRIBUTE_DIRECTORY) == 0) { errno = EACCES; return -1; } return 0; } /* A special test for DIRNAME being a directory accessible by the current user. This is needed because the security permissions in directory's ACLs are not visible in the Posix-style mode bits returned by 'stat' and in attributes returned by GetFileAttributes. So a directory would seem like it's readable by the current user, but will in fact error out with EACCES when they actually try. */ int w32_accessible_directory_p (const char *dirname, ptrdiff_t dirlen) { char pattern[MAX_UTF8_PATH]; bool last_slash = dirlen > 0 && IS_DIRECTORY_SEP (dirname[dirlen - 1]); HANDLE dh; /* Network volumes need a different reading method. */ if (is_unc_volume (dirname)) { void *read_result = NULL; wchar_t fnw[MAX_PATH]; char fna[MAX_PATH]; dh = open_unc_volume (dirname); if (dh != INVALID_HANDLE_VALUE) { read_result = read_unc_volume (dh, fnw, fna, MAX_PATH); close_unc_volume (dh); } /* Treat empty volumes as accessible. */ return read_result != NULL || GetLastError () == ERROR_NO_MORE_ITEMS; } /* Note: map_w32_filename makes sure DIRNAME is not longer than MAX_UTF8_PATH. */ strcpy (pattern, map_w32_filename (dirname, NULL)); /* Note: No need to resolve symlinks in FILENAME, because FindFirst opens the directory that is the target of a symlink. */ if (w32_unicode_filenames) { wchar_t pat_w[MAX_PATH + 2]; WIN32_FIND_DATAW dfd_w; filename_to_utf16 (pattern, pat_w); if (!last_slash) wcscat (pat_w, L"\\"); wcscat (pat_w, L"*"); dh = FindFirstFileW (pat_w, &dfd_w); } else { char pat_a[MAX_PATH + 2]; WIN32_FIND_DATAA dfd_a; filename_to_ansi (pattern, pat_a); if (!last_slash) strcpy (pat_a, "\\"); strcat (pat_a, "*"); /* In case DIRNAME cannot be expressed in characters from the current ANSI codepage. */ if (_mbspbrk (pat_a, "?")) dh = INVALID_HANDLE_VALUE; else dh = FindFirstFileA (pat_a, &dfd_a); } if (dh == INVALID_HANDLE_VALUE) return 0; FindClose (dh); return 1; } /* A version of 'access' to be used locally with file names in locale-specific encoding. Does not resolve symlinks and does not support file names on FAT12 and FAT16 volumes, but that's OK, since we only invoke this function for files inside the Emacs source or installation tree, on directories (so any symlinks should have the directory bit set), and on short file names such as "C:/.emacs". */ static int sys_access (const char *fname, int mode) { char fname_copy[MAX_PATH], *p; DWORD attributes; strcpy (fname_copy, fname); /* Do the equivalent of unixtodos_filename. */ for (p = fname_copy; *p; p = CharNext (p)) if (*p == '/') *p = '\\'; if ((attributes = GetFileAttributesA (fname_copy)) == -1) { DWORD w32err = GetLastError (); switch (w32err) { case ERROR_INVALID_NAME: case ERROR_BAD_PATHNAME: case ERROR_FILE_NOT_FOUND: case ERROR_BAD_NETPATH: errno = ENOENT; break; default: errno = EACCES; break; } return -1; } if ((mode & X_OK) != 0 && !(is_exec (fname_copy) || (attributes & FILE_ATTRIBUTE_DIRECTORY) != 0)) { errno = EACCES; return -1; } if ((mode & W_OK) != 0 && (attributes & FILE_ATTRIBUTE_READONLY) != 0) { errno = EACCES; return -1; } if ((mode & D_OK) != 0 && (attributes & FILE_ATTRIBUTE_DIRECTORY) == 0) { errno = EACCES; return -1; } return 0; } /* Shadow some MSVC runtime functions to map requests for long filenames to reasonable short names if necessary. This was originally added to permit running Emacs on NT 3.1 on a FAT partition, which doesn't support long file names. */ int sys_chdir (const char * path) { path = map_w32_filename (path, NULL); if (w32_unicode_filenames) { wchar_t newdir_w[MAX_PATH]; if (filename_to_utf16 (path, newdir_w) == 0) return _wchdir (newdir_w); return -1; } else { char newdir_a[MAX_PATH]; if (filename_to_ansi (path, newdir_a) == 0) return _chdir (newdir_a); return -1; } } int sys_chmod (const char * path, int mode) { path = chase_symlinks (map_w32_filename (path, NULL)); if (w32_unicode_filenames) { wchar_t path_w[MAX_PATH]; filename_to_utf16 (path, path_w); return _wchmod (path_w, mode); } else { char path_a[MAX_PATH]; filename_to_ansi (path, path_a); return _chmod (path_a, mode); } } int sys_creat (const char * path, int mode) { path = map_w32_filename (path, NULL); if (w32_unicode_filenames) { wchar_t path_w[MAX_PATH]; filename_to_utf16 (path, path_w); return _wcreat (path_w, mode); } else { char path_a[MAX_PATH]; filename_to_ansi (path, path_a); return _creat (path_a, mode); } } FILE * sys_fopen (const char * path, const char * mode) { int fd; int oflag; const char * mode_save = mode; /* Force all file handles to be non-inheritable. This is necessary to ensure child processes don't unwittingly inherit handles that might prevent future file access. */ if (mode[0] == 'r') oflag = O_RDONLY; else if (mode[0] == 'w' || mode[0] == 'a') oflag = O_WRONLY | O_CREAT | O_TRUNC; else return NULL; /* Only do simplistic option parsing. */ while (*++mode) if (mode[0] == '+') { oflag &= ~(O_RDONLY | O_WRONLY); oflag |= O_RDWR; } else if (mode[0] == 'b') { oflag &= ~O_TEXT; oflag |= O_BINARY; } else if (mode[0] == 't') { oflag &= ~O_BINARY; oflag |= O_TEXT; } else break; path = map_w32_filename (path, NULL); if (w32_unicode_filenames) { wchar_t path_w[MAX_PATH]; filename_to_utf16 (path, path_w); fd = _wopen (path_w, oflag | _O_NOINHERIT, 0644); } else { char path_a[MAX_PATH]; filename_to_ansi (path, path_a); fd = _open (path_a, oflag | _O_NOINHERIT, 0644); } if (fd < 0) return NULL; return _fdopen (fd, mode_save); } /* This only works on NTFS volumes, but is useful to have. */ int sys_link (const char * old, const char * new) { HANDLE fileh; int result = -1; char oldname[MAX_UTF8_PATH], newname[MAX_UTF8_PATH]; wchar_t oldname_w[MAX_PATH]; char oldname_a[MAX_PATH]; if (old == NULL || new == NULL) { errno = ENOENT; return -1; } strcpy (oldname, map_w32_filename (old, NULL)); strcpy (newname, map_w32_filename (new, NULL)); if (w32_unicode_filenames) { filename_to_utf16 (oldname, oldname_w); fileh = CreateFileW (oldname_w, 0, 0, NULL, OPEN_EXISTING, FILE_FLAG_BACKUP_SEMANTICS, NULL); } else { filename_to_ansi (oldname, oldname_a); fileh = CreateFileA (oldname_a, 0, 0, NULL, OPEN_EXISTING, FILE_FLAG_BACKUP_SEMANTICS, NULL); } if (fileh != INVALID_HANDLE_VALUE) { int wlen; /* Confusingly, the "alternate" stream name field does not apply when restoring a hard link, and instead contains the actual stream data for the link (ie. the name of the link to create). The WIN32_STREAM_ID structure before the cStreamName field is the stream header, which is then immediately followed by the stream data. */ struct { WIN32_STREAM_ID wid; WCHAR wbuffer[MAX_PATH]; /* extra space for link name */ } data; /* We used to pass MB_PRECOMPOSED as the 2nd arg here, but MSDN indicates that flag is unsupported for CP_UTF8, and OTOH says it is the default anyway. */ wlen = pMultiByteToWideChar (CP_UTF8, 0, newname, -1, data.wid.cStreamName, MAX_PATH); if (wlen > 0) { LPVOID context = NULL; DWORD wbytes = 0; data.wid.dwStreamId = BACKUP_LINK; data.wid.dwStreamAttributes = 0; data.wid.Size.LowPart = wlen * sizeof (WCHAR); data.wid.Size.HighPart = 0; data.wid.dwStreamNameSize = 0; if (BackupWrite (fileh, (LPBYTE)&data, offsetof (WIN32_STREAM_ID, cStreamName) + data.wid.Size.LowPart, &wbytes, FALSE, FALSE, &context) && BackupWrite (fileh, NULL, 0, &wbytes, TRUE, FALSE, &context)) { /* succeeded */ result = 0; } else { DWORD err = GetLastError (); DWORD attributes; switch (err) { case ERROR_ACCESS_DENIED: /* This is what happens when OLDNAME is a directory, since Windows doesn't support hard links to directories. Posix says to set errno to EPERM in that case. */ if (w32_unicode_filenames) attributes = GetFileAttributesW (oldname_w); else attributes = GetFileAttributesA (oldname_a); if (attributes != -1 && (attributes & FILE_ATTRIBUTE_DIRECTORY) != 0) errno = EPERM; else if (attributes == -1 && is_unc_volume (oldname) && unc_volume_file_attributes (oldname) != -1) errno = EPERM; else errno = EACCES; break; case ERROR_TOO_MANY_LINKS: errno = EMLINK; break; case ERROR_NOT_SAME_DEVICE: errno = EXDEV; break; default: errno = EINVAL; break; } } } CloseHandle (fileh); } else errno = ENOENT; return result; } int sys_mkdir (const char * path) { path = map_w32_filename (path, NULL); if (w32_unicode_filenames) { wchar_t path_w[MAX_PATH]; filename_to_utf16 (path, path_w); return _wmkdir (path_w); } else { char path_a[MAX_PATH]; filename_to_ansi (path, path_a); return _mkdir (path_a); } } int sys_open (const char * path, int oflag, int mode) { const char* mpath = map_w32_filename (path, NULL); int res = -1; if (w32_unicode_filenames) { wchar_t mpath_w[MAX_PATH]; filename_to_utf16 (mpath, mpath_w); /* If possible, try to open file without _O_CREAT, to be able to write to existing hidden and system files. Force all file handles to be non-inheritable. */ if ((oflag & (_O_CREAT | _O_EXCL)) != (_O_CREAT | _O_EXCL)) res = _wopen (mpath_w, (oflag & ~_O_CREAT) | _O_NOINHERIT, mode); if (res < 0) res = _wopen (mpath_w, oflag | _O_NOINHERIT, mode); } else { char mpath_a[MAX_PATH]; filename_to_ansi (mpath, mpath_a); if ((oflag & (_O_CREAT | _O_EXCL)) != (_O_CREAT | _O_EXCL)) res = _open (mpath_a, (oflag & ~_O_CREAT) | _O_NOINHERIT, mode); if (res < 0) res = _open (mpath_a, oflag | _O_NOINHERIT, mode); } return res; } /* Implementation of mkostemp for MS-Windows, to avoid race conditions when using mktemp. Standard algorithm for generating a temporary file name seems to be use pid or tid with a letter on the front (in place of the 6 X's) and cycle through the letters to find a unique name. We extend that to allow any reasonable character as the first of the 6 X's, so that the number of simultaneously used temporary files will be greater. */ int mkostemp (char * template, int flags) { char * p; int i, fd = -1; unsigned uid = GetCurrentThreadId (); int save_errno = errno; static char first_char[] = "abcdefghijklmnopqrstuvwyz0123456789!%-_@#"; errno = EINVAL; if (template == NULL) return -1; p = template + strlen (template); i = 5; /* replace up to the last 5 X's with uid in decimal */ while (--p >= template && p[0] == 'X' && --i >= 0) { p[0] = '0' + uid % 10; uid /= 10; } if (i < 0 && p[0] == 'X') { i = 0; do { p[0] = first_char[i]; if ((fd = sys_open (template, flags | _O_CREAT | _O_EXCL | _O_RDWR, S_IRUSR | S_IWUSR)) >= 0 || errno != EEXIST) { if (fd >= 0) errno = save_errno; return fd; } } while (++i < sizeof (first_char)); } /* Template is badly formed or else we can't generate a unique name. */ return -1; } int fchmod (int fd, mode_t mode) { return 0; } int sys_rename_replace (const char *oldname, const char *newname, BOOL force) { BOOL result; char temp[MAX_UTF8_PATH], temp_a[MAX_PATH];; int newname_dev; int oldname_dev; bool have_temp_a = false; /* MoveFile on Windows 95 doesn't correctly change the short file name alias in a number of circumstances (it is not easy to predict when just by looking at oldname and newname, unfortunately). In these cases, renaming through a temporary name avoids the problem. A second problem on Windows 95 is that renaming through a temp name when newname is uppercase fails (the final long name ends up in lowercase, although the short alias might be uppercase) UNLESS the long temp name is not 8.3. So, on Windows 95 we always rename through a temp name, and we make sure the temp name has a long extension to ensure correct renaming. */ strcpy (temp, map_w32_filename (oldname, NULL)); /* volume_info is set indirectly by map_w32_filename. */ oldname_dev = volume_info.serialnum; if (os_subtype == OS_9X) { char * o; char * p; int i = 0; char oldname_a[MAX_PATH]; oldname = map_w32_filename (oldname, NULL); filename_to_ansi (oldname, oldname_a); filename_to_ansi (temp, temp_a); if ((o = strrchr (oldname_a, '\\'))) o++; else o = (char *) oldname_a; if ((p = strrchr (temp_a, '\\'))) p++; else p = temp_a; do { /* Force temp name to require a manufactured 8.3 alias - this seems to make the second rename work properly. */ sprintf (p, "_.%s.%u", o, i); i++; result = rename (oldname_a, temp_a); } /* This loop must surely terminate! */ while (result < 0 && errno == EEXIST); if (result < 0) return -1; have_temp_a = true; } /* If FORCE, emulate Unix behavior - newname is deleted if it already exists (at least if it is a file; don't do this for directories). Since we mustn't do this if we are just changing the case of the file name (we would end up deleting the file we are trying to rename!), we let rename detect if the destination file already exists - that way we avoid the possible pitfalls of trying to determine ourselves whether two names really refer to the same file, which is not always possible in the general case. (Consider all the permutations of shared or subst'd drives, etc.) */ newname = map_w32_filename (newname, NULL); /* volume_info is set indirectly by map_w32_filename. */ newname_dev = volume_info.serialnum; if (w32_unicode_filenames) { wchar_t temp_w[MAX_PATH], newname_w[MAX_PATH]; filename_to_utf16 (temp, temp_w); filename_to_utf16 (newname, newname_w); result = _wrename (temp_w, newname_w); if (result < 0 && force) { DWORD w32err = GetLastError (); if (errno == EACCES && newname_dev != oldname_dev) { /* The implementation of `rename' on Windows does not return errno = EXDEV when you are moving a directory to a different storage device (ex. logical disk). It returns EACCES instead. So here we handle such situations and return EXDEV. */ DWORD attributes; if ((attributes = GetFileAttributesW (temp_w)) != -1 && (attributes & FILE_ATTRIBUTE_DIRECTORY)) errno = EXDEV; } else if (errno == EEXIST) { if (_wchmod (newname_w, 0666) != 0) return result; if (_wunlink (newname_w) != 0) return result; result = _wrename (temp_w, newname_w); } else if (w32err == ERROR_PRIVILEGE_NOT_HELD && is_symlink (temp)) { /* This is Windows prohibiting the user from creating a symlink in another place, since that requires privileges. */ errno = EPERM; } } } else { char newname_a[MAX_PATH]; if (!have_temp_a) filename_to_ansi (temp, temp_a); filename_to_ansi (newname, newname_a); result = rename (temp_a, newname_a); if (result < 0 && force) { DWORD w32err = GetLastError (); if (errno == EACCES && newname_dev != oldname_dev) { DWORD attributes; if ((attributes = GetFileAttributesA (temp_a)) != -1 && (attributes & FILE_ATTRIBUTE_DIRECTORY)) errno = EXDEV; } else if (errno == EEXIST) { if (_chmod (newname_a, 0666) != 0) return result; if (_unlink (newname_a) != 0) return result; result = rename (temp_a, newname_a); } else if (w32err == ERROR_PRIVILEGE_NOT_HELD && is_symlink (temp)) errno = EPERM; } } return result; } int sys_rename (char const *old, char const *new) { return sys_rename_replace (old, new, TRUE); } int sys_rmdir (const char * path) { path = map_w32_filename (path, NULL); if (w32_unicode_filenames) { wchar_t path_w[MAX_PATH]; filename_to_utf16 (path, path_w); return _wrmdir (path_w); } else { char path_a[MAX_PATH]; filename_to_ansi (path, path_a); return _rmdir (path_a); } } int sys_unlink (const char * path) { int rmstatus, e; path = map_w32_filename (path, NULL); if (w32_unicode_filenames) { wchar_t path_w[MAX_PATH]; filename_to_utf16 (path, path_w); /* On Unix, unlink works without write permission. */ _wchmod (path_w, 0666); rmstatus = _wunlink (path_w); e = errno; /* Symlinks to directories can only be deleted by _rmdir; _unlink returns EACCES. */ if (rmstatus != 0 && errno == EACCES && (is_symlink (path) & FILE_ATTRIBUTE_DIRECTORY) != 0) rmstatus = _wrmdir (path_w); else errno = e; } else { char path_a[MAX_PATH]; filename_to_ansi (path, path_a); _chmod (path_a, 0666); rmstatus = _unlink (path_a); e = errno; if (rmstatus != 0 && errno == EACCES && (is_symlink (path) & FILE_ATTRIBUTE_DIRECTORY) != 0) rmstatus = _rmdir (path_a); else errno = e; } return rmstatus; } static FILETIME utc_base_ft; static ULONGLONG utc_base; /* In 100ns units */ static int init = 0; #define FILETIME_TO_U64(result, ft) \ do { \ ULARGE_INTEGER uiTemp; \ uiTemp.LowPart = (ft).dwLowDateTime; \ uiTemp.HighPart = (ft).dwHighDateTime; \ result = uiTemp.QuadPart; \ } while (0) static void initialize_utc_base (void) { /* Determine the delta between 1-Jan-1601 and 1-Jan-1970. */ SYSTEMTIME st; st.wYear = 1970; st.wMonth = 1; st.wDay = 1; st.wHour = 0; st.wMinute = 0; st.wSecond = 0; st.wMilliseconds = 0; SystemTimeToFileTime (&st, &utc_base_ft); FILETIME_TO_U64 (utc_base, utc_base_ft); } static time_t convert_time (FILETIME ft) { ULONGLONG tmp; if (!init) { initialize_utc_base (); init = 1; } if (CompareFileTime (&ft, &utc_base_ft) < 0) return 0; FILETIME_TO_U64 (tmp, ft); return (time_t) ((tmp - utc_base) / 10000000L); } static void convert_from_time_t (time_t time, FILETIME * pft) { ULARGE_INTEGER tmp; if (!init) { initialize_utc_base (); init = 1; } /* time in 100ns units since 1-Jan-1601 */ tmp.QuadPart = (ULONGLONG) time * 10000000L + utc_base; pft->dwHighDateTime = tmp.HighPart; pft->dwLowDateTime = tmp.LowPart; } static PSECURITY_DESCRIPTOR get_file_security_desc_by_handle (HANDLE h) { PSECURITY_DESCRIPTOR psd = NULL; DWORD err; SECURITY_INFORMATION si = OWNER_SECURITY_INFORMATION | GROUP_SECURITY_INFORMATION /* | DACL_SECURITY_INFORMATION */ ; err = get_security_info (h, SE_FILE_OBJECT, si, NULL, NULL, NULL, NULL, &psd); if (err != ERROR_SUCCESS) return NULL; return psd; } static