@c -*- mode: texinfo; coding: utf-8 -*- @c This is part of the GNU Emacs Lisp Reference Manual. @c Copyright (C) 1990-1995, 1998-2019 Free Software Foundation, Inc. @c See the file elisp.texi for copying conditions. @node Display @chapter Emacs Display This chapter describes a number of features related to the display that Emacs presents to the user. @menu * Refresh Screen:: Clearing the screen and redrawing everything on it. * Forcing Redisplay:: Forcing redisplay. * Truncation:: Folding or wrapping long text lines. * The Echo Area:: Displaying messages at the bottom of the screen. * Warnings:: Displaying warning messages for the user. * Invisible Text:: Hiding part of the buffer text. * Selective Display:: Hiding part of the buffer text (the old way). * Temporary Displays:: Displays that go away automatically. * Overlays:: Use overlays to highlight parts of the buffer. * Size of Displayed Text:: How large displayed text is. * Line Height:: Controlling the height of lines. * Faces:: A face defines a graphics style for text characters: font, colors, etc. * Fringes:: Controlling window fringes. * Scroll Bars:: Controlling scroll bars. * Window Dividers:: Separating windows visually. * Display Property:: Enabling special display features. * Images:: Displaying images in Emacs buffers. * Xwidgets:: Displaying native widgets in Emacs buffers. * Buttons:: Adding clickable buttons to Emacs buffers. * Abstract Display:: Emacs's Widget for Object Collections. * Blinking:: How Emacs shows the matching open parenthesis. * Character Display:: How Emacs displays individual characters. * Beeping:: Audible signal to the user. * Window Systems:: Which window system is being used. * Tooltips:: Tooltip display in Emacs. * Bidirectional Display:: Display of bidirectional scripts, such as Arabic and Farsi. @end menu @node Refresh Screen @section Refreshing the Screen @cindex refresh the screen @cindex screen refresh The function @code{redraw-frame} clears and redisplays the entire contents of a given frame (@pxref{Frames}). This is useful if the screen is corrupted. @defun redraw-frame &optional frame This function clears and redisplays frame @var{frame}. If @var{frame} is omitted or @code{nil}, it redraws the selected frame. @end defun Even more powerful is @code{redraw-display}: @deffn Command redraw-display This function clears and redisplays all visible frames. @end deffn In Emacs, processing user input takes priority over redisplay. If you call these functions when input is available, they don't redisplay immediately, but the requested redisplay does happen eventually---after all the input has been processed. On text terminals, suspending and resuming Emacs normally also refreshes the screen. Some terminal emulators record separate contents for display-oriented programs such as Emacs and for ordinary sequential display. If you are using such a terminal, you might want to inhibit the redisplay on resumption. @defopt no-redraw-on-reenter @cindex suspend (cf. @code{no-redraw-on-reenter}) @cindex resume (cf. @code{no-redraw-on-reenter}) This variable controls whether Emacs redraws the entire screen after it has been suspended and resumed. Non-@code{nil} means there is no need to redraw, @code{nil} means redrawing is needed. The default is @code{nil}. @end defopt @node Forcing Redisplay @section Forcing Redisplay @cindex forcing redisplay Emacs normally tries to redisplay the screen whenever it waits for input. With the following function, you can request an immediate attempt to redisplay, in the middle of Lisp code, without actually waiting for input. @defun redisplay &optional force This function tries immediately to redisplay. The optional argument @var{force}, if non-@code{nil}, forces the redisplay to be performed, instead of being preempted if input is pending. The function returns @code{t} if it actually tried to redisplay, and @code{nil} otherwise. A value of @code{t} does not mean that redisplay proceeded to completion; it could have been preempted by newly arriving input. @end defun Although @code{redisplay} tries immediately to redisplay, it does not change how Emacs decides which parts of its frame(s) to redisplay. By contrast, the following function adds certain windows to the pending redisplay work (as if their contents had completely changed), but does not immediately try to perform redisplay. @defun force-window-update &optional object This function forces some or all windows to be updated the next time Emacs does a redisplay. If @var{object} is a window, that window is to be updated. If @var{object} is a buffer or buffer name, all windows displaying that buffer are to be updated. If @var{object} is @code{nil} (or omitted), all windows are to be updated. This function does not do a redisplay immediately; Emacs does that as it waits for input, or when the function @code{redisplay} is called. @end defun @defvar pre-redisplay-function A function run just before redisplay. It is called with one argument, the set of windows to be redisplayed. The set can be @code{nil}, meaning only the selected window, or @code{t}, meaning all the windows. @end defvar @defvar pre-redisplay-functions This hook is run just before redisplay. It is called once in each window that is about to be redisplayed, with @code{current-buffer} set to the buffer displayed in that window. @end defvar @node Truncation @section Truncation @cindex line wrapping @cindex line truncation @cindex continuation lines @cindex @samp{$} in display @cindex @samp{\} in display When a line of text extends beyond the right edge of a window, Emacs can @dfn{continue} the line (make it wrap to the next screen line), or @dfn{truncate} the line (limit it to one screen line). The additional screen lines used to display a long text line are called @dfn{continuation} lines. Continuation is not the same as filling; continuation happens on the screen only, not in the buffer contents, and it breaks a line precisely at the right margin, not at a word boundary. @xref{Filling}. On a graphical display, tiny arrow images in the window fringes indicate truncated and continued lines (@pxref{Fringes}). On a text terminal, a @samp{$} in the rightmost column of the window indicates truncation; a @samp{\} on the rightmost column indicates a line that wraps. (The display table can specify alternate characters to use for this; @pxref{Display Tables}). @defopt truncate-lines If this buffer-local variable is non-@code{nil}, lines that extend beyond the right edge of the window are truncated; otherwise, they are continued. As a special exception, the variable @code{truncate-partial-width-windows} takes precedence in @dfn{partial-width} windows (i.e., windows that do not occupy the entire frame width). @end defopt @defopt truncate-partial-width-windows @cindex partial-width windows This variable controls line truncation in @dfn{partial-width} windows. A partial-width window is one that does not occupy the entire frame width (@pxref{Splitting Windows}). If the value is @code{nil}, line truncation is determined by the variable @code{truncate-lines} (see above). If the value is an integer @var{n}, lines are truncated if the partial-width window has fewer than @var{n} columns, regardless of the value of @code{truncate-lines}; if the partial-width window has @var{n} or more columns, line truncation is determined by @code{truncate-lines}. For any other non-@code{nil} value, lines are truncated in every partial-width window, regardless of the value of @code{truncate-lines}. @end defopt When horizontal scrolling (@pxref{Horizontal Scrolling}) is in use in a window, that forces truncation. @defvar wrap-prefix If this buffer-local variable is non-@code{nil}, it defines a @dfn{wrap prefix} which Emacs displays at the start of every continuation line. (If lines are truncated, @code{wrap-prefix} is never used.) Its value may be a string or an image (@pxref{Other Display Specs}), or a stretch of whitespace such as specified by the @code{:width} or @code{:align-to} display properties (@pxref{Specified Space}). The value is interpreted in the same way as a @code{display} text property. @xref{Display Property}. A wrap prefix may also be specified for regions of text, using the @code{wrap-prefix} text or overlay property. This takes precedence over the @code{wrap-prefix} variable. @xref{Special Properties}. @end defvar @defvar line-prefix If this buffer-local variable is non-@code{nil}, it defines a @dfn{line prefix} which Emacs displays at the start of every non-continuation line. Its value may be a string or an image (@pxref{Other Display Specs}), or a stretch of whitespace such as specified by the @code{:width} or @code{:align-to} display properties (@pxref{Specified Space}). The value is interpreted in the same way as a @code{display} text property. @xref{Display Property}. A line prefix may also be specified for regions of text using the @code{line-prefix} text or overlay property. This takes precedence over the @code{line-prefix} variable. @xref{Special Properties}. @end defvar @ignore If your buffer contains only very short lines, you might find it advisable to set @code{cache-long-scans} to @code{nil}. @defvar cache-long-scans If this variable is non-@code{nil} (the default), various indentation and motion functions, and Emacs redisplay, cache the results of scanning the buffer, and consult the cache to avoid rescanning regions of the buffer unless they are modified. Turning off the cache speeds up processing of short lines somewhat. This variable is automatically buffer-local in every buffer. @end defvar @end ignore @node The Echo Area @section The Echo Area @cindex error display @cindex echo area @c FIXME: Why not use @xref{Minibuffers} directly? --xfq The @dfn{echo area} is used for displaying error messages (@pxref{Errors}), for messages made with the @code{message} primitive, and for echoing keystrokes. It is not the same as the minibuffer, despite the fact that the minibuffer appears (when active) in the same place on the screen as the echo area. @xref{Minibuffer,, The Minibuffer, emacs, The GNU Emacs Manual}. Apart from the functions documented in this section, you can print Lisp objects to the echo area by specifying @code{t} as the output stream. @xref{Output Streams}. @menu * Displaying Messages:: Explicitly displaying text in the echo area. * Progress:: Informing user about progress of a long operation. * Logging Messages:: Echo area messages are logged for the user. * Echo Area Customization:: Controlling the echo area. @end menu @node Displaying Messages @subsection Displaying Messages in the Echo Area @cindex display message in echo area This section describes the standard functions for displaying messages in the echo area. @defun message format-string &rest arguments This function displays a message in the echo area. @var{format-string} is a format string, and @var{arguments} are the objects for its format specifications, like in the @code{format-message} function (@pxref{Formatting Strings}). The resulting formatted string is displayed in the echo area; if it contains @code{face} text properties, it is displayed with the specified faces (@pxref{Faces}). The string is also added to the @file{*Messages*} buffer, but without text properties (@pxref{Logging Messages}). Typically grave accent and apostrophe in the format translate to matching curved quotes, e.g., @t{"Missing `%s'"} might result in @t{"Missing ‘foo’"}. @xref{Text Quoting Style}, for how to influence or inhibit this translation. In batch mode, the message is printed to the standard error stream, followed by a newline. When @code{inhibit-message} is non-@code{nil}, no message will be displayed in the echo area, it will only be logged to @samp{*Messages*}. If @var{format-string} is @code{nil} or the empty string, @code{message} clears the echo area; if the echo area has been expanded automatically, this brings it back to its normal size. If the minibuffer is active, this brings the minibuffer contents back onto the screen immediately. @example @group (message "Reverting `%s'..." (buffer-name)) @print{} Reverting ‘subr.el’... @result{} "Reverting ‘subr.el’..." @end group @group ---------- Echo Area ---------- Reverting ‘subr.el’... ---------- Echo Area ---------- @end group @end example To automatically display a message in the echo area or in a pop-buffer, depending on its size, use @code{display-message-or-buffer} (see below). @strong{Warning:} If you want to use your own string as a message verbatim, don't just write @code{(message @var{string})}. If @var{string} contains @samp{%}, @samp{`}, or @samp{'} it may be reformatted, with undesirable results. Instead, use @code{(message "%s" @var{string})}. @end defun @defvar inhibit-message When this variable is non-@code{nil}, @code{message} and related functions will not use the Echo Area to display messages. @end defvar @defmac with-temp-message message &rest body This construct displays a message in the echo area temporarily, during the execution of @var{body}. It displays @var{message}, executes @var{body}, then returns the value of the last body form while restoring the previous echo area contents. @end defmac @defun message-or-box format-string &rest arguments This function displays a message like @code{message}, but may display it in a dialog box instead of the echo area. If this function is called in a command that was invoked using the mouse---more precisely, if @code{last-nonmenu-event} (@pxref{Command Loop Info}) is either @code{nil} or a list---then it uses a dialog box or pop-up menu to display the message. Otherwise, it uses the echo area. (This is the same criterion that @code{y-or-n-p} uses to make a similar decision; see @ref{Yes-or-No Queries}.) You can force use of the mouse or of the echo area by binding @code{last-nonmenu-event} to a suitable value around the call. @end defun @defun message-box format-string &rest arguments @anchor{message-box} This function displays a message like @code{message}, but uses a dialog box (or a pop-up menu) whenever that is possible. If it is impossible to use a dialog box or pop-up menu, because the terminal does not support them, then @code{message-box} uses the echo area, like @code{message}. @end defun @defun display-message-or-buffer message &optional buffer-name action frame This function displays the message @var{message}, which may be either a string or a buffer. If it is shorter than the maximum height of the echo area, as defined by @code{max-mini-window-height}, it is displayed in the echo area, using @code{message}. Otherwise, @code{display-buffer} is used to show it in a pop-up buffer. Returns either the string shown in the echo area, or when a pop-up buffer is used, the window used to display it. If @var{message} is a string, then the optional argument @var{buffer-name} is the name of the buffer used to display it when a pop-up buffer is used, defaulting to @file{*Message*}. In the case where @var{message} is a string and displayed in the echo area, it is not specified whether the contents are inserted into the buffer anyway. The optional arguments @var{action} and @var{frame} are as for @code{display-buffer}, and only used if a buffer is displayed. @end defun @defun current-message This function returns the message currently being displayed in the echo area, or @code{nil} if there is none. @end defun @node Progress @subsection Reporting Operation Progress @cindex progress reporting When an operation can take a while to finish, you should inform the user about the progress it makes. This way the user can estimate remaining time and clearly see that Emacs is busy working, not hung. A convenient way to do this is to use a @dfn{progress reporter}. Here is a working example that does nothing useful: @smallexample (let ((progress-reporter (make-progress-reporter "Collecting mana for Emacs..." 0 500))) (dotimes (k 500) (sit-for 0.01) (progress-reporter-update progress-reporter k)) (progress-reporter-done progress-reporter)) @end smallexample @defun make-progress-reporter message &optional min-value max-value current-value min-change min-time This function creates and returns a progress reporter object, which you will use as an argument for the other functions listed below. The idea is to precompute as much data as possible to make progress reporting very fast. When this progress reporter is subsequently used, it will display @var{message} in the echo area, followed by progress percentage. @var{message} is treated as a simple string. If you need it to depend on a filename, for instance, use @code{format-message} before calling this function. The arguments @var{min-value} and @var{max-value} should be numbers standing for the starting and final states of the operation. For instance, an operation that scans a buffer should set these to the results of @code{point-min} and @code{point-max} correspondingly. @var{max-value} should be greater than @var{min-value}. Alternatively, you can set @var{min-value} and @var{max-value} to @code{nil}. In that case, the progress reporter does not report process percentages; it instead displays a ``spinner'' that rotates a notch each time you update the progress reporter. If @var{min-value} and @var{max-value} are numbers, you can give the argument @var{current-value} a numerical value specifying the initial progress; if omitted, this defaults to @var{min-value}. The remaining arguments control the rate of echo area updates. The progress reporter will wait for at least @var{min-change} more percents of the operation to be completed before printing next message; the default is one percent. @var{min-time} specifies the minimum time in seconds to pass between successive prints; the default is 0.2 seconds. (On some operating systems, the progress reporter may handle fractions of seconds with varying precision). This function calls @code{progress-reporter-update}, so the first message is printed immediately. @end defun @defun progress-reporter-update reporter &optional value This function does the main work of reporting progress of your operation. It displays the message of @var{reporter}, followed by progress percentage determined by @var{value}. If percentage is zero, or close enough according to the @var{min-change} and @var{min-time} arguments, then it is omitted from the output. @var{reporter} must be the result of a call to @code{make-progress-reporter}. @var{value} specifies the current state of your operation and must be between @var{min-value} and @var{max-value} (inclusive) as passed to @code{make-progress-reporter}. For instance, if you scan a buffer, then @var{value} should be the result of a call to @code{point}. This function respects @var{min-change} and @var{min-time} as passed to @code{make-progress-reporter} and so does not output new messages on every invocation. It is thus very fast and normally you should not try to reduce the number of calls to it: resulting overhead will most likely negate your effort. @end defun @defun progress-reporter-force-update reporter &optional value new-message This function is similar to @code{progress-reporter-update} except that it prints a message in the echo area unconditionally. The first two arguments have the same meaning as for @code{progress-reporter-update}. Optional @var{new-message} allows you to change the message of the @var{reporter}. Since this function always updates the echo area, such a change will be immediately presented to the user. @end defun @defun progress-reporter-done reporter This function should be called when the operation is finished. It prints the message of @var{reporter} followed by word @samp{done} in the echo area. You should always call this function and not hope for @code{progress-reporter-update} to print @samp{100%}. Firstly, it may never print it, there are many good reasons for this not to happen. Secondly, @samp{done} is more explicit. @end defun @defmac dotimes-with-progress-reporter (var count [result]) message body@dots{} This is a convenience macro that works the same way as @code{dotimes} does, but also reports loop progress using the functions described above. It allows you to save some typing. You can rewrite the example in the beginning of this node using this macro this way: @example (dotimes-with-progress-reporter (k 500) "Collecting some mana for Emacs..." (sit-for 0.01)) @end example @end defmac @node Logging Messages @subsection Logging Messages in @file{*Messages*} @cindex logging echo-area messages Almost all the messages displayed in the echo area are also recorded in the @file{*Messages*} buffer so that the user can refer back to them. This includes all the messages that are output with @code{message}. By default, this buffer is read-only and uses the major mode @code{messages-buffer-mode}. Nothing prevents the user from killing the @file{*Messages*} buffer, but the next display of a message recreates it. Any Lisp code that needs to access the @file{*Messages*} buffer directly and wants to ensure that it exists should use the function @code{messages-buffer}. @defun messages-buffer This function returns the @file{*Messages*} buffer. If it does not exist, it creates it, and switches it to @code{messages-buffer-mode}. @end defun @defopt message-log-max This variable specifies how many lines to keep in the @file{*Messages*} buffer. The value @code{t} means there is no limit on how many lines to keep. The value @code{nil} disables message logging entirely. Here's how to display a message and prevent it from being logged: @example (let (message-log-max) (message @dots{})) @end example @end defopt To make @file{*Messages*} more convenient for the user, the logging facility combines successive identical messages. It also combines successive related messages for the sake of two cases: question followed by answer, and a series of progress messages. A question followed by an answer has two messages like the ones produced by @code{y-or-n-p}: the first is @samp{@var{question}}, and the second is @samp{@var{question}...@var{answer}}. The first message conveys no additional information beyond what's in the second, so logging the second message discards the first from the log. A series of progress messages has successive messages like those produced by @code{make-progress-reporter}. They have the form @samp{@var{base}...@var{how-far}}, where @var{base} is the same each time, while @var{how-far} varies. Logging each message in the series discards the previous one, provided they are consecutive. The functions @code{make-progress-reporter} and @code{y-or-n-p} don't have to do anything special to activate the message log combination feature. It operates whenever two consecutive messages are logged that share a common prefix ending in @samp{...}. @node Echo Area Customization @subsection Echo Area Customization @cindex echo area customization These variables control details of how the echo area works. @defvar cursor-in-echo-area This variable controls where the cursor appears when a message is displayed in the echo area. If it is non-@code{nil}, then the cursor appears at the end of the message. Otherwise, the cursor appears at point---not in the echo area at all. The value is normally @code{nil}; Lisp programs bind it to @code{t} for brief periods of time. @end defvar @defvar echo-area-clear-hook This normal hook is run whenever the echo area is cleared---either by @code{(message nil)} or for any other reason. @end defvar @defopt echo-keystrokes This variable determines how much time should elapse before command characters echo. Its value must be a number, and specifies the number of seconds to wait before echoing. If the user types a prefix key (such as @kbd{C-x}) and then delays this many seconds before continuing, the prefix key is echoed in the echo area. (Once echoing begins in a key sequence, all subsequent characters in the same key sequence are echoed immediately.) If the value is zero, then command input is not echoed. @end defopt @defvar message-truncate-lines Normally, displaying a long message resizes the echo area to display the entire message. But if the variable @code{message-truncate-lines} is non-@code{nil}, the echo area does not resize, and the message is truncated to fit it. @end defvar The variable @code{max-mini-window-height}, which specifies the maximum height for resizing minibuffer windows, also applies to the echo area (which is really a special use of the minibuffer window; @pxref{Minibuffer Windows}). @node Warnings @section Reporting Warnings @cindex warnings @dfn{Warnings} are a facility for a program to inform the user of a possible problem, but continue running. @menu * Warning Basics:: Warnings concepts and functions to report them. * Warning Variables:: Variables programs bind to customize their warnings. * Warning Options:: Variables users set to control display of warnings. * Delayed Warnings:: Deferring a warning until the end of a command. @end menu @node Warning Basics @subsection Warning Basics @cindex severity level Every warning has a textual message, which explains the problem for the user, and a @dfn{severity level} which is a symbol. Here are the possible severity levels, in order of decreasing severity, and their meanings: @table @code @item :emergency A problem that will seriously impair Emacs operation soon if you do not attend to it promptly. @item :error A report of data or circumstances that are inherently wrong. @item :warning A report of data or circumstances that are not inherently wrong, but raise suspicion of a possible problem. @item :debug A report of information that may be useful if you are debugging. @end table When your program encounters invalid input data, it can either signal a Lisp error by calling @code{error} or @code{signal} or report a warning with severity @code{:error}. Signaling a Lisp error is the easiest thing to do, but it means the program cannot continue processing. If you want to take the trouble to implement a way to continue processing despite the bad data, then reporting a warning of severity @code{:error} is the right way to inform the user of the problem. For instance, the Emacs Lisp byte compiler can report an error that way and continue compiling other functions. (If the program signals a Lisp error and then handles it with @code{condition-case}, the user won't see the error message; it could show the message to the user by reporting it as a warning.) @c FIXME: Why use "(bytecomp)" instead of "'bytecomp" or simply @c "bytecomp" here? The parens are part of warning-type-format but @c not part of the warning type. --xfq @cindex warning type Each warning has a @dfn{warning type} to classify it. The type is a list of symbols. The first symbol should be the custom group that you use for the program's user options. For example, byte compiler warnings use the warning type @code{(bytecomp)}. You can also subcategorize the warnings, if you wish, by using more symbols in the list. @defun display-warning type message &optional level buffer-name This function reports a warning, using @var{message} as the message and @var{type} as the warning type. @var{level} should be the severity level, with @code{:warning} being the default. @var{buffer-name}, if non-@code{nil}, specifies the name of the buffer for logging the warning. By default, it is @file{*Warnings*}. @end defun @defun lwarn type level message &rest args This function reports a warning using the value of @code{(format-message @var{message} @var{args}...)} as the message in the @file{*Warnings*} buffer. In other respects it is equivalent to @code{display-warning}. @end defun @defun warn message &rest args This function reports a warning using the value of @code{(format-message @var{message} @var{args}...)} as the message, @code{(emacs)} as the type, and @code{:warning} as the severity level. It exists for compatibility only; we recommend not using it, because you should specify a specific warning type. @end defun @node Warning Variables @subsection Warning Variables @cindex warning variables Programs can customize how their warnings appear by binding the variables described in this section. @defvar warning-levels This list defines the meaning and severity order of the warning severity levels. Each element defines one severity level, and they are arranged in order of decreasing severity. Each element has the form @code{(@var{level} @var{string} @var{function})}, where @var{level} is the severity level it defines. @var{string} specifies the textual description of this level. @var{string} should use @samp{%s} to specify where to put the warning type information, or it can omit the @samp{%s} so as not to include that information. The optional @var{function}, if non-@code{nil}, is a function to call with no arguments, to get the user's attention. Normally you should not change the value of this variable. @end defvar @defvar warning-prefix-function If non-@code{nil}, the value is a function to generate prefix text for warnings. Programs can bind the variable to a suitable function. @code{display-warning} calls this function with the warnings buffer current, and the function can insert text in it. That text becomes the beginning of the warning message. The function is called with two arguments, the severity level and its entry in @code{warning-levels}. It should return a list to use as the entry (this value need not be an actual member of @code{warning-levels}). By constructing this value, the function can change the severity of the warning, or specify different handling for a given severity level. If the variable's value is @code{nil} then there is no function to call. @end defvar @defvar warning-series Programs can bind this variable to @code{t} to say that the next warning should begin a series. When several warnings form a series, that means to leave point on the first warning of the series, rather than keep moving it for each warning so that it appears on the last one. The series ends when the local binding is unbound and @code{warning-series} becomes @code{nil} again. The value can also be a symbol with a function definition. That is equivalent to @code{t}, except that the next warning will also call the function with no arguments with the warnings buffer current. The function can insert text which will serve as a header for the series of warnings. Once a series has begun, the value is a marker which points to the buffer position in the warnings buffer of the start of the series. The variable's normal value is @code{nil}, which means to handle each warning separately. @end defvar @defvar warning-fill-prefix When this variable is non-@code{nil}, it specifies a fill prefix to use for filling each warning's text. @end defvar @defvar warning-type-format This variable specifies the format for displaying the warning type in the warning message. The result of formatting the type this way gets included in the message under the control of the string in the entry in @code{warning-levels}. The default value is @code{" (%s)"}. If you bind it to @code{""} then the warning type won't appear at all. @end defvar @node Warning Options @subsection Warning Options @cindex warning options These variables are used by users to control what happens when a Lisp program reports a warning. @defopt warning-minimum-level This user option specifies the minimum severity level that should be shown immediately to the user. The default is @code{:warning}, which means to immediately display all warnings except @code{:debug} warnings. @end defopt @defopt warning-minimum-log-level This user option specifies the minimum severity level that should be logged in the warnings buffer. The default is @code{:warning}, which means to log all warnings except @code{:debug} warnings. @end defopt @defopt warning-suppress-types This list specifies which warning types should not be displayed immediately for the user. Each element of the list should be a list of symbols. If its elements match the first elements in a warning type, then that warning is not displayed immediately. @end defopt @defopt warning-suppress-log-types This list specifies which warning types should not be logged in the warnings buffer. Each element of the list should be a list of symbols. If it matches the first few elements in a warning type, then that warning is not logged. @end defopt @node Delayed Warnings @subsection Delayed Warnings @cindex delayed warnings Sometimes, you may wish to avoid showing a warning while a command is running, and only show it only after the end of the command. You can use the variable @code{delayed-warnings-list} for this. @defvar delayed-warnings-list The value of this variable is a list of warnings to be displayed after the current command has finished. Each element must be a list @smallexample (@var{type} @var{message} [@var{level} [@var{buffer-name}]]) @end smallexample @noindent with the same form, and the same meanings, as the argument list of @code{display-warning} (@pxref{Warning Basics}). Immediately after running @code{post-command-hook} (@pxref{Command Overview}), the Emacs command loop displays all the warnings specified by this variable, then resets it to @code{nil}. @end defvar Programs which need to further customize the delayed warnings mechanism can change the variable @code{delayed-warnings-hook}: @defvar delayed-warnings-hook This is a normal hook which is run by the Emacs command loop, after @code{post-command-hook}, in order to process and display delayed warnings. Its default value is a list of two functions: @smallexample (collapse-delayed-warnings display-delayed-warnings) @end smallexample @findex collapse-delayed-warnings @findex display-delayed-warnings @noindent The function @code{collapse-delayed-warnings} removes repeated entries from @code{delayed-warnings-list}. The function @code{display-delayed-warnings} calls @code{display-warning} on each of the entries in @code{delayed-warnings-list}, in turn, and then sets @code{delayed-warnings-list} to @code{nil}. @end defvar @node Invisible Text @section Invisible Text @cindex invisible text You can make characters @dfn{invisible}, so that they do not appear on the screen, with the @code{invisible} property. This can be either a text property (@pxref{Text Properties}) or an overlay property (@pxref{Overlays}). Cursor motion also partly ignores these characters; if the command loop finds that point is inside