PSECURITY_DESCRIPTOR get_file_security_desc_by_name (const char *fname) { PSECURITY_DESCRIPTOR psd = NULL; DWORD sd_len, err; SECURITY_INFORMATION si = OWNER_SECURITY_INFORMATION | GROUP_SECURITY_INFORMATION /* | DACL_SECURITY_INFORMATION */ ; if (!get_file_security (fname, si, psd, 0, &sd_len)) { err = GetLastError (); if (err != ERROR_INSUFFICIENT_BUFFER) return NULL; } psd = xmalloc (sd_len); if (!get_file_security (fname, si, psd, sd_len, &sd_len)) { xfree (psd); return NULL; } return psd; } static DWORD get_rid (PSID sid) { unsigned n_subauthorities; /* Use the last sub-authority value of the RID, the relative portion of the SID, as user/group ID. */ n_subauthorities = *get_sid_sub_authority_count (sid); if (n_subauthorities < 1) return 0; /* the "World" RID */ return *get_sid_sub_authority (sid, n_subauthorities - 1); } /* Caching SID and account values for faster lokup. */ struct w32_id { unsigned rid; struct w32_id *next; char name[GNLEN+1]; unsigned char sid[FLEXIBLE_ARRAY_MEMBER]; }; static struct w32_id *w32_idlist; static int w32_cached_id (PSID sid, unsigned *id, char *name) { struct w32_id *tail, *found; for (found = NULL, tail = w32_idlist; tail; tail = tail->next) { if (equal_sid ((PSID)tail->sid, sid)) { found = tail; break; } } if (found) { *id = found->rid; strcpy (name, found->name); return 1; } else return 0; } static void w32_add_to_cache (PSID sid, unsigned id, char *name) { DWORD sid_len; struct w32_id *new_entry; /* We don't want to leave behind stale cache from when Emacs was dumped. */ if (initialized) { sid_len = get_length_sid (sid); new_entry = xmalloc (offsetof (struct w32_id, sid) + sid_len); if (new_entry) { new_entry->rid = id; strcpy (new_entry->name, name); copy_sid (sid_len, (PSID)new_entry->sid, sid); new_entry->next = w32_idlist; w32_idlist = new_entry; } } } #define UID 1 #define GID 2 static int get_name_and_id (PSECURITY_DESCRIPTOR psd, unsigned *id, char *nm, int what) { PSID sid = NULL; BOOL dflt; SID_NAME_USE ignore; char name[UNLEN+1]; DWORD name_len = sizeof (name); char domain[1024]; DWORD domain_len = sizeof (domain); int use_dflt = 0; int result; if (what == UID) result = get_security_descriptor_owner (psd, &sid, &dflt); else if (what == GID) result = get_security_descriptor_group (psd, &sid, &dflt); else result = 0; if (!result || !is_valid_sid (sid)) use_dflt = 1; else if (!w32_cached_id (sid, id, nm)) { if (!lookup_account_sid (NULL, sid, name, &name_len, domain, &domain_len, &ignore) || name_len > UNLEN+1) use_dflt = 1; else { *id = get_rid (sid); strcpy (nm, name); w32_add_to_cache (sid, *id, name); } } return use_dflt; } static void get_file_owner_and_group (PSECURITY_DESCRIPTOR psd, struct stat *st) { int dflt_usr = 0, dflt_grp = 0; if (!psd) { dflt_usr = 1; dflt_grp = 1; } else { if (get_name_and_id (psd, &st->st_uid, st->st_uname, UID)) dflt_usr = 1; if (get_name_and_id (psd, &st->st_gid, st->st_gname, GID)) dflt_grp = 1; } /* Consider files to belong to current user/group, if we cannot get more accurate information. */ if (dflt_usr) { st->st_uid = dflt_passwd.pw_uid; strcpy (st->st_uname, dflt_passwd.pw_name); } if (dflt_grp) { st->st_gid = dflt_passwd.pw_gid; strcpy (st->st_gname, dflt_group.gr_name); } } /* Return non-zero if NAME is a potentially slow filesystem. */ int is_slow_fs (const char *name) { char drive_root[4]; UINT devtype; if (IS_DIRECTORY_SEP (name[0]) && IS_DIRECTORY_SEP (name[1])) devtype = DRIVE_REMOTE; /* assume UNC name is remote */ else if (!(strlen (name) >= 2 && IS_DEVICE_SEP (name[1]))) devtype = GetDriveType (NULL); /* use root of current drive */ else { /* GetDriveType needs the root directory of the drive. */ strncpy (drive_root, name, 2); drive_root[2] = '\\'; drive_root[3] = '\0'; devtype = GetDriveType (drive_root); } return !(devtype == DRIVE_FIXED || devtype == DRIVE_RAMDISK); } /* If this is non-zero, the caller wants accurate information about file's owner and group, which could be expensive to get. dired.c uses this flag when needed for the job at hand. */ int w32_stat_get_owner_group; /* MSVC stat function can't cope with UNC names and has other bugs, so replace it with our own. This also allows us to calculate consistent inode values and owner/group without hacks in the main Emacs code, and support file names encoded in UTF-8. */ static int stat_worker (const char * path, struct stat * buf, int follow_symlinks) { char *name, *save_name, *r; WIN32_FIND_DATAW wfd_w; WIN32_FIND_DATAA wfd_a; HANDLE fh; unsigned __int64 fake_inode = 0; int permission; int len; int rootdir = FALSE; PSECURITY_DESCRIPTOR psd = NULL; int is_a_symlink = 0; DWORD file_flags = FILE_FLAG_BACKUP_SEMANTICS; DWORD access_rights = 0; DWORD fattrs = 0, serialnum = 0, fs_high = 0, fs_low = 0, nlinks = 1; FILETIME ctime, atime, wtime; wchar_t name_w[MAX_PATH]; char name_a[MAX_PATH]; if (path == NULL || buf == NULL) { errno = EFAULT; return -1; } save_name = name = (char *) map_w32_filename (path, &path); /* Must be valid filename, no wild cards or other invalid characters. */ if (strpbrk (name, "*?|<>\"")) { errno = ENOENT; return -1; } len = strlen (name); /* Allocate 1 extra byte so that we could append a slash to a root directory, down below. */ name = strcpy (alloca (len + 2), name); /* Avoid a somewhat costly call to is_symlink if the filesystem doesn't support symlinks. */ if ((volume_info.flags & FILE_SUPPORTS_REPARSE_POINTS) != 0) is_a_symlink = is_symlink (name); /* Plan A: Open the file and get all the necessary information via the resulting handle. This solves several issues in one blow: . retrieves attributes for the target of a symlink, if needed . gets attributes of root directories and symlinks pointing to root directories, thus avoiding the need for special-casing these and detecting them by examining the file-name format . retrieves more accurate attributes (e.g., non-zero size for some directories, esp. directories that are junction points) . correctly resolves "c:/..", "/.." and similar file names . avoids run-time penalties for 99% of use cases Plan A is always tried first, unless the user asked not to (but if the file is a symlink and we need to follow links, we try Plan A even if the user asked not to). If Plan A fails, we go to Plan B (below), where various potentially expensive techniques must be used to handle "special" files such as UNC volumes etc. */ if (!(NILP (Vw32_get_true_file_attributes) || (EQ (Vw32_get_true_file_attributes, Qlocal) && is_slow_fs (name))) /* Following symlinks requires getting the info by handle. */ || (is_a_symlink && follow_symlinks)) { BY_HANDLE_FILE_INFORMATION info; if (is_a_symlink && !follow_symlinks) file_flags |= FILE_FLAG_OPEN_REPARSE_POINT; /* READ_CONTROL access rights are required to get security info by handle. But if the OS doesn't support security in the first place, we don't need to try. */ if (is_windows_9x () != TRUE) access_rights |= READ_CONTROL; if (w32_unicode_filenames) { filename_to_utf16 (name, name_w); fh = CreateFileW (name_w, access_rights, 0, NULL, OPEN_EXISTING, file_flags, NULL); /* If CreateFile fails with READ_CONTROL, try again with zero as access rights. */ if (fh == INVALID_HANDLE_VALUE && access_rights) fh = CreateFileW (name_w, 0, 0, NULL, OPEN_EXISTING, file_flags, NULL); } else { filename_to_ansi (name, name_a); fh = CreateFileA (name_a, access_rights, 0, NULL, OPEN_EXISTING, file_flags, NULL); if (fh == INVALID_HANDLE_VALUE && access_rights) fh = CreateFileA (name_a, 0, 0, NULL, OPEN_EXISTING, file_flags, NULL); } if (fh == INVALID_HANDLE_VALUE) goto no_true_file_attributes; /* This is more accurate in terms of getting the correct number of links, but is quite slow (it is noticeable when Emacs is making a list of file name completions). */ if (GetFileInformationByHandle (fh, &info)) { nlinks = info.nNumberOfLinks; /* Might as well use file index to fake inode values, but this is not guaranteed to be unique unless we keep a handle open all the time (even then there are situations where it is not unique). Reputedly, there are at most 48 bits of info (on NTFS, presumably less on FAT). */ fake_inode = info.nFileIndexHigh; fake_inode <<= 32; fake_inode += info.nFileIndexLow; serialnum = info.dwVolumeSerialNumber; fs_high = info.nFileSizeHigh; fs_low = info.nFileSizeLow; ctime = info.ftCreationTime; atime = info.ftLastAccessTime; wtime = info.ftLastWriteTime; fattrs = info.dwFileAttributes; } else { /* We don't go to Plan B here, because it's not clear that it's a good idea. The only known use case where CreateFile succeeds, but GetFileInformationByHandle fails (with ERROR_INVALID_FUNCTION) is for character devices such as NUL, PRN, etc. For these, switching to Plan B is a net loss, because we lose the character device attribute returned by GetFileType below (FindFirstFile doesn't set that bit in the attributes), and the other fields don't make sense for character devices anyway. Emacs doesn't really care for non-file entities in the context of l?stat, so neither do we. */ /* w32err is assigned so one could put a breakpoint here and examine its value, when GetFileInformationByHandle fails. */ DWORD w32err = GetLastError (); switch (w32err) { case ERROR_FILE_NOT_FOUND: /* can this ever happen? */ errno = ENOENT; return -1; } } /* Test for a symlink before testing for a directory, since symlinks to directories have the directory bit set, but we don't want them to appear as directories. */ if (is_a_symlink && !follow_symlinks) buf->st_mode = S_IFLNK; else if (fattrs & FILE_ATTRIBUTE_DIRECTORY) buf->st_mode = S_IFDIR; else { DWORD ftype = GetFileType (fh); switch (ftype) { case FILE_TYPE_DISK: buf->st_mode = S_IFREG; break; case FILE_TYPE_PIPE: buf->st_mode = S_IFIFO; break; case FILE_TYPE_CHAR: case FILE_TYPE_UNKNOWN: default: buf->st_mode = S_IFCHR; } } /* We produce the fallback owner and group data, based on the current user that runs Emacs, in the following cases: . caller didn't request owner and group info . this is Windows 9X . getting security by handle failed, and we need to produce information for the target of a symlink (this is better than producing a potentially misleading info about the symlink itself) If getting security by handle fails, and we don't need to resolve symlinks, we try getting security by name. */ if (!w32_stat_get_owner_group || is_windows_9x () == TRUE) get_file_owner_and_group (NULL, buf); else { psd = get_file_security_desc_by_handle (fh); if (psd) { get_file_owner_and_group (psd, buf); LocalFree (psd); } else if (!(is_a_symlink && follow_symlinks)) { psd = get_file_security_desc_by_name (name); get_file_owner_and_group (psd, buf); xfree (psd); } else get_file_owner_and_group (NULL, buf); } CloseHandle (fh); } else { no_true_file_attributes: /* Plan B: Either getting a handle on the file failed, or the caller explicitly asked us to not bother making this information more accurate. Implementation note: In Plan B, we never bother to resolve symlinks, even if we got here because we tried Plan A and failed. That's because, even if the caller asked for extra precision by setting Vw32_get_true_file_attributes to t, resolving symlinks requires acquiring a file handle to the symlink, which we already know will fail. And if the user did not ask for extra precision, resolving symlinks will fly in the face of that request, since the user then wants the lightweight version of the code. */ rootdir = (path >= save_name + len - 1 && (IS_DIRECTORY_SEP (*path) || *path == 0)); /* If name is "c:/.." or "/.." then stat "c:/" or "/". */ r = IS_DEVICE_SEP (name[1]) ? &name[2] : name; if (IS_DIRECTORY_SEP (r[0]) && r[1] == '.' && r[2] == '.' && r[3] == '\0') r[1] = r[2] = '\0'; /* Note: If NAME is a symlink to the root of a UNC volume (i.e. "\\SERVER"), we will not detect that here, and we will return data about the symlink as result of FindFirst below. This is unfortunate, but that marginal use case does not justify a call to chase_symlinks which would impose a penalty on all the other use cases. (We get here for symlinks to roots of UNC volumes because CreateFile above fails for them, unlike with symlinks to root directories X:\ of drives.) */ if (is_unc_volume (name)) { fattrs = unc_volume_file_attributes (name); if (fattrs == -1) return -1; ctime = atime = wtime = utc_base_ft; } else if (rootdir) { /* Make sure root directories end in a slash. */ if (!IS_DIRECTORY_SEP (name[len-1])) strcpy (name + len, "\\"); if (GetDriveType (name) < 2) { errno = ENOENT; return -1; } fattrs = FILE_ATTRIBUTE_DIRECTORY; ctime = atime = wtime = utc_base_ft; } else { int have_wfd = -1; /* Make sure non-root directories do NOT end in a slash, otherwise FindFirstFile might fail. */ if (IS_DIRECTORY_SEP (name[len-1])) name[len - 1] = 0; /* (This is hacky, but helps when doing file completions on network drives.) Optimize by using information available from active readdir if possible. */ len = strlen (dir_pathname); if (IS_DIRECTORY_SEP (dir_pathname[len-1])) len--; if (dir_find_handle != INVALID_HANDLE_VALUE && last_dir_find_data != -1 && !(is_a_symlink && follow_symlinks) /* The 2 file-name comparisons below support only ASCII characters, and will lose (compare not equal) when the file names include non-ASCII characters that are the same but for the case. However, doing this properly involves: (a) converting both file names to UTF-16, (b) lower-casing both names using CharLowerW, and (c) comparing the results; this would be quite a bit slower, whereas Plan B is for users who want lightweight albeit inaccurate version of 'stat'. */ && c_strncasecmp (save_name, dir_pathname, len) == 0 && IS_DIRECTORY_SEP (name[len]) && xstrcasecmp (name + len + 1, dir_static.d_name) == 0) { have_wfd = last_dir_find_data; /* This was the last entry returned by readdir. */ if (last_dir_find_data == DIR_FIND_DATA_W) wfd_w = dir_find_data_w; else wfd_a = dir_find_data_a; } else { logon_network_drive (name); if (w32_unicode_filenames) { filename_to_utf16 (name, name_w); fh = FindFirstFileW (name_w, &wfd_w); have_wfd = DIR_FIND_DATA_W; } else { filename_to_ansi (name, name_a); /* If NAME includes characters not representable by the current ANSI codepage, filename_to_ansi usually replaces them with a '?'. We don't want to let FindFirstFileA interpret those as wildcards, and "succeed", returning us data from some random file in the same directory. */ if (_mbspbrk (name_a, "?")) fh = INVALID_HANDLE_VALUE; else fh = FindFirstFileA (name_a, &wfd_a); have_wfd = DIR_FIND_DATA_A; } if (fh == INVALID_HANDLE_VALUE) { errno = ENOENT; return -1; } FindClose (fh); } /* Note: if NAME is a symlink, the information we get from FindFirstFile is for the symlink, not its target. */ if (have_wfd == DIR_FIND_DATA_W) { fattrs = wfd_w.dwFileAttributes; ctime = wfd_w.ftCreationTime; atime = wfd_w.ftLastAccessTime; wtime = wfd_w.ftLastWriteTime; fs_high = wfd_w.nFileSizeHigh; fs_low = wfd_w.nFileSizeLow; } else { fattrs = wfd_a.dwFileAttributes; ctime = wfd_a.ftCreationTime; atime = wfd_a.ftLastAccessTime; wtime = wfd_a.ftLastWriteTime; fs_high = wfd_a.nFileSizeHigh; fs_low = wfd_a.nFileSizeLow; } fake_inode = 0; nlinks = 1; serialnum = volume_info.serialnum; } if (is_a_symlink && !follow_symlinks) buf->st_mode = S_IFLNK; else if (fattrs & FILE_ATTRIBUTE_DIRECTORY) buf->st_mode = S_IFDIR; else buf->st_mode = S_IFREG; get_file_owner_and_group (NULL, buf); } buf->st_ino = fake_inode; buf->st_dev = serialnum; buf->st_rdev = serialnum; buf->st_size = fs_high; buf->st_size <<= 32; buf->st_size += fs_low; buf->st_nlink = nlinks; /* Convert timestamps to Unix format. */ buf->st_mtime = convert_time (wtime); buf->st_atime = convert_time (atime); if (buf->st_atime == 0) buf->st_atime = buf->st_mtime; buf->st_ctime = convert_time (ctime); if (buf->st_ctime == 0) buf->st_ctime = buf->st_mtime; /* determine rwx permissions */ if (is_a_symlink && !follow_symlinks) permission = S_IREAD | S_IWRITE | S_IEXEC; /* Posix expectations */ else { if (fattrs & FILE_ATTRIBUTE_READONLY) permission = S_IREAD; else permission = S_IREAD | S_IWRITE; if (fattrs & FILE_ATTRIBUTE_DIRECTORY) permission |= S_IEXEC; else if (is_exec (name)) permission |= S_IEXEC; } buf->st_mode |= permission | (permission >> 3) | (permission >> 6); return 0; } int stat (const char * path, struct stat * buf) { return stat_worker (path, buf, 1); } int lstat (const char * path, struct stat * buf) { return stat_worker (path, buf, 0); } int fstatat (int fd, char const *name, struct stat *st, int flags) { /* Rely on a hack: an open directory is modeled as file descriptor 0. This is good enough for the current usage in Emacs, but is fragile. FIXME: Add proper support for fdopendir, fstatat, readlinkat. Gnulib does this and can serve as a model. */ char fullname[MAX_UTF8_PATH]; if (fd != AT_FDCWD) { char lastc = dir_pathname[strlen (dir_pathname) - 1]; if (_snprintf (fullname, sizeof fullname, "%s%s%s", dir_pathname, IS_DIRECTORY_SEP (lastc) ? "" : "/", name) < 0) { errno = ENAMETOOLONG; return -1; } name = fullname; } return stat_worker (name, st, ! (flags & AT_SYMLINK_NOFOLLOW)); } /* Provide fstat and utime as well as stat for consistent handling of file timestamps. */ int fstat (int desc, struct stat * buf) { HANDLE fh = (HANDLE) _get_osfhandle (desc); BY_HANDLE_FILE_INFORMATION info; unsigned __int64 fake_inode; int permission; switch (GetFileType (fh) & ~FILE_TYPE_REMOTE) { case FILE_TYPE_DISK: buf->st_mode = S_IFREG; if (!GetFileInformationByHandle (fh, &info)) { errno = EACCES; return -1; } break; case FILE_TYPE_PIPE: buf->st_mode = S_IFIFO; goto non_disk; case FILE_TYPE_CHAR: case FILE_TYPE_UNKNOWN: default: buf->st_mode = S_IFCHR; non_disk: memset (&info, 0, sizeof (info)); info.dwFileAttributes = 0; info.ftCreationTime = utc_base_ft; info.ftLastAccessTime = utc_base_ft; info.ftLastWriteTime = utc_base_ft; } if (info.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY) buf->st_mode = S_IFDIR; buf->st_nlink = info.nNumberOfLinks; /* Might as well use file index to fake inode values, but this is not guaranteed to be unique unless we keep a handle open all the time (even then there are situations where it is not unique). Reputedly, there are at most 48 bits of info (on NTFS, presumably less on FAT). */ fake_inode = info.nFileIndexHigh; fake_inode <<= 32; fake_inode += info.nFileIndexLow; /* MSVC defines _ino_t to be short; other libc's might not. */ if (sizeof (buf->st_ino) == 2) buf->st_ino = fake_inode ^ (fake_inode >> 16); else buf->st_ino = fake_inode; /* If the caller so requested, get the true file owner and group. Otherwise, consider the file to belong to the current user. */ if (!w32_stat_get_owner_group || is_windows_9x () == TRUE) get_file_owner_and_group (NULL, buf); else { PSECURITY_DESCRIPTOR psd = NULL; psd = get_file_security_desc_by_handle (fh); if (psd) { get_file_owner_and_group (psd, buf); LocalFree (psd); } else get_file_owner_and_group (NULL, buf); } buf->st_dev = info.dwVolumeSerialNumber; buf->st_rdev = info.dwVolumeSerialNumber; buf->st_size = info.nFileSizeHigh; buf->st_size <<= 32; buf->st_size += info.nFileSizeLow; /* Convert timestamps to Unix format. */ buf->st_mtime = convert_time (info.ftLastWriteTime); buf->st_atime = convert_time (info.ftLastAccessTime); if (buf->st_atime == 0) buf->st_atime = buf->st_mtime; buf->st_ctime = convert_time (info.ftCreationTime); if (buf->st_ctime == 0) buf->st_ctime = buf->st_mtime; /* determine rwx permissions */ if (info.dwFileAttributes & FILE_ATTRIBUTE_READONLY) permission = S_IREAD; else permission = S_IREAD | S_IWRITE; if (info.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY) permission |= S_IEXEC; else { #if 0 /* no way of knowing the filename */ char * p = strrchr (name, '.'); if (p != NULL && (xstrcasecmp (p, ".exe") == 0 || xstrcasecmp (p, ".com") == 0 || xstrcasecmp (p, ".bat") == 0 || xstrcasecmp (p, ".cmd") == 0)) permission |= S_IEXEC; #endif } buf->st_mode |= permission | (permission >> 3) | (permission >> 6); return 0; } /* A version of 'utime' which handles directories as well as files. */ int utime (const char *name, struct utimbuf *times) { struct utimbuf deftime; HANDLE fh; FILETIME mtime; FILETIME atime; if (times == NULL) { deftime.modtime = deftime.actime = time (NULL); times = &deftime; } if (w32_unicode_filenames) { wchar_t name_utf16[MAX_PATH]; if (filename_to_utf16 (name, name_utf16) != 0) return -1; /* errno set by filename_to_utf16 */ /* Need write access to set times. */ fh = CreateFileW (name_utf16, FILE_WRITE_ATTRIBUTES, /* If NAME specifies a directory, FILE_SHARE_DELETE allows other processes to delete files inside it, while we have the directory open. */ FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE, 0, OPEN_EXISTING, FILE_FLAG_BACKUP_SEMANTICS, NULL); } else { char name_ansi[MAX_PATH]; if (filename_to_ansi (name, name_ansi) != 0) return -1; /* errno set by filename_to_ansi */ fh = CreateFileA (name_ansi, FILE_WRITE_ATTRIBUTES, FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE, 0, OPEN_EXISTING, FILE_FLAG_BACKUP_SEMANTICS, NULL); } if (fh != INVALID_HANDLE_VALUE) { convert_from_time_t (times->actime, &atime); convert_from_time_t (times->modtime, &mtime); if (!SetFileTime (fh, NULL, &atime, &mtime)) { CloseHandle (fh); errno = EACCES; return -1; } CloseHandle (fh); } else { DWORD err = GetLastError (); switch (err) { case ERROR_FILE_NOT_FOUND: case ERROR_PATH_NOT_FOUND: case ERROR_INVALID_DRIVE: case ERROR_BAD_NETPATH: case ERROR_DEV_NOT_EXIST: /* ERROR_INVALID_NAME is the error CreateFile sets when the file name includes ?s, i.e. translation to ANSI failed. */ case ERROR_INVALID_NAME: errno = ENOENT; break; case ERROR_TOO_MANY_OPEN_FILES: errno = ENFILE; break; case ERROR_ACCESS_DENIED: case ERROR_SHARING_VIOLATION: errno = EACCES; break; default: errno = EINVAL; break; } return -1; } return 0; } int sys_umask (int mode) { static int current_mask; int retval, arg = 0; /* The only bit we really support is the write bit. Files are always readable on MS-Windows, and the execute bit does not exist at all. */ /* FIXME: if the GROUP and OTHER bits are reset, we should use ACLs to prevent access by other users on NTFS. */ if ((mode & S_IWRITE) != 0) arg |= S_IWRITE; retval = _umask (arg); /* Merge into the return value the bits they've set the last time, which msvcrt.dll ignores and never returns. Emacs insists on its notion of mask being identical to what we return. */ retval |= (current_mask & ~S_IWRITE); current_mask = mode; return retval; } /* Symlink-related functions. */ #ifndef SYMBOLIC_LINK_FLAG_DIRECTORY #define SYMBOLIC_LINK_FLAG_DIRECTORY 0x1 #endif int symlink (char const *filename, char const *linkname) { char linkfn[MAX_UTF8_PATH], *tgtfn; DWORD flags = 0; int dir_access, filename_ends_in_slash; /* Diagnostics follows Posix as much as possible. */ if (filename == NULL || linkname == NULL) { errno = EFAULT; return -1; } if (!*filename) { errno = ENOENT; return -1; } if (strlen (filename) > MAX_UTF8_PATH || strlen (linkname) > MAX_UTF8_PATH) { errno = ENAMETOOLONG; return -1; } strcpy (linkfn, map_w32_filename (linkname, NULL)); if ((volume_info.flags & FILE_SUPPORTS_REPARSE_POINTS) == 0) { errno = EPERM; return -1; } /* Note: since empty FILENAME was already rejected, we can safely refer to FILENAME[1]. */ if (!(IS_DIRECTORY_SEP (filename[0]) || IS_DEVICE_SEP (filename[1]))) { /* Non-absolute FILENAME is understood as being relative to LINKNAME's directory. We need to prepend that directory to FILENAME to get correct results from faccessat below, since otherwise it will interpret FILENAME relative to the directory where the Emacs process runs. Note that make-symbolic-link always makes sure LINKNAME is a fully expanded file name. */ char tem[MAX_UTF8_PATH]; char *p = linkfn + strlen (linkfn); while (p > linkfn && !IS_ANY_SEP (p[-1])) p--; if (p > linkfn) strncpy (tem, linkfn, p - linkfn); strcpy (tem + (p - linkfn), filename); dir_access = faccessat (AT_FDCWD, tem, D_OK, AT_EACCESS); } else dir_access = faccessat (AT_FDCWD, filename, D_OK, AT_EACCESS); /* Since Windows distinguishes between symlinks to directories and to files, we provide a kludgy feature: if FILENAME doesn't exist, but ends in a slash, we create a symlink to directory. If FILENAME exists and is a directory, we always create a symlink to directory. */ filename_ends_in_slash = IS_DIRECTORY_SEP (filename[strlen (filename) - 1]); if (dir_access == 0 || filename_ends_in_slash) flags = SYMBOLIC_LINK_FLAG_DIRECTORY; tgtfn = (char *)map_w32_filename (filename, NULL); if (filename_ends_in_slash) tgtfn[strlen (tgtfn) - 1] = '\0'; errno = 0; if (!create_symbolic_link (linkfn, tgtfn, flags)) { /* ENOSYS is set by create_symbolic_link, when it detects that the OS doesn't support the CreateSymbolicLink API. */ if (errno != ENOSYS) { DWORD w32err = GetLastError (); switch (w32err) { /* ERROR_SUCCESS is sometimes returned when LINKFN and TGTFN point to the same file name, go figure. */ case ERROR_SUCCESS: case ERROR_FILE_EXISTS: errno = EEXIST; break; case ERROR_ACCESS_DENIED: errno = EACCES; break; case ERROR_FILE_NOT_FOUND: case ERROR_PATH_NOT_FOUND: case ERROR_BAD_NETPATH: case ERROR_INVALID_REPARSE_DATA: errno = ENOENT; break; case ERROR_DIRECTORY: errno = EISDIR; break; case ERROR_PRIVILEGE_NOT_HELD: case ERROR_NOT_ALL_ASSIGNED: errno = EPERM; break; case ERROR_DISK_FULL: errno = ENOSPC; break; default: errno = EINVAL; break; } } return -1; } return 0; } /* A quick inexpensive test of whether FILENAME identifies a file that is a symlink. Returns non-zero if it is, zero otherwise. FILENAME must already be in the normalized form returned by map_w32_filename. If the symlink is to a directory, the FILE_ATTRIBUTE_DIRECTORY bit will be set in the return value. Note: for repeated operations on many files, it is best to test whether the underlying volume actually supports symlinks, by testing the FILE_SUPPORTS_REPARSE_POINTS bit in volume's flags, and avoid the call to this function if it doesn't. That's because the call to GetFileAttributes takes a non-negligible time, especially on non-local or removable filesystems. See stat_worker for an example of how to do that. */ static int is_symlink (const char *filename) { DWORD attrs; wchar_t filename_w[MAX_PATH]; char filename_a[MAX_PATH]; WIN32_FIND_DATAW wfdw; WIN32_FIND_DATAA wfda; HANDLE fh; int attrs_mean_symlink; if (w32_unicode_filenames) { filename_to_utf16 (filename, filename_w); attrs = GetFileAttributesW (filename_w); } else { filename_to_ansi (filename, filename_a); attrs = GetFileAttributesA (filename_a); } if (attrs == -1) { DWORD w32err = GetLastError (); switch (w32err) { case ERROR_BAD_NETPATH: /* network share, can't be a symlink */ break; case ERROR_ACCESS_DENIED: errno = EACCES; break; case ERROR_FILE_NOT_FOUND: case ERROR_PATH_NOT_FOUND: default: errno = ENOENT; break; } return 0; } if ((attrs & FILE_ATTRIBUTE_REPARSE_POINT) == 0) return 0; logon_network_drive (filename); if (w32_unicode_filenames) { fh = FindFirstFileW (filename_w, &wfdw); attrs_mean_symlink = (wfdw.dwFileAttributes & FILE_ATTRIBUTE_REPARSE_POINT) != 0 && (wfdw.dwReserved0 & IO_REPARSE_TAG_SYMLINK) == IO_REPARSE_TAG_SYMLINK; if (attrs_mean_symlink) attrs_mean_symlink |= (wfdw.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY); } else if (_mbspbrk (filename_a, "?")) { /* filename_to_ansi failed to convert the file name. */ errno = ENOENT; return 0; } else { fh = FindFirstFileA (filename_a, &wfda); attrs_mean_symlink = (wfda.dwFileAttributes & FILE_ATTRIBUTE_REPARSE_POINT) != 0 && (wfda.dwReserved0 & IO_REPARSE_TAG_SYMLINK) == IO_REPARSE_TAG_SYMLINK; if (attrs_mean_symlink) attrs_mean_symlink |= (wfda.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY); } if (fh == INVALID_HANDLE_VALUE) return 0; FindClose (fh); return attrs_mean_symlink; } /* If NAME identifies a symbolic link, copy into BUF the file name of the symlink's target. Copy at most BUF_SIZE bytes, and do NOT null-terminate the target name, even if it fits. Return the number of bytes copied, or -1 if NAME is not a symlink or any error was encountered while resolving it. The file name copied into BUF is encoded in the current ANSI codepage. */ ssize_t readlink (const char *name, char *buf, size_t buf_size) { const char *path; TOKEN_PRIVILEGES privs; int restore_privs = 0; HANDLE sh; ssize_t retval; char resolved[MAX_UTF8_PATH]; if (name == NULL) { errno = EFAULT; return -1; } if (!*name) { errno = ENOENT; return -1; } path = map_w32_filename (name, NULL); if (strlen (path) > MAX_UTF8_PATH) { errno = ENAMETOOLONG; return -1; } errno = 0; if (is_windows_9x () == TRUE || (volume_info.flags & FILE_SUPPORTS_REPARSE_POINTS) == 0 || !is_symlink (path)) { if (!errno) errno = EINVAL; /* not a symlink */ return -1; } /* Done with simple tests, now we're in for some _real_ work. */ if (enable_privilege (SE_BACKUP_NAME, TRUE, &privs)) restore_privs = 1; /* Implementation note: From here and onward, don't return early, since that will fail to restore the original set of privileges of the calling thread. */ retval = -1; /* not too optimistic, are we? */ /* Note: In the next call to CreateFile, we use zero as the 2nd argument because, when the symlink is a hidden/system file, e.g. 'C:\Users\All Users', GENERIC_READ fails with ERROR_ACCESS_DENIED. Zero seems to work just fine, both for file and directory symlinks. */ if (w32_unicode_filenames) { wchar_t path_w[MAX_PATH]; filename_to_utf16 (path, path_w); sh = CreateFileW (path_w, 0, 0, NULL, OPEN_EXISTING, FILE_FLAG_OPEN_REPARSE_POINT | FILE_FLAG_BACKUP_SEMANTICS, NULL); } else { char path_a[MAX_PATH]; filename_to_ansi (path, path_a); sh = CreateFileA (path_a, 0, 0, NULL, OPEN_EXISTING, FILE_FLAG_OPEN_REPARSE_POINT | FILE_FLAG_BACKUP_SEMANTICS, NULL); } if (sh != INVALID_HANDLE_VALUE) { BYTE reparse_buf[MAXIMUM_REPARSE_DATA_BUFFER_SIZE]; REPARSE_DATA_BUFFER *reparse_data = (REPARSE_DATA_BUFFER *)&reparse_buf[0]; DWORD retbytes; if (!DeviceIoControl (sh, FSCTL_GET_REPARSE_POINT, NULL, 0, reparse_buf, MAXIMUM_REPARSE_DATA_BUFFER_SIZE, &retbytes, NULL)) errno = EIO; else if (reparse_data->ReparseTag != IO_REPARSE_TAG_SYMLINK) errno = EINVAL; else { /* Copy the link target name, in wide characters, from reparse_data, then convert it to multibyte encoding in the current locale's codepage. */ WCHAR *lwname; size_t lname_size; USHORT lwname_len = reparse_data->SymbolicLinkReparseBuffer.PrintNameLength; WCHAR *lwname_src = reparse_data->SymbolicLinkReparseBuffer.PathBuffer + reparse_data->SymbolicLinkReparseBuffer.PrintNameOffset/sizeof(WCHAR); size_t size_to_copy = buf_size; /* According to MSDN, PrintNameLength does not include the terminating null character. */ lwname = alloca ((lwname_len + 1) * sizeof(WCHAR)); memcpy (lwname, lwname_src, lwname_len); lwname[lwname_len/sizeof(WCHAR)] = 0; /* null-terminate */ filename_from_utf16 (lwname, resolved); dostounix_filename (resolved); lname_size = strlen (resolved) + 1; if (lname_size <= buf_size) size_to_copy = lname_size; strncpy (buf, resolved, size_to_copy); /* Success! */ retval = size_to_copy; } CloseHandle (sh); } else { /* CreateFile failed. */ DWORD w32err2 = GetLastError (); switch (w32err2) { case ERROR_FILE_NOT_FOUND: case ERROR_PATH_NOT_FOUND: errno = ENOENT; break; case ERROR_ACCESS_DENIED: case ERROR_TOO_MANY_OPEN_FILES: errno = EACCES; break; default: errno = EPERM; break; } } if (restore_privs) { restore_privilege (&privs); revert_to_self (); } return retval; } ssize_t readlinkat (int fd, char const *name, char *buffer, size_t buffer_size) { /* Rely on a hack: an open directory is modeled as file descriptor 0, as in fstatat. FIXME: Add proper support for readlinkat. */ char fullname[MAX_UTF8_PATH]; if (fd != AT_FDCWD) { if (_snprintf (fullname, sizeof fullname, "%s/%s", dir_pathname, name) < 0) { errno = ENAMETOOLONG; return -1; } name = fullname; } return readlink (name, buffer, buffer_size); } /* If FILE is a symlink, return its target (stored in a static buffer); otherwise return FILE. This function repeatedly resolves symlinks in the last component of a chain of symlink file names, as in foo -> bar -> baz -> ..., until it arrives at a file whose last component is not a symlink, or some error occurs. It returns the target of the last successfully resolved symlink in the chain. If it succeeds to resolve even a single symlink, the value returned is an absolute file name with backslashes (result of GetFullPathName). By contrast, if the original FILE is returned, it is unaltered. Note: This function can set errno even if it succeeds. Implementation note: we only resolve the last portion ("basename") of the argument FILE and of each following file in the chain, disregarding any possible symlinks in its leading directories. This is because Windows system calls and library functions transparently resolve symlinks in leading directories and return correct information, as long as the basename is not a symlink. */ static char * chase_symlinks (const char *file) { static char target[MAX_UTF8_PATH]; char link[MAX_UTF8_PATH]; wchar_t target_w[MAX_PATH], link_w[MAX_PATH]; char target_a[MAX_PATH], link_a[MAX_PATH]; ssize_t res, link_len; int loop_count = 0; if (is_windows_9x () == TRUE || !is_symlink (file)) return (char *)file; if (w32_unicode_filenames) { wchar_t file_w[MAX_PATH]; filename_to_utf16 (file, file_w); if (GetFullPathNameW (file_w, MAX_PATH, link_w, NULL) == 0) return (char *)file; filename_from_utf16 (link_w, link); } else { char file_a[MAX_PATH]; filename_to_ansi (file, file_a); if (GetFullPathNameA (file_a, MAX_PATH, link_a, NULL) == 0) return (char *)file; filename_from_ansi (link_a, link); } link_len = strlen (link); target[0] = '\0'; do { /* Remove trailing slashes, as we want to resolve the last non-trivial part of the link name. */ while (link_len > 3 && IS_DIRECTORY_SEP (link[link_len-1])) link[link_len--] = '\0'; res = readlink (link, target, MAX_UTF8_PATH); if (res > 0) { target[res] = '\0'; if (!(IS_DEVICE_SEP (target[1]) || (IS_DIRECTORY_SEP (target[0]) && IS_DIRECTORY_SEP (target[1])))) { /* Target is relative. Append it to the directory part of the symlink, then copy the result back to target. */ char *p = link + link_len; while (p > link && !IS_ANY_SEP (p[-1])) p--; strcpy (p, target); strcpy (target, link); } /* Resolve any "." and ".." to get a fully-qualified file name in link[] again. */ if (w32_unicode_filenames) { filename_to_utf16 (target, target_w); link_len = GetFullPathNameW (target_w, MAX_PATH, link_w, NULL); if (link_len > 0) filename_from_utf16 (link_w, link); } else { filename_to_ansi (target, target_a); link_len = GetFullPathNameA (target_a, MAX_PATH, link_a, NULL); if (link_len > 0) filename_from_ansi (link_a, link); } link_len = strlen (link); } } while (res > 0 && link_len > 0 && ++loop_count <= 100); if (loop_count > 100) errno = ELOOP; if (target[0] == '\0') /* not a single call to readlink succeeded */ return (char *)file; return target; } /* Posix ACL emulation. */ int acl_valid (acl_t acl) { return is_valid_security_descriptor ((PSECURITY_DESCRIPTOR)acl) ? 