a range of invisible text after a command, it relocates point to the other side of the text. In the simplest case, any non-@code{nil} @code{invisible} property makes a character invisible. This is the default case---if you don't alter the default value of @code{buffer-invisibility-spec}, this is how the @code{invisible} property works. You should normally use @code{t} as the value of the @code{invisible} property if you don't plan to set @code{buffer-invisibility-spec} yourself. More generally, you can use the variable @code{buffer-invisibility-spec} to control which values of the @code{invisible} property make text invisible. This permits you to classify the text into different subsets in advance, by giving them different @code{invisible} values, and subsequently make various subsets visible or invisible by changing the value of @code{buffer-invisibility-spec}. Controlling visibility with @code{buffer-invisibility-spec} is especially useful in a program to display the list of entries in a database. It permits the implementation of convenient filtering commands to view just a part of the entries in the database. Setting this variable is very fast, much faster than scanning all the text in the buffer looking for properties to change. @defvar buffer-invisibility-spec This variable specifies which kinds of @code{invisible} properties actually make a character invisible. Setting this variable makes it buffer-local. @table @asis @item @code{t} A character is invisible if its @code{invisible} property is non-@code{nil}. This is the default. @item a list Each element of the list specifies a criterion for invisibility; if a character's @code{invisible} property fits any one of these criteria, the character is invisible. The list can have two kinds of elements: @table @code @item @var{atom} A character is invisible if its @code{invisible} property value is @var{atom} or if it is a list with @var{atom} as a member; comparison is done with @code{eq}. @item (@var{atom} . t) A character is invisible if its @code{invisible} property value is @var{atom} or if it is a list with @var{atom} as a member; comparison is done with @code{eq}. Moreover, a sequence of such characters displays as an ellipsis. @end table @end table @end defvar Two functions are specifically provided for adding elements to @code{buffer-invisibility-spec} and removing elements from it. @defun add-to-invisibility-spec element This function adds the element @var{element} to @code{buffer-invisibility-spec}. If @code{buffer-invisibility-spec} was @code{t}, it changes to a list, @code{(t)}, so that text whose @code{invisible} property is @code{t} remains invisible. @end defun @defun remove-from-invisibility-spec element This removes the element @var{element} from @code{buffer-invisibility-spec}. This does nothing if @var{element} is not in the list. @end defun A convention for use of @code{buffer-invisibility-spec} is that a major mode should use the mode's own name as an element of @code{buffer-invisibility-spec} and as the value of the @code{invisible} property: @example ;; @r{If you want to display an ellipsis:} (add-to-invisibility-spec '(my-symbol . t)) ;; @r{If you don't want ellipsis:} (add-to-invisibility-spec 'my-symbol) (overlay-put (make-overlay beginning end) 'invisible 'my-symbol) ;; @r{When done with the invisibility:} (remove-from-invisibility-spec '(my-symbol . t)) ;; @r{Or respectively:} (remove-from-invisibility-spec 'my-symbol) @end example You can check for invisibility using the following function: @defun invisible-p pos-or-prop If @var{pos-or-prop} is a marker or number, this function returns a non-@code{nil} value if the text at that position is currently invisible. If @var{pos-or-prop} is any other kind of Lisp object, that is taken to mean a possible value of the @code{invisible} text or overlay property. In that case, this function returns a non-@code{nil} value if that value would cause text to become invisible, based on the current value of @code{buffer-invisibility-spec}. The return value of this function is @code{t} if the text would be completely hidden on display, or a non-@code{nil}, non-@code{t} value if the text would be replaced by an ellipsis. @end defun @vindex line-move-ignore-invisible Ordinarily, functions that operate on text or move point do not care whether the text is invisible, they process invisible characters and visible characters alike. The user-level line motion commands, such as @code{next-line}, @code{previous-line}, ignore invisible newlines if @code{line-move-ignore-invisible} is non-@code{nil} (the default), i.e., behave like these invisible newlines didn't exist in the buffer, but only because they are explicitly programmed to do so. If a command ends with point inside or at the boundary of invisible text, the main editing loop relocates point to one of the two ends of the invisible text. Emacs chooses the direction of relocation so that it is the same as the overall movement direction of the command; if in doubt, it prefers a position where an inserted char would not inherit the @code{invisible} property. Additionally, if the text is not replaced by an ellipsis and the command only moved within the invisible text, then point is moved one extra character so as to try and reflect the command's movement by a visible movement of the cursor. Thus, if the command moved point back to an invisible range (with the usual stickiness), Emacs moves point back to the beginning of that range. If the command moved point forward into an invisible range, Emacs moves point forward to the first visible character that follows the invisible text and then forward one more character. These @dfn{adjustments} of point that ended up in the middle of invisible text can be disabled by setting @code{disable-point-adjustment} to a non-@code{nil} value. @xref{Adjusting Point}. Incremental search can make invisible overlays visible temporarily and/or permanently when a match includes invisible text. To enable this, the overlay should have a non-@code{nil} @code{isearch-open-invisible} property. The property value should be a function to be called with the overlay as an argument. This function should make the overlay visible permanently; it is used when the match overlaps the overlay on exit from the search. During the search, such overlays are made temporarily visible by temporarily modifying their invisible and intangible properties. If you want this to be done differently for a certain overlay, give it an @code{isearch-open-invisible-temporary} property which is a function. The function is called with two arguments: the first is the overlay, and the second is @code{nil} to make the overlay visible, or @code{t} to make it invisible again. @node Selective Display @section Selective Display @c @cindex selective display Duplicates selective-display @dfn{Selective display} refers to a pair of related features for hiding certain lines on the screen. @cindex explicit selective display The first variant, explicit selective display, was designed for use in a Lisp program: it controls which lines are hidden by altering the text. This kind of hiding is now obsolete; instead you can get the same effect with the @code{invisible} property (@pxref{Invisible Text}). In the second variant, the choice of lines to hide is made automatically based on indentation. This variant is designed to be a user-level feature. The way you control explicit selective display is by replacing a newline (control-j) with a carriage return (control-m). The text that was formerly a line following that newline is now hidden. Strictly speaking, it is temporarily no longer a line at all, since only newlines can separate lines; it is now part of the previous line. Selective display does not directly affect editing commands. For example, @kbd{C-f} (@code{forward-char}) moves point unhesitatingly into hidden text. However, the replacement of newline characters with carriage return characters affects some editing commands. For example, @code{next-line} skips hidden lines, since it searches only for newlines. Modes that use selective display can also define commands that take account of the newlines, or that control which parts of the text are hidden. When you write a selectively displayed buffer into a file, all the control-m's are output as newlines. This means that when you next read in the file, it looks OK, with nothing hidden. The selective display effect is seen only within Emacs. @defvar selective-display This buffer-local variable enables selective display. This means that lines, or portions of lines, may be made hidden. @itemize @bullet @item If the value of @code{selective-display} is @code{t}, then the character control-m marks the start of hidden text; the control-m, and the rest of the line following it, are not displayed. This is explicit selective display. @item If the value of @code{selective-display} is a positive integer, then lines that start with more than that many columns of indentation are not displayed. @end itemize When some portion of a buffer is hidden, the vertical movement commands operate as if that portion did not exist, allowing a single @code{next-line} command to skip any number of hidden lines. However, character movement commands (such as @code{forward-char}) do not skip the hidden portion, and it is possible (if tricky) to insert or delete text in a hidden portion. In the examples below, we show the @emph{display appearance} of the buffer @code{foo}, which changes with the value of @code{selective-display}. The @emph{contents} of the buffer do not change. @example @group (setq selective-display nil) @result{} nil ---------- Buffer: foo ---------- 1 on this column 2on this column 3n this column 3n this column 2on this column 1 on this column ---------- Buffer: foo ---------- @end group @group (setq selective-display 2) @result{} 2 ---------- Buffer: foo ---------- 1 on this column 2on this column 2on this column 1 on this column ---------- Buffer: foo ---------- @end group @end example @end defvar @defopt selective-display-ellipses If this buffer-local variable is non-@code{nil}, then Emacs displays @samp{@dots{}} at the end of a line that is followed by hidden text. This example is a continuation of the previous one. @example @group (setq selective-display-ellipses t) @result{} t ---------- Buffer: foo ---------- 1 on this column 2on this column ... 2on this column 1 on this column ---------- Buffer: foo ---------- @end group @end example You can use a display table to substitute other text for the ellipsis (@samp{@dots{}}). @xref{Display Tables}. @end defopt @node Temporary Displays @section Temporary Displays @cindex temporary display @cindex temporary buffer display Temporary displays are used by Lisp programs to put output into a buffer and then present it to the user for perusal rather than for editing. Many help commands use this feature. @defmac with-output-to-temp-buffer buffer-name body@dots{} This function executes the forms in @var{body} while arranging to insert any output they print into the buffer named @var{buffer-name}, which is first created if necessary, and put into Help mode. (See the similar form @code{with-temp-buffer-window} below.) Finally, the buffer is displayed in some window, but that window is not selected. If the forms in @var{body} do not change the major mode in the output buffer, so that it is still Help mode at the end of their execution, then @code{with-output-to-temp-buffer} makes this buffer read-only at the end, and also scans it for function and variable names to make them into clickable cross-references. @xref{Docstring hyperlinks, , Tips for Documentation Strings}, in particular the item on hyperlinks in documentation strings, for more details. The string @var{buffer-name} specifies the temporary buffer, which need not already exist. The argument must be a string, not a buffer. The buffer is erased initially (with no questions asked), and it is marked as unmodified after @code{with-output-to-temp-buffer} exits. @code{with-output-to-temp-buffer} binds @code{standard-output} to the temporary buffer, then it evaluates the forms in @var{body}. Output using the Lisp output functions within @var{body} goes by default to that buffer (but screen display and messages in the echo area, although they are ``output'' in the general sense of the word, are not affected). @xref{Output Functions}. Several hooks are available for customizing the behavior of this construct; they are listed below. The value of the last form in @var{body} is returned. @example @group ---------- Buffer: foo ---------- This is the contents of foo. ---------- Buffer: foo ---------- @end group @group (with-output-to-temp-buffer "foo" (print 20) (print standard-output)) @result{} #<buffer foo> ---------- Buffer: foo ---------- 20 #<buffer foo> ---------- Buffer: foo ---------- @end group @end example @end defmac @defopt temp-buffer-show-function If this variable is non-@code{nil}, @code{with-output-to-temp-buffer} calls it as a function to do the job of displaying a help buffer. The function gets one argument, which is the buffer it should display. It is a good idea for this function to run @code{temp-buffer-show-hook} just as @code{with-output-to-temp-buffer} normally would, inside of @code{save-selected-window} and with the chosen window and buffer selected. @end defopt @defvar temp-buffer-setup-hook This normal hook is run by @code{with-output-to-temp-buffer} before evaluating @var{body}. When the hook runs, the temporary buffer is current. This hook is normally set up with a function to put the buffer in Help mode. @end defvar @defvar temp-buffer-show-hook This normal hook is run by @code{with-output-to-temp-buffer} after displaying the temporary buffer. When the hook runs, the temporary buffer is current, and the window it was displayed in is selected. @end defvar @defmac with-temp-buffer-window buffer-or-name action quit-function body@dots{} This macro is similar to @code{with-output-to-temp-buffer}. Like that construct, it executes @var{body} while arranging to insert any output it prints into the buffer named @var{buffer-or-name} and displays that buffer in some window. Unlike @code{with-output-to-temp-buffer}, however, it does not automatically switch that buffer to Help mode. The argument @var{buffer-or-name} specifies the temporary buffer. It can be either a buffer, which must already exist, or a string, in which case a buffer of that name is created, if necessary. The buffer is marked as unmodified and read-only when @code{with-temp-buffer-window} exits. This macro does not call @code{temp-buffer-show-function}. Rather, it passes the @var{action} argument to @code{display-buffer} (@pxref{Choosing Window}) in order to display the buffer. The value of the last form in @var{body} is returned, unless the argument @var{quit-function} is specified. In that case, it is called with two arguments: the window showing the buffer and the result of @var{body}. The final return value is then whatever @var{quit-function} returns. @vindex temp-buffer-window-setup-hook @vindex temp-buffer-window-show-hook This macro uses the normal hooks @code{temp-buffer-window-setup-hook} and @code{temp-buffer-window-show-hook} in place of the analogous hooks run by @code{with-output-to-temp-buffer}. @end defmac The two constructs described next are mostly identical to @code{with-temp-buffer-window} but differ from it as specified: @defmac with-current-buffer-window buffer-or-name action quit-function &rest body This macro is like @code{with-temp-buffer-window} but unlike that makes the buffer specified by @var{buffer-or-name} current for running @var{body}. @end defmac @defmac with-displayed-buffer-window buffer-or-name action quit-function &rest body This macro is like @code{with-current-buffer-window} but unlike that displays the buffer specified by @var{buffer-or-name} @emph{before} running @var{body}. @end defmac A window showing a temporary buffer can be fitted to the size of that buffer using the following mode: @defopt temp-buffer-resize-mode When this minor mode is enabled, windows showing a temporary buffer are automatically resized to fit their buffer's contents. A window is resized if and only if it has been specially created for the buffer. In particular, windows that have shown another buffer before are not resized. By default, this mode uses @code{fit-window-to-buffer} (@pxref{Resizing Windows}) for resizing. You can specify a different function by customizing the options @code{temp-buffer-max-height} and @code{temp-buffer-max-width} below. @end defopt @defopt temp-buffer-max-height This option specifies the maximum height (in lines) of a window displaying a temporary buffer when @code{temp-buffer-resize-mode} is enabled. It can also be a function to be called to choose the height for such a buffer. It gets one argument, the buffer, and should return a positive integer. At the time the function is called, the window to be resized is selected. @end defopt @defopt temp-buffer-max-width This option specifies the maximum width of a window (in columns) displaying a temporary buffer when @code{temp-buffer-resize-mode} is enabled. It can also be a function to be called to choose the width for such a buffer. It gets one argument, the buffer, and should return a positive integer. At the time the function is called, the window to be resized is selected. @end defopt The following function uses the current buffer for temporary display: @defun momentary-string-display string position &optional char message This function momentarily displays @var{string} in the current buffer at @var{position}. It has no effect on the undo list or on the buffer's modification status. The momentary display remains until the next input event. If the next input event is @var{char}, @code{momentary-string-display} ignores it and returns. Otherwise, that event remains buffered for subsequent use as input. Thus, typing @var{char} will simply remove the string from the display, while typing (say) @kbd{C-f} will remove the string from the display and later (presumably) move point forward. The argument @var{char} is a space by default. The return value of @code{momentary-string-display} is not meaningful. If the string @var{string} does not contain control characters, you can do the same job in a more general way by creating (and then subsequently deleting) an overlay with a @code{before-string} property. @xref{Overlay Properties}. If @var{message} is non-@code{nil}, it is displayed in the echo area while @var{string} is displayed in the buffer. If it is @code{nil}, a default message says to type @var{char} to continue. In this example, point is initially located at the beginning of the second line: @example @group ---------- Buffer: foo ---------- This is the contents of foo. @point{}Second line. ---------- Buffer: foo ---------- @end group @group (momentary-string-display "**** Important Message! ****" (point) ?\r "Type RET when done reading") @result{} t @end group @group ---------- Buffer: foo ---------- This is the contents of foo. **** Important Message! ****Second line. ---------- Buffer: foo ---------- ---------- Echo Area ---------- Type RET when done reading ---------- Echo Area ---------- @end group @end example @end defun @node Overlays @section Overlays @cindex overlays @c FIXME: mention intervals in this section? You can use @dfn{overlays} to alter the appearance of a buffer's text on the screen, for the sake of presentation features. An overlay is an object that belongs to a particular buffer, and has a specified beginning and end. It also has properties that you can examine and set; these affect the display of the text within the overlay. @cindex scalability of overlays @cindex overlays, scalability The visual effect of an overlay is the same as of the corresponding text property (@pxref{Text Properties}). However, due to a different implementation, overlays generally don't scale well (many operations take a time that is proportional to the number of overlays in the buffer). If you need to affect the visual appearance of many portions in the buffer, we recommend using text properties. An overlay uses markers to record its beginning and end; thus, editing the text of the buffer adjusts the beginning and end of each overlay so that it stays with the text. When you create the overlay, you can specify whether text inserted at the beginning should be inside the overlay or outside, and likewise for the end of the overlay. @menu * Managing Overlays:: Creating and moving overlays. * Overlay Properties:: How to read and set properties. What properties do to the screen display. * Finding Overlays:: Searching for overlays. @end menu @node Managing Overlays @subsection Managing Overlays @cindex managing overlays @cindex overlays, managing This section describes the functions to create, delete and move overlays, and to examine their contents. Overlay changes are not recorded in the buffer's undo list, since the overlays are not part of the buffer's contents. @defun overlayp object This function returns @code{t} if @var{object} is an overlay. @end defun @defun make-overlay start end &optional buffer front-advance rear-advance This function creates and returns an overlay that belongs to @var{buffer} and ranges from @var{start} to @var{end}. Both @var{start} and @var{end} must specify buffer positions; they may be integers or markers. If @var{buffer} is omitted, the overlay is created in the current buffer. @cindex empty overlay @cindex overlay, empty An overlay whose @var{start} and @var{end} specify the same buffer position is known as @dfn{empty}. A non-empty overlay can become empty if the text between its @var{start} and @var{end} is deleted. When that happens, the overlay is by default not deleted, but you can cause it to be deleted by giving it the @samp{evaporate} property (@pxref{Overlay Properties, evaporate property}). The arguments @var{front-advance} and @var{rear-advance} specify the marker insertion type for the start of the overlay and for the end of the overlay, respectively. @xref{Marker Insertion Types}. If they are both @code{nil}, the default, then the overlay extends to include any text inserted at the beginning, but not text inserted at the end. If @var{front-advance} is non-@code{nil}, text inserted at the beginning of the overlay is excluded from the overlay. If @var{rear-advance} is non-@code{nil}, text inserted at the end of the overlay is included in the overlay. @end defun @defun overlay-start overlay This function returns the position at which @var{overlay} starts, as an integer. @end defun @defun overlay-end overlay This function returns the position at which @var{overlay} ends, as an integer. @end defun @defun overlay-buffer overlay This function returns the buffer that @var{overlay} belongs to. It returns @code{nil} if @var{overlay} has been deleted. @end defun @defun delete-overlay overlay This function deletes @var{overlay}. The overlay continues to exist as a Lisp object, and its property list is unchanged, but it ceases to be attached to the buffer it belonged to, and ceases to have any effect on display. A deleted overlay is not permanently disconnected. You can give it a position in a buffer again by calling @code{move-overlay}. @end defun @defun move-overlay overlay start end &optional buffer This function moves @var{overlay} to @var{buffer}, and places its bounds at @var{start} and @var{end}. Both arguments @var{start} and @var{end} must specify buffer positions; they may be integers or markers. If @var{buffer} is omitted, @var{overlay} stays in the same buffer it was already associated with; if @var{overlay} was deleted, it goes into the current buffer. The return value is @var{overlay}. This is the only valid way to change the endpoints of an overlay. Do not try modifying the markers in the overlay by hand, as that fails to update other vital data structures and can cause some overlays to be lost. @end defun @defun remove-overlays &optional start end name value This function removes all the overlays between @var{start} and @var{end} whose property @var{name} has the value @var{value}. It can move the endpoints of the overlays in the region, or split them. If @var{name} is omitted or @code{nil}, it means to delete all overlays in the specified region. If @var{start} and/or @var{end} are omitted or @code{nil}, that means the beginning and end of the buffer respectively. Therefore, @code{(remove-overlays)} removes all the overlays in the current buffer. @end defun @defun copy-overlay overlay This function returns a copy of @var{overlay}. The copy has the same endpoints and properties as @var{overlay}. However, the marker insertion type for the start of the overlay and for the end of the overlay are set to their default values (@pxref{Marker Insertion Types}). @end defun Here are some examples: @example ;; @r{Create an overlay.} (setq foo (make-overlay 1 10)) @result{} #<overlay from 1 to 10 in display.texi> (overlay-start foo) @result{} 1 (overlay-end foo) @result{} 10 (overlay-buffer foo) @result{} #<buffer display.texi> ;; @r{Give it a property we can check later.} (overlay-put foo 'happy t) @result{} t ;; @r{Verify the property is present.} (overlay-get foo 'happy) @result{} t ;; @r{Move the overlay.} (move-overlay foo 5 20) @result{} #<overlay from 5 to 20 in display.texi> (overlay-start foo) @result{} 5 (overlay-end foo) @result{} 20 ;; @r{Delete the overlay.} (delete-overlay foo) @result{} nil ;; @r{Verify it is deleted.} foo @result{} #<overlay in no buffer> ;; @r{A deleted overlay has no position.} (overlay-start foo) @result{} nil (overlay-end foo) @result{} nil (overlay-buffer foo) @result{} nil ;; @r{Undelete the overlay.} (move-overlay foo 1 20) @result{} #<overlay from 1 to 20 in display.texi> ;; @r{Verify the results.} (overlay-start foo) @result{} 1 (overlay-end foo) @result{} 20 (overlay-buffer foo) @result{} #<buffer display.texi> ;; @r{Moving and deleting the overlay does not change its properties.} (overlay-get foo 'happy) @result{} t @end example Emacs stores the overlays of each buffer in two lists, divided around an arbitrary center position. One list extends backwards through the buffer from that center position, and the other extends forwards from that center position. The center position can be anywhere in the buffer. @defun overlay-recenter pos This function recenters the overlays of the current buffer around position @var{pos}. That makes overlay lookup faster for positions near @var{pos}, but slower for positions far away from @var{pos}. @end defun A loop that scans the buffer forwards, creating overlays, can run faster if you do @code{(overlay-recenter (point-max))} first. @node Overlay Properties @subsection Overlay Properties @cindex overlay properties Overlay properties are like text properties in that the properties that alter how a character is displayed can come from either source. But in most respects they are different. @xref{Text Properties}, for comparison. Text properties are considered a part of the text; overlays and their properties are specifically considered not to be part of the text. Thus, copying text between various buffers and strings preserves text properties, but does not try to preserve overlays. Changing a buffer's text properties marks the buffer as modified, while moving an overlay or changing its properties does not. Unlike text property changes, overlay property changes are not recorded in the buffer's undo list. Since more than one overlay can specify a property value for the same character, Emacs lets you specify a priority value of each overlay. The priority value is used to decide which of the overlapping overlays will ``win''. These functions read and set the properties of an overlay: @defun overlay-get overlay prop This function returns the value of property @var{prop} recorded in @var{overlay}, if any. If @var{overlay} does not record any value for that property, but it does have a @code{category} property which is a symbol, that symbol's @var{prop} property is used. Otherwise, the value is @code{nil}. @end defun @defun overlay-put overlay prop value This function sets the value of property @var{prop} recorded in @var{overlay} to @var{value}. It returns @var{value}. @end defun @defun overlay-properties overlay This returns a copy of the property list of @var{overlay}. @end defun See also the function @code{get-char-property} which checks both overlay properties and text properties for a given character. @xref{Examining Properties}. Many overlay properties have special meanings; here is a table of them: @table @code @item priority @kindex priority @r{(overlay property)} This property's value determines the priority of the overlay. If you want to specify a priority value, use either @code{nil} (or zero), or a positive integer. Any other value has undefined behavior. The priority matters when two or more overlays cover the same character and both specify the same property; the one whose @code{priority} value is larger overrides the other. (For the @code{face} property, the higher priority overlay's value does not completely override the other value; instead, its face attributes override the face attributes of the lower priority @code{face} property.) If two overlays have the same priority value, and one is nested in the other, then the inner one will prevail over the outer one. If neither is nested in the other then you should not make assumptions about which overlay will prevail. Currently, all overlays take priority over text properties. Note that Emacs sometimes uses non-numeric priority values for some of its internal overlays, so do not try to do arithmetic on the priority of an overlay (unless it is one that you created). In particular, the overlay used for showing the region uses a priority value of the form @w{@code{(@var{primary} . @var{secondary})}}, where the @var{primary} value is used as described above, and @var{secondary} is the fallback value used when @var{primary} and the nesting considerations fail to resolve the precedence between overlays. However, you are advised not to design Lisp programs based on this implementation detail; if you need to put overlays in priority order, use the @var{sorted} argument of @code{overlays-at}. @xref{Finding Overlays}. @item window @kindex window @r{(overlay property)} If the @code{window} property is non-@code{nil}, then the overlay applies only on that window. @item category @kindex category @r{(overlay property)} If an overlay has a @code{category} property, we call it the @dfn{category} of the overlay. It should be a symbol. The properties of the symbol serve as defaults for the properties of the overlay. @item face @kindex face @r{(overlay property)} This property controls the appearance of the text (@pxref{Faces}). The value of the property can be the following: @itemize @bullet @item A face name (a symbol or string). @item An anonymous face: a property list of the form @code{(@var{keyword} @var{value} @dots{})}, where each @var{keyword} is a face attribute name and @var{value} is a value for that attribute. @item A list of faces. Each list element should be either a face name or an anonymous face. This specifies a face which is an aggregate of the attributes of each of the listed faces. Faces occurring earlier in the list have higher priority. @item A cons cell of the form @code{(foreground-color . @var{color-name})} or @code{(background-color . @var{color-name})}. This specifies the foreground or background color, similar to @code{(:foreground @var{color-name})} or @code{(:background @var{color-name})}. This form is supported for backward compatibility only, and should be avoided. @end itemize @item mouse-face @kindex mouse-face @r{(overlay property)} This property is used instead of @code{face} when the mouse is within the range of the overlay. However, Emacs ignores all face attributes from this property that alter the text size (e.g., @code{:height}, @code{:weight}, and @code{:slant}). Those attributes are always the same as in the unhighlighted text. @item display @kindex display @r{(overlay property)} This property activates various features that change the way text is displayed. For example, it can make text appear taller or shorter, higher or lower, wider or narrower, or replaced with an image. @xref{Display Property}. @item help-echo @kindex help-echo @r{(overlay property)} If an overlay has a @code{help-echo} property, then when you move the mouse onto the text in the overlay, Emacs displays a help string in the echo area, or in the tooltip window. For details see @ref{Text help-echo}. @item field @kindex field @r{(overlay property)} @c Copied from Special Properties. Consecutive characters with the same @code{field} property constitute a @emph{field}. Some motion functions including @code{forward-word} and @code{beginning-of-line} stop moving at a field boundary. @xref{Fields}. @item modification-hooks @kindex modification-hooks @r{(overlay property)} This property's value is a list of functions to be called if any character within the overlay is changed or if text is inserted strictly within the overlay. The hook functions are called both before and after each change. If the functions save the information they receive, and compare notes between calls, they can determine exactly what change has been made in the buffer text. When called before a change, each function receives four arguments: the overlay, @code{nil}, and the beginning and end of the text range to be modified. When called after a change, each function receives five arguments: the overlay, @code{t}, the beginning and end of the text range just modified, and the length of the pre-change text replaced by that range. (For an insertion, the pre-change length is zero; for a deletion, that length is the number of characters deleted, and the post-change beginning and end are equal.) If these functions modify the buffer, they should bind @code{inhibit-modification-hooks} to @code{t} around doing so, to avoid confusing the internal mechanism that calls these hooks. Text properties also support the @code{modification-hooks} property, but the details are somewhat different (@pxref{Special Properties}). @item insert-in-front-hooks @kindex insert-in-front-hooks @r{(overlay property)} This property's value is a list of