0 : -1; } char * acl_to_text (acl_t acl, ssize_t *size) { LPTSTR str_acl; SECURITY_INFORMATION flags = OWNER_SECURITY_INFORMATION | GROUP_SECURITY_INFORMATION | DACL_SECURITY_INFORMATION; char *retval = NULL; ULONG local_size; int e = errno; errno = 0; if (convert_sd_to_sddl ((PSECURITY_DESCRIPTOR)acl, SDDL_REVISION_1, flags, &str_acl, &local_size)) { errno = e; /* We don't want to mix heaps, so we duplicate the string in our heap and free the one allocated by the API. */ retval = xstrdup (str_acl); if (size) *size = local_size; LocalFree (str_acl); } else if (errno != ENOTSUP) errno = EINVAL; return retval; } acl_t acl_from_text (const char *acl_str) { PSECURITY_DESCRIPTOR psd, retval = NULL; ULONG sd_size; int e = errno; errno = 0; if (convert_sddl_to_sd (acl_str, SDDL_REVISION_1, &psd, &sd_size)) { errno = e; retval = xmalloc (sd_size); memcpy (retval, psd, sd_size); LocalFree (psd); } else if (errno != ENOTSUP) errno = EINVAL; return retval; } int acl_free (void *ptr) { xfree (ptr); return 0; } acl_t acl_get_file (const char *fname, acl_type_t type) { PSECURITY_DESCRIPTOR psd = NULL; const char *filename; if (type == ACL_TYPE_ACCESS) { DWORD sd_len, err; SECURITY_INFORMATION si = OWNER_SECURITY_INFORMATION | GROUP_SECURITY_INFORMATION | DACL_SECURITY_INFORMATION ; int e = errno; filename = map_w32_filename (fname, NULL); if ((volume_info.flags & FILE_SUPPORTS_REPARSE_POINTS) != 0) fname = chase_symlinks (filename); else fname = filename; errno = 0; if (!get_file_security (fname, si, psd, 0, &sd_len) && errno != ENOTSUP) { err = GetLastError (); if (err == ERROR_INSUFFICIENT_BUFFER) { psd = xmalloc (sd_len); if (!get_file_security (fname, si, psd, sd_len, &sd_len)) { xfree (psd); errno = EIO; psd = NULL; } } else if (err == ERROR_FILE_NOT_FOUND || err == ERROR_PATH_NOT_FOUND /* ERROR_INVALID_NAME is what we get if w32-unicode-filenames is nil and the file cannot be encoded in the current ANSI codepage. */ || err == ERROR_INVALID_NAME) errno = ENOENT; else errno = EIO; } else if (!errno) errno = e; } else if (type != ACL_TYPE_DEFAULT) errno = EINVAL; return psd; } int acl_set_file (const char *fname, acl_type_t type, acl_t acl) { TOKEN_PRIVILEGES old1, old2; DWORD err; int st = 0, retval = -1; SECURITY_INFORMATION flags = 0; PSID psidOwner, psidGroup; PACL pacl; BOOL dflt; BOOL dacl_present; int e; const char *filename; if (acl_valid (acl) != 0 || (type != ACL_TYPE_DEFAULT && type != ACL_TYPE_ACCESS)) { errno = EINVAL; return -1; } if (type == ACL_TYPE_DEFAULT) { errno = ENOSYS; return -1; } filename = map_w32_filename (fname, NULL); if ((volume_info.flags & FILE_SUPPORTS_REPARSE_POINTS) != 0) fname = chase_symlinks (filename); else fname = filename; if (get_security_descriptor_owner ((PSECURITY_DESCRIPTOR)acl, &psidOwner, &dflt) && psidOwner) flags |= OWNER_SECURITY_INFORMATION; if (get_security_descriptor_group ((PSECURITY_DESCRIPTOR)acl, &psidGroup, &dflt) && psidGroup) flags |= GROUP_SECURITY_INFORMATION; if (get_security_descriptor_dacl ((PSECURITY_DESCRIPTOR)acl, &dacl_present, &pacl, &dflt) && dacl_present) flags |= DACL_SECURITY_INFORMATION; if (!flags) return 0; /* According to KB-245153, setting the owner will succeed if either: (1) the caller is the user who will be the new owner, and has the SE_TAKE_OWNERSHIP privilege, or (2) the caller has the SE_RESTORE privilege, in which case she can set any valid user or group as the owner We request below both SE_TAKE_OWNERSHIP and SE_RESTORE privileges, and disregard any failures in obtaining them. If these privileges cannot be obtained, and do not already exist in the calling thread's security token, this function could fail with EPERM. */ if (enable_privilege (SE_TAKE_OWNERSHIP_NAME, TRUE, &old1)) st++; if (enable_privilege (SE_RESTORE_NAME, TRUE, &old2)) st++; e = errno; errno = 0; /* SetFileSecurity is deprecated by MS, and sometimes fails when DACL inheritance is involved, but it seems to preserve ownership better than SetNamedSecurityInfo, which is important e.g., in copy-file. */ if (!set_file_security (fname, flags, (PSECURITY_DESCRIPTOR)acl)) { err = GetLastError (); if (errno != ENOTSUP) err = set_named_security_info (fname, SE_FILE_OBJECT, flags, psidOwner, psidGroup, pacl, NULL); } else err = ERROR_SUCCESS; if (err != ERROR_SUCCESS) { if (errno == ENOTSUP) ; else if (err == ERROR_INVALID_OWNER || err == ERROR_NOT_ALL_ASSIGNED || err == ERROR_ACCESS_DENIED) { /* Maybe the requested ACL and the one the file already has are identical, in which case we can silently ignore the failure. (And no, Windows doesn't.) */ acl_t current_acl = acl_get_file (fname, ACL_TYPE_ACCESS); errno = EPERM; if (current_acl) { char *acl_from = acl_to_text (current_acl, NULL); char *acl_to = acl_to_text (acl, NULL); if (acl_from && acl_to && xstrcasecmp (acl_from, acl_to) == 0) { retval = 0; errno = e; } if (acl_from) acl_free (acl_from); if (acl_to) acl_free (acl_to); acl_free (current_acl); } } else if (err == ERROR_FILE_NOT_FOUND || err == ERROR_PATH_NOT_FOUND /* ERROR_INVALID_NAME is what we get if w32-unicode-filenames is nil and the file cannot be encoded in the current ANSI codepage. */ || err == ERROR_INVALID_NAME) errno = ENOENT; else errno = EACCES; } else { retval = 0; errno = e; } if (st) { if (st >= 2) restore_privilege (&old2); restore_privilege (&old1); revert_to_self (); } return retval; } /* MS-Windows version of careadlinkat (cf. ../lib/careadlinkat.c). We have a fixed max size for file names, so we don't need the kind of alloc/malloc/realloc dance the gnulib version does. We also don't support FD-relative symlinks. */ char * careadlinkat (int fd, char const *filename, char *buffer, size_t buffer_size, struct allocator const *alloc, ssize_t (*preadlinkat) (int, char const *, char *, size_t)) { char linkname[MAX_UTF8_PATH]; ssize_t link_size; link_size = preadlinkat (fd, filename, linkname, sizeof(linkname)); if (link_size > 0) { char *retval = buffer; linkname[link_size++] = '\0'; if (link_size > buffer_size) retval = (char *)(alloc ? alloc->allocate : xmalloc) (link_size); if (retval) memcpy (retval, linkname, link_size); return retval; } return NULL; } int w32_copy_file (const char *from, const char *to, int keep_time, int preserve_ownership, int copy_acls) { acl_t acl = NULL; BOOL copy_result; wchar_t from_w[MAX_PATH], to_w[MAX_PATH]; char from_a[MAX_PATH], to_a[MAX_PATH]; /* We ignore preserve_ownership for now. */ preserve_ownership = preserve_ownership; if (copy_acls) { acl = acl_get_file (from, ACL_TYPE_ACCESS); if (acl == NULL && acl_errno_valid (errno)) return -2; } if (w32_unicode_filenames) { filename_to_utf16 (from, from_w); filename_to_utf16 (to, to_w); copy_result = CopyFileW (from_w, to_w, FALSE); } else { filename_to_ansi (from, from_a); filename_to_ansi (to, to_a); copy_result = CopyFileA (from_a, to_a, FALSE); } if (!copy_result) { /* CopyFile doesn't set errno when it fails. By far the most "popular" reason is that the target is read-only. */ DWORD err = GetLastError (); switch (err) { case ERROR_FILE_NOT_FOUND: errno = ENOENT; break; case ERROR_ACCESS_DENIED: errno = EACCES; break; case ERROR_ENCRYPTION_FAILED: errno = EIO; break; default: errno = EPERM; break; } if (acl) acl_free (acl); return -1; } /* CopyFile retains the timestamp by default. However, see "Community Additions" for CopyFile: it sounds like that is not entirely true. Testing on Windows XP confirms that modified time is copied, but creation and last-access times are not. FIXME? */ else if (!keep_time) { struct timespec now; DWORD attributes; if (w32_unicode_filenames) { /* Ensure file is writable while its times are set. */ attributes = GetFileAttributesW (to_w); SetFileAttributesW (to_w, attributes & ~FILE_ATTRIBUTE_READONLY); now = current_timespec (); if (set_file_times (-1, to, now, now)) { /* Restore original attributes. */ SetFileAttributesW (to_w, attributes); if (acl) acl_free (acl); return -3; } /* Restore original attributes. */ SetFileAttributesW (to_w, attributes); } else { attributes = GetFileAttributesA (to_a); SetFileAttributesA (to_a, attributes & ~FILE_ATTRIBUTE_READONLY); now = current_timespec (); if (set_file_times (-1, to, now, now)) { SetFileAttributesA (to_a, attributes); if (acl) acl_free (acl); return -3; } SetFileAttributesA (to_a, attributes); } } if (acl != NULL) { bool fail = acl_set_file (to, ACL_TYPE_ACCESS, acl) != 0; acl_free (acl); if (fail && acl_errno_valid (errno)) return -4; } return 0; } /* Support for browsing other processes and their attributes. See process.c for the Lisp bindings. */ /* Helper wrapper functions. */ static HANDLE WINAPI create_toolhelp32_snapshot (DWORD Flags, DWORD Ignored) { static CreateToolhelp32Snapshot_Proc s_pfn_Create_Toolhelp32_Snapshot = NULL; if (g_b_init_create_toolhelp32_snapshot == 0) { g_b_init_create_toolhelp32_snapshot = 1; s_pfn_Create_Toolhelp32_Snapshot = (CreateToolhelp32Snapshot_Proc) GetProcAddress (GetModuleHandle ("kernel32.dll"), "CreateToolhelp32Snapshot"); } if (s_pfn_Create_Toolhelp32_Snapshot == NULL) { return INVALID_HANDLE_VALUE; } return (s_pfn_Create_Toolhelp32_Snapshot (Flags, Ignored)); } static BOOL WINAPI process32_first (HANDLE hSnapshot, LPPROCESSENTRY32 lppe) { static Process32First_Proc s_pfn_Process32_First = NULL; if (g_b_init_process32_first == 0) { g_b_init_process32_first = 1; s_pfn_Process32_First = (Process32First_Proc) GetProcAddress (GetModuleHandle ("kernel32.dll"), "Process32First"); } if (s_pfn_Process32_First == NULL) { return FALSE; } return (s_pfn_Process32_First (hSnapshot, lppe)); } static BOOL WINAPI process32_next (HANDLE hSnapshot, LPPROCESSENTRY32 lppe) { static Process32Next_Proc s_pfn_Process32_Next = NULL; if (g_b_init_process32_next == 0) { g_b_init_process32_next = 1; s_pfn_Process32_Next = (Process32Next_Proc) GetProcAddress (GetModuleHandle ("kernel32.dll"), "Process32Next"); } if (s_pfn_Process32_Next == NULL) { return FALSE; } return (s_pfn_Process32_Next (hSnapshot, lppe)); } static BOOL WINAPI open_thread_token (HANDLE ThreadHandle, DWORD DesiredAccess, BOOL OpenAsSelf, PHANDLE TokenHandle) { static OpenThreadToken_Proc s_pfn_Open_Thread_Token = NULL; HMODULE hm_advapi32 = NULL; if (is_windows_9x () == TRUE) { SetLastError (ERROR_NOT_SUPPORTED); return FALSE; } if (g_b_init_open_thread_token == 0) { g_b_init_open_thread_token = 1; hm_advapi32 = LoadLibrary ("Advapi32.dll"); s_pfn_Open_Thread_Token = (OpenThreadToken_Proc) GetProcAddress (hm_advapi32, "OpenThreadToken"); } if (s_pfn_Open_Thread_Token == NULL) { SetLastError (ERROR_NOT_SUPPORTED); return FALSE; } return ( s_pfn_Open_Thread_Token ( ThreadHandle, DesiredAccess, OpenAsSelf, TokenHandle) ); } static BOOL WINAPI impersonate_self (SECURITY_IMPERSONATION_LEVEL ImpersonationLevel) { static ImpersonateSelf_Proc s_pfn_Impersonate_Self = NULL; HMODULE hm_advapi32 = NULL; if (is_windows_9x () == TRUE) { return FALSE; } if (g_b_init_impersonate_self == 0) { g_b_init_impersonate_self = 1; hm_advapi32 = LoadLibrary ("Advapi32.dll"); s_pfn_Impersonate_Self = (ImpersonateSelf_Proc) GetProcAddress (hm_advapi32, "ImpersonateSelf"); } if (s_pfn_Impersonate_Self == NULL) { return FALSE; } return s_pfn_Impersonate_Self (ImpersonationLevel); } static BOOL WINAPI revert_to_self (void) { static RevertToSelf_Proc s_pfn_Revert_To_Self = NULL; HMODULE hm_advapi32 = NULL; if (is_windows_9x () == TRUE) { return FALSE; } if (g_b_init_revert_to_self == 0) { g_b_init_revert_to_self = 1; hm_advapi32 = LoadLibrary ("Advapi32.dll"); s_pfn_Revert_To_Self = (RevertToSelf_Proc) GetProcAddress (hm_advapi32, "RevertToSelf"); } if (s_pfn_Revert_To_Self == NULL) { return FALSE; } return s_pfn_Revert_To_Self (); } static BOOL WINAPI get_process_memory_info (HANDLE h_proc, PPROCESS_MEMORY_COUNTERS mem_counters, DWORD bufsize) { static GetProcessMemoryInfo_Proc s_pfn_Get_Process_Memory_Info = NULL; HMODULE hm_psapi = NULL; if (is_windows_9x () == TRUE) { return FALSE; } if (g_b_init_get_process_memory_info == 0) { g_b_init_get_process_memory_info = 1; hm_psapi = LoadLibrary ("Psapi.dll"); if (hm_psapi) s_pfn_Get_Process_Memory_Info = (GetProcessMemoryInfo_Proc) GetProcAddress (hm_psapi, "GetProcessMemoryInfo"); } if (s_pfn_Get_Process_Memory_Info == NULL) { return FALSE; } return s_pfn_Get_Process_Memory_Info (h_proc, mem_counters, bufsize); } static BOOL WINAPI get_process_working_set_size (HANDLE h_proc, PSIZE_T minrss, PSIZE_T maxrss) { static GetProcessWorkingSetSize_Proc s_pfn_Get_Process_Working_Set_Size = NULL; if (is_windows_9x () == TRUE) { return FALSE; } if (g_b_init_get_process_working_set_size == 0) { g_b_init_get_process_working_set_size = 1; s_pfn_Get_Process_Working_Set_Size = (GetProcessWorkingSetSize_Proc) GetProcAddress (GetModuleHandle ("kernel32.dll"), "GetProcessWorkingSetSize"); } if (s_pfn_Get_Process_Working_Set_Size == NULL) { return FALSE; } return s_pfn_Get_Process_Working_Set_Size (h_proc, minrss, maxrss); } static BOOL WINAPI global_memory_status (MEMORYSTATUS *buf) { static GlobalMemoryStatus_Proc s_pfn_Global_Memory_Status = NULL; if (is_windows_9x () == TRUE) { return FALSE; } if (g_b_init_global_memory_status == 0) { g_b_init_global_memory_status = 1; s_pfn_Global_Memory_Status = (GlobalMemoryStatus_Proc) GetProcAddress (GetModuleHandle ("kernel32.dll"), "GlobalMemoryStatus"); } if (s_pfn_Global_Memory_Status == NULL) { return FALSE; } return s_pfn_Global_Memory_Status (buf); } static BOOL WINAPI global_memory_status_ex (MEMORY_STATUS_EX *buf) { static GlobalMemoryStatusEx_Proc s_pfn_Global_Memory_Status_Ex = NULL; if (is_windows_9x () == TRUE) { return FALSE; } if (g_b_init_global_memory_status_ex == 0) { g_b_init_global_memory_status_ex = 1; s_pfn_Global_Memory_Status_Ex = (GlobalMemoryStatusEx_Proc) GetProcAddress (GetModuleHandle ("kernel32.dll"), "GlobalMemoryStatusEx"); } if (s_pfn_Global_Memory_Status_Ex == NULL) { return FALSE; } return s_pfn_Global_Memory_Status_Ex (buf); } Lisp_Object list_system_processes (void) { Lisp_Object proclist = Qnil; HANDLE h_snapshot; h_snapshot = create_toolhelp32_snapshot (TH32CS_SNAPPROCESS, 0); if (h_snapshot != INVALID_HANDLE_VALUE) { PROCESSENTRY32 proc_entry; DWORD proc_id; BOOL res; proc_entry.dwSize = sizeof (PROCESSENTRY32); for (res = process32_first (h_snapshot, &proc_entry); res; res = process32_next (h_snapshot, &proc_entry)) { proc_id = proc_entry.th32ProcessID; proclist = Fcons (make_fixnum_or_float (proc_id), proclist); } CloseHandle (h_snapshot); proclist = Fnreverse (proclist); } return proclist; } static int enable_privilege (LPCTSTR priv_name, BOOL enable_p, TOKEN_PRIVILEGES *old_priv) { TOKEN_PRIVILEGES priv; DWORD priv_size = sizeof (priv); DWORD opriv_size = sizeof (*old_priv); HANDLE h_token = NULL; HANDLE h_thread = GetCurrentThread (); int ret_val = 0; BOOL res; res = open_thread_token (h_thread, TOKEN_QUERY | TOKEN_ADJUST_PRIVILEGES, FALSE, &h_token); if (!res && GetLastError () == ERROR_NO_TOKEN) { if (impersonate_self (SecurityImpersonation)) res = open_thread_token (h_thread, TOKEN_QUERY | TOKEN_ADJUST_PRIVILEGES, FALSE, &h_token); } if (res) { priv.PrivilegeCount = 1; priv.Privileges[0].Attributes = enable_p ? SE_PRIVILEGE_ENABLED : 0; LookupPrivilegeValue (NULL, priv_name, &priv.Privileges[0].Luid); if (AdjustTokenPrivileges (h_token, FALSE, &priv, priv_size, old_priv, &opriv_size) && GetLastError () != ERROR_NOT_ALL_ASSIGNED) ret_val = 1; } if (h_token) CloseHandle (h_token); return ret_val; } static int restore_privilege (TOKEN_PRIVILEGES *priv) { DWORD priv_size = sizeof (*priv); HANDLE h_token = NULL; int ret_val = 0; if (open_thread_token (GetCurrentThread (), TOKEN_QUERY | TOKEN_ADJUST_PRIVILEGES, FALSE, &h_token)) { if (AdjustTokenPrivileges (h_token, FALSE, priv, priv_size, NULL, NULL) && GetLastError () != ERROR_NOT_ALL_ASSIGNED) ret_val = 1; } if (h_token) CloseHandle (h_token); return ret_val; } static Lisp_Object ltime (ULONGLONG time_100ns) { ULONGLONG time_sec = time_100ns / 10000000; int subsec = time_100ns % 10000000; return list4i (time_sec >> 16, time_sec & 0xffff, subsec / 10, subsec % 10 * 100000); } #define U64_TO_LISP_TIME(time) ltime (time) static int process_times (HANDLE h_proc, Lisp_Object *ctime, Lisp_Object *etime, Lisp_Object *stime, Lisp_Object *utime, Lisp_Object *ttime, double *pcpu) { FILETIME ft_creation, ft_exit, ft_kernel, ft_user, ft_current; ULONGLONG tem1, tem2, tem3, tem; if (!h_proc || !get_process_times_fn || !