functions to be called before and after inserting text right at the beginning of the overlay. The calling conventions are the same as for the @code{modification-hooks} functions. @item insert-behind-hooks @kindex insert-behind-hooks @r{(overlay property)} This property's value is a list of functions to be called before and after inserting text right at the end of the overlay. The calling conventions are the same as for the @code{modification-hooks} functions. @item invisible @kindex invisible @r{(overlay property)} The @code{invisible} property can make the text in the overlay invisible, which means that it does not appear on the screen. @xref{Invisible Text}, for details. @item intangible @kindex intangible @r{(overlay property)} The @code{intangible} property on an overlay works just like the @code{intangible} text property. It is obsolete. @xref{Special Properties}, for details. @item isearch-open-invisible This property tells incremental search how to make an invisible overlay visible, permanently, if the final match overlaps it. @xref{Invisible Text}. @item isearch-open-invisible-temporary This property tells incremental search how to make an invisible overlay visible, temporarily, during the search. @xref{Invisible Text}. @item before-string @kindex before-string @r{(overlay property)} This property's value is a string to add to the display at the beginning of the overlay. The string does not appear in the buffer in any sense---only on the screen. @item after-string @kindex after-string @r{(overlay property)} This property's value is a string to add to the display at the end of the overlay. The string does not appear in the buffer in any sense---only on the screen. @item line-prefix This property specifies a display spec to prepend to each non-continuation line at display-time. @xref{Truncation}. @item wrap-prefix This property specifies a display spec to prepend to each continuation line at display-time. @xref{Truncation}. @item evaporate @kindex evaporate @r{(overlay property)} If this property is non-@code{nil}, the overlay is deleted automatically if it becomes empty (i.e., if its length becomes zero). If you give an empty overlay (@pxref{Managing Overlays, empty overlay}) a non-@code{nil} @code{evaporate} property, that deletes it immediately. Note that, unless an overlay has this property, it will not be deleted when the text between its starting and ending positions is deleted from the buffer. @item keymap @cindex keymap of character (and overlays) @kindex keymap @r{(overlay property)} If this property is non-@code{nil}, it specifies a keymap for a portion of the text. This keymap is used when the character after point is within the overlay, and takes precedence over most other keymaps. @xref{Active Keymaps}. @item local-map @kindex local-map @r{(overlay property)} The @code{local-map} property is similar to @code{keymap} but replaces the buffer's local map rather than augmenting existing keymaps. This also means it has lower precedence than minor mode keymaps. @end table The @code{keymap} and @code{local-map} properties do not affect a string displayed by the @code{before-string}, @code{after-string}, or @code{display} properties. This is only relevant for mouse clicks and other mouse events that fall on the string, since point is never on the string. To bind special mouse events for the string, assign it a @code{keymap} or @code{local-map} text property. @xref{Special Properties}. @node Finding Overlays @subsection Searching for Overlays @cindex searching for overlays @cindex overlays, searching for @defun overlays-at pos &optional sorted This function returns a list of all the overlays that cover the character at position @var{pos} in the current buffer. If @var{sorted} is non-@code{nil}, the list is in decreasing order of priority, otherwise it is in no particular order. An overlay contains position @var{pos} if it begins at or before @var{pos}, and ends after @var{pos}. To illustrate usage, here is a Lisp function that returns a list of the overlays that specify property @var{prop} for the character at point: @smallexample (defun find-overlays-specifying (prop) (let ((overlays (overlays-at (point))) found) (while overlays (let ((overlay (car overlays))) (if (overlay-get overlay prop) (setq found (cons overlay found)))) (setq overlays (cdr overlays))) found)) @end smallexample @end defun @defun overlays-in beg end This function returns a list of the overlays that overlap the region @var{beg} through @var{end}. An overlay overlaps with a region if it contains one or more characters in the region; empty overlays (@pxref{Managing Overlays, empty overlay}) overlap if they are at @var{beg}, strictly between @var{beg} and @var{end}, or at @var{end} when @var{end} denotes the position at the end of the buffer. @end defun @defun next-overlay-change pos This function returns the buffer position of the next beginning or end of an overlay, after @var{pos}. If there is none, it returns @code{(point-max)}. @end defun @defun previous-overlay-change pos This function returns the buffer position of the previous beginning or end of an overlay, before @var{pos}. If there is none, it returns @code{(point-min)}. @end defun As an example, here's a simplified (and inefficient) version of the primitive function @code{next-single-char-property-change} (@pxref{Property Search}). It searches forward from position @var{pos} for the next position where the value of a given property @code{prop}, as obtained from either overlays or text properties, changes. @smallexample (defun next-single-char-property-change (position prop) (save-excursion (goto-char position) (let ((propval (get-char-property (point) prop))) (while (and (not (eobp)) (eq (get-char-property (point) prop) propval)) (goto-char (min (next-overlay-change (point)) (next-single-property-change (point) prop))))) (point))) @end smallexample @node Size of Displayed Text @section Size of Displayed Text @cindex size of text on display @cindex character width on display Since not all characters have the same width, these functions let you check the width of a character. @xref{Primitive Indent}, and @ref{Screen Lines}, for related functions. @defun char-width char This function returns the width in columns of the character @var{char}, if it were displayed in the current buffer (i.e., taking into account the buffer's display table, if any; @pxref{Display Tables}). The width of a tab character is usually @code{tab-width} (@pxref{Usual Display}). @end defun @defun string-width string This function returns the width in columns of the string @var{string}, if it were displayed in the current buffer and the selected window. @end defun @defun truncate-string-to-width string width &optional start-column padding ellipsis This function returns the part of @var{string} that fits within @var{width} columns, as a new string. If @var{string} does not reach @var{width}, then the result ends where @var{string} ends. If one multi-column character in @var{string} extends across the column @var{width}, that character is not included in the result. Thus, the result can fall short of @var{width} but cannot go beyond it. The optional argument @var{start-column} specifies the starting column. If this is non-@code{nil}, then the first @var{start-column} columns of the string are omitted from the value. If one multi-column character in @var{string} extends across the column @var{start-column}, that character is not included. The optional argument @var{padding}, if non-@code{nil}, is a padding character added at the beginning and end of the result string, to extend it to exactly @var{width} columns. The padding character is used at the end of the result if it falls short of @var{width}. It is also used at the beginning of the result if one multi-column character in @var{string} extends across the column @var{start-column}. @vindex truncate-string-ellipsis If @var{ellipsis} is non-@code{nil}, it should be a string which will replace the end of @var{string} (including any padding) if it extends beyond @var{width}, unless the display width of @var{string} is equal to or less than the display width of @var{ellipsis}. If @var{ellipsis} is non-@code{nil} and not a string, it stands for the value of the variable @code{truncate-string-ellipsis}. @example (truncate-string-to-width "\tab\t" 12 4) @result{} "ab" (truncate-string-to-width "\tab\t" 12 4 ?\s) @result{} " ab " @end example @end defun The following function returns the size in pixels of text as if it were displayed in a given window. This function is used by @code{fit-window-to-buffer} and @code{fit-frame-to-buffer} (@pxref{Resizing Windows}) to make a window exactly as large as the text it contains. @defun window-text-pixel-size &optional window from to x-limit y-limit mode-and-header-line This function returns the size of the text of @var{window}'s buffer in pixels. @var{window} must be a live window and defaults to the selected one. The return value is a cons of the maximum pixel-width of any text line and the maximum pixel-height of all text lines. The optional argument @var{from}, if non-@code{nil}, specifies the first text position to consider and defaults to the minimum accessible position of the buffer. If @var{from} is @code{t}, it uses the minimum accessible position that is not a newline character. The optional argument @var{to}, if non-@code{nil}, specifies the last text position to consider and defaults to the maximum accessible position of the buffer. If @var{to} is @code{t}, it uses the maximum accessible position that is not a newline character. The optional argument @var{x-limit}, if non-@code{nil}, specifies the maximum pixel-width that can be returned. @var{x-limit} @code{nil} or omitted, means to use the pixel-width of @var{window}'s body (@pxref{Window Sizes}); this is useful when the caller does not intend to change the width of @var{window}. Otherwise, the caller should specify here the maximum width @var{window}'s body may assume. Text whose x-coordinate is beyond @var{x-limit} is ignored. Since calculating the width of long lines can take some time, it's always a good idea to make this argument as small as needed; in particular, if the buffer might contain long lines that will be truncated anyway. The optional argument @var{y-limit}, if non-@code{nil}, specifies the maximum pixel-height that can be returned. Text lines whose y-coordinate is beyond @var{y-limit} are ignored. Since calculating the pixel-height of a large buffer can take some time, it makes sense to specify this argument; in particular, if the caller does not know the size of the buffer. The optional argument @var{mode-and-header-line} @code{nil} or omitted means to not include the height of the mode- or header-line of @var{window} in the return value. If it is either the symbol @code{mode-line} or @code{header-line}, include only the height of that line, if present, in the return value. If it is @code{t}, include the height of both, if present, in the return value. @end defun @code{window-text-pixel-size} treats the text displayed in a window as a whole and does not care about the size of individual lines. The following function does. @defun window-lines-pixel-dimensions &optional window first last body inverse left This function calculates the pixel dimensions of each line displayed in the specified @var{window}. It does so by walking @var{window}'s current glyph matrix---a matrix storing the glyph (@pxref{Glyphs}) of each buffer character currently displayed in @var{window}. If successful, it returns a list of cons pairs representing the x- and y-coordinates of the lower right corner of the last character of each line. Coordinates are measured in pixels from an origin (0, 0) at the top-left corner of @var{window}. @var{window} must be a live window and defaults to the selected one. If the optional argument @var{first} is an integer, it denotes the index (starting with 0) of the first line of @var{window}'s glyph matrix to be returned. Note that if @var{window} has a header line, the line with index 0 is that header line. If @var{first} is @code{nil}, the first line to be considered is determined by the value of the optional argument @var{body}: If @var{body} is non-@code{nil}, this means to start with the first line of @var{window}'s body, skipping any header line, if present. Otherwise, this function will start with the first line of @var{window}'s glyph matrix, possibly the header line. If the optional argument @var{last} is an integer, it denotes the index of the last line of @var{window}'s glyph matrix that shall be returned. If @var{last} is @code{nil}, the last line to be considered is determined by the value of @var{body}: If @var{body} is non-@code{nil}, this means to use the last line of @var{window}'s body, omitting @var{window}'s mode line, if present. Otherwise, this means to use the last line of @var{window} which may be the mode line. The optional argument @var{inverse}, if @code{nil}, means that the y-pixel value returned for any line specifies the distance in pixels from the left edge (body edge if @var{body} is non-@code{nil}) of @var{window} to the right edge of the last glyph of that line. @var{inverse} non-@code{nil} means that the y-pixel value returned for any line specifies the distance in pixels from the right edge of the last glyph of that line to the right edge (body edge if @var{body} is non-@code{nil}) of @var{window}. This is useful for determining the amount of slack space at the end of each line. The optional argument @var{left}, if non-@code{nil} means to return the x- and y-coordinates of the lower left corner of the leftmost character on each line. This is the value that should be used for windows that mostly display text from right to left. If @var{left} is non-@code{nil} and @var{inverse} is @code{nil}, this means that the y-pixel value returned for any line specifies the distance in pixels from the left edge of the last (leftmost) glyph of that line to the right edge (body edge if @var{body} is non-@code{nil}) of @var{window}. If @var{left} and @var{inverse} are both non-@code{nil}, the y-pixel value returned for any line specifies the distance in pixels from the left edge (body edge if @var{body} is non-@code{nil}) of @var{window} to the left edge of the last (leftmost) glyph of that line. This function returns @code{nil} if the current glyph matrix of @var{window} is not up-to-date which usually happens when Emacs is busy, for example, when processing a command. The value should be retrievable though when this function is run from an idle timer with a delay of zero seconds. @end defun @defun line-pixel-height This function returns the height in pixels of the line at point in the selected window. The value includes the line spacing of the line (@pxref{Line Height}). @end defun When a buffer is displayed with line numbers (@pxref{Display Custom,,, emacs, The GNU Emacs Manual}), it is sometimes useful to know the width taken for displaying the line numbers. The following function is for Lisp programs which need this information for layout calculations. @defun line-number-display-width &optional pixelwise This function returns the width used for displaying the line numbers in the selected window. If the optional argument @var{pixelwise} is the symbol @code{columns}, the return value is a float number of the frame's canonical columns; if @var{pixelwise} is @code{t} or any other non-@code{nil} value, the value is an integer and is measured in pixels. If @var{pixelwise} is omitted or @code{nil}, the value is the integer number of columns of the font defined for the @code{line-number} face, and doesn't include the 2 columns used to pad the numbers on display. If line numbers are not displayed in the selected window, the value is zero regardless of the value of @var{pixelwise}. Use @code{with-selected-window} (@pxref{Selecting Windows}) if you need this information about another window. @end defun @node Line Height @section Line Height @cindex line height @cindex height of a line The total height of each display line consists of the height of the contents of the line, plus optional additional vertical line spacing above or below the display line. The height of the line contents is the maximum height of any character or image on that display line, including the final newline if there is one. (A display line that is continued doesn't include a final newline.) That is the default line height, if you do nothing to specify a greater height. (In the most common case, this equals the height of the corresponding frame's default font, see @ref{Frame Font}.) There are several ways to explicitly specify a larger line height, either by specifying an absolute height for the display line, or by specifying vertical space. However, no matter what you specify, the actual line height can never be less than the default. @kindex line-height @r{(text property)} A newline can have a @code{line-height} text or overlay property that controls the total height of the display line ending in that newline. If the property value is @code{t}, the newline character has no effect on the displayed height of the line---the visible contents alone determine the height. The @code{line-spacing} property, described below, is also ignored in this case. This is useful for tiling small images (or image slices) without adding blank areas between the images. If the property value is a list of the form @code{(@var{height} @var{total})}, that adds extra space @emph{below} the display line. First Emacs uses @var{height} as a height spec to control extra space @emph{above} the line; then it adds enough space @emph{below} the line to bring the total line height up to @var{total}. In this case, any value of @code{line-spacing} property for the newline is ignored. @cindex height spec Any other kind of property value is a height spec, which translates into a number---the specified line height. There are several ways to write a height spec; here's how each of them translates into a number: @table @code @item @var{integer} If the height spec is a positive integer, the height value is that integer. @item @var{float} If the height spec is a float, @var{float}, the numeric height value is @var{float} times the frame's default line height. @item (@var{face} . @var{ratio}) If the height spec is a cons of the format shown, the numeric height is @var{ratio} times the height of face @var{face}. @var{ratio} can be any type of number, or @code{nil} which means a ratio of 1. If @var{face} is @code{t}, it refers to the current face. @item (nil . @var{ratio}) If the height spec is a cons of the format shown, the numeric height is @var{ratio} times the height of the contents of the line. @end table Thus, any valid height spec determines the height in pixels, one way or another. If the line contents' height is less than that, Emacs adds extra vertical space above the line to achieve the specified total height. If you don't specify the @code{line-height} property, the line's height consists of the contents' height plus the line spacing. There are several ways to specify the line spacing for different parts of Emacs text. On graphical terminals, you can specify the line spacing for all lines in a frame, using the @code{line-spacing} frame parameter (@pxref{Layout Parameters}). However, if the default value of @code{line-spacing} is non-@code{nil}, it overrides the frame's @code{line-spacing} parameter. An integer specifies the number of pixels put below lines. A floating-point number specifies the spacing relative to the frame's default line height. @vindex line-spacing You can specify the line spacing for all lines in a buffer via the buffer-local @code{line-spacing} variable. An integer specifies the number of pixels put below lines. A floating-point number specifies the spacing relative to the default frame line height. This overrides line spacings specified for the frame. @kindex line-spacing @r{(text property)} Finally, a newline can have a @code{line-spacing} text or overlay property that can enlarge the default frame line spacing and the buffer local @code{line-spacing} variable: if its value is larger than the buffer or frame defaults, that larger value is used instead, for the display line ending in that newline. One way or another, these mechanisms specify a Lisp value for the spacing of each line. The value is a height spec, and it translates into a Lisp value as described above. However, in this case the numeric height value specifies the line spacing, rather than the line height. On text terminals, the line spacing cannot be altered. @node Faces @section Faces @cindex faces A @dfn{face} is a collection of graphical attributes for displaying text: font, foreground color, background color, optional underlining, etc. Faces control how Emacs displays text in buffers, as well as other parts of the frame such as the mode line. @cindex anonymous face One way to represent a face is as a property list of attributes, like @code{(:foreground "red" :weight bold)}. Such a list is called an @dfn{anonymous face}. For example, you can assign an anonymous face as the value of the @code{face} text property, and Emacs will display the underlying text with the specified attributes. @xref{Special Properties}. @cindex face name More commonly, a face is referred to via a @dfn{face name}: a Lisp symbol associated with a set of face attributes@footnote{For backward compatibility, you can also use a string to specify a face name; that is equivalent to a Lisp symbol with the same name.}. Named faces are defined using the @code{defface} macro (@pxref{Defining Faces}). Emacs comes with several standard named faces (@pxref{Basic Faces}). Many parts of Emacs require named faces, and do not accept anonymous faces. These include the functions documented in @ref{Attribute Functions}, and the variable @code{font-lock-keywords} (@pxref{Search-based Fontification}). Unless otherwise stated, we will use the term @dfn{face} to refer only to named faces. @defun facep object This function returns a non-@code{nil} value if @var{object} is a named face: a Lisp symbol or string which serves as a face name. Otherwise, it returns @code{nil}. @end defun @menu * Face Attributes:: What is in a face? * Defining Faces:: How to define a face. * Attribute Functions:: Functions to examine and set face attributes. * Displaying Faces:: How Emacs combines the faces specified for a character. * Face Remapping:: Remapping faces to alternative definitions. * Face Functions:: How to define and examine faces. * Auto Faces:: Hook for automatic face assignment. * Basic Faces:: Faces that are defined by default. * Font Selection:: Finding the best available font for a face. * Font Lookup:: Looking up the names of available fonts and information about them. * Fontsets:: A fontset is a collection of fonts that handle a range of character sets. * Low-Level Font:: Lisp representation for character display fonts. @end menu @node Face Attributes @subsection Face Attributes @cindex face attributes @dfn{Face attributes} determine the visual appearance of a face. The following table lists all the face attributes, their possible values, and their effects. Apart from the values given below, each face attribute can have the value @code{unspecified}. This special value means that the face doesn't specify that attribute directly. An @code{unspecified} attribute tells Emacs to refer instead to a parent face (see the description @code{:inherit} attribute below); or, failing that, to an underlying face (@pxref{Displaying Faces}). The @code{default} face must specify all attributes. Some of these attributes are meaningful only on certain kinds of displays. If your display cannot handle a certain attribute, the attribute is ignored. @table @code @item :family Font family name (a string). @xref{Fonts,,, emacs, The GNU Emacs Manual}, for more information about font families. The function @code{font-family-list} (see below) returns a list of available family names. @item :foundry The name of the @dfn{font foundry} for the font family specified by the @code{:family} attribute (a string). @xref{Fonts,,, emacs, The GNU Emacs Manual}. @item :width Relative character width. This should be one of the symbols @code{ultra-condensed}, @code{extra-condensed}, @code{condensed}, @code{semi-condensed}, @code{normal}, @code{semi-expanded}, @code{expanded}, @code{extra-expanded}, or @code{ultra-expanded}. @item :height The height of the font. In the simplest case, this is an integer in units of 1/10 point. The value can also be floating point or a function, which specifies the height relative to an @dfn{underlying face} (@pxref{Displaying Faces}). A floating-point value specifies the amount by which to scale the height of the underlying face. A function value is called with one argument, the height of the underlying face, and returns the height of the new face. If the function is passed an integer argument, it must return an integer. The height of the default face must be specified using an integer; floating point and function values are not allowed. @item :weight Font weight---one of the symbols (from densest to faintest) @code{ultra-bold}, @code{extra-bold}, @code{bold}, @code{semi-bold}, @code{normal}, @code{semi-light}, @code{light}, @code{extra-light}, or @code{ultra-light}. On text terminals which support variable-brightness text, any weight greater than normal is displayed as extra bright, and any weight less than normal is displayed as half-bright. @cindex italic text @item :slant Font slant---one of the symbols @code{italic}, @code{oblique}, @code{normal}, @code{reverse-italic}, or @code{reverse-oblique}. On text terminals that support variable-brightness text, slanted text is displayed as half-bright. @item :foreground Foreground color, a string. The value can be a system-defined color name, or a hexadecimal color specification. @xref{Color Names}. On black-and-white displays, certain shades of gray are implemented by stipple patterns. @item :distant-foreground Alternative foreground color, a string. This is like @code{:foreground} but the color is only used as a foreground when the background color is near to the foreground that would have been used. This is useful for example when marking text (i.e., the region face). If the text has a foreground that is visible with the region face, that foreground is used. If the foreground is near the region face background, @code{:distant-foreground} is used instead so the text is readable. @item :background Background color, a string. The value can be a system-defined color name, or a hexadecimal color specification. @xref{Color Names}. @cindex underlined text @item :underline Whether or not characters should be underlined, and in what way. The possible values of the @code{:underline} attribute are: @table @asis @item @code{nil} Don't underline. @item @code{t} Underline with the foreground color of the face. @item @var{color} Underline in color @var{color}, a string specifying a color. @item @code{(:color @var{color} :style @var{style})} @var{color} is either a string, or the symbol @code{foreground-color}, meaning the foreground color of the face. Omitting the attribute @code{:color} means to use the foreground color of the face. @var{style} should be a symbol @code{line} or @code{wave}, meaning to use a straight or wavy line. Omitting the attribute @code{:style} means to use a straight line. @end table @cindex overlined text @item :overline Whether or not characters should be overlined, and in what color. If the value is @code{t}, overlining uses the foreground color of the face. If the value is a string, overlining uses that color. The value @code{nil} means do not overline. @cindex strike-through text @item :strike-through Whether or not characters should be strike-through, and in what color. The value is used like that of @code{:overline}. @cindex 2D box @cindex 3D box @item :box Whether or not a box should be drawn around characters, its color, the width of the box lines, and 3D appearance. Here are the possible values of the @code{:box} attribute, and what they mean: @table @asis @item @code{nil} Don't draw a box. @item @code{t} Draw a box with lines of width 1, in the foreground color. @item @var{color} Draw a box with lines of width 1, in color @var{color}. @item @code{(:line-width @var{width} :color @var{color} :style @var{style})} This way you can explicitly specify all aspects of the box. The value @var{width} specifies the width of the lines to draw; it defaults to 1. A negative width @var{-n} means to draw a line of width @var{n} whose top and bottom parts occupy the space of the underlying text, thus avoiding any increase in the character height. The value @var{color} specifies the color to draw with. The default is the foreground color of the face for simple boxes, and the background color of the face for 3D boxes. The value @var{style} specifies whether to draw a 3D box. If it is @code{released-button}, the box looks like a 3D button that is not being pressed. If it is @code{pressed-button}, the box looks like a 3D button that is being pressed. If it is @code{nil} or omitted, a plain 2D box is used. @end table @item :inverse-video Whether or not characters should be displayed in inverse video. The value should be @code{t} (yes) or @code{nil} (no). @item :stipple The background stipple, a bitmap. The value can be a string; that should be the name of a file containing external-format X bitmap data. The file is found in the directories listed in the variable @code{x-bitmap-file-path}. Alternatively, the value can specify the bitmap directly, with a list of the form @code{(@var{width} @var{height} @var{data})}. Here, @var{width} and @var{height} specify the size in pixels, and @var{data} is a string containing the raw bits of the bitmap, row by row. Each row occupies @math{(@var{width} + 7) / 8} consecutive bytes in the string (which should be a unibyte string for best results). This means that each row always occupies at least one whole byte. If the value is @code{nil}, that means use no stipple pattern. Normally you do not need to set the stipple attribute, because it is used automatically to handle certain shades of gray. @item :font The font used to display the face. Its value should be a font object or a fontset. @xref{Low-Level Font}, for information about font objects, font specs, and font entities. @xref{Fontsets}, for information about fontsets. When specifying this attribute using @code{set-face-attribute} (@pxref{Attribute Functions}), you may also supply a font spec, a font entity, or a string. Emacs converts such values to an appropriate font object, and stores that font object as the actual attribute value. If you specify a string, the contents of the string should be a font name (@pxref{Fonts,,, emacs, The GNU Emacs Manual}); if the font name is an XLFD containing wildcards, Emacs chooses the first font matching those wildcards. Specifying this attribute also changes the values of the @code{:family}, @code{:foundry}, @code{:width}, @code{:height}, @code{:weight}, and @code{:slant} attributes. @cindex inheritance, for faces @item :inherit The name of a face from which to inherit attributes, or a list of face names. Attributes from inherited faces are merged into the face like an underlying face would be, with higher priority than underlying faces (@pxref{Displaying Faces}). If the face to inherit from is @code{unspecified}, it is treated the same as @code{nil}, since Emacs never merges @code{:inherit} attributes. If a list of faces is used, attributes from faces earlier in the list override those from later faces. @end table @defun font-family-list &optional frame This function returns a list of available font family names. The optional argument @var{frame} specifies the frame on which the text is to be displayed; if it is @code{nil}, the selected frame is used. @end defun @defopt underline-minimum-offset This variable specifies the minimum distance between the baseline and the underline, in pixels, when displaying underlined text. @end defopt @defopt x-bitmap-file-path This variable specifies a list of directories for searching for bitmap files, for the @code{:stipple} attribute. @end defopt @defun bitmap-spec-p object This returns @code{t} if @var{object} is a valid bitmap specification, suitable for use with @code{:stipple} (see above). It returns @code{nil} otherwise. @end defun @node Defining Faces @subsection Defining Faces @cindex defining faces @cindex face spec The usual way to define a face is through the @code{defface} macro. This macro associates a face name (a symbol) with a default @dfn{face spec}. A face spec is a construct which specifies what attributes a face should have on any given terminal; for example, a face spec might specify one foreground color on high-color terminals, and a different foreground color on low-color terminals. People are sometimes tempted to create a variable whose value is a face name. In the vast majority of cases, this is not necessary; the usual procedure is to define a face with @code{defface}, and then use its name directly. @defmac defface face spec doc [keyword value]@dots{} This macro declares @var{face} as a named face whose default face spec is given by @var{spec}. You should not quote the symbol @var{face}, and it should not end in @samp{-face} (that would be redundant). The argument @var{doc} is a documentation string for the face. The additional @var{keyword} arguments have the same meanings as in @code{defgroup} and @code{defcustom} (@pxref{Common Keywords}). If @var{face} already has a default face spec, this macro does nothing. The default face spec determines @var{face}'s appearance when no customizations are in effect (@pxref{Customization}). If @var{face} has already been customized (via Custom themes or via customizations read from the init file), its appearance is determined by the custom face spec(s), which override the default face spec @var{spec}. However, if the customizations are subsequently removed, the appearance of @var{face} will again be determined by its default face spec. @cindex @code{eval-defun}, and @code{defface} forms As an exception, if you evaluate a @code{defface} form with @kbd{C-M-x} in Emacs Lisp mode (@code{eval-defun}), a special feature of @code{eval-defun} overrides any custom face specs on the face, causing the face to reflect exactly what the @code{defface} says. The @var{spec} argument is a @dfn{face spec}, which states how the face should appear on different kinds of terminals. It should be an alist whose elements each have the form @example (@var{display} . @var{plist}) @end example @noindent @var{display} specifies a class of terminals (see below). @var{plist} is a property list of face attributes and their values, specifying how the face appears on such terminals. For backward compatibility, you can also write an element as @code{(@var{display} @var{plist})}. The @var{display} part of an element of @var{spec} determines which terminals the element matches. If more than one element of @var{spec} matches a given terminal, the first element that matches is the one used for that terminal. There are three possibilities for @var{display}: @table @asis @item @code{default} This element of @var{spec} doesn't match any terminal; instead, it specifies defaults that apply to all terminals. This element, if used, must be the first element of @var{spec}. Each of the following elements can override any or all of these defaults. @item @code{t} This element of @var{spec} matches all terminals. Therefore, any subsequent elements of @var{spec} are never used. Normally @code{t} is used in the last (or only) element of @var{spec}. @item a list If @var{display} is a list, each element should have the form @code{(@var{characteristic} @var{value}@dots{})}. Here @var{characteristic} specifies a way of classifying terminals, and the @var{value}s are possible classifications which @var{display} should apply to. Here are the possible values of @var{characteristic}: @table @code @item type The kind of window system the terminal uses---either @code{graphic} (any graphics-capable display), @code{x}, @code{pc} (for the MS-DOS console), @code{w32} (for MS Windows 9X/NT/2K/XP), or @code{tty} (a non-graphics-capable display). @xref{Window Systems, window-system}. @item class What kinds of colors the terminal supports---either @code{color}, @code{grayscale}, or @code{mono}. @item background The kind of background---either @code{light} or @code{dark}. @item min-colors An integer that represents the minimum number of colors the terminal should support. This matches a terminal if its @code{display-color-cells} value is at least the specified integer. @item supports Whether or not the terminal can display the face attributes given in @var{value}@dots{} (@pxref{Face Attributes}). @xref{Display Face Attribute Testing}, for more information on exactly how this testing is done. @end table If an element of @var{display} specifies more than one @var{value} for a given @var{characteristic}, any of those values is acceptable. If @var{display} has more than one element, each element should specify a different @var{characteristic}; then @emph{each} characteristic of the terminal must match one of the @var{value}s specified for it in @var{display}. @end table @end defmac For example, here's the definition of the standard face @code{highlight}: @example (defface highlight '((((class color) (min-colors 88) (background light)) :background "darkseagreen2") (((class color) (min-colors 88) (background dark)) :background "darkolivegreen") (((class color) (min-colors 16) (background light)) :background "darkseagreen2") (((class color) (min-colors 16) (background dark)) :background "darkolivegreen") (((class color) (min-colors 8)) :background "green" :foreground "black") (t :inverse-video t)) "Basic face for highlighting." :group 'basic-faces) @end example Internally, Emacs stores each face's default spec in its @code{face-defface-spec} symbol property (@pxref{Symbol Properties}). The @code{saved-face} property stores any face spec saved by the user using the customization buffer; the @code{customized-face} property stores the face spec customized for the current session, but not saved; and the @code{theme-face} property stores an alist associating the active customization settings and Custom themes with the face specs for that face. The face's documentation string is stored in the @code{face-documentation} property. Normally, a face is declared just once, using @code{defface}, and any further changes to its appearance are applied using the Customize framework (e.g., via the Customize user interface or via the @code{custom-set-faces} function; @pxref{Applying Customizations}), or by face remapping (@pxref{Face Remapping}). In the rare event that you need to change a face spec directly from Lisp, you can use the @code{face-spec-set} function. @defun face-spec-set face spec &optional spec-type This function applies @var{spec} as a face spec for @code{face}. @var{spec} should be a face spec, as described in the above documentation for @code{defface}. This function also defines @var{face} as a valid face name if it is not already one, and (re)calculates its attributes on existing frames. @cindex override spec @r{(for a face)} The optional argument @var{spec-type} determines which spec to set. If it is omitted or @code{nil} or @code{face-override-spec}, this function sets the @dfn{override spec}, which overrides face specs on @var{face} of all the other types mentioned below. This is useful when calling this function outside of Custom code. If @var{spec-type} is @code{customized-face} or @code{saved-face}, this function sets the customized spec or the saved custom spec, respectively. If it is @code{face-defface-spec}, this function sets the default face spec (the same one set by @code{defface}). If it is @code{reset}, this function clears out all customization specs and override specs from @var{face} (in this case, the value of @var{spec} is ignored). The effect of any other value of @var{spec-type} on the face specs is reserved for internal use, but the function will still define @var{face} itself and recalculate its attributes, as described above. @end defun @node Attribute Functions @subsection Face Attribute Functions @cindex face attributes, access and modification This section describes functions for directly accessing and modifying the attributes of a named face. @defun face-attribute face attribute &optional frame inherit This function returns the value of the @var{attribute} attribute for @var{face} on @var{frame}. If @var{frame} is omitted or @code{nil}, that means the selected frame (@pxref{Input Focus}). If @var{frame} is @code{t}, this function returns the value of the specified attribute for newly-created frames (this is normally @code{unspecified}, unless you have specified some value using @code{set-face-attribute}; see below). If @var{inherit} is @code{nil}, only attributes directly defined by @var{face} are considered, so the return value may be @code{unspecified}, or a relative value. If @var{inherit} is non-@code{nil}, @var{face}'s definition of @var{attribute} is merged with the faces specified by its @code{:inherit} attribute; however the return value may still be @code{unspecified} or relative. If @var{inherit} is a face or a list of faces, then the result is further merged with that face (or faces), until it becomes specified and absolute. To ensure that the return value is always specified and absolute, use a value of @code{default} for @var{inherit}; this will resolve any unspecified or relative values by merging with the @code{default} face (which is always completely specified). For example, @example (face-attribute 'bold :weight) @result{} bold @end example @end defun @c FIXME: Add an index for "relative face attribute", maybe here? --xfq @defun face-attribute-relative-p attribute value This function returns non-@code{nil} if @var{value}, when used as the value of the face attribute @var{attribute}, is relative. This means it would modify, rather than completely override, any value that comes from a subsequent face in the face list or that is inherited from another face. @code{unspecified} is a relative value for all attributes. For @code{:height}, floating point and function values are also relative. For example: @example (face-attribute-relative-p :height 2.0) @result{} t @end example @end defun @defun face-all-attributes face &optional frame This function returns an alist of attributes of @var{face}. The elements of the result are name-value pairs of the form @w{@code{(@var{attr-name} . @var{attr-value})}}. Optional argument @var{frame} specifies the frame whose definition of @var{face} to return; if omitted or @code{nil}, the returned value describes the default attributes of @var{face} for newly created frames. @end defun @defun merge-face-attribute attribute value1 value2 If @var{value1} is a relative value for the face attribute @var{attribute}, returns it merged with the underlying value @var{value2}; otherwise, if @var{value1} is an absolute value for the face attribute @var{attribute}, returns @var{value1} unchanged. @end defun Normally, Emacs uses the face specs of each face to automatically calculate its attributes on each frame (@pxref{Defining Faces}). The function @code{set-face-attribute} can override this calculation by directly assigning attributes to a face, either on a specific frame or for all frames. This function is mostly intended for internal usage. @defun set-face-attribute face frame &rest arguments This function sets one or more attributes of @var{face} for @var{frame}. The attributes specifies in this way override the face spec(s) belonging to @var{face}. The extra arguments @var{arguments} specify the attributes to set, and the values for them. They should consist of alternating attribute names (such as @code{:family} or @code{:underline}) and values. Thus, @example (set-face-attribute 'foo nil :weight 'bold :slant 'italic) @end example @noindent sets the attribute @code{:weight} to @code{bold} and the attribute @code{:slant} to @code{italic}. If @var{frame} is @code{t}, this function sets the default attributes for newly created frames. If @var{frame} is @code{nil}, this function sets the attributes for all existing frames, as well as for newly created frames. @end defun The following commands and functions mostly provide compatibility with old versions of Emacs. They work by calling @code{set-face-attribute}. Values of @code{t} and @code{nil} (or omitted) for their @var{frame} argument are handled just like @code{set-face-attribute} and @code{face-attribute}. The commands read their arguments using the minibuffer, if called interactively. @deffn Command set-face-foreground face color &optional frame @deffnx Command set-face-background face color &optional frame These set the @code{:foreground} attribute (or @code{:background} attribute, respectively) of @var{face} to @var{color}. @end deffn @deffn Command set-face-stipple face pattern &optional frame This sets the @code{:stipple} attribute of @var{face} to @var{pattern}. @end deffn @deffn Command set-face-font face font &optional frame This sets the @code{:font} attribute of @var{face} to @var{font}. @end deffn @defun set-face-bold face bold-p &optional frame This sets the @code{:weight} attribute of @var{face} to @var{normal} if @var{bold-p} is @code{nil}, and to @var{bold} otherwise. @end defun @defun set-face-italic face italic-p &optional frame This sets the @code{:slant} attribute of @var{face} to @var{normal} if @var{italic-p} is @code{nil}, and to @var{italic} otherwise. @end defun @deffn Command set-face-underline face underline &optional frame This sets the @code{:underline} attribute of @var{face} to @var{underline}. @end deffn @deffn Command set-face-inverse-video face inverse-video-p &optional frame This sets the @code{:inverse-video} attribute of @var{face} to @var{inverse-video-p}. @end deffn @deffn Command invert-face face &optional frame This swaps the foreground and background colors of face @var{face}. @end deffn The following functions examine the attributes of a face. They mostly provide compatibility with old versions of Emacs. If you don't specify @var{frame}, they refer to the selected frame; @code{t} refers to the default data for new frames. They return @code{unspecified} if the face doesn't define any value for that attribute. If @var{inherit} is @code{nil}, only an attribute directly defined by the face is returned. If @var{inherit} is non-@code{nil}, any faces specified by its @code{:inherit} attribute are considered as well, and if @var{inherit} is a face or a list of faces, then they are also considered, until a specified attribute is found. To ensure that the return value is always specified, use a value of @code{default} for @var{inherit}. @defun face-font face &optional frame character This function returns the name of the font of face @var{face}. If the optional argument @var{frame} is specified, it returns the name of the font of @var{face} for that frame. If @var{frame} is omitted or @code{nil}, the selected frame is used. And, in this case, if the optional third argument @var{character} is supplied, it returns the font name used for @var{character}. @end defun @defun face-foreground face &optional frame inherit @defunx face-background face &optional frame inherit These functions return the foreground color (or background color, respectively) of face @var{face}, as a string. If the color is unspecified, they return @code{nil}. @end defun @defun face-stipple face &optional frame inherit This function returns the name of the background stipple pattern of face @var{face}, or @code{nil} if it doesn't have one. @end defun @defun face-bold-p face &optional frame inherit This function returns a non-@code{nil} value if the @code{:weight} attribute of @var{face} is bolder than normal (i.e., one of @code{semi-bold}, @code{bold}, @code{extra-bold}, or @code{ultra-bold}). Otherwise, it returns @code{nil}. @end defun @defun face-italic-p face &optional frame inherit This function returns a non-@code{nil} value if the @code{:slant} attribute of @var{face} is @code{italic} or @code{oblique}, and @code{nil} otherwise. @end defun @defun face-underline-p face &optional frame inherit This function returns non-@code{nil} if face @var{face} specifies a non-@code{nil} @code{:underline} attribute. @end defun @defun face-inverse-video-p face &optional frame inherit This function returns non-@code{nil} if face @var{face} specifies a non-@code{nil} @code{:inverse-video} attribute. @end defun @node Displaying Faces @subsection Displaying Faces @cindex displaying faces @cindex face merging When Emacs displays a given piece of text, the visual appearance of the text may be determined by faces drawn from different sources. If these various sources together specify more than one face for a particular character, Emacs merges the attributes of the various faces. Here is the order in which Emacs merges the faces, from highest to lowest priority: @itemize @bullet @item If the text consists of a special glyph, the glyph can specify a particular face. @xref{Glyphs}. @item If the text lies within an active region, Emacs highlights it using the @code{region} face. @xref{Standard Faces,,, emacs, The GNU Emacs Manual}. @item If the text lies within an overlay with a non-@code{nil} @code{face} property, Emacs applies the face(s) specified by that property. If the overlay has a @code{mouse-face} property and the mouse is near enough to the overlay, Emacs applies the face or face attributes specified by the @code{mouse-face} property instead. @xref{Overlay Properties}. When multiple overlays cover one character, an overlay with higher priority overrides those with lower priority. @xref{Overlays}. @item If the text contains a @code{face} or @code{mouse-face} property, Emacs applies the specified faces and face attributes. @xref{Special Properties}. (This is how Font Lock mode faces are applied. @xref{Font Lock Mode}.) @item If the text lies within the mode line of the selected window, Emacs applies the @code{mode-line} face. For the mode line of a non-selected window, Emacs applies the @code{mode-line-inactive} face. For a header line, Emacs applies the @code{header-line} face. @item If the text comes from an overlay string via @code{before-string} or @code{after-string} properties (@pxref{Overlay Properties}), or from a display string (@pxref{Other Display Specs}), and the string doesn't contain a @code{face} or @code{mouse-face} property, but the buffer text affected by the overlay/display property does define a face, Emacs applies the face attributes of the ``underlying'' buffer text. Note that this is so even if the overlay or display string is displayed in the display margins (@pxref{Display Margins}). @item If any given attribute has not been specified during the preceding steps, Emacs applies the attribute of the @code{default} face. @end itemize At each stage, if a face has a valid @code{:inherit} attribute, Emacs treats any attribute with an @code{unspecified} value as having the corresponding value drawn from the parent face(s). @pxref{Face Attributes}. Note that the parent face(s) may also leave the attribute unspecified; in that case, the attribute remains unspecified at the next level of face merging. @node Face Remapping @subsection Face Remapping @cindex face remapping The variable @code{face-remapping-alist} is used for buffer-local or global changes in the appearance of a face. For instance, it is used to implement the @code{text-scale-adjust} command (@pxref{Text Scale,,, emacs, The GNU Emacs Manual}). @defvar face-remapping-alist The value of this variable is an alist whose elements have the form @code{(@var{face} . @var{remapping})}. This causes Emacs to display any text having the face @var{face} with @var{remapping}, rather than the ordinary definition of @var{face}. @var{remapping} may be any face spec suitable for a @code{face} text property: either a face (i.e., a face name or a property list of attribute/value pairs), or a list of faces. For details, see the description of the @code{face} text property in @ref{Special Properties}. @var{remapping} serves as the complete specification for the remapped face---it replaces the normal definition of @var{face}, instead of modifying it. If @code{face-remapping-alist} is buffer-local, its local value takes effect only within that buffer. Note: face remapping is non-recursive. If @var{remapping} references the same face name @var{face}, either directly or via the @code{:inherit} attribute of some other face in @var{remapping}, that reference uses the normal definition of @var{face}. For instance, if the @code{mode-line} face is remapped using this entry in @code{face-remapping-alist}: @example (mode-line italic mode-line) @end example @noindent then the new definition of the @code{mode-line} face inherits from the @code{italic} face, and the @emph{normal} (non-remapped) definition of @code{mode-line} face. @end defvar @cindex relative remapping, faces @cindex base remapping, faces The following functions implement a higher-level interface to @code{face-remapping-alist}. Most Lisp code should use these functions instead of setting @code{face-remapping-alist} directly, to avoid trampling on remappings applied elsewhere. These functions are intended for buffer-local remappings, so they all make @code{face-remapping-alist} buffer-local as a side-effect. They manage @code{face-remapping-alist} entries of the form @example (@var{face} @var{relative-spec-1} @var{relative-spec-2} @var{...} @var{base-spec}) @end example @noindent where, as explained above, each of the @var{relative-spec-N} and @var{base-spec} is either a face name, or a property list of attribute/value pairs. Each of the @dfn{relative remapping} entries, @var{relative-spec-N}, is managed by the @code{face-remap-add-relative} and @code{face-remap-remove-relative} functions; these are intended for simple modifications like changing the text size. The @dfn{base remapping} entry, @var{base-spec}, has the lowest priority and is managed by the @code{face-remap-set-base} and @code{face-remap-reset-base} functions; it is intended for major modes to remap faces in the buffers they control. @defun face-remap-add-relative face &rest specs This function adds the face spec in @var{specs} as relative remappings for face @var{face} in the current buffer. The remaining arguments, @var{specs}, should form either a list of face names, or a property list of attribute/value pairs. The return value is a Lisp object that serves as a cookie; you can pass this object as an argument to @code{face-remap-remove-relative} if you need to remove the remapping later. @example ;; Remap the 'escape-glyph' face into a combination ;; of the 'highlight' and 'italic' faces: (face-remap-add-relative 'escape-glyph 'highlight 'italic) ;; Increase the size of the 'default' face by 50%: (face-remap-add-relative 'default :height 1.5) @end example @end defun @defun face-remap-remove-relative cookie This function removes a relative remapping previously added by @code{face-remap-add-relative}. @var{cookie} should be the Lisp object returned by @code{face-remap-add-relative} when the remapping was added. @end defun @defun face-remap-set-base face &rest specs This function sets the base remapping of @var{face} in the current buffer to @var{specs}. If @var{specs} is empty, the default base remapping is restored, similar to calling @code{face-remap-reset-base} (see below); note that this is different from @var{specs} containing a single value @code{nil}, which has the opposite result (the global definition of @var{face} is ignored). This overwrites the default @var{base-spec}, which inherits the global face definition, so it is up to the caller to add such inheritance if so desired. @end defun @defun face-remap-reset-base face This function sets the base remapping of @var{face} to its default value, which inherits from @var{face}'s global definition. @end defun @node Face Functions @subsection Functions for Working with Faces Here are additional functions for creating and working with faces. @defun face-list This function returns a list of all defined face names. @end defun @cindex face number @cindex face property of face symbols @defun face-id face This function returns the @dfn{face number} of face @var{face}. This is a number that uniquely identifies a face at low levels within Emacs. It is seldom necessary to refer to a face by its face number. However, functions that manipulate glyphs, such as @code{make-glyph-code} and @code{glyph-face} (@pxref{Glyphs}) access the face numbers internally. Note that the face number is stored as the value of the @code{face} property of the face symbol, so we recommend not to set that property of a face to any value of your own. @end defun @defun face-documentation face This function returns the documentation string of face @var{face}, or @code{nil} if none was specified for it. @end defun @defun face-equal face1 face2 &optional frame This returns @code{t} if the faces @var{face1} and @var{face2} have the same attributes for display. @end defun @defun face-differs-from-default-p face &optional frame This returns non-@code{nil} if the face @var{face} displays differently from the default face. @end defun @cindex face alias @cindex alias, for faces A @dfn{face alias} provides an equivalent name for a face. You can define a face alias by giving the alias symbol the @code{face-alias} property, with a value of the target face name. The following example makes @code{modeline} an alias for the @code{mode-line} face. @example (put 'modeline 'face-alias 'mode-line) @end example @defmac define-obsolete-face-alias obsolete-face current-face when This macro defines @code{obsolete-face} as an alias for @var{current-face}, and also marks it as obsolete, indicating that it may be removed in future. @var{when} should be a string indicating when @code{obsolete-face} was made obsolete (usually a version number string). @end defmac @node Auto Faces @subsection Automatic Face Assignment @cindex automatic face assignment @cindex faces, automatic choice This hook is used for automatically assigning faces to text in the buffer. It is part of the implementation of Jit-Lock mode, used by Font-Lock. @defvar fontification-functions This variable holds a list of functions that are called by Emacs redisplay as needed, just before doing redisplay. They are called even when Font Lock Mode isn't enabled. When Font Lock Mode is enabled, this variable usually holds just one function, @code{jit-lock-function}. The functions are called in the order listed, with one argument, a buffer position @var{pos}. Collectively they should attempt to assign faces to the text in the current buffer starting at @var{pos}. The functions should record the faces they assign by setting the @code{face} property. They should also add a non-@code{nil} @code{fontified} property to all the text they have assigned faces to. That property tells redisplay that faces have been assigned to that text already. It is probably a good idea for the functions to do nothing if the character after @var{pos} already has a non-@code{nil} @code{fontified} property, but this is not required. If one function overrides the assignments made by a previous one, the properties after the last function finishes are the ones that really matter. For efficiency, we recommend writing these functions so that they usually assign faces to around 400 to 600 characters at each call. @end defvar @node Basic Faces @subsection Basic Faces @cindex basic faces If your Emacs Lisp program needs to assign some faces to text, it is often a good idea to use certain existing faces or inherit from them, rather than defining entirely new faces. This way, if other users have customized the basic faces to give Emacs a certain look, your program will fit in without additional customization. Some of the basic faces defined in Emacs are listed below. In addition to these, you might want to make use of the Font Lock faces for syntactic highlighting, if highlighting is not already handled by Font Lock mode, or if some Font Lock faces are not in use. @xref{Faces for Font Lock}. @table @code @item default The default face, whose attributes are all specified. All other faces implicitly inherit from it: any unspecified attribute defaults to the attribute on this face (@pxref{Face Attributes}). @item bold @itemx italic @itemx bold-italic @itemx underline @itemx fixed-pitch @itemx fixed-pitch-serif @itemx variable-pitch These have the attributes indicated by their names (e.g., @code{bold} has a bold @code{:weight} attribute), with all other attributes unspecified (and so given by @code{default}). @item shadow For dimmed-out text. For example, it is used for the ignored part of a filename in the minibuffer (@pxref{Minibuffer File,, Minibuffers for File Names, emacs, The GNU Emacs Manual}). @item link @itemx link-visited For clickable text buttons that send the user to a different buffer or location. @item highlight For stretches of text that should temporarily stand out. For example, it is commonly assigned to the @code{mouse-face} property for cursor highlighting (@pxref{Special Properties}). @item match @itemx isearch @itemx lazy-highlight For text matching (respectively) permanent search matches, interactive search matches, and lazy highlighting other matches than the current interactive one. @item error @itemx warning @itemx success For text concerning errors, warnings, or successes. For example, these are used for messages in @file{*Compilation*} buffers. @end table @node Font Selection @subsection Font Selection @cindex font selection @cindex selecting a font Before Emacs can draw a character on a graphical display, it must select a @dfn{font} for that character@footnote{In this context, the term @dfn{font} has nothing to do with Font Lock (@pxref{Font Lock Mode}).}. @xref{Fonts,,, emacs, The GNU Emacs Manual}. Normally, Emacs automatically chooses a font based on the faces assigned to that character---specifically, the face attributes @code{:family}, @code{:weight}, @code{:slant}, and @code{:width} (@pxref{Face Attributes}). The choice of font also depends on the character to be displayed; some fonts can only display a limited set of characters. If no available font exactly fits the requirements, Emacs looks for the @dfn{closest matching font}. The variables in this section control how Emacs makes this selection. @defopt face-font-family-alternatives If a given family is specified but does not exist, this variable specifies alternative font families to try. Each element should have this form: @example (@var{family} @var{alternate-families}@dots{}) @end example If @var{family} is specified but not available, Emacs will try the other families given in @var{alternate-families}, one by one, until it finds a family that does exist. @end defopt @defopt face-font-selection-order If there is no font that exactly matches all desired face attributes (@code{:width}, @code{:height}, @code{:weight}, and @code{:slant}), this variable specifies the order in which these attributes should be considered when selecting the closest matching font. The value should be a list containing those four attribute symbols, in order of decreasing importance. The default is @code{(:width :height :weight :slant)}. Font selection first finds the best available matches for the first attribute in the list; then, among the fonts which are best in that way, it searches for the best matches in the second attribute, and so on. The attributes @code{:weight} and @code{:width} have symbolic values in a range centered around @code{normal}. Matches that are more extreme (farther from @code{normal}) are somewhat preferred to matches that are less extreme (closer to @code{normal}); this is designed to ensure that non-normal faces contrast with normal ones, whenever possible. One example of a case where this variable makes a difference is when the default font has no italic equivalent. With the default ordering, the @code{italic} face will use a non-italic font that is similar to the default one. But if you put @code{:slant} before @code{:height}, the @code{italic} face will use an italic font, even if its height is not quite right. @end defopt @defopt face-font-registry-alternatives This variable lets you specify alternative font registries to try, if a given registry is specified and doesn't exist. Each element should have this form: @example (@var{registry} @var{alternate-registries}@dots{}) @end example If @var{registry} is specified but not available, Emacs will try the other registries given in @var{alternate-registries}, one by one, until it finds a registry that does exist. @end defopt @cindex scalable fonts Emacs can make use of scalable fonts, but by default it does not use them. @defopt scalable-fonts-allowed This variable controls which scalable fonts to use. A value of @code{nil}, the default, means do not use scalable fonts. @code{t} means to use any scalable font that seems appropriate for the text. Otherwise, the value must be a list of regular expressions. Then a scalable font is enabled for use if its name matches any regular expression in the list. For example, @example (setq scalable-fonts-allowed '("iso10646-1$")) @end example @noindent allows the use of scalable fonts with registry @code{iso10646-1}. @end defopt @defvar face-font-rescale-alist This variable specifies scaling for certain faces. Its value should be a list of elements of the form @example (@var{fontname-regexp} . @var{scale-factor}) @end example If @var{fontname-regexp} matches the font name that is about to be used, this says to choose a larger similar font according to the factor @var{scale-factor}. You would use this feature to normalize the font size if certain fonts are bigger or smaller than their nominal heights and widths would suggest. @end defvar @node Font Lookup @subsection Looking Up Fonts @cindex font lookup @cindex looking up fonts @defun x-list-fonts name &optional reference-face frame maximum width This function returns a list of available font names that match @var{name}. @var{name} should be a string containing a font name in either the Fontconfig, GTK+, or XLFD format (@pxref{Fonts,,, emacs, The GNU Emacs Manual}). Within an XLFD string, wildcard characters may be used: the @samp{*} character matches any substring, and the @samp{?} character matches any single character. Case is ignored when matching font names. If the optional arguments @var{reference-face} and @var{frame} are specified, the returned list includes only fonts that are the same size as @var{reference-face} (a face name) currently is on the frame @var{frame}. The optional argument @var{maximum} sets a limit on how many fonts to return. If it is non-@code{nil}, then the return value is truncated after the first @var{maximum} matching fonts. Specifying a small value for @var{maximum} can make this function much faster, in cases where many fonts match the pattern. The optional argument @var{width} specifies a desired font width. If it is non-@code{nil}, the function only returns those fonts whose characters are (on average) @var{width} times as wide as @var{reference-face}. @end defun @defun x-family-fonts &optional family frame This function returns a list describing the available fonts for family @var{family} on @var{frame}. If @var{family} is omitted or @code{nil}, this list applies to all families, and therefore, it contains all available fonts. Otherwise, @var{family} must be a string; it may contain the wildcards @samp{?