(*get_process_times_fn) (h_proc, &ft_creation, &ft_exit, &ft_kernel, &ft_user)) return 0; GetSystemTimeAsFileTime (&ft_current); FILETIME_TO_U64 (tem1, ft_kernel); *stime = U64_TO_LISP_TIME (tem1); FILETIME_TO_U64 (tem2, ft_user); *utime = U64_TO_LISP_TIME (tem2); tem3 = tem1 + tem2; *ttime = U64_TO_LISP_TIME (tem3); FILETIME_TO_U64 (tem, ft_creation); /* Process no 4 (System) returns zero creation time. */ if (tem) tem -= utc_base; *ctime = U64_TO_LISP_TIME (tem); if (tem) { FILETIME_TO_U64 (tem3, ft_current); tem = (tem3 - utc_base) - tem; } *etime = U64_TO_LISP_TIME (tem); if (tem) { *pcpu = 100.0 * (tem1 + tem2) / tem; if (*pcpu > 100) *pcpu = 100.0; } else *pcpu = 0; return 1; } Lisp_Object system_process_attributes (Lisp_Object pid) { Lisp_Object attrs = Qnil; Lisp_Object cmd_str, decoded_cmd, tem; HANDLE h_snapshot, h_proc; DWORD proc_id; int found_proc = 0; char uname[UNLEN+1], gname[GNLEN+1], domain[1025]; DWORD ulength = sizeof (uname), dlength = sizeof (domain), needed; DWORD glength = sizeof (gname); HANDLE token = NULL; SID_NAME_USE user_type; unsigned char *buf = NULL; DWORD blen = 0; TOKEN_USER user_token; TOKEN_PRIMARY_GROUP group_token; unsigned euid; unsigned egid; PROCESS_MEMORY_COUNTERS mem; PROCESS_MEMORY_COUNTERS_EX mem_ex; SIZE_T minrss, maxrss; MEMORYSTATUS memst; MEMORY_STATUS_EX memstex; double totphys = 0.0; Lisp_Object ctime, stime, utime, etime, ttime; double pcpu; BOOL result = FALSE; CHECK_NUMBER_OR_FLOAT (pid); proc_id = FLOATP (pid) ? XFLOAT_DATA (pid) : XINT (pid); h_snapshot = create_toolhelp32_snapshot (TH32CS_SNAPPROCESS, 0); if (h_snapshot != INVALID_HANDLE_VALUE) { PROCESSENTRY32 pe; BOOL res; pe.dwSize = sizeof (PROCESSENTRY32); for (res = process32_first (h_snapshot, &pe); res; res = process32_next (h_snapshot, &pe)) { if (proc_id == pe.th32ProcessID) { if (proc_id == 0) decoded_cmd = build_string ("Idle"); else { /* Decode the command name from locale-specific encoding. */ cmd_str = build_unibyte_string (pe.szExeFile); decoded_cmd = code_convert_string_norecord (cmd_str, Vlocale_coding_system, 0); } attrs = Fcons (Fcons (Qcomm, decoded_cmd), attrs); attrs = Fcons (Fcons (Qppid, make_fixnum_or_float (pe.th32ParentProcessID)), attrs); attrs = Fcons (Fcons (Qpri, make_number (pe.pcPriClassBase)), attrs); attrs = Fcons (Fcons (Qthcount, make_fixnum_or_float (pe.cntThreads)), attrs); found_proc = 1; break; } } CloseHandle (h_snapshot); } if (!found_proc) return Qnil; h_proc = OpenProcess (PROCESS_QUERY_INFORMATION | PROCESS_VM_READ, FALSE, proc_id); /* If we were denied a handle to the process, try again after enabling the SeDebugPrivilege in our process. */ if (!h_proc) { TOKEN_PRIVILEGES priv_current; if (enable_privilege (SE_DEBUG_NAME, TRUE, &priv_current)) { h_proc = OpenProcess (PROCESS_QUERY_INFORMATION | PROCESS_VM_READ, FALSE, proc_id); restore_privilege (&priv_current); revert_to_self (); } } if (h_proc) { result = open_process_token (h_proc, TOKEN_QUERY, &token); if (result) { result = get_token_information (token, TokenUser, NULL, 0, &blen); if (!result && GetLastError () == ERROR_INSUFFICIENT_BUFFER) { buf = xmalloc (blen); result = get_token_information (token, TokenUser, (LPVOID)buf, blen, &needed); if (result) { memcpy (&user_token, buf, sizeof (user_token)); if (!w32_cached_id (user_token.User.Sid, &euid, uname)) { euid = get_rid (user_token.User.Sid); result = lookup_account_sid (NULL, user_token.User.Sid, uname, &ulength, domain, &dlength, &user_type); if (result) w32_add_to_cache (user_token.User.Sid, euid, uname); else { strcpy (uname, "unknown"); result = TRUE; } } ulength = strlen (uname); } } } if (result) { /* Determine a reasonable euid and gid values. */ if (xstrcasecmp ("administrator", uname) == 0) { euid = 500; /* well-known Administrator uid */ egid = 513; /* well-known None gid */ } else { /* Get group id and name. */ result = get_token_information (token, TokenPrimaryGroup, (LPVOID)buf, blen, &needed); if (!result && GetLastError () == ERROR_INSUFFICIENT_BUFFER) { buf = xrealloc (buf, blen = needed); result = get_token_information (token, TokenPrimaryGroup, (LPVOID)buf, blen, &needed); } if (result) { memcpy (&group_token, buf, sizeof (group_token)); if (!w32_cached_id (group_token.PrimaryGroup, &egid, gname)) { egid = get_rid (group_token.PrimaryGroup); dlength = sizeof (domain); result = lookup_account_sid (NULL, group_token.PrimaryGroup, gname, &glength, NULL, &dlength, &user_type); if (result) w32_add_to_cache (group_token.PrimaryGroup, egid, gname); else { strcpy (gname, "None"); result = TRUE; } } glength = strlen (gname); } } } xfree (buf); } if (!result) { if (!is_windows_9x ()) { /* We couldn't open the process token, presumably because of insufficient access rights. Assume this process is run by the system. */ strcpy (uname, "SYSTEM"); strcpy (gname, "None"); euid = 18; /* SYSTEM */ egid = 513; /* None */ glength = strlen (gname); ulength = strlen (uname); } /* If we are running under Windows 9X, where security calls are not supported, we assume all processes are run by the current user. */ else if (GetUserName (uname, &ulength)) { if (xstrcasecmp ("administrator", uname) == 0) euid = 0; else euid = 123; egid = euid; strcpy (gname, "None"); glength = strlen (gname); ulength = strlen (uname); } else { euid = 123; egid = 123; strcpy (uname, "administrator"); ulength = strlen (uname); strcpy (gname, "None"); glength = strlen (gname); } if (token) CloseHandle (token); } attrs = Fcons (Fcons (Qeuid, make_fixnum_or_float (euid)), attrs); tem = make_unibyte_string (uname, ulength); attrs = Fcons (Fcons (Quser, code_convert_string_norecord (tem, Vlocale_coding_system, 0)), attrs); attrs = Fcons (Fcons (Qegid, make_fixnum_or_float (egid)), attrs); tem = make_unibyte_string (gname, glength); attrs = Fcons (Fcons (Qgroup, code_convert_string_norecord (tem, Vlocale_coding_system, 0)), attrs); if (global_memory_status_ex (&memstex)) #if __GNUC__ || (defined (_MSC_VER) && _MSC_VER >= 1300) totphys = memstex.ullTotalPhys / 1024.0; #else /* Visual Studio 6 cannot convert an unsigned __int64 type to double, so we need to do this for it... */ { DWORD tot_hi = memstex.ullTotalPhys >> 32; DWORD tot_md = (memstex.ullTotalPhys & 0x00000000ffffffff) >> 10; DWORD tot_lo = memstex.ullTotalPhys % 1024; totphys = tot_hi * 4194304.0 + tot_md + tot_lo / 1024.0; } #endif /* __GNUC__ || _MSC_VER >= 1300 */ else if (global_memory_status (&memst)) totphys = memst.dwTotalPhys / 1024.0; if (h_proc && get_process_memory_info (h_proc, (PROCESS_MEMORY_COUNTERS *)&mem_ex, sizeof (mem_ex))) { SIZE_T rss = mem_ex.WorkingSetSize / 1024; attrs = Fcons (Fcons (Qmajflt, make_fixnum_or_float (mem_ex.PageFaultCount)), attrs); attrs = Fcons (Fcons (Qvsize, make_fixnum_or_float (mem_ex.PrivateUsage / 1024)), attrs); attrs = Fcons (Fcons (Qrss, make_fixnum_or_float (rss)), attrs); if (totphys) attrs = Fcons (Fcons (Qpmem, make_float (100. * rss / totphys)), attrs); } else if (h_proc && get_process_memory_info (h_proc, &mem, sizeof (mem))) { SIZE_T rss = mem_ex.WorkingSetSize / 1024; attrs = Fcons (Fcons (Qmajflt, make_fixnum_or_float (mem.PageFaultCount)), attrs); attrs = Fcons (Fcons (Qrss, make_fixnum_or_float (rss)), attrs); if (totphys) attrs = Fcons (Fcons (Qpmem, make_float (100. * rss / totphys)), attrs); } else if (h_proc && get_process_working_set_size (h_proc, &minrss, &maxrss)) { DWORD rss = maxrss / 1024; attrs = Fcons (Fcons (Qrss, make_fixnum_or_float (maxrss / 1024)), attrs); if (totphys) attrs = Fcons (Fcons (Qpmem, make_float (100. * rss / totphys)), attrs); } if (process_times (h_proc, &ctime, &etime, &stime, &utime, &ttime, &pcpu)) { attrs = Fcons (Fcons (Qutime, utime), attrs); attrs = Fcons (Fcons (Qstime, stime), attrs); attrs = Fcons (Fcons (Qtime, ttime), attrs); attrs = Fcons (Fcons (Qstart, ctime), attrs); attrs = Fcons (Fcons (Qetime, etime), attrs); attrs = Fcons (Fcons (Qpcpu, make_float (pcpu)), attrs); } /* FIXME: Retrieve command line by walking the PEB of the process. */ if (h_proc) CloseHandle (h_proc); return attrs; } int w32_memory_info (unsigned long long *totalram, unsigned long long *freeram, unsigned long long *totalswap, unsigned long long *freeswap) { MEMORYSTATUS memst; MEMORY_STATUS_EX memstex; /* Use GlobalMemoryStatusEx if available, as it can report more than 2GB of memory. */ if (global_memory_status_ex (&memstex)) { *totalram = memstex.ullTotalPhys; *freeram = memstex.ullAvailPhys; *totalswap = memstex.ullTotalPageFile; *freeswap = memstex.ullAvailPageFile; return 0; } else if (global_memory_status (&memst)) { *totalram = memst.dwTotalPhys; *freeram = memst.dwAvailPhys; *totalswap = memst.dwTotalPageFile; *freeswap = memst.dwAvailPageFile; return 0; } else return -1; } /* Wrappers for winsock functions to map between our file descriptors and winsock's handles; also set h_errno for convenience. To allow Emacs to run on systems which don't have winsock support installed, we dynamically link to winsock on startup if present, and otherwise provide the minimum necessary functionality (eg. gethostname). */ /* function pointers for relevant socket functions */ int (PASCAL *pfn_WSAStartup) (WORD wVersionRequired, LPWSADATA lpWSAData); void (PASCAL *pfn_WSASetLastError) (int iError); int (PASCAL *pfn_WSAGetLastError) (void); int (PASCAL *pfn_WSAEventSelect) (SOCKET s, HANDLE hEventObject, long lNetworkEvents); int (PASCAL *pfn_WSAEnumNetworkEvents) (SOCKET s, HANDLE hEventObject, WSANETWORKEVENTS *NetworkEvents); HANDLE (PASCAL *pfn_WSACreateEvent) (void); int (PASCAL *pfn_WSACloseEvent) (HANDLE hEvent); int (PASCAL *pfn_socket) (int af, int type, int protocol); int (PASCAL *pfn_bind) (SOCKET s, const struct sockaddr *addr, int namelen); int (PASCAL *pfn_connect) (SOCKET s, const struct sockaddr *addr, int namelen); int (PASCAL *pfn_ioctlsocket) (SOCKET s, long cmd, u_long *argp); int (PASCAL *pfn_recv) (SOCKET s, char * buf, int len, int flags); int (PASCAL *pfn_send) (SOCKET s, const char * buf, int len, int flags); int (PASCAL *pfn_closesocket) (SOCKET s); int (PASCAL *pfn_shutdown) (SOCKET s, int how); int (PASCAL *pfn_WSACleanup) (void); u_short (PASCAL *pfn_htons) (u_short hostshort); u_short (PASCAL *pfn_ntohs) (u_short netshort); unsigned long (PASCAL *pfn_inet_addr) (const char * cp); int (PASCAL *pfn_gethostname) (char * name, int namelen); struct hostent * (PASCAL *pfn_gethostbyname) (const char * name); struct servent * (PASCAL *pfn_getservbyname) (const char * name, const char * proto); int (PASCAL *pfn_getpeername) (SOCKET s, struct sockaddr *addr, int * namelen); int (PASCAL *pfn_setsockopt) (SOCKET s, int level, int optname, const char * optval, int optlen); int (PASCAL *pfn_listen) (SOCKET s, int backlog); int (PASCAL *pfn_getsockname) (SOCKET s, struct sockaddr * name, int * namelen); SOCKET (PASCAL *pfn_accept) (SOCKET s, struct sockaddr * addr, int * addrlen); int (PASCAL *pfn_recvfrom) (SOCKET s, char * buf, int len, int flags, struct sockaddr * from, int * fromlen); int (PASCAL *pfn_sendto) (SOCKET s, const char * buf, int len, int flags, const struct sockaddr * to, int tolen); /* SetHandleInformation is only needed to make sockets non-inheritable. */ BOOL (WINAPI *pfn_SetHandleInformation) (HANDLE object, DWORD mask, DWORD flags); #ifndef HANDLE_FLAG_INHERIT #define HANDLE_FLAG_INHERIT 1 #endif HANDLE winsock_lib; static int winsock_inuse; BOOL term_winsock (void) { if (winsock_lib != NULL && winsock_inuse == 0) { release_listen_threads (); /* Not sure what would cause WSAENETDOWN, or even if it can happen after WSAStartup returns successfully, but it seems reasonable to allow unloading winsock anyway in that case. */ if (pfn_WSACleanup () == 0 || pfn_WSAGetLastError () == WSAENETDOWN) { if (FreeLibrary (winsock_lib)) winsock_lib = NULL; return TRUE; } } return FALSE; } BOOL init_winsock (int load_now) { WSADATA winsockData; if (winsock_lib != NULL) return TRUE; pfn_SetHandleInformation = (void *) GetProcAddress (GetModuleHandle ("kernel32.dll"), "SetHandleInformation"); winsock_lib = LoadLibrary ("Ws2_32.dll"); if (winsock_lib != NULL) { /* dynamically link to socket functions */ #define LOAD_PROC(fn) \ if ((pfn_##fn = (void *) GetProcAddress (winsock_lib, #fn)) == NULL) \ goto fail; LOAD_PROC (WSAStartup); LOAD_PROC (WSASetLastError); LOAD_PROC (WSAGetLastError); LOAD_PROC (WSAEventSelect); LOAD_PROC (WSAEnumNetworkEvents); LOAD_PROC (WSACreateEvent); LOAD_PROC (WSACloseEvent); LOAD_PROC (socket); LOAD_PROC (bind); LOAD_PROC (connect); LOAD_PROC (ioctlsocket); LOAD_PROC (recv); LOAD_PROC (send); LOAD_PROC (closesocket); LOAD_PROC (shutdown); LOAD_PROC (htons); LOAD_PROC (ntohs); LOAD_PROC (inet_addr); LOAD_PROC (gethostname); LOAD_PROC (gethostbyname); LOAD_PROC (getservbyname); LOAD_PROC (getpeername); LOAD_PROC (WSACleanup); LOAD_PROC (setsockopt); LOAD_PROC (listen); LOAD_PROC (getsockname); LOAD_PROC (accept); LOAD_PROC (recvfrom); LOAD_PROC (sendto); #undef LOAD_PROC /* specify version 1.1 of winsock */ if (pfn_WSAStartup (0x101, &winsockData) == 0) { if (winsockData.wVersion != 0x101) goto fail; if (!load_now) { /* Report that winsock exists and is usable, but leave socket functions disabled. I am assuming that calling WSAStartup does not require any network interaction, and in particular does not cause or require a dial-up connection to be established. */ pfn_WSACleanup (); FreeLibrary (winsock_lib); winsock_lib = NULL; } winsock_inuse = 0; return TRUE; } fail: FreeLibrary (winsock_lib); winsock_lib = NULL; } return FALSE; } int h_errno = 0; /* Function to map winsock error codes to errno codes for those errno code defined in errno.h (errno values not defined by errno.h are already in nt/inc/sys/socket.h). */ static void set_errno (void) { int wsa_err; h_errno = 0; if (winsock_lib == NULL) wsa_err = EINVAL; else wsa_err = pfn_WSAGetLastError (); switch (wsa_err) { case WSAEACCES: errno = EACCES; break; case WSAEBADF: errno = EBADF; break; case WSAEFAULT: errno = EFAULT; break; case WSAEINTR: errno = EINTR; break; case WSAEINVAL: errno = EINVAL; break; case WSAEMFILE: errno = EMFILE; break; case WSAENAMETOOLONG: errno = ENAMETOOLONG; break; case WSAENOTEMPTY: errno = ENOTEMPTY; break; case WSAEWOULDBLOCK: errno = EWOULDBLOCK; break; case WSAENOTCONN: errno = ENOTCONN; break; default: errno = wsa_err; break; } } static void check_errno (void) { h_errno = 0; if (winsock_lib != NULL) pfn_WSASetLastError (0); } /* Extend strerror to handle the winsock-specific error codes. */ struct { int errnum; char * msg; } _wsa_errlist[] = { {WSAEINTR , "Interrupted function call"}, {WSAEBADF , "Bad file descriptor"}, {WSAEACCES , "Permission denied"}, {WSAEFAULT , "Bad address"}, {WSAEINVAL , "Invalid argument"}, {WSAEMFILE , "Too many open files"}, {WSAEWOULDBLOCK , "Resource temporarily unavailable"}, {WSAEINPROGRESS , "Operation now in progress"}, {WSAEALREADY , "Operation already in progress"}, {WSAENOTSOCK , "Socket operation on non-socket"}, {WSAEDESTADDRREQ , "Destination address required"}, {WSAEMSGSIZE , "Message too long"}, {WSAEPROTOTYPE , "Protocol wrong type for socket"}, {WSAENOPROTOOPT , "Bad protocol option"}, {WSAEPROTONOSUPPORT , "Protocol not supported"}, {WSAESOCKTNOSUPPORT , "Socket type not supported"}, {WSAEOPNOTSUPP , "Operation not supported"}, {WSAEPFNOSUPPORT , "Protocol family not supported"}, {WSAEAFNOSUPPORT , "Address family not supported by protocol family"}, {WSAEADDRINUSE , "Address already in use"}, {WSAEADDRNOTAVAIL , "Cannot assign requested address"}, {WSAENETDOWN , "Network is down"}, {WSAENETUNREACH , "Network is unreachable"}, {WSAENETRESET , "Network dropped connection on reset"}, {WSAECONNABORTED , "Software caused connection abort"}, {WSAECONNRESET , "Connection reset by peer"}, {WSAENOBUFS , "No buffer space available"}, {WSAEISCONN , "Socket is already connected"}, {WSAENOTCONN , "Socket is not connected"}, {WSAESHUTDOWN , "Cannot send after socket shutdown"}, {WSAETOOMANYREFS , "Too many references"}, /* not sure */ {WSAETIMEDOUT , "Connection timed out"}, {WSAECONNREFUSED , "Connection refused"}, {WSAELOOP , "Network loop"}, /* not sure */ {WSAENAMETOOLONG , "Name is too long"}, {WSAEHOSTDOWN , "Host is down"}, {WSAEHOSTUNREACH , "No route to host"}, {WSAENOTEMPTY , "Buffer not empty"}, /* not sure */ {WSAEPROCLIM , "Too many processes"}, {WSAEUSERS , "Too many users"}, /* not sure */ {WSAEDQUOT , "Double quote in host name"}, /* really not sure */ {WSAESTALE , "Data is stale"}, /* not sure */ {WSAEREMOTE , "Remote error"}, /* not sure */ {WSASYSNOTREADY , "Network subsystem is unavailable"}, {WSAVERNOTSUPPORTED , "WINSOCK.DLL version out of range"}, {WSANOTINITIALISED , "Winsock not initialized successfully"}, {WSAEDISCON , "Graceful shutdown in progress"}, #ifdef WSAENOMORE {WSAENOMORE , "No more operations allowed"}, /* not sure */ {WSAECANCELLED , "Operation cancelled"}, /* not sure */ {WSAEINVALIDPROCTABLE , "Invalid procedure table from service provider"}, {WSAEINVALIDPROVIDER , "Invalid service provider version number"}, {WSAEPROVIDERFAILEDINIT , "Unable to initialize a service provider"}, {WSASYSCALLFAILURE , "System call failure"}, {WSASERVICE_NOT_FOUND , "Service not found"}, /* not sure */ {WSATYPE_NOT_FOUND , "Class type not found"}, {WSA_E_NO_MORE , "No more resources available"}, /* really not sure */ {WSA_E_CANCELLED , "Operation already cancelled"}, /* really not sure */ {WSAEREFUSED , "Operation refused"}, /* not sure */ #endif {WSAHOST_NOT_FOUND , "Host not found"}, {WSATRY_AGAIN , "Authoritative host not found during name lookup"}, {WSANO_RECOVERY , "Non-recoverable error during name lookup"}, {WSANO_DATA , "Valid name, no data record of requested type"}, {-1, NULL} }; char * sys_strerror (int error_no) { int i; static char unknown_msg[40]; if (error_no >= 0 && error_no < sys_nerr) return