} and @samp{*}. The list describes the display that @var{frame} is on; if @var{frame} is omitted or @code{nil}, it applies to the selected frame's display (@pxref{Input Focus}). Each element in the list is a vector of the following form: @example [@var{family} @var{width} @var{point-size} @var{weight} @var{slant} @var{fixed-p} @var{full} @var{registry-and-encoding}] @end example The first five elements correspond to face attributes; if you specify these attributes for a face, it will use this font. The last three elements give additional information about the font. @var{fixed-p} is non-@code{nil} if the font is fixed-pitch. @var{full} is the full name of the font, and @var{registry-and-encoding} is a string giving the registry and encoding of the font. @end defun @node Fontsets @subsection Fontsets @cindex fontset A @dfn{fontset} is a list of fonts, each assigned to a range of character codes. An individual font cannot display the whole range of characters that Emacs supports, but a fontset can. Fontsets have names, just as fonts do, and you can use a fontset name in place of a font name when you specify the font for a frame or a face. Here is information about defining a fontset under Lisp program control. @defun create-fontset-from-fontset-spec fontset-spec &optional style-variant-p noerror This function defines a new fontset according to the specification string @var{fontset-spec}. The string should have this format: @smallexample @var{fontpattern}, @r{[}@var{charset}:@var{font}@r{]@dots{}} @end smallexample @noindent Whitespace characters before and after the commas are ignored. The first part of the string, @var{fontpattern}, should have the form of a standard X font name, except that the last two fields should be @samp{fontset-@var{alias}}. The new fontset has two names, one long and one short. The long name is @var{fontpattern} in its entirety. The short name is @samp{fontset-@var{alias}}. You can refer to the fontset by either name. If a fontset with the same name already exists, an error is signaled, unless @var{noerror} is non-@code{nil}, in which case this function does nothing. If optional argument @var{style-variant-p} is non-@code{nil}, that says to create bold, italic and bold-italic variants of the fontset as well. These variant fontsets do not have a short name, only a long one, which is made by altering @var{fontpattern} to indicate the bold and/or italic status. The specification string also says which fonts to use in the fontset. See below for the details. @end defun The construct @samp{@var{charset}:@var{font}} specifies which font to use (in this fontset) for one particular character set. Here, @var{charset} is the name of a character set, and @var{font} is the font to use for that character set. You can use this construct any number of times in the specification string. For the remaining character sets, those that you don't specify explicitly, Emacs chooses a font based on @var{fontpattern}: it replaces @samp{fontset-@var{alias}} with a value that names one character set. For the @acronym{ASCII} character set, @samp{fontset-@var{alias}} is replaced with @samp{ISO8859-1}. In addition, when several consecutive fields are wildcards, Emacs collapses them into a single wildcard. This is to prevent use of auto-scaled fonts. Fonts made by scaling larger fonts are not usable for editing, and scaling a smaller font is not useful because it is better to use the smaller font in its own size, which Emacs does. Thus if @var{fontpattern} is this, @example -*-fixed-medium-r-normal-*-24-*-*-*-*-*-fontset-24 @end example @noindent the font specification for @acronym{ASCII} characters would be this: @example -*-fixed-medium-r-normal-*-24-*-ISO8859-1 @end example @noindent and the font specification for Chinese GB2312 characters would be this: @example -*-fixed-medium-r-normal-*-24-*-gb2312*-* @end example You may not have any Chinese font matching the above font specification. Most X distributions include only Chinese fonts that have @samp{song ti} or @samp{fangsong ti} in the @var{family} field. In such a case, @samp{Fontset-@var{n}} can be specified as below: @smallexample Emacs.Fontset-0: -*-fixed-medium-r-normal-*-24-*-*-*-*-*-fontset-24,\ chinese-gb2312:-*-*-medium-r-normal-*-24-*-gb2312*-* @end smallexample @noindent Then, the font specifications for all but Chinese GB2312 characters have @samp{fixed} in the @var{family} field, and the font specification for Chinese GB2312 characters has a wild card @samp{*} in the @var{family} field. @defun set-fontset-font name character font-spec &optional frame add This function modifies the existing fontset @var{name} to use the font matching with @var{font-spec} for the specified @var{character}. If @var{name} is @code{nil}, this function modifies the fontset of the selected frame or that of @var{frame} if @var{frame} is not @code{nil}. If @var{name} is @code{t}, this function modifies the default fontset, whose short name is @samp{fontset-default}. In addition to specifying a single codepoint, @var{character} may be a cons @code{(@var{from} . @var{to})}, where @var{from} and @var{to} are character codepoints. In that case, use @var{font-spec} for all the characters in the range @var{from} and @var{to} (inclusive). @var{character} may be a charset (@pxref{Character Sets}). In that case, use @var{font-spec} for all the characters in the charset. @var{character} may be a script name (@pxref{Character Properties}). In that case, use @var{font-spec} for all the characters belonging to the script. @var{character} may be @code{nil}, which means to use @var{font-spec} for any character which no font-spec is specified. @var{font-spec} may be a font-spec object created by the function @code{font-spec} (@pxref{Low-Level Font}). @var{font-spec} may be a cons; @code{(@var{family} . @var{registry})}, where @var{family} is a family name of a font (possibly including a foundry name at the head), @var{registry} is a registry name of a font (possibly including an encoding name at the tail). @var{font-spec} may be a font name, a string. @var{font-spec} may be @code{nil}, which explicitly specifies that there's no font for the specified @var{character}. This is useful, for example, to avoid expensive system-wide search for fonts for characters that have no glyphs, like those from the Unicode Private Use Area (PUA). The optional argument @var{add}, if non-@code{nil}, specifies how to add @var{font-spec} to the font specifications previously set. If it is @code{prepend}, @var{font-spec} is prepended. If it is @code{append}, @var{font-spec} is appended. By default, @var{font-spec} overrides the previous settings. For instance, this changes the default fontset to use a font of which family name is @samp{Kochi Gothic} for all characters belonging to the charset @code{japanese-jisx0208}. @smallexample (set-fontset-font t 'japanese-jisx0208 (font-spec :family "Kochi Gothic")) @end smallexample @end defun @defun char-displayable-p char This function returns @code{t} if Emacs ought to be able to display @var{char}. More precisely, if the selected frame's fontset has a font to display the character set that @var{char} belongs to. Fontsets can specify a font on a per-character basis; when the fontset does that, this function's value may not be accurate. @end defun @node Low-Level Font @subsection Low-Level Font Representation @cindex font property Normally, it is not necessary to manipulate fonts directly. In case you need to do so, this section explains how. In Emacs Lisp, fonts are represented using three different Lisp object types: @dfn{font objects}, @dfn{font specs}, and @dfn{font entities}. @defun fontp object &optional type Return @code{t} if @var{object} is a font object, font spec, or font entity. Otherwise, return @code{nil}. The optional argument @var{type}, if non-@code{nil}, determines the exact type of Lisp object to check for. In that case, @var{type} should be one of @code{font-object}, @code{font-spec}, or @code{font-entity}. @end defun @cindex font object A font object is a Lisp object that represents a font that Emacs has @dfn{opened}. Font objects cannot be modified in Lisp, but they can be inspected. @defun font-at position &optional window string Return the font object that is being used to display the character at position @var{position} in the window @var{window}. If @var{window} is @code{nil}, it defaults to the selected window. If @var{string} is @code{nil}, @var{position} specifies a position in the current buffer; otherwise, @var{string} should be a string, and @var{position} specifies a position in that string. @end defun @cindex font spec A font spec is a Lisp object that contains a set of specifications that can be used to find a font. More than one font may match the specifications in a font spec. @defun font-spec &rest arguments Return a new font spec using the specifications in @var{arguments}, which should come in @code{property}-@code{value} pairs. The possible specifications are as follows: @table @code @item :name The font name (a string), in either XLFD, Fontconfig, or GTK+ format. @xref{Fonts,,, emacs, The GNU Emacs Manual}. @item :family @itemx :foundry @itemx :weight @itemx :slant @itemx :width These have the same meanings as the face attributes of the same name. @xref{Face Attributes}. @item :size The font size---either a non-negative integer that specifies the pixel size, or a floating-point number that specifies the point size. @item :adstyle Additional typographic style information for the font, such as @samp{sans}. The value should be a string or a symbol. @cindex font registry @item :registry The charset registry and encoding of the font, such as @samp{iso8859-1}. The value should be a string or a symbol. @item :script The script that the font must support (a symbol). @item :lang The language that the font should support. The value should be a symbol whose name is a two-letter ISO-639 language name. On X, the value is matched against the ``Additional Style'' field of the XLFD name of a font, if it is non-empty. On MS-Windows, fonts matching the spec are required to support codepages needed for the language. Currently, only a small set of CJK languages is supported with this property: @samp{ja}, @samp{ko}, and @samp{zh}. @item :otf @cindex OpenType font The font must be an OpenType font that supports these OpenType features, provided Emacs is compiled with a library, such as @samp{libotf} on GNU/Linux, that supports complex text layout for scripts which need that. The value must be a list of the form @smallexample @code{(@var{script-tag} @var{langsys-tag} @var{gsub} @var{gpos})} @end smallexample where @var{script-tag} is the OpenType script tag symbol; @var{langsys-tag} is the OpenType language system tag symbol, or @code{nil} to use the default language system; @code{gsub} is a list of OpenType GSUB feature tag symbols, or @code{nil} if none is required; and @code{gpos} is a list of OpenType GPOS feature tag symbols, or @code{nil} if none is required. If @code{gsub} or @code{gpos} is a list, a @code{nil} element in that list means that the font must not match any of the remaining tag symbols. The @code{gpos} element may be omitted. @end table @end defun @defun font-put font-spec property value Set the font property @var{property} in the font-spec @var{font-spec} to @var{value}. @end defun @cindex font entity A font entity is a reference to a font that need not be open. Its properties are intermediate between a font object and a font spec: like a font object, and unlike a font spec, it refers to a single, specific font. Unlike a font object, creating a font entity does not load the contents of that font into computer memory. Emacs may open multiple font objects of different sizes from a single font entity referring to a scalable font. @defun find-font font-spec &optional frame This function returns a font entity that best matches the font spec @var{font-spec} on frame @var{frame}. If @var{frame} is @code{nil}, it defaults to the selected frame. @end defun @defun list-fonts font-spec &optional frame num prefer This function returns a list of all font entities that match the font spec @var{font-spec}. The optional argument @var{frame}, if non-@code{nil}, specifies the frame on which the fonts are to be displayed. The optional argument @var{num}, if non-@code{nil}, should be an integer that specifies the maximum length of the returned list. The optional argument @var{prefer}, if non-@code{nil}, should be another font spec, which is used to control the order of the returned list; the returned font entities are sorted in order of decreasing closeness to that font spec. @end defun If you call @code{set-face-attribute} and pass a font spec, font entity, or font name string as the value of the @code{:font} attribute, Emacs opens the best matching font that is available for display. It then stores the corresponding font object as the actual value of the @code{:font} attribute for that face. The following functions can be used to obtain information about a font. For these functions, the @var{font} argument can be a font object, a font entity, or a font spec. @defun font-get font property This function returns the value of the font property @var{property} for @var{font}. If @var{font} is a font spec and the font spec does not specify @var{property}, the return value is @code{nil}. If @var{font} is a font object or font entity, the value for the @var{:script} property may be a list of scripts supported by the font. @end defun @defun font-face-attributes font &optional frame This function returns a list of face attributes corresponding to @var{font}. The optional argument @var{frame} specifies the frame on which the font is to be displayed. If it is @code{nil}, the selected frame is used. The return value has the form @smallexample (:family @var{family} :height @var{height} :weight @var{weight} :slant @var{slant} :width @var{width}) @end smallexample where the values of @var{family}, @var{height}, @var{weight}, @var{slant}, and @var{width} are face attribute values. Some of these key-attribute pairs may be omitted from the list if they are not specified by @var{font}. @end defun @defun font-xlfd-name font &optional fold-wildcards This function returns the XLFD (X Logical Font Descriptor), a string, matching @var{font}. @xref{Fonts,,, emacs, The GNU Emacs Manual}, for information about XLFDs. If the name is too long for an XLFD (which can contain at most 255 characters), the function returns @code{nil}. If the optional argument @var{fold-wildcards} is non-@code{nil}, consecutive wildcards in the XLFD are folded into one. @end defun The following two functions return important information about a font. @defun font-info name &optional frame This function returns information about a font specified by its @var{name}, a string, as it is used on @var{frame}. If @var{frame} is omitted or @code{nil}, it defaults to the selected frame. The value returned by the function is a vector of the form @code{[@var{opened-name} @var{full-name} @var{size} @var{height} @var{baseline-offset} @var{relative-compose} @var{default-ascent} @var{max-width} @var{ascent} @var{descent} @var{space-width} @var{average-width} @var{filename} @var{capability}]}. Here's the description of each components of this vector: @table @var @item opened-name The name used to open the font, a string. @item full-name The full name of the font, a string. @item size The pixel size of the font. @item height The height of the font in pixels. @item baseline-offset The offset in pixels from the @acronym{ASCII} baseline, positive upward. @item relative-compose @itemx default-ascent Numbers controlling how to compose characters. @item ascent @itemx descent The ascent and descent of this font. The sum of these two numbers should be equal to the value of @var{height} above. @item space-width The width, in pixels, of the font's space character. @item average-width The average width of the font characters. If this is zero, Emacs uses the value of @var{space-width} instead, when it calculates text layout on display. @item filename The file name of the font as a string. This can be @code{nil} if the font back-end does not provide a way to find out the font's file name. @item capability A list whose first element is a symbol representing the font type, one of @code{x}, @code{opentype}, @code{truetype}, @code{type1}, @code{pcf}, or @code{bdf}. For OpenType fonts, the list includes 2 additional elements describing the @sc{gsub} and @sc{gpos} features supported by the font. Each of these elements is a list of the form @code{((@var{script} (@var{langsys} @var{feature} @dots{}) @dots{}) @dots{})}, where @var{script} is a symbol representing an OpenType script tag, @var{langsys} is a symbol representing an OpenType langsys tag (or @code{nil}, which stands for the default langsys), and each @var{feature} is a symbol representing an OpenType feature tag. @end table @end defun @defun query-font font-object This function returns information about a @var{font-object}. (This is in contrast to @code{font-info}, which takes the font name, a string, as its argument.) The value returned by the function is a vector of the form @code{[@var{name} @var{filename} @var{pixel-size} @var{max-width} @var{ascent} @var{descent} @var{space-width} @var{average-width} @var{capability}]}. Here's the description of each components of this vector: @table @var @item name The font name, a string. @item filename The file name of the font as a string. This can be @code{nil} if the font back-end does not provide a way to find out the font's file name. @item pixel-size The pixel size of the font used to open the font. @item max-width The maximum advance width of the font. @item ascent @itemx descent The ascent and descent of this font. The sum of these two numbers gives the font height. @item space-width The width, in pixels, of the font's space character. @item average-width The average width of the font characters. If this is zero, Emacs uses the value of @var{space-width} instead, when it calculates text layout on display. @item capability A list whose first element is a symbol representing the font type, one of @code{x}, @code{opentype}, @code{truetype}, @code{type1}, @code{pcf}, or @code{bdf}. For OpenType fonts, the list includes 2 additional elements describing the @sc{gsub} and @sc{gpos} features supported by the font. Each of these elements is a list of the form @code{((@var{script} (@var{langsys} @var{feature} @dots{}) @dots{}) @dots{})}, where @var{script} is a symbol representing an OpenType script tag, @var{langsys} is a symbol representing an OpenType langsys tag (or @code{nil}, which stands for the default langsys), and each @var{feature} is a symbol representing an OpenType feature tag. @end table @end defun @cindex font information for layout The following four functions return size information about fonts used by various faces, allowing various layout considerations in Lisp programs. These functions take face remapping into consideration, returning information about the remapped face, if the face in question was remapped. @xref{Face Remapping}. @defun default-font-width This function returns the average width in pixels of the font used by the current buffer's default face. @end defun @defun default-font-height This function returns the height in pixels of the font used by the current buffer's default face. @end defun @defun window-font-width &optional window face This function returns the average width in pixels for the font used by @var{face} in @var{window}. The specified @var{window} must be a live window. If @code{nil} or omitted, @var{window} defaults to the selected window, and @var{face} defaults to the default face in @var{window}. @end defun @defun window-font-height &optional window face This function returns the height in pixels for the font used by @var{face} in @var{window}. The specified @var{window} must be a live window. If @code{nil} or omitted, @var{window} defaults to the selected window, and @var{face} defaults to the default face in @var{window}. @end defun @node Fringes @section Fringes @cindex fringes On graphical displays, Emacs draws @dfn{fringes} next to each window: thin vertical strips down the sides which can display bitmaps indicating truncation, continuation, horizontal scrolling, and so on. @menu * Fringe Size/Pos:: Specifying where to put the window fringes. * Fringe Indicators:: Displaying indicator icons in the window fringes. * Fringe Cursors:: Displaying cursors in the right fringe. * Fringe Bitmaps:: Specifying bitmaps for fringe indicators. * Customizing Bitmaps:: Specifying your own bitmaps to use in the fringes. * Overlay Arrow:: Display of an arrow to indicate position. @end menu @node Fringe Size/Pos @subsection Fringe Size and Position The following buffer-local variables control the position and width of fringes in windows showing that buffer. @defvar fringes-outside-margins The fringes normally appear between the display margins and the window text. If the value is non-@code{nil}, they appear outside the display margins. @xref{Display Margins}. @end defvar @defvar left-fringe-width This variable, if non-@code{nil}, specifies the width of the left fringe in pixels. A value of @code{nil} means to use the left fringe width from the window's frame. @end defvar @defvar right-fringe-width This variable, if non-@code{nil}, specifies the width of the right fringe in pixels. A value of @code{nil} means to use the right fringe width from the window's frame. @end defvar Any buffer which does not specify values for these variables uses the values specified by the @code{left-fringe} and @code{right-fringe} frame parameters (@pxref{Layout Parameters}). The above variables actually take effect via the function @code{set-window-buffer} (@pxref{Buffers and Windows}), which calls @code{set-window-fringes} as a subroutine. If you change one of these variables, the fringe display is not updated in existing windows showing the buffer, unless you call @code{set-window-buffer} again in each affected window. You can also use @code{set-window-fringes} to control the fringe display in individual windows. @defun set-window-fringes window left &optional right outside-margins This function sets the fringe widths of window @var{window}. If @var{window} is @code{nil}, the selected window is used. The argument @var{left} specifies the width in pixels of the left fringe, and likewise @var{right} for the right fringe. A value of @code{nil} for either one stands for the default width. If @var{outside-margins} is non-@code{nil}, that specifies that fringes should appear outside of the display margins. If @var{window} is not large enough to accommodate fringes of the desired width, this leaves the fringes of @var{window} unchanged. The values specified here may be later overridden by invoking @code{set-window-buffer} (@pxref{Buffers and Windows}) on @var{window} with its @var{keep-margins} argument @code{nil} or omitted. @end defun @defun window-fringes &optional window This function returns information about the fringes of a window @var{window}. If @var{window} is omitted or @code{nil}, the selected window is used. The value has the form @code{(@var{left-width} @var{right-width} @var{outside-margins})}. @end defun @node Fringe Indicators @subsection Fringe Indicators @cindex fringe indicators @cindex indicators, fringe @dfn{Fringe indicators} are tiny icons displayed in the window fringe to indicate truncated or continued lines, buffer boundaries, etc. @defopt indicate-empty-lines @cindex fringes, and empty line indication @cindex empty lines, indicating When this is non-@code{nil}, Emacs displays a special glyph in the fringe of each empty line at the end of the buffer, on graphical displays. @xref{Fringes}. This variable is automatically buffer-local in every buffer. @end defopt @defopt indicate-buffer-boundaries @cindex buffer boundaries, indicating This buffer-local variable controls how the buffer boundaries and window scrolling are indicated in the window fringes. Emacs can indicate the buffer boundaries---that is, the first and last line in the buffer---with angle icons when they appear on the screen. In addition, Emacs can display an up-arrow in the fringe to show that there is text above the screen, and a down-arrow to show there is text below the screen. There are three kinds of basic values: @table @asis @item @code{nil} Don't display any of these fringe icons. @item @code{left} Display the angle icons and arrows in the left fringe. @item @code{right} Display the angle icons and arrows in the right fringe. @item any non-alist Display the angle icons in the left fringe and don't display the arrows. @end table Otherwise the value should be an alist that specifies which fringe indicators to display and where. Each element of the alist should have the form @code{(@var{indicator} . @var{position})}. Here, @var{indicator} is one of @code{top}, @code{bottom}, @code{up}, @code{down}, and @code{t} (which covers all the icons not yet specified), while @var{position} is one of @code{left}, @code{right} and @code{nil}. For example, @code{((top . left) (t . right))} places the top angle bitmap in left fringe, and the bottom angle bitmap as well as both arrow bitmaps in right fringe. To show the angle bitmaps in the left fringe, and no arrow bitmaps, use @code{((top . left) (bottom . left))}. @end defopt @defvar fringe-indicator-alist This buffer-local variable specifies the mapping from logical fringe indicators to the actual bitmaps displayed in the window fringes. The value is an alist of elements @code{(@var{indicator} . @var{bitmaps})}, where @var{indicator} specifies a logical indicator type and @var{bitmaps} specifies the fringe bitmaps to use for that indicator. Each @var{indicator} should be one of the following symbols: @table @asis @item @code{truncation}, @code{continuation}. Used for truncation and continuation lines. @item @code{up}, @code{down}, @code{top}, @code{bottom}, @code{top-bottom} Used when @code{indicate-buffer-boundaries} is non-@code{nil}: @code{up} and @code{down} indicate a buffer boundary lying above or below the window edge; @code{top} and @code{bottom} indicate the topmost and bottommost buffer text line; and @code{top-bottom} indicates where there is just one line of text in the buffer. @item @code{empty-line} Used to indicate empty lines when @code{indicate-empty-lines} is non-@code{nil}. @item @code{overlay-arrow} Used for overlay arrows (@pxref{Overlay Arrow}). @c Is this used anywhere? @c @item Unknown bitmap indicator: @c @code{unknown}. @end table Each @var{bitmaps} value may be a list of symbols @code{(@var{left} @var{right} [@var{left1} @var{right1}])}. The @var{left} and @var{right} symbols specify the bitmaps shown in the left and/or right fringe, for the specific indicator. @var{left1} and @var{right1} are specific to the @code{bottom} and @code{top-bottom} indicators, and are used to indicate that the last text line has no final newline. Alternatively, @var{bitmaps} may be a single symbol which is used in both left and right fringes. @xref{Fringe Bitmaps}, for a list of standard bitmap symbols and how to define your own. In addition, @code{nil} represents the empty bitmap (i.e., an indicator that is not shown). When @code{fringe-indicator-alist} has a buffer-local value, and there is no bitmap defined for a logical indicator, or the bitmap is @code{t}, the corresponding value from the default value of @code{fringe-indicator-alist} is used. @end defvar @node Fringe Cursors @subsection Fringe Cursors @cindex fringe cursors @cindex cursor, fringe When a line is exactly as wide as the window, Emacs displays the cursor in the right fringe instead of using two lines. Different bitmaps are used to represent the cursor in the fringe depending on the current buffer's cursor type. @defopt overflow-newline-into-fringe If this is non-@code{nil}, lines exactly as wide as the window (not counting the final newline character) are not continued. Instead, when point is at the end of the line, the cursor appears in the right fringe. @end defopt @defvar fringe-cursor-alist This variable specifies the mapping from logical cursor type to the actual fringe bitmaps displayed in the right fringe. The value is an alist where each element has the form @code{(@var{cursor-type} . @var{bitmap})}, which means to use the fringe bitmap @var{bitmap} to display cursors of type @var{cursor-type}. Each @var{cursor-type} should be one of @code{box}, @code{hollow}, @code{bar}, @code{hbar}, or @code{hollow-small}. The first four have the same meanings as in the @code{cursor-type} frame parameter (@pxref{Cursor Parameters}). The @code{hollow-small} type is used instead of @code{hollow} when the normal @code{hollow-rectangle} bitmap is too tall to fit on a specific display line. Each @var{bitmap} should be a symbol specifying the fringe bitmap to be displayed for that logical cursor type. @iftex See the next subsection for details. @end iftex @ifnottex @xref{Fringe Bitmaps}. @end ifnottex @c FIXME: I can't find the fringes-indicator-alist variable. Maybe @c it should be fringe-indicator-alist or fringe-cursor-alist? --xfq When @code{fringe-cursor-alist} has a buffer-local value, and there is no bitmap defined for a cursor type, the corresponding value from the default value of @code{fringes-indicator-alist} is used. @end defvar @node Fringe Bitmaps @subsection Fringe Bitmaps @cindex fringe bitmaps @cindex bitmaps, fringe The @dfn{fringe bitmaps} are the actual bitmaps which represent the logical fringe indicators for truncated or continued lines, buffer boundaries, overlay arrows, etc. Each bitmap is represented by a symbol. @iftex These symbols are referred to by the variables @code{fringe-indicator-alist} and @code{fringe-cursor-alist}, described in the previous subsections. @end iftex @ifnottex These symbols are referred to by the variable @code{fringe-indicator-alist}, which maps fringe indicators to bitmaps (@pxref{Fringe Indicators}), and the variable @code{fringe-cursor-alist}, which maps fringe cursors to bitmaps (@pxref{Fringe Cursors}). @end ifnottex Lisp programs can also directly display a bitmap in the left or right fringe, by using a @code{display} property for one of the characters appearing in the line (@pxref{Other Display Specs}). Such a display specification has the form @example (@var{fringe} @var{bitmap} [@var{face}]) @end example @noindent @var{fringe} is either the symbol @code{left-fringe} or @code{right-fringe}. @var{bitmap} is a symbol identifying the bitmap to display. The optional @var{face} names a face whose foreground color is used to display the bitmap; this face is automatically merged with the @code{fringe} face. Here is a list of the standard fringe bitmaps defined in Emacs, and how they are currently used in Emacs (via @code{fringe-indicator-alist} and @code{fringe-cursor-alist}): @table @asis @item @code{left-arrow}, @code{right-arrow} Used to indicate truncated lines. @item @code{left-curly-arrow}, @code{right-curly-arrow} Used to indicate continued lines. @item @code{right-triangle}, @code{left-triangle} The former is used by overlay arrows. The latter is unused. @item @code{up-arrow}, @code{down-arrow}, @code{top-left-angle} @code{top-right-angle} @itemx @code{bottom-left-angle}, @code{bottom-right-angle} @itemx @code{top-right-angle}, @code{top-left-angle} @itemx @code{left-bracket}, @code{right-bracket}, @code{top-right-angle}, @code{top-left-angle} Used to indicate buffer boundaries. @item @code{filled-rectangle}, @code{hollow-rectangle} @itemx @code{filled-square}, @code{hollow-square} @itemx @code{vertical-bar}, @code{horizontal-bar} Used for different types of fringe cursors. @item @code{empty-line}, @code{exclamation-mark}, @code{question-mark}, @code{exclamation-mark} Not used by core Emacs features. @end table @noindent The next subsection describes how to define your own fringe bitmaps. @defun fringe-bitmaps-at-pos &optional pos window This function returns the fringe bitmaps of the display line containing position @var{pos} in window @var{window}. The return value has the form @code{(@var{left} @var{right} @var{ov})}, where @var{left} is the symbol for the fringe bitmap in the left fringe (or @code{nil} if no bitmap), @var{right} is similar for the right fringe, and @var{ov} is non-@code{nil} if there is an overlay arrow in the left fringe. The value is @code{nil} if @var{pos} is not visible in @var{window}. If @var{window} is @code{nil}, that stands for the selected window. If @var{pos} is @code{nil}, that stands for the value of point in @var{window}. @end defun @node Customizing Bitmaps @subsection Customizing Fringe Bitmaps @cindex fringe bitmaps, customizing @defun define-fringe-bitmap bitmap bits &optional height width align This function defines the symbol @var{bitmap} as a new fringe bitmap, or replaces an existing bitmap with that name. The argument @var{bits} specifies the image to use. It should be either a string or a vector of integers, where each element (an integer) corresponds to one row of the bitmap. Each bit of an integer corresponds to one pixel of the bitmap, where the low bit corresponds to the rightmost pixel of the bitmap. The height is normally the length of @var{bits}. However, you can specify a different height with non-@code{nil} @var{height}. The width is normally 8, but you can specify a different width with non-@code{nil} @var{width}. The width must be an integer between 1 and 16. The argument @var{align} specifies the positioning of the bitmap relative to the range of rows where it is used; the default is to center the bitmap. The allowed values are @code{top}, @code{center}, or @code{bottom}. The @var{align} argument may also be a list @code{(@var{align} @var{periodic})} where @var{align} is interpreted as described above. If @var{periodic} is non-@code{nil}, it specifies that the rows in @code{bits} should be repeated enough times to reach the specified height. @end defun @defun destroy-fringe-bitmap bitmap This function destroy the fringe bitmap identified by @var{bitmap}. If @var{bitmap} identifies a standard fringe bitmap, it actually restores the standard definition of that bitmap, instead of eliminating it entirely. @end defun @defun set-fringe-bitmap-face bitmap &optional face This sets the face for the fringe bitmap @var{bitmap} to @var{face}. If @var{face} is @code{nil}, it selects the @code{fringe} face. The bitmap's face controls the color to draw it in. @var{face} is merged with the @code{fringe} face, so normally @var{face} should specify only the foreground color. @end defun @node Overlay Arrow @subsection The Overlay Arrow @c @cindex overlay arrow Duplicates variable names The @dfn{overlay arrow} is useful for directing the user's attention to a particular line in a buffer. For example, in the modes used for interface to debuggers, the overlay arrow indicates the line of code about to be executed. This feature has nothing to do with @dfn{overlays} (@pxref{Overlays}). @defvar overlay-arrow-string This variable holds the string to display to call attention to a particular line, or @code{nil} if the arrow feature is not in use. On a graphical display the contents of the string are ignored; instead a glyph is displayed in the fringe area to the left of the display area. @end defvar @defvar overlay-arrow-position This variable holds a marker that indicates where to display the overlay arrow. It should point at the beginning of a line. On a non-graphical display the arrow text appears at the beginning of that line, overlaying any text that would otherwise appear. Since the arrow is usually short, and the line usually begins with indentation, normally nothing significant is overwritten. The overlay-arrow string is displayed in any given buffer if the value of @code{overlay-arrow-position} in that buffer points into that buffer. Thus, it is possible to display multiple overlay arrow strings by creating buffer-local bindings of @code{overlay-arrow-position}. However, it is usually cleaner to use @code{overlay-arrow-variable-list} to achieve this result. @c !!! overlay-arrow-position: but the overlay string may remain in the display @c of some other buffer until an update is required. This should be fixed @c now. Is it? @end defvar You can do a similar job by creating an overlay with a @code{before-string} property. @xref{Overlay Properties}. You can define multiple overlay arrows via the variable @code{overlay-arrow-variable-list}. @defvar overlay-arrow-variable-list This variable's value is a list of variables, each of which specifies the position of an overlay arrow. The variable @code{overlay-arrow-position} has its normal meaning because it is on this list. @end defvar Each variable on this list can have properties @code{overlay-arrow-string} and @code{overlay-arrow-bitmap} that specify an overlay arrow string (for text terminals) or fringe bitmap (for graphical terminals) to display at the corresponding overlay arrow position. If either property is not set, the default @code{overlay-arrow-string} or @code{overlay-arrow} fringe indicator is used. @node Scroll Bars @section Scroll Bars @cindex scroll bars Normally the frame parameter @code{vertical-scroll-bars} controls whether the windows in the frame have vertical scroll bars, and whether they are on the left or right. The frame parameter @code{scroll-bar-width} specifies how wide they are (@code{nil} meaning the default). The frame parameter @code{horizontal-scroll-bars} controls whether the windows in the frame have horizontal scroll bars. The frame parameter @code{scroll-bar-height} specifies how high they are (@code{nil} meaning the default). @xref{Layout Parameters}. @vindex horizontal-scroll-bars-available-p Horizontal scroll bars are not available on all platforms. The function @code{horizontal-scroll-bars-available-p} which takes no argument returns non-@code{nil} if they are available on your system. The following three functions take as argument a live frame which defaults to the selected one. @defun frame-current-scroll-bars &optional frame This function reports the scroll bar types for frame @var{frame}. The value is a cons cell @code{(@var{vertical-type} .