sys_errlist[error_no]; for (i = 0; _wsa_errlist[i].errnum >= 0; i++) if (_wsa_errlist[i].errnum == error_no) return _wsa_errlist[i].msg; sprintf (unknown_msg, "Unidentified error: %d", error_no); return unknown_msg; } /* [andrewi 3-May-96] I've had conflicting results using both methods, but I believe the method of keeping the socket handle separate (and insuring it is not inheritable) is the correct one. */ #define SOCK_HANDLE(fd) ((SOCKET) fd_info[fd].hnd) static int socket_to_fd (SOCKET s); int sys_socket (int af, int type, int protocol) { SOCKET s; if (winsock_lib == NULL) { errno = ENETDOWN; return -1; } check_errno (); /* call the real socket function */ s = pfn_socket (af, type, protocol); if (s != INVALID_SOCKET) return socket_to_fd (s); set_errno (); return -1; } /* Convert a SOCKET to a file descriptor. */ static int socket_to_fd (SOCKET s) { int fd; child_process * cp; /* Although under NT 3.5 _open_osfhandle will accept a socket handle, if opened with SO_OPENTYPE == SO_SYNCHRONOUS_NONALERT, that does not work under NT 3.1. However, we can get the same effect by using a backdoor function to replace an existing descriptor handle with the one we want. */ /* allocate a file descriptor (with appropriate flags) */ fd = _open ("NUL:", _O_RDWR); if (fd >= 0) { /* Make a non-inheritable copy of the socket handle. Note that it is possible that sockets aren't actually kernel handles, which appears to be the case on Windows 9x when the MS Proxy winsock client is installed. */ { /* Apparently there is a bug in NT 3.51 with some service packs, which prevents using DuplicateHandle to make a socket handle non-inheritable (causes WSACleanup to hang). The work-around is to use SetHandleInformation instead if it is available and implemented. */ if (pfn_SetHandleInformation) { pfn_SetHandleInformation ((HANDLE) s, HANDLE_FLAG_INHERIT, 0); } else { HANDLE parent = GetCurrentProcess (); HANDLE new_s = INVALID_HANDLE_VALUE; if (DuplicateHandle (parent, (HANDLE) s, parent, &new_s, 0, FALSE, DUPLICATE_SAME_ACCESS)) { /* It is possible that DuplicateHandle succeeds even though the socket wasn't really a kernel handle, because a real handle has the same value. So test whether the new handle really is a socket. */ unsigned long nonblocking = 0; if (pfn_ioctlsocket ((SOCKET) new_s, FIONBIO, &nonblocking) == 0) { pfn_closesocket (s); s = (SOCKET) new_s; } else { CloseHandle (new_s); } } } } eassert (fd < MAXDESC); fd_info[fd].hnd = (HANDLE) s; /* set our own internal flags */ fd_info[fd].flags = FILE_SOCKET | FILE_BINARY | FILE_READ | FILE_WRITE; cp = new_child (); if (cp) { cp->fd = fd; cp->status = STATUS_READ_ACKNOWLEDGED; /* attach child_process to fd_info */ if (fd_info[ fd ].cp != NULL) { DebPrint (("sys_socket: fd_info[%d] apparently in use!\n", fd)); emacs_abort (); } fd_info[ fd ].cp = cp; /* success! */ winsock_inuse++; /* count open sockets */ return fd; } /* clean up */ _close (fd); } else pfn_closesocket (s); errno = EMFILE; return -1; } int sys_bind (int s, const struct sockaddr * addr, int namelen) { if (winsock_lib == NULL) { errno = ENOTSOCK; return SOCKET_ERROR; } check_errno (); if (fd_info[s].flags & FILE_SOCKET) { int rc = pfn_bind (SOCK_HANDLE (s), addr, namelen); if (rc == SOCKET_ERROR) set_errno (); return rc; } errno = ENOTSOCK; return SOCKET_ERROR; } int sys_connect (int s, const struct sockaddr * name, int namelen) { if (winsock_lib == NULL) { errno = ENOTSOCK; return SOCKET_ERROR; } check_errno (); if (fd_info[s].flags & FILE_SOCKET) { int rc = pfn_connect (SOCK_HANDLE (s), name, namelen); if (rc == SOCKET_ERROR) { set_errno (); /* If this is a non-blocking 'connect', set the bit in flags that will tell reader_thread to wait for connection before trying to read. */ if (errno == EWOULDBLOCK && (fd_info[s].flags & FILE_NDELAY) != 0) { errno = EINPROGRESS; /* that's what process.c expects */ fd_info[s].flags |= FILE_CONNECT; } } return rc; } errno = ENOTSOCK; return SOCKET_ERROR; } u_short sys_htons (u_short hostshort) { return (winsock_lib != NULL) ? pfn_htons (hostshort) : hostshort; } u_short sys_ntohs (u_short netshort) { return (winsock_lib != NULL) ? pfn_ntohs (netshort) : netshort; } unsigned long sys_inet_addr (const char * cp) { return (winsock_lib != NULL) ? pfn_inet_addr (cp) : INADDR_NONE; } int sys_gethostname (char * name, int namelen) { if (winsock_lib != NULL) { int retval; check_errno (); retval = pfn_gethostname (name, namelen); if (retval == SOCKET_ERROR) set_errno (); return retval; } if (namelen > MAX_COMPUTERNAME_LENGTH) return !GetComputerName (name, (DWORD *)&namelen); errno = EFAULT; return SOCKET_ERROR; } struct hostent * sys_gethostbyname (const char * name) { struct hostent * host; int h_err = h_errno; if (winsock_lib == NULL) { h_errno = NO_RECOVERY; errno = ENETDOWN; return NULL; } check_errno (); host = pfn_gethostbyname (name); if (!host) { set_errno (); h_errno = errno; } else h_errno = h_err; return host; } struct servent * sys_getservbyname (const char * name, const char * proto) { struct servent * serv; if (winsock_lib == NULL) { errno = ENETDOWN; return NULL; } check_errno (); serv = pfn_getservbyname (name, proto); if (!serv) set_errno (); return serv; } int sys_getpeername (int s, struct sockaddr *addr, int * namelen) { if (winsock_lib == NULL) { errno = ENETDOWN; return SOCKET_ERROR; } check_errno (); if (fd_info[s].flags & FILE_SOCKET) { int rc = pfn_getpeername (SOCK_HANDLE (s), addr, namelen); if (rc == SOCKET_ERROR) set_errno (); return rc; } errno = ENOTSOCK; return SOCKET_ERROR; } int sys_shutdown (int s, int how) { if (winsock_lib == NULL) { errno = ENETDOWN; return SOCKET_ERROR; } check_errno (); if (fd_info[s].flags & FILE_SOCKET) { int rc = pfn_shutdown (SOCK_HANDLE (s), how); if (rc == SOCKET_ERROR) set_errno (); return rc; } errno = ENOTSOCK; return SOCKET_ERROR; } int sys_setsockopt (int s, int level, int optname, const void * optval, int optlen) { if (winsock_lib == NULL) { errno = ENETDOWN; return SOCKET_ERROR; } check_errno (); if (fd_info[s].flags & FILE_SOCKET) { int rc = pfn_setsockopt (SOCK_HANDLE (s), level, optname, (const char *)optval, optlen); if (rc == SOCKET_ERROR) set_errno (); return rc; } errno = ENOTSOCK; return SOCKET_ERROR; } int sys_listen (int s, int backlog) { if (winsock_lib == NULL) { errno = ENETDOWN; return SOCKET_ERROR; } check_errno (); if (fd_info[s].flags & FILE_SOCKET) { int rc = pfn_listen (SOCK_HANDLE (s), backlog); if (rc == SOCKET_ERROR) set_errno (); else fd_info[s].flags |= FILE_LISTEN; return rc; } errno = ENOTSOCK; return SOCKET_ERROR; } int sys_getsockname (int s, struct sockaddr * name, int * namelen) { if (winsock_lib == NULL) { errno = ENETDOWN; return SOCKET_ERROR; } check_errno (); if (fd_info[s].flags & FILE_SOCKET) { int rc = pfn_getsockname (SOCK_HANDLE (s), name, namelen); if (rc == SOCKET_ERROR) set_errno (); return rc; } errno = ENOTSOCK; return SOCKET_ERROR; } int sys_accept (int s, struct sockaddr * addr, int * addrlen) { if (winsock_lib == NULL) { errno = ENETDOWN; return -1; } check_errno (); if (fd_info[s].flags & FILE_LISTEN) { SOCKET t = pfn_accept (SOCK_HANDLE (s), addr, addrlen); int fd = -1; if (t == INVALID_SOCKET) set_errno (); else fd = socket_to_fd (t); if (fd >= 0) { fd_info[s].cp->status = STATUS_READ_ACKNOWLEDGED; ResetEvent (fd_info[s].cp->char_avail); } return fd; } errno = ENOTSOCK; return -1; } int sys_recvfrom (int s, char * buf, int len, int flags, struct sockaddr * from, int * fromlen) { if (winsock_lib == NULL) { errno = ENETDOWN; return SOCKET_ERROR; } check_errno (); if (fd_info[s].flags & FILE_SOCKET) { int rc = pfn_recvfrom (SOCK_HANDLE (s), buf, len, flags, from, fromlen); if (rc == SOCKET_ERROR) set_errno (); return rc; } errno = ENOTSOCK; return SOCKET_ERROR; } int sys_sendto (int s, const char * buf, int len, int flags, const struct sockaddr * to, int tolen) { if (winsock_lib == NULL) { errno = ENETDOWN; return SOCKET_ERROR; } check_errno (); if (fd_info[s].flags & FILE_SOCKET) { int rc = pfn_sendto (SOCK_HANDLE (s), buf, len, flags, to, tolen); if (rc == SOCKET_ERROR) set_errno (); return rc; } errno = ENOTSOCK; return SOCKET_ERROR; } /* Windows does not have an fcntl function. Provide an implementation good enough for Emacs. */ int fcntl (int s, int cmd, int options) { /* In the w32 Emacs port, fcntl (fd, F_DUPFD_CLOEXEC, fd1) is always invoked in a context where fd1 is closed and all descriptors less than fd1 are open, so sys_dup is an adequate implementation. */ if (cmd == F_DUPFD_CLOEXEC) return sys_dup (s); check_errno (); if (fd_info[s].flags & FILE_SOCKET) { if (winsock_lib == NULL) { errno = ENETDOWN; return -1; } if (cmd == F_SETFL && options == O_NONBLOCK) { unsigned long nblock = 1; int rc = pfn_ioctlsocket (SOCK_HANDLE (s), FIONBIO, &nblock); if (rc == SOCKET_ERROR) set_errno (); /* Keep track of the fact that we set this to non-blocking. */ fd_info[s].flags |= FILE_NDELAY; return rc; } else { errno = EINVAL; return SOCKET_ERROR; } } else if ((fd_info[s].flags & (FILE_PIPE | FILE_WRITE)) == (FILE_PIPE | FILE_WRITE)) { /* Force our writes to pipes be non-blocking. */ if (cmd == F_SETFL && options == O_NONBLOCK) { HANDLE h = (HANDLE)_get_osfhandle (s); DWORD pipe_mode = PIPE_NOWAIT; if (!SetNamedPipeHandleState (h, &pipe_mode, NULL, NULL)) { DebPrint (("SetNamedPipeHandleState: %lu\n", GetLastError ())); return SOCKET_ERROR; } fd_info[s].flags |= FILE_NDELAY; return 0; } else { errno = EINVAL; return SOCKET_ERROR; } } errno = ENOTSOCK; return SOCKET_ERROR; } /* Shadow main io functions: we need to handle pipes and sockets more intelligently. */ int sys_close (int fd) { int rc; if (fd < 0) { errno = EBADF; return -1; } if (fd < MAXDESC && fd_info[fd].cp) { child_process * cp = fd_info[fd].cp; fd_info[fd].cp = NULL; if (CHILD_ACTIVE (cp)) { /* if last descriptor to active child_process then cleanup */ int i; for (i = 0; i < MAXDESC; i++) { if (i == fd) continue; if (fd_info[i].cp == cp) break; } if (i == MAXDESC) { if (fd_info[fd].flags & FILE_SOCKET) { if (winsock_lib == NULL) emacs_abort (); pfn_shutdown (SOCK_HANDLE (fd), 2); rc = pfn_closesocket (SOCK_HANDLE (fd)); winsock_inuse--; /* count open sockets */ } /* If the process handle is NULL, it's either a socket or serial connection, or a subprocess that was already reaped by reap_subprocess, but whose resources were not yet freed, because its output was not fully read yet by the time it was reaped. (This usually happens with async subprocesses whose output is being read by Emacs.) Otherwise, this process was not reaped yet, so we set its FD to a negative value to make sure sys_select will eventually get to calling the SIGCHLD handler for it, which will then invoke waitpid and reap_subprocess. */ if (cp->procinfo.hProcess == NULL) delete_child (cp); else cp->fd = -1; } } } if (fd >= 0 && fd < MAXDESC) fd_info[fd].flags = 0; /* Note that sockets do not need special treatment here (at least on NT and Windows 95 using the standard tcp/ip stacks) - it appears that closesocket is equivalent to CloseHandle, which is to be expected because socket handles are fully fledged kernel handles. */ rc = _close (fd); return rc; } int sys_dup (int fd) { int new_fd; new_fd = _dup (fd); if (new_fd >= 0 && new_fd < MAXDESC) { /* duplicate our internal info as well */ fd_info[new_fd] = fd_info[fd]; } return new_fd; } int sys_dup2 (int src, int dst) { int rc; if (dst < 0 || dst >= MAXDESC) { errno = EBADF; return -1; } /* make sure we close the destination first if it's a pipe or socket */ if (src != dst && fd_info[dst].flags != 0) sys_close (dst); rc = _dup2 (src, dst); if (rc == 0) { /* duplicate our internal info as well */ fd_info[dst] = fd_info[src]; } return rc; } int pipe2 (int * phandles, int pipe2_flags) { int rc; unsigned flags; unsigned pipe_size = 0; eassert (pipe2_flags == (O_BINARY | O_CLOEXEC)); /* Allow Lisp to override the default buffer size of the pipe. */ if (w32_pipe_buffer_size > 0 && w32_pipe_buffer_size < UINT_MAX) pipe_size = w32_pipe_buffer_size; /* make pipe handles non-inheritable; when we spawn a child, we replace the relevant handle with an inheritable one. Also put pipes into binary mode; we will do text mode translation ourselves if required. */ rc = _pipe (phandles, pipe_size, _O_NOINHERIT | _O_BINARY); if (rc == 0) { /* Protect against overflow, since Windows can open more handles than our fd_info array has room for. */ if (phandles[0] >= MAXDESC || phandles[1] >= MAXDESC) { _close (phandles[0]); _close (phandles[1]); errno = EMFILE; rc = -1; } else { flags = FILE_PIPE | FILE_READ | FILE_BINARY; fd_info[phandles[0]].flags = flags; flags = FILE_PIPE | FILE_WRITE | FILE_BINARY; fd_info[phandles[1]].flags = flags; } } return rc; } /* Function to do blocking read of one byte, needed to implement select. It is only allowed on communication ports, sockets, or pipes. */ int _sys_read_ahead (int fd) { child_process * cp; int rc; if (fd < 0 || fd >= MAXDESC) return STATUS_READ_ERROR; cp = fd_info[fd].cp; if (cp == NULL || cp->fd != fd || cp->status != STATUS_READ_READY) return STATUS_READ_ERROR; if ((fd_info[fd].flags & (FILE_PIPE | FILE_SERIAL | FILE_SOCKET)) == 0 || (fd_info[fd].flags & FILE_READ) == 0) { DebPrint (("_sys_read_ahead: internal error: fd %d is not a pipe, serial port, or socket!\n", fd)); emacs_abort (); } if ((fd_info[fd].flags & FILE_CONNECT) != 0) DebPrint (("_sys_read_ahead: read requested from fd %d, which waits for async connect!\n", fd)); cp->status = STATUS_READ_IN_PROGRESS; if (fd_info[fd].flags & FILE_PIPE) { rc = _read (fd, &cp->chr, sizeof (char)); /* Give subprocess time to buffer some more output for us before reporting that input is available; we need this because Windows 95 connects DOS programs to pipes by making the pipe appear to be the normal console stdout - as a result most DOS programs will write to stdout without buffering, ie. one character at a time. Even some W32 programs do this - "dir" in a command shell on NT is very slow if we don't do this. */ if (rc > 0) { int wait = w32_pipe_read_delay; if (wait > 0) Sleep (wait); else if (wait < 0) while (++wait <= 0) /* Yield remainder of our time slice, effectively giving a temporary priority boost to the child process. */ Sleep (0); } } else if (fd_info[fd].flags & FILE_SERIAL) { HANDLE hnd = fd_info[fd].hnd; OVERLAPPED *ovl = &fd_info[fd].cp->ovl_read; COMMTIMEOUTS ct; /* Configure timeouts for blocking read. */ if (!GetCommTimeouts (hnd, &ct)) { cp->status = STATUS_READ_ERROR; return STATUS_READ_ERROR; } ct.ReadIntervalTimeout = 0; ct.ReadTotalTimeoutMultiplier = 0; ct.ReadTotalTimeoutConstant = 0; if (!SetCommTimeouts (hnd, &ct)) { cp->status = STATUS_READ_ERROR; return STATUS_READ_ERROR; } if (!ReadFile (hnd, &cp->chr, sizeof (char), (DWORD*) &rc, ovl)) { if (GetLastError () != ERROR_IO_PENDING) { cp->status = STATUS_READ_ERROR; return STATUS_READ_ERROR; } if (!GetOverlappedResult (hnd, ovl, (DWORD*) &rc, TRUE)) { cp->status = STATUS_READ_ERROR; return STATUS_READ_ERROR; } } } else if (fd_info[fd].flags & FILE_SOCKET) { unsigned long nblock = 0; /* We always want this to block, so temporarily disable NDELAY. */ if (fd_info[fd].flags & FILE_NDELAY) pfn_ioctlsocket (SOCK_HANDLE (fd), FIONBIO, &nblock); rc = pfn_recv (SOCK_HANDLE (fd), &cp->chr, sizeof (char), 0); if (fd_info[fd].flags & FILE_NDELAY) { nblock = 1; pfn_ioctlsocket (SOCK_HANDLE (fd), FIONBIO, &nblock); } } if (rc == sizeof (char)) cp->status = STATUS_READ_SUCCEEDED; else cp->status = STATUS_READ_FAILED; return cp->status; } int _sys_wait_accept (int fd) { HANDLE hEv; child_process * cp; int rc; if (fd < 0 || fd >= MAXDESC) return STATUS_READ_ERROR; cp = fd_info[fd].cp; if (cp == NULL || cp->fd != fd || cp->status != STATUS_READ_READY) return STATUS_READ_ERROR; cp->status = STATUS_READ_FAILED; hEv = pfn_WSACreateEvent (); rc = pfn_WSAEventSelect (SOCK_HANDLE (fd), hEv, FD_ACCEPT); if (rc != SOCKET_ERROR) { do { rc = WaitForSingleObject (hEv, 500); Sleep (5); } while (rc == WAIT_TIMEOUT && cp->status != STATUS_READ_ERROR && cp->char_avail); pfn_WSAEventSelect (SOCK_HANDLE (fd), NULL, 0); if (rc == WAIT_OBJECT_0) cp->status = STATUS_READ_SUCCEEDED; } pfn_WSACloseEvent (hEv); return cp->status; } int _sys_wait_connect (int fd) { HANDLE hEv; child_process * cp; int rc; if (fd < 0 || fd >= MAXDESC) return STATUS_READ_ERROR; cp = fd_info[fd].cp; if (cp == NULL || cp->fd != fd || cp->status != STATUS_READ_READY) return STATUS_READ_ERROR; cp->status = STATUS_READ_FAILED; hEv = pfn_WSACreateEvent (); rc = pfn_WSAEventSelect (SOCK_HANDLE (fd), hEv, FD_CONNECT); if (rc != SOCKET_ERROR) { do { rc = WaitForSingleObject (hEv, 500); Sleep (5); } while (rc == WAIT_TIMEOUT && cp->status != STATUS_READ_ERROR && cp->char_avail); if (rc == WAIT_OBJECT_0) { /* We've got an event, but it could be a successful connection, or it could be a failure. Find out which one is it. */ WSANETWORKEVENTS events; pfn_WSAEnumNetworkEvents (SOCK_HANDLE (fd), hEv, &events); if ((events.lNetworkEvents & FD_CONNECT) != 0 && events.iErrorCode[FD_CONNECT_BIT]) { cp->status = STATUS_CONNECT_FAILED; cp->errcode = events.iErrorCode[FD_CONNECT_BIT]; } else { cp->status = STATUS_READ_SUCCEEDED; cp->errcode = 0; } } pfn_WSAEventSelect (SOCK_HANDLE (fd), NULL, 0); } else pfn_WSACloseEvent (hEv); return cp->status; } int sys_read (int fd, char * buffer, unsigned int count) { int nchars; int to_read; DWORD waiting; char * orig_buffer = buffer; if (fd < 0) { errno = EBADF; return -1; } if (fd < MAXDESC && fd_info[fd].flags & (FILE_PIPE | FILE_SOCKET | FILE_SERIAL)) { child_process *cp = fd_info[fd].cp; if ((fd_info[fd].flags & FILE_READ) == 0) { errno = EBADF; return -1; } nchars = 0; /* re-read CR carried over from last read */ if (fd_info[fd].flags & FILE_LAST_CR) { if (fd_info[fd].flags & FILE_BINARY) emacs_abort (); *buffer++ = 0x0d; count--; nchars++; fd_info[fd].flags &= ~FILE_LAST_CR; } /* presence of a child_process structure means we are operating in non-blocking mode - otherwise we just call _read directly. Note that the child_process structure might be missing because reap_subprocess has been called; in this case the pipe is already broken, so calling _read on it is okay. */ if (cp) { int current_status = cp->status; switch (current_status) { case STATUS_READ_FAILED: case STATUS_READ_ERROR: /* report normal EOF if nothing in buffer */ if (nchars <= 0) fd_info[fd].flags |= FILE_AT_EOF; return nchars; case STATUS_READ_READY: case STATUS_READ_IN_PROGRESS: #if 0 /* This happens all the time during GnuTLS handshake with the remote, evidently because GnuTLS waits for the read to complete by retrying the read operation upon EAGAIN. So I'm disabling the DebPrint to avoid wasting cycles on something that is not a real problem. Enable if you need to debug something that bumps into this. */ DebPrint (("sys_read called when read is in progress %d\n", current_status)); #endif errno = EWOULDBLOCK; return -1; case STATUS_READ_SUCCEEDED: /* consume read-ahead char */ *buffer++ = cp->chr; count--; nchars++; cp->status = STATUS_READ_ACKNOWLEDGED; ResetEvent (cp->char_avail); case STATUS_READ_ACKNOWLEDGED: case STATUS_CONNECT_FAILED: break; default: DebPrint (("sys_read: bad status %d\n", current_status)); errno = EBADF; return -1; } if (fd_info[fd].flags & FILE_PIPE) { PeekNamedPipe ((HANDLE) _get_osfhandle (fd), NULL, 0, NULL, &waiting, NULL); to_read = min (waiting, (DWORD) count); if (to_read > 0) nchars += _read (fd, buffer, to_read); } else if (fd_info[fd].flags & FILE_SERIAL) { HANDLE hnd = fd_info[fd].hnd; OVERLAPPED *ovl = &fd_info[fd].cp->ovl_read; int rc = 0; COMMTIMEOUTS ct; if (count > 0) { /* Configure timeouts for non-blocking read. */ if (!GetCommTimeouts (hnd, &ct)) { errno = EIO; return -1; } ct.ReadIntervalTimeout = MAXDWORD; ct.ReadTotalTimeoutMultiplier = 0; ct.ReadTotalTimeoutConstant = 0; if (!SetCommTimeouts (hnd, &ct)) { errno = EIO; return -1; } if (!ResetEvent (ovl->hEvent)) { errno = EIO; return -1; } if (!ReadFile (hnd, buffer, count, (DWORD*) &rc, ovl)) { if (GetLastError () != ERROR_IO_PENDING) { errno = EIO; return -1; } if (!GetOverlappedResult (hnd, ovl, (DWORD*) &rc, TRUE)) { errno = EIO; return -1; } } nchars += rc; } } else /* FILE_SOCKET */ { if (winsock_lib == NULL) emacs_abort (); /* When a non-blocking 'connect' call fails, wait_reading_process_output detects this by calling 'getpeername', and then attempts to obtain the connection error code by trying to read 1 byte from the socket. If we try to serve that read by calling 'recv' below, the error we get is a generic WSAENOTCONN, not the actual connection error. So instead, we use the actual error code stashed by '_sys_wait_connect' in cp->errcode. Alternatively, we could have used 'getsockopt', like on GNU/Linux, but: (a) I have no idea whether the winsock version could hang, as it does "on some systems" (see the comment in process.c); and (b) 'getsockopt' on Windows is documented to clear the socket error for the entire process, which I'm not sure is TRT; FIXME. */ if (current_status == STATUS_CONNECT_FAILED && (fd_info[fd].flags & FILE_CONNECT) != 0 && cp->errcode != 0) { pfn_WSASetLastError (cp->errcode); set_errno (); return -1; } /* Do the equivalent of a non-blocking read. */ pfn_ioctlsocket (SOCK_HANDLE (fd), FIONREAD, &waiting); if (waiting == 0 && nchars == 0) { errno = EWOULDBLOCK; return -1; } if (waiting) { /* always use binary mode for sockets */ int res = pfn_recv (SOCK_HANDLE (fd), buffer, count, 0); if (res == SOCKET_ERROR) { set_errno (); DebPrint (("sys_read.recv failed with error %d on socket %ld\n", errno, SOCK_HANDLE (fd))); return -1; } nchars += res; } } } else { int nread = _read (fd, buffer, count); if (nread >= 0) nchars += nread; else if (nchars == 0) nchars = nread; } if (nchars <= 0) fd_info[fd].flags |= FILE_AT_EOF; /* Perform text mode translation if required. */ else if ((fd_info[fd].flags & FILE_BINARY) == 0) { nchars = crlf_to_lf (nchars, orig_buffer); /* If buffer contains only CR, return that. To be absolutely sure we should attempt to read the next char, but in practice a CR to be followed by LF would not appear by itself in the buffer. */ if (nchars > 1 && orig_buffer[nchars - 1] == 0x0d) { fd_info[fd].flags |= FILE_LAST_CR; nchars--; } } } else nchars = _read (fd, buffer, count); return nchars; } /* From w32xfns.c */ extern HANDLE interrupt_handle; int sys_write (int fd, const void * buffer, unsigned int count) { int nchars; USE_SAFE_ALLOCA; if (fd < 0) { errno = EBADF; return -1; } if (fd < MAXDESC && fd_info[fd].flags & (FILE_PIPE | FILE_SOCKET | FILE_SERIAL)) { if ((fd_info[fd].flags & FILE_WRITE) == 0) { errno = EBADF; return -1; } /* Perform text mode translation if required. */ if ((fd_info[fd].flags & FILE_BINARY) == 0) { char * tmpbuf; const unsigned char * src = buffer; unsigned char * dst; int nbytes = count; SAFE_NALLOCA (tmpbuf, 2, count); dst = (unsigned char *)tmpbuf; while (1) { unsigned char *next; /* Copy next line or remaining bytes. */ next = _memccpy (dst, src, '\n', nbytes); if (next) { /* Copied one line ending with '\n'. */ int copied = next - dst; nbytes -= copied; src += copied; /* Insert '\r' before '\n'. */ next[-1] = '\r'; next[0] = '\n'; dst = next + 1; count++; } else /* Copied remaining partial line -> now finished. */ break; } buffer = tmpbuf; } } if (fd < MAXDESC && fd_info[fd].flags & FILE_SERIAL) { HANDLE hnd = (HANDLE) _get_osfhandle (fd); OVERLAPPED *ovl = &fd_info[fd].cp->ovl_write; HANDLE wait_hnd[2] = { interrupt_handle, ovl->hEvent }; DWORD active = 0; /* This is async (a.k.a. "overlapped") I/O, so the return value of FALSE from WriteFile means either an error or the output will be completed asynchronously (ERROR_IO_PENDING). */ if (!WriteFile (hnd, buffer, count, (DWORD*) &nchars, ovl)) { if (GetLastError () != ERROR_IO_PENDING) { errno = EIO; nchars = -1; } else { /* Wait for the write to complete, and watch C-g while at that. */ if (detect_input_pending ()) active = MsgWaitForMultipleObjects (2, wait_hnd, FALSE, INFINITE, QS_ALLINPUT); else active = WaitForMultipleObjects (2, wait_hnd, FALSE, INFINITE); switch (active) { case WAIT_OBJECT_0: /* User pressed C-g, cancel write, then leave. Don't bother cleaning up as we may only get stuck in buggy drivers. */ PurgeComm (hnd, PURGE_TXABORT | PURGE_TXCLEAR); CancelIo (hnd); errno = EIO; /* Why not EINTR? */ nchars = -1; break; case WAIT_OBJECT_0 + 1: if (!GetOverlappedResult (hnd, ovl, (DWORD*) &nchars, TRUE)) { errno = EIO; nchars = -1; } break; } } } } else if (fd < MAXDESC && fd_info[fd].flags & FILE_SOCKET) { unsigned long nblock = 0; if (winsock_lib == NULL) emacs_abort (); /* TODO: implement select() properly so non-blocking I/O works. */ /* For now, make sure the write blocks. */ if (fd_info[fd].flags & FILE_NDELAY) pfn_ioctlsocket (SOCK_HANDLE (fd), FIONBIO, &nblock); nchars = pfn_send (SOCK_HANDLE (fd), buffer, count, 0); /* Set the socket back to non-blocking if it was before, for other operations that support it. */ if (fd_info[fd].flags & FILE_NDELAY) { nblock = 1; pfn_ioctlsocket (SOCK_HANDLE (fd), FIONBIO, &nblock); } if (nchars == SOCKET_ERROR) { DebPrint (("sys_write.send failed with error %d on socket %ld\n", pfn_WSAGetLastError (), SOCK_HANDLE (fd))); set_errno (); } } else { /* Some networked filesystems don't like too large writes, so break them into smaller chunks. See the Comments section of the MSDN documentation of WriteFile for details behind the choice of the value of CHUNK below. See also the thread http://thread.gmane.org/gmane.comp.version-control.git/145294 in the git mailing list. */ const unsigned char *p = buffer; const bool is_pipe = (fd < MAXDESC && ((fd_info[fd].flags & (FILE_PIPE | FILE_NDELAY)) == (FILE_PIPE | FILE_NDELAY))); /* Some programs, notably Node.js's node.exe, seem to never completely empty the pipe, so writing more than the size of the pipe's buffer always returns ENOSPC, and we loop forever between send_process and here. As a workaround, write no more than the pipe's buffer can hold. */ DWORD pipe_buffer_size; if (is_pipe) { if (!GetNamedPipeInfo ((HANDLE)_get_osfhandle (fd), NULL, &pipe_buffer_size, NULL, NULL)) { DebPrint (("GetNamedPipeInfo: error %u\n", GetLastError ())); pipe_buffer_size = 4096; } } const unsigned chunk = is_pipe ? pipe_buffer_size : 30 * 1024 * 1024; nchars = 0; errno = 0; while (count > 0) { unsigned this_chunk = count < chunk ? count : chunk; int n = _write (fd, p, this_chunk); if (n > 0) nchars += n; if (n < 0) { /* When there's no buffer space in a pipe that is in the non-blocking mode, _write returns ENOSPC. We return EAGAIN instead, which should trigger the logic in send_process that enters waiting loop and calls wait_reading_process_output to allow process input to be accepted during the wait. Those calls to wait_reading_process_output allow sys_select to notice when process input becomes available, thus avoiding deadlock whereby each side of the pipe is blocked on write, waiting for the other party to read its end of the pipe. */ if (errno == ENOSPC && is_pipe) errno = EAGAIN; if (nchars == 0) nchars = -1; break; } else if (n < this_chunk) break; count -= n; p += n; } } SAFE_FREE (); return nchars; } /* Emulation of SIOCGIFCONF and getifaddrs, see process.c. */ extern Lisp_Object conv_sockaddr_to_lisp (struct sockaddr *, int); /* Return information about network interface IFNAME, or about all interfaces (if IFNAME is nil). */ static Lisp_Object network_interface_get_info (Lisp_Object ifname) { ULONG ainfo_len = sizeof (IP_ADAPTER_INFO); IP_ADAPTER_INFO *adapter, *ainfo = xmalloc (ainfo_len); DWORD retval = get_adapters_info (ainfo, &ainfo_len); Lisp_Object res = Qnil; if (retval == ERROR_BUFFER_OVERFLOW) { ainfo = xrealloc (ainfo, ainfo_len); retval = get_adapters_info (ainfo, &ainfo_len); } if (retval == ERROR_SUCCESS) { int eth_count = 0, tr_count = 0, fddi_count = 0, ppp_count = 0; int sl_count = 0, wlan_count = 0, lo_count = 0, ifx_count = 0; int if_num; struct sockaddr_in sa; /* For the below, we need some winsock functions, so make sure the winsock DLL is loaded. If we cannot successfully load it, they will have no use of the information we provide, anyway, so punt. */ if (!winsock_lib && !init_winsock (1)) goto done; for (adapter = ainfo; adapter; adapter = adapter->Next) { char namebuf[MAX_ADAPTER_NAME_LENGTH + 4]; u_long ip_addr; /* Present Unix-compatible interface names, instead of the Windows names, which are really GUIDs not readable by humans. */ static const char *ifmt[] = { "eth%d", "tr%d", "fddi%d", "ppp%d", "sl%d", "wlan%d", "lo", "ifx%d" }; enum { NONE = -1, ETHERNET = 0, TOKENRING = 1, FDDI = 2, PPP = 3, SLIP = 4, WLAN = 5, LOOPBACK = 6, OTHER_IF = 7 } ifmt_idx; switch (adapter->Type) { case MIB_IF_TYPE_ETHERNET: /* Windows before Vista reports wireless adapters as Ethernet. Work around by looking at the Description string. */ if (strstr (adapter->Description, "Wireless ")) { ifmt_idx = WLAN; if_num = wlan_count++; } else { ifmt_idx = ETHERNET; if_num = eth_count++; } break; case MIB_IF_TYPE_TOKENRING: ifmt_idx = TOKENRING; if_num = tr_count++; break; case MIB_IF_TYPE_FDDI: ifmt_idx = FDDI; if_num = fddi_count++; break; case MIB_IF_TYPE_PPP: ifmt_idx = PPP; if_num = ppp_count++; break; case MIB_IF_TYPE_SLIP: ifmt_idx = SLIP; if_num = sl_count++; break; case IF_TYPE_IEEE80211: ifmt_idx = WLAN; if_num = wlan_count++; break; case MIB_IF_TYPE_LOOPBACK: if (lo_count < 0) { ifmt_idx = LOOPBACK; if_num = lo_count++; } else ifmt_idx = NONE; break; default: ifmt_idx = OTHER_IF; if_num = ifx_count++; break; } if (ifmt_idx == NONE) continue; sprintf (namebuf, ifmt[ifmt_idx], if_num); sa.sin_family = AF_INET; ip_addr = sys_inet_addr (adapter->IpAddressList.IpAddress.String); if (ip_addr == INADDR_NONE) { /* Bogus address, skip this interface. */ continue; } sa.sin_addr.s_addr = ip_addr; sa.sin_port = 0; if (NILP (ifname)) res = Fcons (Fcons (build_string (namebuf), conv_sockaddr_to_lisp ((struct sockaddr*) &sa, sizeof (struct sockaddr))), res); else if (strcmp (namebuf, SSDATA (ifname)) == 0) { Lisp_Object hwaddr = Fmake_vector (make_number (6), Qnil); register struct Lisp_Vector *p = XVECTOR (hwaddr); Lisp_Object flags = Qnil; int n; u_long net_mask; /* Flags. We guess most of them by type, since the Windows flags are different and hard to get by. */ flags = Fcons (intern ("up"), flags); if (ifmt_idx == ETHERNET || ifmt_idx == WLAN) { flags = Fcons (intern ("broadcast"), flags); flags = Fcons (intern ("multicast"), flags); } flags = Fcons (intern ("running"), flags); if (ifmt_idx == PPP) { flags = Fcons (intern ("pointopoint"), flags); flags = Fcons (intern ("noarp"), flags); } if (adapter->HaveWins) flags = Fcons (intern ("WINS"), flags); if (adapter->DhcpEnabled) flags = Fcons (intern ("dynamic"), flags); res = Fcons (flags, res); /* Hardware address and its family. */ for (n = 0; n < adapter->AddressLength; n++) p->contents[n] = make_number ((int) adapter->Address[n]); /* Windows does not support AF_LINK or AF_PACKET family of addresses. Use an arbitrary family number that is identical to what GNU/Linux returns. */ res = Fcons (Fcons (make_number (1), hwaddr), res); /* Network mask. */ sa.sin_family = AF_INET; net_mask = sys_inet_addr (adapter->IpAddressList.IpMask.String); if (net_mask != INADDR_NONE) { sa.sin_addr.s_addr = net_mask; sa.sin_port = 0; res = Fcons (conv_sockaddr_to_lisp ((struct sockaddr *) &sa, sizeof (struct sockaddr)), res); } else res = Fcons (Qnil, res); sa.sin_family = AF_INET; if (ip_addr != INADDR_NONE) { /* Broadcast address is only reported by GetAdaptersAddresses, which is of limited availability. Generate it on our own. */ u_long bcast_addr = (ip_addr & net_mask) | ~net_mask; sa.sin_addr.s_addr = bcast_addr; sa.sin_port = 0; res = Fcons (conv_sockaddr_to_lisp ((struct sockaddr *) &sa, sizeof (struct sockaddr)), res); /* IP address. */ sa.sin_addr.s_addr = ip_addr; sa.sin_port = 0; res = Fcons (conv_sockaddr_to_lisp ((struct sockaddr *) &sa, sizeof (struct sockaddr)), res); } else res = Fcons (Qnil, Fcons (Qnil, res)); } } /* GetAdaptersInfo is documented to not report loopback interfaces, so we generate one out of thin air. */ if (!lo_count) { sa.sin_family = AF_INET; sa.sin_port = 0; if (NILP (ifname)) { sa.sin_addr.s_addr = sys_inet_addr ("127.0.0.1"); res = Fcons (Fcons (build_string ("lo"), conv_sockaddr_to_lisp ((struct sockaddr*) &sa, sizeof (struct sockaddr))), res); } else if (strcmp (SSDATA (ifname), "lo") == 0) { res = Fcons (Fcons (intern ("running"), Fcons (intern ("loopback"), Fcons (intern ("up"), Qnil))), Qnil); /* 772 is what 3 different GNU/Linux systems report for the loopback interface. */ res = Fcons (Fcons (make_number (772), Fmake_vector (make_number (6), make_number (0))), res); sa.sin_addr.s_addr = sys_inet_addr ("255.0.0.0"); res = Fcons (conv_sockaddr_to_lisp ((struct sockaddr *) &sa, sizeof (struct sockaddr)), res); sa.sin_addr.s_addr = sys_inet_addr ("0.0.0.0"); res = Fcons (conv_sockaddr_to_lisp ((struct sockaddr *) &sa, sizeof (struct sockaddr)), res); sa.sin_addr.s_addr = sys_inet_addr ("127.0.0.1"); res = Fcons (conv_sockaddr_to_lisp ((struct sockaddr *) &sa, sizeof (struct sockaddr)), res); } } } done: xfree (ainfo); return res; } Lisp_Object network_interface_list (void) { return network_interface_get_info (Qnil); } Lisp_Object network_interface_info (Lisp_Object ifname) { CHECK_STRING (ifname); return network_interface_get_info (ifname); } /* The Windows CRT functions are "optimized for speed", so they don't check for timezone and DST changes if they were last called less than 1 minute ago (see http://support.microsoft.com/kb/821231). So all Emacs features that repeatedly call time functions (e.g., display-time) are in real danger of missing timezone and DST changes. Calling tzset before each localtime call fixes that. */ struct tm * sys_localtime (const time_t *t) { tzset (); return localtime (t); } /* Try loading LIBRARY_ID from the file(s) specified in Vdynamic_library_alist. If the library is loaded successfully, return the handle of the DLL, and record the filename in the property :loaded-from of LIBRARY_ID. If the library could not be found, or when it was already loaded (because the handle is not recorded anywhere, and so is lost after use), return NULL. We could also save the handle in :loaded-from, but currently there's no use case for it. */ HMODULE w32_delayed_load (Lisp_Object library_id) { HMODULE dll_handle = NULL; CHECK_SYMBOL (library_id); if (CONSP (Vdynamic_library_alist) && NILP (Fassq (library_id, Vlibrary_cache))) { Lisp_Object found = Qnil; Lisp_Object dlls = Fassq (library_id, Vdynamic_library_alist); if (CONSP (dlls)) for (dlls = XCDR (dlls); CONSP (dlls); dlls = XCDR (dlls)) { Lisp_Object dll = XCAR (dlls); char name[MAX_UTF8_PATH]; DWORD res = -1; CHECK_STRING (dll); dll = ENCODE_FILE (dll); if (w32_unicode_filenames) { wchar_t name_w[MAX_PATH]; filename_to_utf16 (SSDATA (dll), name_w); dll_handle = LoadLibraryW (name_w); if (dll_handle) { res = GetModuleFileNameW (dll_handle, name_w, sizeof (name_w)); if (res > 0) filename_from_utf16 (name_w, name); } } else { char name_a[MAX_PATH]; filename_to_ansi (SSDATA (dll), name_a); dll_handle = LoadLibraryA (name_a); if (dll_handle) { res = GetModuleFileNameA (dll_handle, name_a, sizeof (name_a)); if (res > 0) filename_from_ansi (name_a, name); } } if (dll_handle) { ptrdiff_t len = strlen (name); found = Fcons (dll, (res > 0) /* Possibly truncated */ ? make_specified_string (name, -1, len, 1) : Qnil); /* This prevents thread start and end notifications from being sent to the DLL, for every thread we start. We don't need those notifications because threads we create never use any of these DLLs, only the main thread uses them. This is supposed to speed up thread creation. */ DisableThreadLibraryCalls (dll_handle); break; } } Fput (library_id, QCloaded_from, found); } return dll_handle; } void check_windows_init_file (void) { /* A common indication that Emacs is not installed properly is when it cannot find the Windows installation file. If this file does not exist in the expected place, tell the user. */ if (!noninteractive && !inhibit_window_system /* Vload_path is not yet initialized when we are loading loadup.el. */ && NILP (Vpurify_flag)) { Lisp_Object init_file; int fd; /* Implementation note: this function runs early during Emacs startup, before startup.el is run. So Vload_path is still in its initial unibyte form, but it holds UTF-8 encoded file names, since init_callproc was already called. So we do not need to ENCODE_FILE here, but we do need to convert the file names from UTF-8 to ANSI. */ init_file = build_string ("term/w32-win"); fd = openp (Vload_path, init_file, Fget_load_suffixes (), NULL, Qnil, 0); if (fd < 0) { Lisp_Object load_path_print = Fprin1_to_string (Vload_path, Qnil); char *init_file_name = SSDATA (init_file); char *load_path = SSDATA (load_path_print); char *buffer = alloca (1024 + strlen (init_file_name) + strlen (load_path)); char *msg = buffer; int needed; sprintf (buffer, "The Emacs Windows initialization file \"%s.el\" " "could not be found in your Emacs installation. " "Emacs checked the following directories for this file:\n" "\n%s\n\n" "When Emacs cannot find this file, it usually means that it " "was not installed properly, or its distribution file was " "not unpacked properly.\nSee the README.W32 file in the " "top-level Emacs directory for more information.", init_file_name, load_path); needed = pMultiByteToWideChar (CP_UTF8, multiByteToWideCharFlags, buffer, -1, NULL, 0); if (needed > 0) { wchar_t *msg_w = alloca ((needed + 1) * sizeof (wchar_t)); pMultiByteToWideChar (CP_UTF8, multiByteToWideCharFlags, buffer, -1, msg_w, needed); needed = pWideCharToMultiByte (CP_ACP, 0, msg_w, -1, NULL, 0, NULL, NULL); if (needed > 0) { char *msg_a = alloca (needed + 1); pWideCharToMultiByte (CP_ACP, 0, msg_w, -1, msg_a, needed, NULL, NULL); msg = msg_a; } } MessageBox (NULL, msg, "Emacs Abort Dialog", MB_OK | MB_ICONEXCLAMATION | MB_TASKMODAL); /* Use the low-level system abort. */ abort (); } else { _close (fd); } } } void term_ntproc (int ignored) { (void)ignored; term_timers (); /* shutdown the socket interface if necessary */ term_winsock (); term_w32select (); } void init_ntproc (int dumping) { sigset_t initial_mask = 0; /* Initialize the socket interface now if available and requested by the user by defining PRELOAD_WINSOCK; otherwise loading will be delayed until open-network-stream is called (w32-has-winsock can also be used to dynamically load or reload winsock). Conveniently, init_environment is called before us, so PRELOAD_WINSOCK can be set in the registry. */ /* Always initialize this correctly. */ winsock_lib = NULL; if (getenv ("PRELOAD_WINSOCK") != NULL) init_winsock (TRUE); /* Initial preparation for subprocess support: replace our standard handles with non-inheritable versions. */ { HANDLE parent; HANDLE stdin_save = INVALID_HANDLE_VALUE; HANDLE stdout_save = INVALID_HANDLE_VALUE; HANDLE stderr_save = INVALID_HANDLE_VALUE; parent = GetCurrentProcess (); /* ignore errors when duplicating and closing; typically the handles will be invalid when running as a gui program. */ DuplicateHandle (parent, GetStdHandle (STD_INPUT_HANDLE), parent, &stdin_save, 0, FALSE, DUPLICATE_SAME_ACCESS); DuplicateHandle (parent, GetStdHandle (STD_OUTPUT_HANDLE), parent, &stdout_save, 0, FALSE, DUPLICATE_SAME_ACCESS); DuplicateHandle (parent, GetStdHandle (STD_ERROR_HANDLE), parent, &stderr_save, 0, FALSE, DUPLICATE_SAME_ACCESS); fclose (stdin); fclose (stdout); fclose (stderr); if (stdin_save != INVALID_HANDLE_VALUE) _open_osfhandle ((intptr_t) stdin_save, O_TEXT); else _open ("nul", O_TEXT | O_NOINHERIT | O_RDONLY); _fdopen (0, "r"); if (stdout_save != INVALID_HANDLE_VALUE) _open_osfhandle ((intptr_t) stdout_save, O_TEXT); else _open ("nul", O_TEXT | O_NOINHERIT | O_WRONLY); _fdopen (1, "w"); if (stderr_save != INVALID_HANDLE_VALUE) _open_osfhandle ((intptr_t) stderr_save, O_TEXT); else _open ("nul", O_TEXT | O_NOINHERIT | O_WRONLY); _fdopen (2, "w"); } /* unfortunately, atexit depends on implementation of malloc */ /* atexit (term_ntproc); */ if (!dumping) { /* Make sure we start with all signals unblocked. */ sigprocmask (SIG_SETMASK, &initial_mask, NULL); signal (SIGABRT, term_ntproc); } init_timers (); /* determine which drives are fixed, for GetCachedVolumeInformation */ { /* GetDriveType must have trailing backslash. */ char drive[] = "A:\\"; /* Loop over all possible drive letters */ while (*drive <= 'Z') { /* Record if this drive letter refers to a fixed drive. */ fixed_drives[DRIVE_INDEX (*drive)] = (GetDriveType (drive) == DRIVE_FIXED); (*drive)++; } /* Reset the volume info cache. */ volume_cache = NULL; } } /* shutdown_handler ensures that buffers' autosave files are up to date when the user logs off, or the system shuts down. */ static BOOL WINAPI shutdown_handler (DWORD type) { /* Ctrl-C and Ctrl-Break are already suppressed, so don't handle them. */ if (type == CTRL_CLOSE_EVENT /* User closes console window. */ || type == CTRL_LOGOFF_EVENT /* User logs off. */ || type == CTRL_SHUTDOWN_EVENT) /* User shutsdown. */ { /* Shut down cleanly, making sure autosave files are up to date. */ shut_down_emacs (0, Qnil); } /* Allow other handlers to handle this signal. */ return FALSE; } /* On Windows 9X, load UNICOWS.DLL and return its handle, or die. On NT, return a handle to GDI32.DLL. */ HANDLE maybe_load_unicows_dll (void) { if (os_subtype == OS_9X) { HANDLE ret = LoadLibrary ("Unicows.dll"); if (ret) { /* These two functions are present on Windows 9X as stubs that always fail. We need the real implementations from UNICOWS.DLL, so we must call these functions through pointers, and assign the correct addresses to these pointers at program startup (see emacs.c, which calls this function early on). */ pMultiByteToWideChar = (MultiByteToWideChar_Proc)GetProcAddress (ret, "MultiByteToWideChar"); pWideCharToMultiByte = (WideCharToMultiByte_Proc)GetProcAddress (ret, "WideCharToMultiByte"); multiByteToWideCharFlags = MB_ERR_INVALID_CHARS; return ret; } else { int button; button = MessageBox (NULL, "Emacs cannot load the UNICOWS.DLL library.\n" "This library is essential for using Emacs\n" "on this system. You need to install it.\n\n" "Emacs will exit when you click OK.", "Emacs cannot load UNICOWS.DLL", MB_ICONERROR | MB_TASKMODAL | MB_SETFOREGROUND | MB_OK); switch (button) { case IDOK: default: exit (1); } } } else { /* On NT family of Windows, these two functions are always linked in, so we just assign their addresses to the 2 pointers; no need for the LoadLibrary dance. */ pMultiByteToWideChar = MultiByteToWideChar; pWideCharToMultiByte = WideCharToMultiByte; /* On NT 4.0, though, MB_ERR_INVALID_CHARS is not supported. */ if (w32_major_version < 5) multiByteToWideCharFlags = 0; else multiByteToWideCharFlags = MB_ERR_INVALID_CHARS; return LoadLibrary ("Gdi32.dll"); } } /* globals_of_w32 is used to initialize those global variables that must always be initialized on startup even when the global variable initialized is non zero (see the function main in emacs.c). */ void globals_of_w32 (void) { HMODULE kernel32 = GetModuleHandle ("kernel32.dll"); get_process_times_fn = (GetProcessTimes_Proc) GetProcAddress (kernel32, "GetProcessTimes"); DEFSYM (QCloaded_from, ":loaded-from"); g_b_init_is_windows_9x = 0; g_b_init_open_process_token = 0; g_b_init_get_token_information = 0; g_b_init_lookup_account_sid = 0; g_b_init_get_sid_sub_authority = 0; g_b_init_get_sid_sub_authority_count = 0; g_b_init_get_security_info = 0; g_b_init_get_file_security_w = 0; g_b_init_get_file_security_a = 0; g_b_init_get_security_descriptor_owner = 0; g_b_init_get_security_descriptor_group = 0; g_b_init_is_valid_sid = 0; g_b_init_create_toolhelp32_snapshot = 0; g_b_init_process32_first = 0; g_b_init_process32_next = 0; g_b_init_open_thread_token = 0; g_b_init_impersonate_self = 0; g_b_init_revert_to_self = 0; g_b_init_get_process_memory_info = 0; g_b_init_get_process_working_set_size = 0; g_b_init_global_memory_status = 0; g_b_init_global_memory_status_ex = 0; g_b_init_equal_sid = 0; g_b_init_copy_sid = 0; g_b_init_get_length_sid = 0; g_b_init_get_native_system_info = 0; g_b_init_get_system_times = 0; g_b_init_create_symbolic_link_w = 0; g_b_init_create_symbolic_link_a = 0; g_b_init_get_security_descriptor_dacl = 0; g_b_init_convert_sd_to_sddl = 0; g_b_init_convert_sddl_to_sd = 0; g_b_init_is_valid_security_descriptor = 0; g_b_init_set_file_security_w = 0; g_b_init_set_file_security_a = 0; g_b_init_set_named_security_info_w = 0; g_b_init_set_named_security_info_a = 0; g_b_init_get_adapters_info = 0; g_b_init_compare_string_w = 0; num_of_processors = 0; /* The following sets a handler for shutdown notifications for console apps. This actually applies to Emacs in both console and GUI modes, since we had to fool windows into thinking emacs is a console application to get console mode to work. */ SetConsoleCtrlHandler (shutdown_handler, TRUE); /* "None" is the default group name on standalone workstations. */ strcpy (dflt_group_name, "None"); /* Reset, in case it has some value inherited from dump time. */ w32_stat_get_owner_group = 0; /* If w32_unicode_filenames is non-zero, we will be using Unicode (a.k.a. "wide") APIs to invoke functions that accept file names. */ if (is_windows_9x ()) w32_unicode_filenames = 0; else w32_unicode_filenames = 1; #ifdef HAVE_MODULES extern void dynlib_reset_last_error (void); dynlib_reset_last_error (); #endif w32_crypto_hprov = (HCRYPTPROV)0; } /* For make-serial-process */ int serial_open (Lisp_Object port_obj) { char *port = SSDATA (port_obj); HANDLE hnd; child_process *cp; int fd = -1; hnd = CreateFile (port, GENERIC_READ | GENERIC_WRITE, 0, 0, OPEN_EXISTING, FILE_FLAG_OVERLAPPED, 0); if (hnd == INVALID_HANDLE_VALUE) error ("Could not open %s", port); fd = (int) _open_osfhandle ((intptr_t) hnd, 0); if (fd == -1) error ("Could not open %s", port); cp = new_child (); if (!cp) error ("Could not create child process"); cp->fd = fd; cp->status = STATUS_READ_ACKNOWLEDGED; fd_info[ fd ].hnd = hnd; fd_info[ fd ].flags |= FILE_READ | FILE_WRITE | FILE_BINARY | FILE_SERIAL; if (fd_info[ fd ].cp != NULL) { error ("fd_info[fd = %d] is already in use", fd); } fd_info[ fd ].cp = cp; cp->ovl_read.hEvent = CreateEvent (NULL, TRUE, FALSE, NULL); if (cp->ovl_read.hEvent == NULL) error ("Could not create read event"); cp->ovl_write.hEvent = CreateEvent (NULL, TRUE, FALSE, NULL); if (cp->ovl_write.hEvent == NULL) error ("Could not create write event"); return fd; } /* For serial-process-configure */ void serial_configure (struct Lisp_Process *p, Lisp_Object contact) { Lisp_Object childp2 = Qnil; Lisp_Object tem = Qnil; HANDLE hnd; DCB dcb; COMMTIMEOUTS ct; char summary[4] = "???"; /* This usually becomes "8N1". */ if ((fd_info[ p->outfd ].flags & FILE_SERIAL) == 0) error ("Not a serial process"); hnd = fd_info[ p->outfd ].hnd; childp2 = Fcopy_sequence (p->childp); /* Initialize timeouts for blocking read and blocking write. */ if (!GetCommTimeouts (hnd, &ct)) error ("GetCommTimeouts() failed"); ct.ReadIntervalTimeout = 0; ct.ReadTotalTimeoutMultiplier = 0; ct.ReadTotalTimeoutConstant = 0; ct.WriteTotalTimeoutMultiplier = 0; ct.WriteTotalTimeoutConstant = 0; if (!SetCommTimeouts (hnd, &ct)) error ("SetCommTimeouts() failed"); /* Read port attributes and prepare default configuration. */ memset (&dcb, 0, sizeof (dcb)); dcb.DCBlength = sizeof (DCB); if (!GetCommState (hnd, &dcb)) error ("GetCommState() failed"); dcb.fBinary = TRUE; dcb.fNull = FALSE; dcb.fAbortOnError = FALSE; /* dcb.XonLim and dcb.XoffLim are set by GetCommState() */ dcb.ErrorChar = 0; dcb.EofChar = 0; dcb.EvtChar = 0; /* Configure speed. */ if (!NILP (Fplist_member (contact, QCspeed))) tem = Fplist_get (contact, QCspeed); else tem = Fplist_get (p->childp, QCspeed); CHECK_NUMBER (tem); dcb.BaudRate = XINT (tem); childp2 = Fplist_put (childp2, QCspeed, tem); /* Configure bytesize. */ if (!NILP (Fplist_member (contact, QCbytesize))) tem = Fplist_get (contact, QCbytesize); else tem = Fplist_get (p->childp, QCbytesize); if (NILP (tem)) tem = make_number (8); CHECK_NUMBER (tem); if (XINT (tem) != 7 && XINT (tem) != 8) error (":bytesize must be nil (8), 7, or 8"); dcb.ByteSize = XINT (tem); summary[0] = XINT (tem) + '0'; childp2 = Fplist_put (childp2, QCbytesize, tem); /* Configure parity. */ if (!NILP (Fplist_member (contact, QCparity))) tem = Fplist_get (contact, QCparity); else tem = Fplist_get (p->childp, QCparity); if (!NILP (tem) && !EQ (tem, Qeven) && !EQ (tem, Qodd)) error (":parity must be nil (no parity), `even', or `odd'"); dcb.fParity = FALSE; dcb.Parity = NOPARITY; dcb.fErrorChar = FALSE; if (NILP (tem)) { summary[1] = 'N'; } else if (EQ (tem, Qeven)) { summary[1] = 'E'; dcb.fParity = TRUE; dcb.Parity = EVENPARITY; dcb.fErrorChar = TRUE; } else if (EQ (tem, Qodd)) { summary[1] = 'O'; dcb.fParity = TRUE; dcb.Parity = ODDPARITY; dcb.fErrorChar = TRUE; } childp2 = Fplist_put (childp2, QCparity, tem); /* Configure stopbits. */ if (!NILP (Fplist_member (contact, QCstopbits))) tem = Fplist_get (contact, QCstopbits); else tem = Fplist_get (p->childp, QCstopbits); if (NILP (tem)) tem = make_number (1); CHECK_NUMBER (tem); if (XINT (tem) != 1 && XINT (tem) != 2) error (":stopbits must be nil (1 stopbit), 1, or 2"); summary[2] = XINT (tem) + '0'; if (XINT (tem) == 1) dcb.StopBits = ONESTOPBIT; else if (XINT (tem) == 2) dcb.StopBits = TWOSTOPBITS; childp2 = Fplist_put (childp2, QCstopbits, tem); /* Configure flowcontrol. */ if (!NILP (Fplist_member (contact, QCflowcontrol))) tem = Fplist_get (contact, QCflowcontrol); else tem = Fplist_get (p->childp, QCflowcontrol); if (!NILP (tem) && !EQ (tem, Qhw) && !EQ (tem, Qsw)) error (":flowcontrol must be nil (no flowcontrol), `hw', or `sw'"); dcb.fOutxCtsFlow = FALSE; dcb.fOutxDsrFlow = FALSE; dcb.fDtrControl = DTR_CONTROL_DISABLE; dcb.fDsrSensitivity = FALSE; dcb.fTXContinueOnXoff = FALSE; dcb.fOutX = FALSE; dcb.fInX = FALSE; dcb.fRtsControl = RTS_CONTROL_DISABLE; dcb.XonChar = 17; /* Control-Q */ dcb.XoffChar = 19; /* Control-S */ if (NILP (tem)) { /* Already configured. */ } else if (EQ (tem, Qhw)) { dcb.fRtsControl = RTS_CONTROL_HANDSHAKE; dcb.fOutxCtsFlow = TRUE; } else if (EQ (tem, Qsw)) { dcb.fOutX = TRUE; dcb.fInX = TRUE; } childp2 = Fplist_put (childp2, QCflowcontrol, tem); /* Activate configuration. */ if (!SetCommState (hnd, &dcb)) error ("SetCommState() failed"); childp2 = Fplist_put (childp2, QCsummary, build_string (summary)); pset_childp (p, childp2); } /* For make-pipe-process */ void register_aux_fd (int infd) { child_process *cp; cp = new_child (); if (!cp) error ("Could not create child process"); cp->fd = infd; cp->status = STATUS_READ_ACKNOWLEDGED; if (fd_info[ infd ].cp != NULL) { error ("fd_info[fd = %d] is already in use", infd); } fd_info[ infd ].cp = cp; fd_info[ infd ].hnd = (HANDLE) _get_osfhandle (infd); } #ifdef HAVE_GNUTLS ssize_t emacs_gnutls_pull (gnutls_transport_ptr_t p, void* buf, size_t sz) { int n, err; struct Lisp_Process *process = (struct Lisp_Process *)p; int fd = process->infd; n = sys_read (fd, (char*)buf, sz); if (n >= 0) return n; err = errno; /* Translate the WSAEWOULDBLOCK alias EWOULDBLOCK to EAGAIN. */ if (err == EWOULDBLOCK) err = EAGAIN; emacs_gnutls_transport_set_errno (process->gnutls_state, err); return -1; } ssize_t emacs_gnutls_push (gnutls_transport_ptr_t p, const void* buf, size_t sz) { struct Lisp_Process *process = (struct Lisp_Process *)p; int fd = process->outfd; ssize_t n = sys_write (fd, buf, sz); /* 0 or more bytes written means everything went fine. */ if (n >= 0) return n; /* Negative bytes written means we got an error in errno. Translate the WSAEWOULDBLOCK alias EWOULDBLOCK to EAGAIN. */ emacs_gnutls_transport_set_errno (process->gnutls_state, errno == EWOULDBLOCK ? EAGAIN : errno); return -1; } #endif /* HAVE_GNUTLS */ /* end of w32.c */