@: @var{horizontal-type})}, where @var{vertical-type} is either @code{left}, @code{right}, or @code{nil} (which means no vertical scroll bar.) @var{horizontal-type} is either @code{bottom} or @code{nil} (which means no horizontal scroll bar). @end defun @defun frame-scroll-bar-width &optional frame This function returns the width of vertical scroll bars of @var{frame} in pixels. @end defun @defun frame-scroll-bar-height &optional frame This function returns the height of horizontal scroll bars of @var{frame} in pixels. @end defun You can override the frame specific settings for individual windows by using the following function: @defun set-window-scroll-bars window &optional width vertical-type height horizontal-type This function sets the width and/or height and the types of scroll bars for window @var{window}. If @var{window} is @code{nil}, the selected window is used. @var{width} specifies the width of the vertical scroll bar in pixels (@code{nil} means use the width specified for the frame). @var{vertical-type} specifies whether to have a vertical scroll bar and, if so, where. The possible values are @code{left}, @code{right}, @code{t}, which means to use the frame's default, and @code{nil} for no vertical scroll bar. @var{height} specifies the height of the horizontal scroll bar in pixels (@code{nil} means use the height specified for the frame). @var{horizontal-type} specifies whether to have a horizontal scroll bar. The possible values are @code{bottom}, @code{t}, which means to use the frame's default, and @code{nil} for no horizontal scroll bar. If @var{window} is not large enough to accommodate a scroll bar of the desired dimension, this leaves the corresponding scroll bar unchanged. The values specified here may be later overridden by invoking @code{set-window-buffer} (@pxref{Buffers and Windows}) on @var{window} with its @var{keep-margins} argument @code{nil} or omitted. @end defun The following four functions take as argument a live window which defaults to the selected one. @defun window-scroll-bars &optional window This function returns a list of the form @code{(@var{width} @var{columns} @var{vertical-type} @var{height} @var{lines} @var{horizontal-type})}. The value @var{width} is the value that was specified for the width of the vertical scroll bar (which may be @code{nil}); @var{columns} is the (possibly rounded) number of columns that the vertical scroll bar actually occupies. The value @var{height} is the value that was specified for the height of the horizontal scroll bar (which may be @code{nil}); @var{lines} is the (possibly rounded) number of lines that the horizontally scroll bar actually occupies. @end defun @defun window-current-scroll-bars &optional window This function reports the scroll bar type for window @var{window}. The value is a cons cell @code{(@var{vertical-type} .@: @var{horizontal-type})}. Unlike @code{window-scroll-bars}, this reports the scroll bar type actually used, once frame defaults and @code{scroll-bar-mode} are taken into account. @end defun @defun window-scroll-bar-width &optional window This function returns the width in pixels of @var{window}'s vertical scrollbar. @end defun @defun window-scroll-bar-height &optional window This function returns the height in pixels of @var{window}'s horizontal scrollbar. @end defun If you don't specify these values for a window with @code{set-window-scroll-bars}, the buffer-local variables @code{vertical-scroll-bar}, @code{horizontal-scroll-bar}, @code{scroll-bar-width} and @code{scroll-bar-height} in the buffer being displayed control the window's scroll bars. The function @code{set-window-buffer} examines these variables. If you change them in a buffer that is already visible in a window, you can make the window take note of the new values by calling @code{set-window-buffer} specifying the same buffer that is already displayed. You can control the appearance of scroll bars for a particular buffer by setting the following variables which automatically become buffer-local when set. @defvar vertical-scroll-bar This variable specifies the location of the vertical scroll bar. The possible values are @code{left}, @code{right}, @code{t}, which means to use the frame's default, and @code{nil} for no scroll bar. @end defvar @defvar horizontal-scroll-bar This variable specifies the location of the horizontal scroll bar. The possible values are @code{bottom}, @code{t}, which means to use the frame's default, and @code{nil} for no scroll bar. @end defvar @defvar scroll-bar-width This variable specifies the width of the buffer's vertical scroll bars, measured in pixels. A value of @code{nil} means to use the value specified by the frame. @end defvar @defvar scroll-bar-height This variable specifies the height of the buffer's horizontal scroll bar, measured in pixels. A value of @code{nil} means to use the value specified by the frame. @end defvar Finally you can toggle the display of scroll bars on all frames by customizing the variables @code{scroll-bar-mode} and @code{horizontal-scroll-bar-mode}. @defopt scroll-bar-mode This variable controls whether and where to put vertical scroll bars in all frames. The possible values are @code{nil} for no scroll bars, @code{left} to put scroll bars on the left and @code{right} to put scroll bars on the right. @end defopt @defopt horizontal-scroll-bar-mode This variable controls whether to display horizontal scroll bars on all frames. @end defopt @node Window Dividers @section Window Dividers @cindex window dividers @cindex right dividers @cindex bottom dividers Window dividers are bars drawn between a frame's windows. A right divider is drawn between a window and any adjacent windows on the right. Its width (thickness) is specified by the frame parameter @code{right-divider-width}. A bottom divider is drawn between a window and adjacent windows on the bottom or the echo area. Its width is specified by the frame parameter @code{bottom-divider-width}. In either case, specifying a width of zero means to not draw such dividers. @xref{Layout Parameters}. Technically, a right divider belongs to the window on its left, which means that its width contributes to the total width of that window. A bottom divider belongs to the window above it, which means that its width contributes to the total height of that window. @xref{Window Sizes}. When a window has both, a right and a bottom divider, the bottom divider prevails. This means that a bottom divider is drawn over the full total width of its window while the right divider ends above the bottom divider. Dividers can be dragged with the mouse and are therefore useful for adjusting the sizes of adjacent windows with the mouse. They also serve to visually set apart adjacent windows when no scroll bars or mode lines are present. The following three faces allow the customization of the appearance of dividers: @table @code @item window-divider When a divider is less than three pixels wide, it is drawn solidly with the foreground of this face. For larger dividers this face is used for the inner part only, excluding the first and last pixel. @item window-divider-first-pixel This is the face used for drawing the first pixel of a divider that is at least three pixels wide. To obtain a solid appearance, set this to the same value used for the @code{window-divider} face. @item window-divider-last-pixel This is the face used for drawing the last pixel of a divider that is at least three pixels wide. To obtain a solid appearance, set this to the same value used for the @code{window-divider} face. @end table You can get the sizes of the dividers of a specific window with the following two functions. @defun window-right-divider-width &optional window Return the width (thickness) in pixels of @var{window}'s right divider. @var{window} must be a live window and defaults to the selected one. The return value is always zero for a rightmost window. @end defun @defun window-bottom-divider-width &optional window Return the width (thickness) in pixels of @var{window}'s bottom divider. @var{window} must be a live window and defaults to the selected one. The return value is zero for the minibuffer window or a bottommost window on a minibuffer-less frame. @end defun @node Display Property @section The @code{display} Property @cindex display specification @kindex display @r{(text property)} The @code{display} text property (or overlay property) is used to insert images into text, and to control other aspects of how text displays. The value of the @code{display} property should be a display specification, or a list or vector containing several display specifications. Display specifications in the same @code{display} property value generally apply in parallel to the text they cover. If several sources (overlays and/or a text property) specify values for the @code{display} property, only one of the values takes effect, following the rules of @code{get-char-property}. @xref{Examining Properties}. @cindex display property, unsafe evaluation @cindex security, and display specifications Some of the display specifications allow inclusion of Lisp forms, which are evaluated at display time. This could be unsafe in certain situations, e.g., when the display specification was generated by some external program/agent. Wrapping a display specification in a list that begins with the special symbol @code{disable-eval}, as in @w{@code{('disable-eval @var{spec})}}, will disable evaluation of any Lisp in @var{spec}, while still supporting all the other display property features. The rest of this section describes several kinds of display specifications and what they mean. @menu * Replacing Specs:: Display specs that replace the text. * Specified Space:: Displaying one space with a specified width. * Pixel Specification:: Specifying space width or height in pixels. * Other Display Specs:: Displaying an image; adjusting the height, spacing, and other properties of text. * Display Margins:: Displaying text or images to the side of the main text. @end menu @node Replacing Specs @subsection Display Specs That Replace The Text @cindex replacing display specs Some kinds of display specifications specify something to display instead of the text that has the property. These are called @dfn{replacing} display specifications. Emacs does not allow the user to interactively move point into the middle of buffer text that is replaced in this way. If a list of display specifications includes more than one replacing display specification, the first overrides the rest. Replacing display specifications make most other display specifications irrelevant, since those don't apply to the replacement. For replacing display specifications, @dfn{the text that has the property} means all the consecutive characters that have the same Lisp object as their @code{display} property; these characters are replaced as a single unit. If two characters have different Lisp objects as their @code{display} properties (i.e., objects which are not @code{eq}), they are handled separately. Here is an example which illustrates this point. A string serves as a replacing display specification, which replaces the text that has the property with the specified string (@pxref{Other Display Specs}). Consider the following function: @smallexample (defun foo () (dotimes (i 5) (let ((string (concat "A")) (start (+ i i (point-min)))) (put-text-property start (1+ start) 'display string) (put-text-property start (+ 2 start) 'display string)))) @end smallexample @noindent This function gives each of the first ten characters in the buffer a @code{display} property which is a string @code{"A"}, but they don't all get the same string object. The first two characters get the same string object, so they are replaced with one @samp{A}; the fact that the display property was assigned in two separate calls to @code{put-text-property} is irrelevant. Similarly, the next two characters get a second string (@code{concat} creates a new string object), so they are replaced with one @samp{A}; and so on. Thus, the ten characters appear as five A's. @node Specified Space @subsection Specified Spaces @cindex spaces, specified height or width @cindex variable-width spaces To display a space of specified width and/or height, use a display specification of the form @code{(space . @var{props})}, where @var{props} is a property list (a list of alternating properties and values). You can put this property on one or more consecutive characters; a space of the specified height and width is displayed in place of @emph{all} of those characters. These are the properties you can use in @var{props} to specify the weight of the space: @table @code @item :width @var{width} If @var{width} is a number, it specifies that the space width should be @var{width} times the normal character width. @var{width} can also be a @dfn{pixel width} specification (@pxref{Pixel Specification}). @item :relative-width @var{factor} Specifies that the width of the stretch should be computed from the first character in the group of consecutive characters that have the same @code{display} property. The space width is the pixel width of that character, multiplied by @var{factor}. (On text-mode terminals, the ``pixel width'' of a character is usually 1, but it could be more for TABs and double-width CJK characters.) @item :align-to @var{hpos} Specifies that the space should be wide enough to reach @var{hpos}. If @var{hpos} is a number, it is measured in units of the normal character width. @var{hpos} can also be a @dfn{pixel width} specification (@pxref{Pixel Specification}). @end table You should use one and only one of the above properties. You can also specify the height of the space, with these properties: @table @code @item :height @var{height} Specifies the height of the space. If @var{height} is a number, it specifies that the space height should be @var{height} times the normal character height. The @var{height} may also be a @dfn{pixel height} specification (@pxref{Pixel Specification}). @item :relative-height @var{factor} Specifies the height of the space, multiplying the ordinary height of the text having this display specification by @var{factor}. @item :ascent @var{ascent} If the value of @var{ascent} is a non-negative number no greater than 100, it specifies that @var{ascent} percent of the height of the space should be considered as the ascent of the space---that is, the part above the baseline. The ascent may also be specified in pixel units with a @dfn{pixel ascent} specification (@pxref{Pixel Specification}). @end table Don't use both @code{:height} and @code{:relative-height} together. The @code{:width} and @code{:align-to} properties are supported on non-graphic terminals, but the other space properties in this section are not. Note that space properties are treated as paragraph separators for the purposes of reordering bidirectional text for display. @xref{Bidirectional Display}, for the details. @node Pixel Specification @subsection Pixel Specification for Spaces @cindex spaces, pixel specification The value of the @code{:width}, @code{:align-to}, @code{:height}, and @code{:ascent} properties can be a special kind of expression that is evaluated during redisplay. The result of the evaluation is used as an absolute number of pixels. The following expressions are supported: @smallexample @group @var{expr} ::= @var{num} | (@var{num}) | @var{unit} | @var{elem} | @var{pos} | @var{image} | @var{xwidget} | @var{form} @var{num} ::= @var{integer} | @var{float} | @var{symbol} @var{unit} ::= in | mm | cm | width | height @end group @group @var{elem} ::= left-fringe | right-fringe | left-margin | right-margin | scroll-bar | text @var{pos} ::= left | center | right @var{form} ::= (@var{num} . @var{expr}) | (@var{op} @var{expr} ...) @var{op} ::= + | - @end group @end smallexample The form @var{num} specifies a fraction of the default frame font height or width. The form @code{(@var{num})} specifies an absolute number of pixels. If @var{num} is a symbol, @var{symbol}, its buffer-local variable binding is used; that binding can be either a number or a cons cell of the forms shown above (including yet another cons cell whose @code{car} is a symbol that has a buffer-local binding). The @code{in}, @code{mm}, and @code{cm} units specify the number of pixels per inch, millimeter, and centimeter, respectively. The @code{width} and @code{height} units correspond to the default width and height of the current face. An image specification of the form @w{@code{(image . @var{props})}} (@pxref{Image Descriptors}) corresponds to the width or height of the specified image. Similarly, an xwidget specification of the form @w{@code{(xwidget . @var{props})}} stands for the width or height of the specified xwidget. @xref{Xwidgets}. The elements @code{left-fringe}, @code{right-fringe}, @code{left-margin}, @code{right-margin}, @code{scroll-bar}, and @code{text} specify the width of the corresponding area of the window. When the window displays line numbers (@pxref{Size of Displayed Text}), the width of the @code{text} area is decreased by the screen space taken by the line-number display. The @code{left}, @code{center}, and @code{right} positions can be used with @code{:align-to} to specify a position relative to the left edge, center, or right edge of the text area. When the window displays line numbers, the @code{left} and the @code{center} positions are offset to account for the screen space taken by the line-number display. Any of the above window elements (except @code{text}) can also be used with @code{:align-to} to specify that the position is relative to the left edge of the given area. Once the base offset for a relative position has been set (by the first occurrence of one of these symbols), further occurrences of these symbols are interpreted as the width of the specified area. For example, to align to the center of the left-margin, use @example :align-to (+ left-margin (0.5 . left-margin)) @end example If no specific base offset is set for alignment, it is always relative to the left edge of the text area. For example, @samp{:align-to 0} in a header-line aligns with the first text column in the text area. When the window displays line numbers, the text is considered to start where the space used for line-number display ends. A value of the form @code{(@var{num} . @var{expr})} stands for the product of the values of @var{num} and @var{expr}. For example, @code{(2 . in)} specifies a width of 2 inches, while @code{(0.5 . @var{image})} specifies half the width (or height) of the specified @var{image} (which should be given by its image spec). The form @code{(+ @var{expr} ...)} adds up the value of the expressions. The form @code{(- @var{expr} ...)} negates or subtracts the value of the expressions. @node Other Display Specs @subsection Other Display Specifications Here are the other sorts of display specifications that you can use in the @code{display} text property. @table @code @item @var{string} Display @var{string} instead of the text that has this property. Recursive display specifications are not supported---@var{string}'s @code{display} properties, if any, are not used. @item (image . @var{image-props}) This kind of display specification is an image descriptor (@pxref{Images}). When used as a display specification, it means to display the image instead of the text that has the display specification. @item (slice @var{x} @var{y} @var{width} @var{height}) This specification together with @code{image} specifies a @dfn{slice} (a partial area) of the image to display. The elements @var{y} and @var{x} specify the top left corner of the slice, within the image; @var{width} and @var{height} specify the width and height of the slice. Integers are numbers of pixels. A floating-point number in the range 0.0--1.0 stands for that fraction of the width or height of the entire image. @item ((margin nil) @var{string}) A display specification of this form means to display @var{string} instead of the text that has the display specification, at the same position as that text. It is equivalent to using just @var{string}, but it is done as a special case of marginal display (@pxref{Display Margins}). @item (left-fringe @var{bitmap} @r{[}@var{face}@r{]}) @itemx (right-fringe @var{bitmap} @r{[}@var{face}@r{]}) This display specification on any character of a line of text causes the specified @var{bitmap} be displayed in the left or right fringes for that line, instead of the characters that have the display specification. The optional @var{face} specifies the colors to be used for the bitmap. @xref{Fringe Bitmaps}, for the details. @item (space-width @var{factor}) This display specification affects all the space characters within the text that has the specification. It displays all of these spaces @var{factor} times as wide as normal. The element @var{factor} should be an integer or float. Characters other than spaces are not affected at all; in particular, this has no effect on tab characters. @item (height @var{height}) This display specification makes the text taller or shorter. Here are the possibilities for @var{height}: @table @asis @item @code{(+ @var{n})} @c FIXME: Add an index for "step"? --xfq This means to use a font that is @var{n} steps larger. A @dfn{step} is defined by the set of available fonts---specifically, those that match what was otherwise specified for this text, in all attributes except height. Each size for which a suitable font is available counts as another step. @var{n} should be an integer. @item @code{(- @var{n})} This means to use a font that is @var{n} steps smaller. @item a number, @var{factor} A number, @var{factor}, means to use a font that is @var{factor} times as tall as the default font. @item a symbol, @var{function} A symbol is a function to compute the height. It is called with the current height as argument, and should return the new height to use. @item anything else, @var{form} If the @var{height} value doesn't fit the previous possibilities, it is a form. Emacs evaluates it to get the new height, with the symbol @code{height} bound to the current specified font height. @end table @item (raise @var{factor}) This kind of display specification raises or lowers the text it applies to, relative to the baseline of the line. It is mainly meant to support display of subscripts and superscripts. The @var{factor} must be a number, which is interpreted as a multiple of the height of the affected text. If it is positive, that means to display the characters raised. If it is negative, that means to display them lower down. Note that if the text also has a @code{height} display specification, which was specified before (i.e.@: to the left of) @code{raise}, the latter will affect the amount of raising or lowering in pixels, because that is based on the height of the text being raised. Therefore, if you want to display a sub- or superscript that is smaller than the normal text height, consider specifying @code{raise} before @code{height}. @end table @c We put all the '@code{(when ...)}' on one line to encourage @c makeinfo's end-of-sentence heuristics to DTRT. Previously, the dot @c was at eol; the info file ended up w/ two spaces rendered after it. You can make any display specification conditional. To do that, package it in another list of the form @code{(when @var{condition} . @var{spec})}. Then the specification @var{spec} applies only when @var{condition} evaluates to a non-@code{nil} value. During the evaluation, @code{object} is bound to the string or buffer having the conditional @code{display} property. @code{position} and @code{buffer-position} are bound to the position within @code{object} and the buffer position where the @code{display} property was found, respectively. Both positions can be different when @code{object} is a string. Note that @var{condition} will only be evaluated when redisplay examines the text where this display spec is located, so this feature is best suited for conditions that are relatively stable, i.e.@: yield, for each particular buffer position, the same results on every evaluation. If the results change for the same text location, e.g., if the result depends on the position of point, then the conditional specification might not do what you want, because redisplay examines only those parts of buffer text where it has reasons to assume that something changed since the last display cycle. @node Display Margins @subsection Displaying in the Margins @cindex display margins @cindex margins, display A buffer can have blank areas called @dfn{display margins} on the left and on the right. Ordinary text never appears in these areas, but you can put things into the display margins using the @code{display} property. There is currently no way to make text or images in the margin mouse-sensitive. The way to display something in the margins is to specify it in a margin display specification in the @code{display} property of some text. This is a replacing display specification, meaning that the text you put it on does not get displayed; the margin display appears, but that text does not. A margin display specification looks like @code{((margin right-margin) @var{spec})} or @code{((margin left-margin) @var{spec})}. Here, @var{spec} is another display specification that says what to display in the margin. Typically it is a string of text to display, or an image descriptor. To display something in the margin @emph{in association with} certain buffer text, without altering or preventing the display of that text, put a @code{before-string} property on the text and put the margin display specification on the contents of the before-string. Note that if the string to be displayed in the margin doesn't specify a face, its face is determined using the same rules and priorities as it is for strings displayed in the text area (@pxref{Displaying Faces}). If this results in undesirable ``leaking'' of faces into the margin, make sure the string has an explicit face specified for it. Before the display margins can display anything, you must give them a nonzero width. The usual way to do that is to set these variables: @defvar left-margin-width This variable specifies the width of the left margin, in character cell (a.k.a.@: ``column'') units. It is buffer-local in all buffers. A value of @code{nil} means no left marginal area. @end defvar @defvar right-margin-width This variable specifies the width of the right margin, in character cell units. It is buffer-local in all buffers. A value of @code{nil} means no right marginal area. @end defvar Setting these variables does not immediately affect the window. These variables are checked when a new buffer is displayed in the window. Thus, you can make changes take effect by calling @code{set-window-buffer}. You can also set the margin widths immediately. @defun set-window-margins window left &optional right This function specifies the margin widths for window @var{window}, in character cell units. The argument @var{left} controls the left margin, and @var{right} controls the right margin (default @code{0}). If @var{window} is not large enough to accommodate margins of the desired width, this leaves the margins of @var{window} unchanged. The values specified here may be later overridden by invoking @code{set-window-buffer} (@pxref{Buffers and Windows}) on @var{window} with its @var{keep-margins} argument @code{nil} or omitted. @end defun @defun window-margins &optional window This function returns the width of the left and right margins of @var{window} as a cons cell of the form @w{@code{(@var{left} . @var{right})}}. If one of the two marginal areas does not exist, its width is returned as @code{nil}; if neither of the two margins exist, the function returns @code{(nil)}. If @var{window} is @code{nil}, the selected window is used. @end defun @node Images @section Images @cindex images in buffers To display an image in an Emacs buffer, you must first create an image descriptor, then use it as a display specifier in the @code{display} property of text that is displayed (@pxref{Display Property}). Emacs is usually able to display images when it is run on a graphical terminal. Images cannot be displayed in a text terminal, on certain graphical terminals that lack the support for this, or if Emacs is compiled without image support. You can use the function @code{display-images-p} to determine if images can in principle be displayed (@pxref{Display Feature Testing}). @menu * Image Formats:: Supported image formats. * Image Descriptors:: How to specify an image for use in @code{:display}. * XBM Images:: Special features for XBM format. * XPM Images:: Special features for XPM format. * ImageMagick Images:: Special features available through ImageMagick. * SVG Images:: Creating and manipulating SVG images. * Other Image Types:: Various other formats are supported. * Defining Images:: Convenient ways to define an image for later use. * Showing Images:: Convenient ways to display an image once it is defined. * Multi-Frame Images:: Some images contain more than one frame. * Image Cache:: Internal mechanisms of image display. @end menu @node Image Formats @subsection Image Formats @cindex image formats @cindex image types Emacs can display a number of different image formats. Some of these image formats are supported only if particular support libraries are installed. On some platforms, Emacs can load support libraries on demand; if so, the variable @code{dynamic-library-alist} can be used to modify the set of known names for these dynamic libraries. @xref{Dynamic Libraries}. Supported image formats (and the required support libraries) include PBM and XBM (which do not depend on support libraries and are always available), XPM (@code{libXpm}), GIF (@code{libgif} or @code{libungif}), JPEG (@code{libjpeg}), TIFF (@code{libtiff}), PNG (@code{libpng}), and SVG (@code{librsvg}). Each of these image formats is associated with an @dfn{image type symbol}. The symbols for the above formats are, respectively, @code{pbm}, @code{xbm}, @code{xpm}, @code{gif}, @code{jpeg}, @code{tiff}, @code{png}, and @code{svg}. Furthermore, if you build Emacs with ImageMagick (@code{libMagickWand}) support, Emacs can display any image format that ImageMagick can. @xref{ImageMagick Images}. All images displayed via ImageMagick have type symbol @code{imagemagick}. @defvar image-types This variable contains a list of type symbols for image formats which are potentially supported in the current configuration. ``Potentially'' means that Emacs knows about the image types, not necessarily that they can be used (for example, they could depend on unavailable dynamic libraries). To know which image types are really available, use @code{image-type-available-p}. @end defvar @defun image-type-available-p type This function returns non-@code{nil} if images of type @var{type} can be loaded and displayed. @var{type} must be an image type symbol. For image types whose support libraries are statically linked, this function always returns @code{t}. For image types whose support libraries are dynamically loaded, it returns @code{t} if the library could be loaded and @code{nil} otherwise. @end defun @node Image Descriptors @subsection Image Descriptors @cindex image descriptor An @dfn{image descriptor} is a list which specifies the underlying data for an image, and how to display it. It is typically used as the value of a @code{display} overlay or text property (@pxref{Other Display Specs}); but @xref{Showing Images}, for convenient helper functions to insert images into buffers. Each image descriptor has the form @code{(image . @var{props})}, where @var{props} is a property list of alternating keyword symbols and values, including at least the pair @code{:type @var{type}} that specifies the image type. The following is a list of properties that are meaningful for all image types (there are also properties which are meaningful only for certain image types, as documented in the following subsections): @table @code @item :type @var{type} The image type. @ifnottex @xref{Image Formats}. @end ifnottex Every image descriptor must include this property. @item :file @var{file} This says to load the image from file @var{file}. If @var{file} is not an absolute file name, it is expanded in @code{data-directory}. @item :data @var{data} This specifies the raw image data. Each image descriptor must have either @code{:data} or @code{:file}, but not both. For most image types, the value of a @code{:data} property should be a string containing the image data. Some image types do not support @code{:data}; for some others, @code{:data} alone is not enough, so you need to use other image properties along with @code{:data}. See the following subsections for details. @item :margin @var{margin} This specifies how many pixels to add as an extra margin around the image. The value, @var{margin}, must be a non-negative number, or a pair @code{(@var{x} . @var{y})} of such numbers. If it is a pair, @var{x} specifies how many pixels to add horizontally, and @var{y} specifies how many pixels to add vertically. If @code{:margin} is not specified, the default is zero. @item :ascent @var{ascent} This specifies the amount of the image's height to use for its ascent---that is, the part above the baseline. The value, @var{ascent}, must be a number in the range 0 to 100, or the symbol @code{center}. If @var{ascent} is a number, that percentage of the image's height is used for its ascent. If @var{ascent} is @code{center}, the image is vertically centered around a centerline which would be the vertical centerline of text drawn at the position of the image, in the manner specified by the text properties and overlays that apply to the image. If this property is omitted, it defaults to 50. @item :relief @var{relief} This adds a shadow rectangle around the image. The value, @var{relief}, specifies the width of the shadow lines, in pixels. If @var{relief} is negative, shadows are drawn so that the image appears as a pressed button; otherwise, it appears as an unpressed button. @item :conversion @var{algorithm} This specifies a conversion algorithm that should be applied to the image before it is displayed; the value, @var{algorithm}, specifies which algorithm. @table @code @item laplace @itemx emboss Specifies the Laplace edge detection algorithm, which blurs out small differences in color while highlighting larger differences. People sometimes consider this useful for displaying the image for a disabled button. @item (edge-detection :matrix @var{matrix} :color-adjust @var{adjust}) @cindex edge detection, images Specifies a general edge-detection algorithm. @var{matrix} must be either a nine-element list or a nine-element vector of numbers. A pixel at position @math{x/y} in the transformed image is computed from original pixels around that position. @var{matrix} specifies, for each pixel in the neighborhood of @math{x/y}, a factor with which that pixel will influence the transformed pixel; element @math{0} specifies the factor for the pixel at @math{x-1/y-1}, element @math{1} the factor for the pixel at @math{x/y-1} etc., as shown below: @iftex @tex $$\pmatrix{x-1/y-1 & x/y-1 & x+1/y-1 \cr x-1/y & x/y & x+1/y \cr x-1/y+1& x/y+1 & x+1/y+1 \cr}$$ @end tex @end iftex @ifnottex @display (x-1/y-1 x/y-1 x+1/y-1 x-1/y x/y x+1/y x-1/y+1 x/y+1 x+1/y+1) @end display @end ifnottex The resulting pixel is computed from the color intensity of the color resulting from summing up the RGB values of surrounding pixels, multiplied by the specified factors, and dividing that sum by the sum of the factors' absolute values. Laplace edge-detection currently uses a matrix of @iftex @tex $$\pmatrix{1 & 0 & 0 \cr 0& 0 & 0 \cr 0 & 0 & -1 \cr}$$ @end tex @end iftex @ifnottex @display (1 0 0 0 0 0 0 0 -1) @end display @end ifnottex Emboss edge-detection uses a matrix of @iftex @tex $$\pmatrix{ 2 & -1 & 0 \cr -1 & 0 & 1 \cr 0 & 1 & -2 \cr}$$ @end tex @end iftex @ifnottex @display ( 2 -1 0 -1 0 1 0 1 -2) @end display @end ifnottex @item disabled Specifies transforming the image so that it looks disabled. @end table @item :mask @var{mask} If @var{mask} is @code{heuristic} or @code{(heuristic @var{bg})}, build a clipping mask for the image, so that the background of a frame is visible behind the image. If @var{bg} is not specified, or if @var{bg} is @code{t}, determine the background color of the image by looking at the four corners of the image, assuming the most frequently occurring color from the corners is the background color of the image. Otherwise, @var{bg} must be a list @code{(@var{red} @var{green} @var{blue})} specifying the color to assume for the background of the image. If @var{mask} is @code{nil}, remove a mask from the image, if it has one. Images in some formats include a mask which can be removed by specifying @code{:mask nil}. @item :pointer @var{shape} This specifies the pointer shape when the mouse pointer is over this image. @xref{Pointer Shape}, for available pointer shapes. @item :map @var{map} @cindex image maps This associates an image map of @dfn{hot spots} with this image. An image map is an alist where each element has the format @code{(@var{area} @var{id} @var{plist})}. An @var{area} is specified as either a rectangle, a circle, or a polygon. A rectangle is a cons @code{(rect . ((@var{x0} . @var{y0}) . (@var{x1} . @var{y1})))} which specifies the pixel coordinates of the upper left and bottom right corners of the rectangle area. A circle is a cons @code{(circle . ((@var{x0} . @var{y0}) . @var{r}))} which specifies the center and the radius of the circle; @var{r} may be a float or integer. A polygon is a cons @code{(poly . [@var{x0} @var{y0} @var{x1} @var{y1} ...])} where each pair in the vector describes one corner in the polygon. When the mouse pointer lies on a hot-spot area of an image, the @var{plist} of that hot-spot is consulted; if it contains a @code{help-echo} property, that defines a tool-tip for the hot-spot, and if it contains a @code{pointer} property, that defines the shape of the mouse cursor when it is on the hot-spot. @xref{Pointer Shape}, for available pointer shapes. When you click the mouse when the mouse pointer is over a hot-spot, an event is composed by combining the @var{id} of the hot-spot with the mouse event; for instance, @code{[area4 mouse-1]} if the hot-spot's @var{id} is @code{area4}. @end table @defun image-mask-p spec &optional frame This function returns @code{t} if image @var{spec} has a mask bitmap. @var{frame} is the frame on which the image will be displayed. @var{frame} @code{nil} or omitted means to use the selected frame (@pxref{Input Focus}). @end defun @node XBM Images @subsection XBM Images @cindex XBM To use XBM format, specify @code{xbm} as the image type. This image format doesn't require an external library, so images of this type are always supported. Additional image properties supported for the @code{xbm} image type are: @table @code @item :foreground @var{foreground} The value, @var{foreground}, should be a string specifying the image foreground color, or @code{nil} for the default color. This color is used for each pixel in the XBM that is 1. The default is the frame's foreground color. @item :background @var{background} The value, @var{background}, should be a string specifying the image background color, or @code{nil} for the default color. This color is used for each pixel in the XBM that is 0. The default is the frame's background color. @end table If you specify an XBM image using data within Emacs instead of an external file, use the following three properties: @table @code @item :data @var{data} The value, @var{data}, specifies the contents of the image. There are three formats you can use for @var{data}: @itemize @bullet @item A vector of strings or bool-vectors, each specifying one line of the image. Do specify @code{:height} and @code{:width}. @item A string containing the same byte sequence as an XBM file would contain. You must not specify @code{:height} and @code{:width} in this case, because omitting them is what indicates the data has the format of an XBM file. The file contents specify the height and width of the image. @item A string or a bool-vector containing the bits of the image (plus perhaps some extra bits at the end that will not be used). It should contain at least @var{width} * @code{height} bits. In this case, you must specify @code{:height} and @code{:width}, both to indicate that the string contains just the bits rather than a whole XBM file, and to specify the size of the image. @end itemize @item :width @var{width} The value, @var{width}, specifies the width of the image, in pixels. @item :height @var{height} The value, @var{height}, specifies the height of the image, in pixels. @end table @node XPM Images @subsection XPM Images @cindex XPM To use XPM format, specify @code{xpm} as the image type. The additional image property @code{:color-symbols} is also meaningful with the @code{xpm} image type: @table @code @item :color-symbols @var{symbols} The value, @var{symbols}, should be an alist whose elements have the form @code{(@var{name} . @var{color})}. In each element, @var{name} is the name of a color as it appears in the image file, and @var{color} specifies the actual color to use for displaying that name. @end table @node ImageMagick Images @subsection ImageMagick Images @cindex ImageMagick images @cindex images, support for more formats If your Emacs build has ImageMagick support, you can use the ImageMagick library to load many image formats (@pxref{File Conveniences,,, emacs, The GNU Emacs Manual}). The image type symbol for images loaded via ImageMagick is @code{imagemagick}, regardless of the actual underlying image format. To check for ImageMagick support, use the following: @lisp (image-type-available-p 'imagemagick) @end lisp @defun imagemagick-types This function returns a list of image file extensions supported by the current ImageMagick installation. Each list element is a symbol representing an internal ImageMagick name for an image type, such as @code{BMP} for @file{.bmp} images. @end defun @defopt imagemagick-enabled-types The value of this variable is a list of ImageMagick image types which Emacs may attempt to render using ImageMagick. Each list element should be one of the symbols in the list returned by @code{imagemagick-types}, or an equivalent string. Alternatively, a value of @code{t} enables ImageMagick for all possible image types. Regardless of the value of this variable, @code{imagemagick-types-inhibit} (see below) takes precedence. @end defopt @defopt imagemagick-types-inhibit The value of this variable lists the ImageMagick image types which should never be rendered using ImageMagick, regardless of the value of @code{imagemagick-enabled-types}. A value of @code{t} disables ImageMagick entirely. @end defopt @defvar image-format-suffixes This variable is an alist mapping image types to file name extensions. Emacs uses this in conjunction with the @code{:format} image property (see below) to give a hint to the ImageMagick library as to the type of an image. Each element has the form @code{(@var{type} @var{extension})}, where @var{type} is a symbol specifying an image content-type, and @var{extension} is a string that specifies the associated file name extension. @end defvar Images loaded with ImageMagick support the following additional image descriptor properties: @table @code @item :background @var{background} @var{background}, if non-@code{nil}, should be a string specifying a color, which is used as the image's background color if the image supports transparency. If the value is @code{nil}, it defaults to the frame's background color. @item :width @var{width}, :height @var{height} The @code{:width} and @code{:height} keywords are used for scaling the image. If only one of them is specified, the other one will be calculated so as to preserve the aspect ratio. If both are specified, aspect ratio may not be preserved. @item :max-width @var{max-width}, :max-height @var{max-height} The @code{:max-width} and @code{:max-height} keywords are used for scaling if the size of the image of the image exceeds these values. If @code{:width} is set it will have precedence over @code{max-width}, and if @code{:height} is set it will have precedence over @code{max-height}, but you can otherwise mix these keywords as you wish. @code{:max-width} and @code{:max-height} will always preserve the aspect ratio. If both @code{:width} and @code{:max-height} has been set (but @code{:height} has not been set), then @code{:max-height} will have precedence. The same is the case for the opposite combination: The ``max'' keyword has precedence. That is, if you have a 200x100 image and specify that @code{:width} should be 400 and @code{:max-height} should be 150, you'll end up with an image that is 300x150: Preserving the aspect ratio and not exceeding the ``max'' setting. This combination of parameters is a useful way of saying ``display this image as large as possible, but no larger than the available display area''. @item :scale @var{scale} This should be a number, where values higher than 1 means to increase the size, and lower means to decrease the size. For instance, a value of 0.25 will make the image a quarter size of what it originally was. If the scaling makes the image larger than specified by @code{:max-width} or @code{:max-height}, the resulting size will not exceed those two values. If both @code{:scale} and @code{:height}/@code{:width} are specified, the height/width will be adjusted by the specified scaling factor. @item :format @var{type} The value, @var{type}, should be a symbol specifying the type of the image data, as found in @code{image-format-suffixes}. This is used when the image does not have an associated file name, to provide a hint to ImageMagick to help it detect the image type. @item :rotation @var{angle} Specifies a rotation angle in degrees. @item :index @var{frame} @xref{Multi-Frame Images}. @end table @node SVG Images @subsection SVG Images @cindex SVG images SVG (Scalable Vector Graphics) is an XML format for specifying images. If your Emacs build has SVG support, you can create and manipulate these images with the following functions from the @file{svg.el} library. @defun svg-create width height &rest args Create a new, empty SVG image with the specified dimensions. @var{args} is an argument plist with you can specify following: @table @code @item :stroke-width The default width (in pixels) of any lines created. @item :stroke The default stroke color on any lines created. @end table @cindex SVG object This function returns an @dfn{SVG object}, a Lisp data structure that specifies an SVG image, and all the following functions work on that structure. The argument @var{svg} in the following functions specifies such an SVG object. @end defun @defun svg-gradient svg id type stops Create a gradient in @var{svg} with identifier @var{id}. @var{type} specifies the gradient type, and can be either @code{linear} or @code{radial}. @var{stops} is a list of percentage/color pairs. The following will create a linear gradient that goes from red at the start, to green 25% of the way, to blue at the end: @lisp (svg-gradient svg "gradient1" 'linear '((0 . "red") (25 . "green") (100 . "blue"))) @end lisp The gradient created (and inserted into the SVG object) can later be used by all functions that create shapes. @end defun All the following functions take an optional list of keyword parameters that alter the various attributes from their default values. Valid attributes include: @table @code @item :stroke-width The width (in pixels) of lines drawn, and outlines around solid shapes. @item :stroke-color The color of lines drawn, and outlines around solid shapes. @item :fill-color The color used for solid shapes. @item :id The identified of the shape. @item :gradient If given, this should be the identifier of a previously defined gradient object. @end table @defun svg-rectangle svg x y width height &rest args Add to @var{svg} a rectangle whose upper left corner is at position @var{x}/@var{y} and whose size is @var{width}/@var{height}. @lisp (svg-rectangle svg 100 100 500 500 :gradient "gradient1") @end lisp @end defun @defun svg-circle svg x y radius &rest args Add to @var{svg} a circle whose center is at @var{x}/@var{y} and whose radius is @var{radius}. @end defun @defun svg-ellipse svg x y x-radius y-radius &rest args Add to @var{svg} an ellipse whose center is at @var{x}/@var{y}, and whose horizontal radius is @var{x-radius} and the vertical radius is @var{y-radius}. @end defun @defun svg-line svg x1 y1 x2 y2 &rest args Add to @var{svg} a line that starts at @var{x1}/@var{y1} and extends to @var{x2}/@var{y2}. @end defun @defun svg-polyline svg points &rest args Add to @var{svg} a multiple-segment line (a.k.a.@: ``polyline'') that goes through @var{points}, which is a list of X/Y position pairs. @lisp (svg-polyline svg '((200 . 100) (500 . 450) (80 . 100)) :stroke-color "green") @end lisp @end defun @defun svg-polygon svg points &rest args Add a polygon to @var{svg} where @var{points} is a list of X/Y pairs that describe the outer circumference of the polygon. @lisp (svg-polygon svg '((100 . 100) (200 . 150) (150 . 90)) :stroke-color "blue" :fill-color "red") @end lisp @end defun @defun svg-text svg text &rest args Add the specified @var{text} to @var{svg}. @lisp (svg-text svg "This is a text" :font-size "40" :font-weight "bold" :stroke "black" :fill "white" :font-family "impact" :letter-spacing "4pt" :x 300 :y 400 :stroke-width 1) @end lisp @end defun @defun svg-embed svg image image-type datap &rest args Add an embedded (raster) image to @var{svg}. If @var{datap} is @code{nil}, @var{image} should be a file name; otherwise it should be a string containing the image data as raw bytes. @var{image-type} should be a @acronym{MIME} image type, for instance @code{"image/jpeg"}. @lisp (svg-embed svg "~/rms.jpg" "image/jpeg" nil :width "100px" :height "100px" :x "50px" :y "75px") @end lisp @end defun @defun svg-remove svg id Remove the element with identifier @code{id} from the @code{svg}. @end defun @defun svg-image svg Finally, the @code{svg-image} takes an SVG object as its argument and returns an image object suitable for use in functions like @code{insert-image}. @end defun Here's a complete example that creates and inserts an image with a circle: @lisp (let ((svg (svg-create 400 400 :stroke-width 10))) (svg-gradient svg "gradient1" 'linear '((0 . "red") (100 . "blue"))) (svg-circle svg 200 200 100 :gradient "gradient1" :stroke-color "green") (insert-image (svg-image svg))) @end lisp @node Other Image Types @subsection Other Image Types @cindex PBM For PBM images, specify image type @code{pbm}. Color, gray-scale and monochromatic images are supported. For mono PBM images, two additional image properties are supported. @table @code @item :foreground @var{foreground} The value, @var{foreground}, should be a string specifying the image foreground color, or @code{nil} for the default color. This color is used for each pixel in the PBM that is 1. The default is the frame's foreground color. @item :background @var{background} The value, @var{background}, should be a string specifying the image background color, or @code{nil} for the default color. This color is used for each pixel in the PBM that is 0. The default is the frame's background color. @end table @noindent The remaining image types that Emacs can support are: @table @asis @item GIF Image type @code{gif}. Supports the @code{:index} property. @xref{Multi-Frame Images}. @item JPEG Image type @code{jpeg}. @item PNG Image type @code{png}. @item TIFF Image type @code{tiff}. Supports the @code{:index} property. @xref{Multi-Frame Images}. @end table @node Defining Images @subsection Defining Images @cindex define image The functions @code{create-image}, @code{defimage} and @code{find-image} provide convenient ways to create image descriptors. @defun create-image file-or-data &optional type data-p &rest props This function creates and returns an image descriptor which uses the data in @var{file-or-data}. @var{file-or-data} can be a file name or a string containing the image data; @var{data-p} should be @code{nil} for the former case, non-@code{nil} for the latter case. The optional argument @var{type} is a symbol specifying the image type. If @var{type} is omitted or @code{nil}, @code{create-image} tries to determine the image type from the file's first few bytes, or else from the file's name. The remaining arguments, @var{props}, specify additional image properties---for example, @c ':heuristic-mask' is not documented? @example (create-image "foo.xpm" 'xpm nil :heuristic-mask t) @end example The function returns @code{nil} if images of this type are not supported. Otherwise it returns an image descriptor. @end defun @defmac defimage symbol specs &optional doc This macro defines @var{symbol} as an image name. The arguments @var{specs} is a list which specifies how to display the image. The third argument, @var{doc}, is an optional documentation string. Each argument in @var{specs} has the form of a property list, and each one should specify at least the @code{:type} property and either the @code{:file} or the @code{:data} property. The value of @code{:type} should be a symbol specifying the image type, the value of @code{:file} is the file to load the image from, and the value of @code{:data} is a string containing the actual image data. Here is an example: @example (defimage test-image ((:type xpm :file "~/test1.xpm") (:type xbm :file "~/test1.xbm"))) @end example @code{defimage} tests each argument, one by one, to see if it is usable---that is, if the type is supported and the file exists. The first usable argument is used to make an image descriptor which is stored in @var{symbol}. If none of the alternatives will work, then @var{symbol} is defined as @code{nil}. @end defmac @defun image-property image property Return the value of @var{property} in @var{image}. Properties can be set by using @code{setf}. Setting a property to @code{nil} will remove the property from the image. @end defun @defun find-image specs This function provides a convenient way to find an image satisfying one of a list of image specifications @var{specs}. Each specification in @var{specs} is a property list with contents depending on image type. All specifications must at least contain the properties @code{:type @var{type}} and either @w{@code{:file @var{file}}} or @w{@code{:data @var{data}}}, where @var{type} is a symbol specifying the image type, e.g., @code{xbm}, @var{file} is the file to load the image from, and @var{data} is a string containing the actual image data. The first specification in the list whose @var{type} is supported, and @var{file} exists, is used to construct the image specification to be returned. If no specification is satisfied, @code{nil} is returned. The image is looked for in @code{image-load-path}. @end defun @defopt image-load-path This variable's value is a list of locations in which to search for image files. If an element is a string or a variable symbol whose value is a string, the string is taken to be the name of a directory to search. If an element is a variable symbol whose value is a list, that is taken to be a list of directories to search. The default is to search in the @file{images} subdirectory of the directory specified by @code{data-directory}, then the directory specified by @code{data-directory}, and finally in the directories in @code{load-path}. Subdirectories are not automatically included in the search, so if you put an image file in a subdirectory, you have to supply the subdirectory explicitly. For example, to find the image @file{images/foo/bar.xpm} within @code{data-directory}, you should specify the image as follows: @example (defimage foo-image '((:type xpm :file "foo/bar.xpm"))) @end example @end defopt @defun image-load-path-for-library library image &optional path no-error This function returns a suitable search path for images used by the Lisp package @var{library}. The function searches for @var{image} first using @code{image-load-path}, excluding @file{@code{data-directory}/images}, and then in @code{load-path}, followed by a path suitable for @var{library}, which includes @file{../../etc/images} and @file{../etc/images} relative to the library file itself, and finally in @file{@code{data-directory}/images}. Then this function returns a list of directories which contains first the directory in which @var{image} was found, followed by the value of @code{load-path}. If @var{path} is given, it is used instead of @code{load-path}. If @var{no-error} is non-@code{nil} and a suitable path can't be found, don't signal an error. Instead, return a list of directories as before, except that @code{nil} appears in place of the image directory. Here is an example of using @code{image-load-path-for-library}: @example (defvar image-load-path) ; shush compiler (let* ((load-path (image-load-path-for-library "mh-e" "mh-logo.xpm")) (image-load-path (cons (car load-path) image-load-path))) (mh-tool-bar-folder-buttons-init)) @end example @end defun @vindex image-scaling-factor Images are automatically scaled when created based on the @code{image-scaling-factor} variable. The value is either a floating point number (where numbers higher than 1 means to increase the size and lower means to shrink the size), or the symbol @code{auto}, which will compute a scaling factor based on the font pixel size. @node Showing Images @subsection Showing Images @cindex show image You can use an image descriptor by setting up the @code{display} property yourself, but it is easier to use the functions in this section. @defun insert-image image &optional string area slice This function inserts @var{image} in the current buffer at point. The value @var{image} should be an image descriptor; it could be a value returned by @code{create-image}, or the value of a symbol defined with @code{defimage}. The argument @var{string} specifies the text to put in the buffer to hold the image. If it is omitted or @code{nil}, @code{insert-image} uses @code{" "} by default. The argument @var{area} specifies whether to put the image in a margin. If it is @code{left-margin}, the image appears in the left margin; @code{right-margin} specifies the right margin. If @var{area} is @code{nil} or omitted, the image is displayed at point within the buffer's text. The argument @var{slice} specifies a slice of the image to insert. If @var{slice} is @code{nil} or omitted the whole image is inserted. Otherwise, @var{slice} is a list @code{(@var{x} @var{y} @var{width} @var{height})} which specifies the @var{x} and @var{y} positions and @var{width} and @var{height} of the image area to insert. Integer values are in units of pixels. A floating-point number in the range 0.0--1.0 stands for that fraction of the width or height of the entire image. Internally, this function inserts @var{string} in the buffer, and gives it a @code{display} property which specifies @var{image}. @xref{Display Property}. @end defun @cindex slice, image @cindex image slice @defun insert-sliced-image image &optional string area rows cols This function inserts @var{image} in the current buffer at point, like @code{insert-image}, but splits the image into @var{rows}x@var{cols} equally sized slices. Emacs displays each slice as a separate image, and allows more intuitive scrolling up/down, instead of jumping up/down the entire image when paging through a buffer that displays (large) images. @end defun @defun put-image image pos &optional string area This function puts image @var{image} in front of @var{pos} in the current buffer. The argument @var{pos} should be an integer or a marker. It specifies the buffer position where the image should appear. The argument @var{string} specifies the text that should hold the image as an alternative to the default. The argument @var{image} must be an image descriptor, perhaps returned by @code{create-image} or stored by @code{defimage}. The argument @var{area} specifies whether to put the image in a margin. If it is @code{left-margin}, the image appears in the left margin; @code{right-margin} specifies the right margin. If @var{area} is @code{nil} or omitted, the image is displayed at point within the buffer's text. Internally, this function creates an overlay, and gives it a @code{before-string} property containing text that has a @code{display} property whose value is the image. (Whew!) @end defun @defun remove-images start end &optional buffer This function removes images in @var{buffer} between positions @var{start} and @var{end}. If @var{buffer} is omitted or @code{nil}, images are removed from the current buffer. This removes only images that were put into @var{buffer} the way @code{put-image} does it, not images that were inserted with @code{insert-image} or in other ways. @end defun @defun image-size spec &optional pixels frame @cindex size of image This function returns the size of an image as a pair @w{@code{(@var{width} . @var{height})}}. @var{spec} is an image specification. @var{pixels} non-@code{nil} means return sizes measured in pixels, otherwise return sizes measured in the default character size of @var{frame} (@pxref{Frame Font}). @var{frame} is the frame on which the image will be displayed. @var{frame} @code{nil} or omitted means use the selected frame (@pxref{Input Focus}). @end defun @defvar max-image-size This variable is used to define the maximum size of image that Emacs will load. Emacs will refuse to load (and display) any image that is larger than this limit. If the value is an integer, it directly specifies the maximum image height and width, measured in pixels. If it is floating point, it specifies the maximum image height and width as a ratio to the frame height and width. If the value is non-numeric, there is no explicit limit on the size of images. The purpose of this variable is to prevent unreasonably large images from accidentally being loaded into Emacs. It only takes effect the first time an image is loaded. Once an image is placed in the image cache, it can always be displayed, even if the value of @code{max-image-size} is subsequently changed (@pxref{Image Cache}). @end defvar Images inserted with the insertion functions above also get a local keymap installed in the text properties (or overlays) that span the displayed image. This keymap defines the following commands: @table @kbd @item + Increase the image size (@code{image-increase-size}). A prefix value of @samp{4} means to increase the size by 40%. The default is 20%. @item - Decrease the image size (@code{image-increase-size}). A prefix value of @samp{4} means to decrease the size by 40%. The default is 20%. @item r Rotate the image by 90 degrees (@code{image-rotate}). @item o Save the image to a file (@code{image-save}). @end table @node Multi-Frame Images @subsection Multi-Frame Images @cindex multi-frame images @cindex animation @cindex image animation @cindex image frames Some image files can contain more than one image. We say that there are multiple ``frames'' in the image. At present, Emacs supports multiple frames for GIF, TIFF, and certain ImageMagick formats such as DJVM@. The frames can be used either to represent multiple pages (this is usually the case with multi-frame TIFF files, for example), or to create animation (usually the case with multi-frame GIF files). A multi-frame image has a property @code{:index}, whose value is an integer (counting from 0) that specifies which frame is being displayed. @defun image-multi-frame-p image This function returns non-@code{nil} if @var{image} contains more than one frame. The actual return value is a cons @code{(@var{nimages} . @var{delay})}, where @var{nimages} is the number of frames and @var{delay} is the delay in seconds between them, or @code{nil} if the image does not specify a delay. Images that are intended to be animated usually specify a frame delay, whereas ones that are intended to be treated as multiple pages do not. @end defun @defun image-current-frame image This function returns the index of the current frame number for @var{image}, counting from 0. @end defun @defun image-show-frame image n &optional nocheck This function switches @var{image} to frame number @var{n}. It replaces a frame number outside the valid range with that of the end of the range, unless @var{nocheck} is non-@code{nil}. If @var{image} does not contain a frame with the specified number, the image displays as a hollow box. @end defun @defun image-animate image &optional index limit This function animates @var{image}. The optional integer @var{index} specifies the frame from which to start (default 0). The optional argument @var{limit} controls the length of the animation. If omitted or @code{nil}, the image animates once only; if @code{t} it loops forever; if a number animation stops after that many seconds. @end defun @vindex image-minimum-frame-delay @vindex image-default-frame-delay @noindent Animation operates by means of a timer. Note that Emacs imposes a minimum frame delay of 0.01 (@code{image-minimum-frame-delay}) seconds. If the image itself does not specify a delay, Emacs uses @code{image-default-frame-delay}. @defun image-animate-timer image This function returns the timer responsible for animating @var{image}, if there is one. @end defun @node Image Cache @subsection Image Cache @cindex image cache Emacs caches images so that it can display them again more efficiently. When Emacs displays an image, it searches the image cache for an existing image specification @code{equal} to the desired specification. If a match is found, the image is displayed from the cache. Otherwise, Emacs loads the image normally. @defun image-flush spec &optional frame This function removes the image with specification @var{spec} from the image cache of frame @var{frame}. Image specifications are compared using @code{equal}. If @var{frame} is @code{nil}, it defaults to the selected frame. If @var{frame} is @code{t}, the image is flushed on all existing frames. In Emacs's current implementation, each graphical terminal possesses an image cache, which is shared by all the frames on that terminal (@pxref{Multiple Terminals}). Thus, refreshing an image in one frame also refreshes it in all other frames on the same terminal. @end defun One use for @code{image-flush} is to tell Emacs about a change in an image file. If an image specification contains a @code{:file} property, the image is cached based on the file's contents when the image is first displayed. Even if the file subsequently changes, Emacs continues displaying the old version of the image. Calling @code{image-flush} flushes the image from the cache, forcing Emacs to re-read the file the next time it needs to display that image. Another use for @code{image-flush} is for memory conservation. If your Lisp program creates a large number of temporary images over a period much shorter than @code{image-cache-eviction-delay} (see below), you can opt to flush unused images yourself, instead of waiting for Emacs to do it automatically. @defun clear-image-cache &optional filter This function clears an image cache, removing all the images stored in it. If @var{filter} is omitted or @code{nil}, it clears the cache for the selected frame. If @var{filter} is a frame, it clears the cache for that frame. If @var{filter} is @code{t}, all image caches are cleared. Otherwise, @var{filter} is taken to be a file name, and all images associated with that file name are removed from all image caches. @end defun If an image in the image cache has not been displayed for a specified period of time, Emacs removes it from the cache and frees the associated memory. @defvar image-cache-eviction-delay This variable specifies the number of seconds an image can remain in the cache without being displayed. When an image is not displayed for this length of time, Emacs removes it from the image cache. Under some circumstances, if the number of images in the cache grows too large, the actual eviction delay may be shorter than this. If the value is @code{nil}, Emacs does not remove images from the cache except when you explicitly clear it. This mode can be useful for debugging. @end defvar @node Xwidgets @section Embedded Native Widgets @cindex xwidget @cindex embedded widgets @cindex webkit browser widget Emacs is able to display native widgets, such as GTK+ WebKit widgets, in Emacs buffers when it was built with the necessary support libraries and is running on a graphical terminal. To test whether Emacs supports display of embedded widgets, check that the @code{xwidget-internal} feature is available (@pxref{Named Features}). To display an embedded widget in a buffer, you must first create an xwidget object, and then use that object as the display specifier in a @code{display} text or overlay property (@pxref{Display Property}). @defun make-xwidget type title width height arguments &optional buffer This creates and returns an xwidget object. If @var{buffer} is omitted or @code{nil}, it defaults to the current buffer. If @var{buffer} names a buffer that doesn't exist, it will be created. The @var{type} identifies the type of the xwidget component, it can be one of the following: @table @code @item webkit The WebKit component. @end table The @var{width} and @var{height} arguments specify the widget size in pixels, and @var{title}, a string, specifies its title. @end defun @defun xwidgetp object This function returns @code{t} if @var{object} is an xwidget, @code{nil} otherwise. @end defun @defun xwidget-plist xwidget This function returns the property list of @var{xwidget}. @end defun @defun set-xwidget-plist xwidget plist This function replaces the property list of @var{xwidget} with a new property list given by @var{plist}. @end defun @defun xwidget-buffer xwidget This function returns the buffer of @var{xwidget}. @end defun @defun get-buffer-xwidgets buffer This function returns a list of xwidget objects associated with the @var{buffer}, which can be specified as a buffer object or a name of an existing buffer, a string. The value is @code{nil} if @var{buffer} contains no xwidgets. @end defun @defun xwidget-webkit-goto-uri xwidget uri This function browses the specified @var{uri} in the given @var{xwidget}. The @var{uri} is a string that specifies the name of a file or a URL. @c FIXME: What else can a URI specify in this context? @end defun @defun xwidget-webkit-execute-script xwidget script This function causes the browser widget specified by @var{xwidget} to execute the specified JavaScript @code{script}. @end defun @defun xwidget-webkit-execute-script-rv xwidget script &optional default This function executes the specified @var{script} like @code{xwidget-webkit-execute-script} does, but it also returns the script's return value as a string. If @var{script} doesn't return a value, this function returns @var{default}, or @code{nil} if @var{default} was omitted. @end defun @defun xwidget-webkit-get-title xwidget This function returns the title of @var{xwidget} as a string. @end defun @defun xwidget-resize xwidget width height This function resizes the specified @var{xwidget} to the size @var{width}x@var{height} pixels. @end defun @defun xwidget-size-request xwidget This function returns the desired size of @var{xwidget} as a list of the form @code{(@var{width} @var{height})}. The dimensions are in pixels. @end defun @defun xwidget-info xwidget This function returns the attributes of @var{xwidget} as a vector of the form @code{[@var{type} @var{title} @var{width} @var{height}]}. The attributes are usually determined by @code{make-xwidget} when the xwidget is created. @end defun @defun set-xwidget-query-on-exit-flag xwidget flag This function allows you to arrange that Emacs will ask the user for confirmation before exiting or before killing a buffer that has @var{xwidget} associated with it. If @var{flag} is non-@code{nil}, Emacs will query the user, otherwise it will not. @end defun @defun xwidget-query-on-exit-flag xwidget This function returns the current setting of @var{xwidget}s query-on-exit flag, either @code{t} or @code{nil}. @end defun @node Buttons @section Buttons @cindex buttons in buffers @cindex clickable buttons in buffers The Button package defines functions for inserting and manipulating @dfn{buttons} that can be activated with the mouse or via keyboard commands. These buttons are typically used for various kinds of hyperlinks. A button is essentially a set of text or overlay properties, attached to a stretch of text in a buffer. These properties are called @dfn{button properties}. One of these properties, the @dfn{action property}, specifies a function which is called when the user invokes the button using the keyboard or the mouse. The action function may examine the button and use its other properties as desired. In some ways, the Button package duplicates the functionality in the Widget package. @xref{Top, , Introduction, widget, The Emacs Widget Library}. The advantage of the Button package is that it is faster, smaller, and simpler to program. From the point of view of the user, the interfaces produced by the two packages are very similar. @menu * Button Properties:: Button properties with special meanings. * Button Types:: Defining common properties for classes of buttons. * Making Buttons:: Adding buttons to Emacs buffers. * Manipulating Buttons:: Getting and setting properties of buttons. * Button Buffer Commands:: Buffer-wide commands and bindings for buttons. @end menu @node Button Properties @subsection Button Properties @cindex button properties Each button has an associated list of properties defining its appearance and behavior, and other arbitrary properties may be used for application specific purposes. The following properties have special meaning to the Button package: @table @code @item action @kindex action @r{(button property)} The function to call when the user invokes the button, which is passed the single argument @var{button}. By default this is @code{ignore}, which does nothing. @item mouse-action @kindex mouse-action @r{(button property)} This is similar to @code{action}, and when present, will be used instead of @code{action} for button invocations resulting from mouse-clicks (instead of the user hitting @key{RET}). If not present, mouse-clicks use @code{action} instead. @item face @kindex face @r{(button property)} This is an Emacs face controlling how buttons of this type are displayed; by default this is the @code{button} face. @item mouse-face @kindex mouse-face @r{(button property)} This is an additional face which controls appearance during mouse-overs (merged with the usual button face); by default this is the usual Emacs @code{highlight} face. @item keymap @kindex keymap @r{(button property)} The button's keymap, defining bindings active within the button region. By default this is the usual button region keymap, stored in the variable @code{button-map}, which defines @key{RET} and @key{mouse-2} to invoke the button. @item type @kindex type @r{(button property)} The button type. @xref{Button Types}. @item help-echo @kindex help-index @r{(button property)} A string displayed by the Emacs tool-tip help system; by default, @code{"mouse-2, RET: Push this button"}. @item follow-link @kindex follow-link @r{(button property)} The follow-link property, defining how a @key{mouse-1} click behaves on this button, @xref{Clickable Text}. @item button @kindex button @r{(button property)} All buttons have a non-@code{nil} @code{button} property, which may be useful in finding regions of text that comprise buttons (which is what the standard button functions do). @end table There are other properties defined for the regions of text in a button, but these are not generally interesting for typical uses. @node Button Types @subsection Button Types @cindex button types Every button has a @dfn{button type}, which defines default values for the button's properties. Button types are arranged in a hierarchy, with specialized types inheriting from more general types, so that it's easy to define special-purpose types of buttons for specific tasks. @defun define-button-type name &rest properties Define a button type called @var{name} (a symbol). The remaining arguments form a sequence of @var{property value} pairs, specifying default property values for buttons with this type (a button's type may be set by giving it a @code{type} property when creating the button, using the @code{:type} keyword argument). In addition, the keyword argument @code{:supertype} may be used to specify a button-type from which @var{name} inherits its default property values. Note that this inheritance happens only when @var{name} is defined; subsequent changes to a supertype are not reflected in its subtypes. @end defun Using @code{define-button-type} to define default properties for buttons is not necessary---buttons without any specified type use the built-in button-type @code{button}---but it is encouraged, since doing so usually makes the resulting code clearer and more efficient. @node Making Buttons @subsection Making Buttons @cindex making buttons Buttons are associated with a region of text, using an overlay or text properties to hold button-specific information, all of which are initialized from the button's type (which defaults to the built-in button type @code{button}). Like all Emacs text, the appearance of the button is governed by the @code{face} property; by default (via the @code{face} property inherited from the @code{button} button-type) this is a simple underline, like a typical web-page link. For convenience, there are two sorts of button-creation functions, those that add button properties to an existing region of a buffer, called @code{make-...button}, and those that also insert the button text, called @code{insert-...button}. The button-creation functions all take the @code{&rest} argument @var{properties}, which should be a sequence of @var{property value} pairs, specifying properties to add to the button; see @ref{Button Properties}. In addition, the keyword argument @code{:type} may be used to specify a button-type from which to inherit other properties; see @ref{Button Types}. Any properties not explicitly specified during creation will be inherited from the button's type (if the type defines such a property). The following functions add a button using an overlay (@pxref{Overlays}) to hold the button properties: @defun make-button beg end &rest properties This makes a button from @var{beg} to @var{end} in the current buffer, and returns it. @end defun @defun insert-button label &rest properties This insert a button with the label @var{label} at point, and returns it. @end defun The following functions are similar, but using text properties (@pxref{Text Properties}) to hold the button properties. Such buttons do not add markers to the buffer, so editing in the buffer does not slow down if there is an extremely large numbers of buttons. However, if there is an existing face text property on the text (e.g., a face assigned by Font Lock mode), the button face may not be visible. Both of these functions return the starting position of the new button. @defun make-text-button beg end &rest properties This makes a button from @var{beg} to @var{end} in the current buffer, using text properties. @end defun @defun insert-text-button label &rest properties This inserts a button with the label @var{label} at point, using text properties. @end defun @node Manipulating Buttons @subsection Manipulating Buttons @cindex manipulating buttons These are functions for getting and setting properties of buttons. Often these are used by a button's invocation function to determine what to do. Where a @var{button} parameter is specified, it means an object referring to a specific button, either an overlay (for overlay buttons), or a buffer-position or marker (for text property buttons). Such an object is passed as the first argument to a button's invocation function when it is invoked. @defun button-start button Return the position at which @var{button} starts. @end defun @defun button-end button Return the position at which @var{button} ends. @end defun @defun button-get button prop Get the property of button @var{button} named @var{prop}. @end defun @defun button-put button prop val Set @var{button}'s @var{prop} property to @var{val}. @end defun @defun button-activate button &optional use-mouse-action Call @var{button}'s @code{action} property (i.e., invoke the function that is the value of that property, passing it the single argument @var{button}). If @var{use-mouse-action} is non-@code{nil}, try to invoke the button's @code{mouse-action} property instead of @code{action}; if the button has no @code{mouse-action} property, use @code{action} as normal. @end defun @defun button-label button Return @var{button}'s text label. @end defun @defun button-type button Return @var{button}'s button-type. @end defun @defun button-has-type-p button type Return @code{t} if @var{button} has button-type @var{type}, or one of @var{type}'s subtypes. @end defun @defun button-at pos Return the button at position @var{pos} in the current buffer, or @code{nil}. If the button at @var{pos} is a text property button, the return value is a marker pointing to @var{pos}. @end defun @defun button-type-put type prop val Set the button-type @var{type}'s @var{prop} property to @var{val}. @end defun @defun button-type-get type prop Get the property of button-type @var{type} named @var{prop}. @end defun @defun button-type-subtype-p type supertype Return @code{t} if button-type @var{type} is a subtype of @var{supertype}. @end defun @node Button Buffer Commands @subsection Button Buffer Commands @cindex button buffer commands These are commands and functions for locating and operating on buttons in an Emacs buffer. @code{push-button} is the command that a user uses to actually push a button, and is bound by default in the button itself to @key{RET} and to @key{mouse-2} using a local keymap in the button's overlay or text properties. Commands that are useful outside the buttons itself, such as @code{forward-button} and @code{backward-button} are additionally available in the keymap stored in @code{button-buffer-map}; a mode which uses buttons may want to use @code{button-buffer-map} as a parent keymap for its keymap. If the button has a non-@code{nil} @code{follow-link} property, and @code{mouse-1-click-follows-link} is set, a quick @key{mouse-1} click will also activate the @code{push-button} command. @xref{Clickable Text}. @deffn Command push-button &optional pos use-mouse-action Perform the action specified by a button at location @var{pos}. @var{pos} may be either a buffer position or a mouse-event. If @var{use-mouse-action} is non-@code{nil}, or @var{pos} is a mouse-event (@pxref{Mouse Events}), try to invoke the button's @code{mouse-action} property instead of @code{action}; if the button has no @code{mouse-action} property, use @code{action} as normal. @var{pos} defaults to point, except when @code{push-button} is invoked interactively as the result of a mouse-event, in which case, the mouse event's position is used. If there's no button at @var{pos}, do nothing and return @code{nil}, otherwise return @code{t}. @end deffn @deffn Command forward-button n &optional wrap display-message Move to the @var{n}th next button, or @var{n}th previous button if @var{n} is negative. If @var{n} is zero, move to the start of any button at point. If @var{wrap} is non-@code{nil}, moving past either end of the buffer continues from the other end. If @var{display-message} is non-@code{nil}, the button's help-echo string is displayed. Any button with a non-@code{nil} @code{skip} property is skipped over. Returns the button found. @end deffn @deffn Command backward-button n &optional wrap display-message Move to the @var{n}th previous button, or @var{n}th next button if @var{n} is negative. If @var{n} is zero, move to the start of any button at point. If @var{wrap} is non-@code{nil}, moving past either end of the buffer continues from the other end. If @var{display-message} is non-@code{nil}, the button's help-echo string is displayed. Any button with a non-@code{nil} @code{skip} property is skipped over. Returns the button found. @end deffn @defun next-button pos &optional count-current @defunx previous-button pos &optional count-current Return the next button after (for @code{next-button}) or before (for @code{previous-button}) position @var{pos} in the current buffer. If @var{count-current} is non-@code{nil}, count any button at @var{pos} in the search, instead of starting at the next button. @end defun @node Abstract Display @section Abstract Display @cindex ewoc @cindex display, abstract @cindex display, arbitrary objects @cindex model/view/controller @cindex view part, model/view/controller The Ewoc package constructs buffer text that represents a structure of Lisp objects, and updates the text to follow changes in that structure. This is like the ``view'' component in the ``model--view--controller'' design paradigm. Ewoc means ``Emacs's Widget for Object Collections''. An @dfn{ewoc} is a structure that organizes information required to construct buffer text that represents certain Lisp data. The buffer text of the ewoc has three parts, in order: first, fixed @dfn{header} text; next, textual descriptions of a series of data elements (Lisp objects that you specify); and last, fixed @dfn{footer} text. Specifically, an ewoc contains information on: @itemize @bullet @item The buffer which its text is generated in. @item The text's start position in the buffer. @item The header and footer strings. @item @cindex node, ewoc @c or "@cindex node, abstract display"? A doubly-linked chain of @dfn{nodes}, each of which contains: @itemize @item A @dfn{data element}, a single Lisp object. @item Links to the preceding and following nodes in the chain. @end itemize @item A @dfn{pretty-printer} function which is responsible for inserting the textual representation of a data element value into the current buffer. @end itemize Typically, you define an ewoc with @code{ewoc-create}, and then pass the resulting ewoc structure to other functions in the Ewoc package to build nodes within it, and display it in the buffer. Once it is displayed in the buffer, other functions determine the correspondence between buffer positions and nodes, move point from one node's textual representation to another, and so forth. @xref{Abstract Display Functions}. @cindex encapsulation, ewoc @c or "@cindex encapsulation, abstract display"? A node @dfn{encapsulates} a data element much the way a variable holds a value. Normally, encapsulation occurs as a part of adding a node to the ewoc. You can retrieve the data element value and place a new value in its place, like so: @lisp (ewoc-data @var{node}) @result{} value (ewoc-set-data @var{node} @var{new-value}) @result{} @var{new-value} @end lisp @noindent You can also use, as the data element value, a Lisp object (list or vector) that is a container for the real value, or an index into some other structure. The example (@pxref{Abstract Display Example}) uses the latter approach. When the data changes, you will want to update the text in the buffer. You can update all nodes by calling @code{ewoc-refresh}, or just specific nodes using @code{ewoc-invalidate}, or all nodes satisfying a predicate using @code{ewoc-map}. Alternatively, you can delete invalid nodes using @code{ewoc-delete} or @code{ewoc-filter}, and add new nodes in their place. Deleting a node from an ewoc deletes its associated textual description from buffer, as well. @menu * Abstract Display Functions:: Functions in the Ewoc package. * Abstract Display Example:: Example of using Ewoc. @end menu @node Abstract Display Functions @subsection Abstract Display Functions In this subsection, @var{ewoc} and @var{node} stand for the structures described above (@pxref{Abstract Display}), while @var{data} stands for an arbitrary Lisp object used as a data element. @defun ewoc-create pretty-printer &optional header footer nosep This constructs and returns a new ewoc, with no nodes (and thus no data elements). @var{pretty-printer} should be a function that takes one argument, a data element of the sort you plan to use in this ewoc, and inserts its textual description at point using @code{insert} (and never @code{insert-before-markers}, because that would interfere with the Ewoc package's internal mechanisms). Normally, a newline is automatically inserted after the header, the footer and every node's textual description. If @var{nosep} is non-@code{nil}, no newline is inserted. This may be useful for displaying an entire ewoc on a single line, for example, or for making nodes invisible by arranging for @var{pretty-printer} to do nothing for those nodes. An ewoc maintains its text in the buffer that is current when you create it, so switch to the intended buffer before calling @code{ewoc-create}. @end defun @defun ewoc-buffer ewoc This returns the buffer where @var{ewoc} maintains its text. @end defun @defun ewoc-get-hf ewoc This returns a cons cell @code{(@var{header} . @var{footer})} made from @var{ewoc}'s header and footer. @end defun @defun ewoc-set-hf ewoc header footer This sets the header and footer of @var{ewoc} to the strings @var{header} and @var{footer}, respectively. @end defun @defun ewoc-enter-first ewoc data @defunx ewoc-enter-last ewoc data These add a new node encapsulating @var{data}, putting it, respectively, at the beginning or end of @var{ewoc}'s chain of nodes. @end defun @defun ewoc-enter-before ewoc node data @defunx ewoc-enter-after ewoc node data These add a new node encapsulating @var{data}, adding it to @var{ewoc} before or after @var{node}, respectively. @end defun @defun ewoc-prev ewoc node @defunx ewoc-next ewoc node These return, respectively, the previous node and the next node of @var{node} in @var{ewoc}. @end defun @defun ewoc-nth ewoc n This returns the node in @var{ewoc} found at zero-based index @var{n}. A negative @var{n} means count from the end. @code{ewoc-nth} returns @code{nil} if @var{n} is out of range. @end defun @defun ewoc-data node This extracts the data encapsulated by @var{node} and returns it. @end defun @defun ewoc-set-data node data This sets the data encapsulated by @var{node} to @var{data}. @end defun @defun ewoc-locate ewoc &optional pos guess This determines the node in @var{ewoc} which contains point (or @var{pos} if specified), and returns that node. If @var{ewoc} has no nodes, it returns @code{nil}. If @var{pos} is before the first node, it returns the first node; if @var{pos} is after the last node, it returns the last node. The optional third arg @var{guess} should be a node that is likely to be near @var{pos}; this doesn't alter the result, but makes the function run faster. @end defun @defun ewoc-location node This returns the start position of @var{node}. @end defun @defun ewoc-goto-prev ewoc arg @defunx ewoc-goto-next ewoc arg These move point to the previous or next, respectively, @var{arg}th node in @var{ewoc}. @code{ewoc-goto-prev} does not move if it is already at the first node or if @var{ewoc} is empty, whereas @code{ewoc-goto-next} moves past the last node, returning @code{nil}. Excepting this special case, these functions return the node moved to. @end defun @defun ewoc-goto-node ewoc node This moves point to the start of @var{node} in @var{ewoc}. @end defun @defun ewoc-refresh ewoc This function regenerates the text of @var{ewoc}. It works by deleting the text between the header and the footer, i.e., all the data elements' representations, and then calling the pretty-printer function for each node, one by one, in order. @end defun @defun ewoc-invalidate ewoc &rest nodes This is similar to @code{ewoc-refresh}, except that only @var{nodes} in @var{ewoc} are updated instead of the entire set. @end defun @defun ewoc-delete ewoc &rest nodes This deletes each node in @var{nodes} from @var{ewoc}. @end defun @defun ewoc-filter ewoc predicate &rest args This calls @var{predicate} for each data element in @var{ewoc} and deletes those nodes for which @var{predicate} returns @code{nil}. Any @var{args} are passed to @var{predicate}. @end defun @defun ewoc-collect ewoc predicate &rest args This calls @var{predicate} for each data element in @var{ewoc} and returns a list of those elements for which @var{predicate} returns non-@code{nil}. The elements in the list are ordered as in the buffer. Any @var{args} are passed to @var{predicate}. @end defun @defun ewoc-map map-function ewoc &rest args This calls @var{map-function} for each data element in @var{ewoc} and updates those nodes for which @var{map-function} returns non-@code{nil}. Any @var{args} are passed to @var{map-function}. @end defun @node Abstract Display Example @subsection Abstract Display Example Here is a simple example using functions of the ewoc package to implement a @dfn{color components} display, an area in a buffer that represents a vector of three integers (itself representing a 24-bit RGB value) in various ways. @example (setq colorcomp-ewoc nil colorcomp-data nil colorcomp-mode-map nil colorcomp-labels ["Red" "Green" "Blue"]) (defun colorcomp-pp (data) (if data (let ((comp (aref colorcomp-data data))) (insert (aref colorcomp-labels data) "\t: #x" (format "%02X" comp) " " (make-string (ash comp -2) ?#) "\n")) (let ((cstr (format "#%02X%02X%02X" (aref colorcomp-data 0) (aref colorcomp-data 1) (aref colorcomp-data 2))) (samp " (sample text) ")) (insert "Color\t: " (propertize samp 'face `(foreground-color . ,cstr)) (propertize samp 'face `(background-color . ,cstr)) "\n")))) (defun colorcomp (color) "Allow fiddling with COLOR in a new buffer. The buffer is in Color Components mode." (interactive "sColor (name or #RGB or #RRGGBB): ") (when (string= "" color) (setq color "green")) (unless (color-values color) (error "No such color: %S" color)) (switch-to-buffer (generate-new-buffer (format "originally: %s" color))) (kill-all-local-variables) (setq major-mode 'colorcomp-mode mode-name "Color Components") (use-local-map colorcomp-mode-map) (erase-buffer) (buffer-disable-undo) (let ((data (apply 'vector (mapcar (lambda (n) (ash n -8)) (color-values color)))) (ewoc (ewoc-create 'colorcomp-pp "\nColor Components\n\n" (substitute-command-keys "\n\\@{colorcomp-mode-map@}")))) (set (make-local-variable 'colorcomp-data) data) (set (make-local-variable 'colorcomp-ewoc) ewoc) (ewoc-enter-last ewoc 0) (ewoc-enter-last ewoc 1) (ewoc-enter-last ewoc 2) (ewoc-enter-last ewoc nil))) @end example @cindex controller part, model/view/controller This example can be extended to be a color selection widget (in other words, the ``controller'' part of the ``model--view--controller'' design paradigm) by defining commands to modify @code{colorcomp-data} and to finish the selection process, and a keymap to tie it all together conveniently. @smallexample (defun colorcomp-mod (index limit delta) (let ((cur (aref colorcomp-data index))) (unless (= limit cur) (aset colorcomp-data index (+ cur delta))) (ewoc-invalidate colorcomp-ewoc (ewoc-nth colorcomp-ewoc index) (ewoc-nth colorcomp-ewoc -1)))) (defun colorcomp-R-more () (interactive) (colorcomp-mod 0 255 1)) (defun colorcomp-G-more () (interactive) (colorcomp-mod 1 255 1)) (defun colorcomp-B-more () (interactive) (colorcomp-mod 2 255 1)) (defun colorcomp-R-less () (interactive) (colorcomp-mod 0 0 -1)) (defun colorcomp-G-less () (interactive) (colorcomp-mod 1 0 -1)) (defun colorcomp-B-less () (interactive) (colorcomp-mod 2 0 -1)) (defun colorcomp-copy-as-kill-and-exit () "Copy the color components into the kill ring and kill the buffer. The string is formatted #RRGGBB (hash followed by six hex digits)." (interactive) (kill-new (format "#%02X%02X%02X" (aref colorcomp-data 0) (aref colorcomp-data 1) (aref colorcomp-data 2))) (kill-buffer nil)) (setq colorcomp-mode-map (let ((m (make-sparse-keymap))) (suppress-keymap m) (define-key m "i" 'colorcomp-R-less) (define-key m "o" 'colorcomp-R-more) (define-key m "k" 'colorcomp-G-less) (define-key m "l" 'colorcomp-G-more) (define-key m "," 'colorcomp-B-less) (define-key m "." 'colorcomp-B-more) (define-key m " " 'colorcomp-copy-as-kill-and-exit) m)) @end smallexample Note that we never modify the data in each node, which is fixed when the ewoc is created to be either @code{nil} or an index into the vector @code{colorcomp-data}, the actual color components. @node Blinking @section Blinking Parentheses @cindex parenthesis matching @cindex blinking parentheses @cindex balancing parentheses This section describes the mechanism by which Emacs shows a matching open parenthesis when the user inserts a close parenthesis. @defvar blink-paren-function The value of this variable should be a function (of no arguments) to be called whenever a character with close parenthesis syntax is inserted. The value of @code{blink-paren-function} may be @code{nil}, in which case nothing is done. @end defvar @defopt blink-matching-paren If this variable is @code{nil}, then @code{blink-matching-open} does nothing. @end defopt @defopt blink-matching-paren-distance This variable specifies the maximum distance to scan for a matching parenthesis before giving up. @end defopt @defopt blink-matching-delay This variable specifies the number of seconds to keep indicating the matching parenthesis. A fraction of a second often gives good results, but the default is 1, which works on all systems. @end defopt @deffn Command blink-matching-open This function is the default value of @code{blink-paren-function}. It assumes that point follows a character with close parenthesis syntax and applies the appropriate effect momentarily to the matching opening character. If that character is not already on the screen, it displays the character's context in the echo area. To avoid long delays, this function does not search farther than @code{blink-matching-paren-distance} characters. Here is an example of calling this function explicitly. @smallexample @group (defun interactive-blink-matching-open () "Indicate momentarily the start of parenthesized sexp before point." (interactive) @end group @group (let ((blink-matching-paren-distance (buffer-size)) (blink-matching-paren t)) (blink-matching-open))) @end group @end smallexample @end deffn @node Character Display @section Character Display This section describes how characters are actually displayed by Emacs. Typically, a character is displayed as a @dfn{glyph} (a graphical symbol which occupies one character position on the screen), whose appearance corresponds to the character itself. For example, the character @samp{a} (character code 97) is displayed as @samp{a}. Some characters, however, are displayed specially. For example, the formfeed character (character code 12) is usually displayed as a sequence of two glyphs, @samp{^L}, while the newline character (character code 10) starts a new screen line. You can modify how each character is displayed by defining a @dfn{display table}, which maps each character code into a sequence of glyphs. @xref{Display Tables}. @menu * Usual Display:: The usual conventions for displaying characters. * Display Tables:: What a display table consists of. * Active Display Table:: How Emacs selects a display table to use. * Glyphs:: How to define a glyph, and what glyphs mean. * Glyphless Chars:: How glyphless characters are drawn. @end menu @node Usual Display @subsection Usual Display Conventions Here are the conventions for displaying each character code (in the absence of a display table, which can override these @iftex conventions). @end iftex @ifnottex conventions; @pxref{Display Tables}). @end ifnottex @cindex printable ASCII characters @itemize @bullet @item The @dfn{printable @acronym{ASCII} characters}, character codes 32 through 126 (consisting of numerals, English letters, and symbols like @samp{#}) are displayed literally. @item The tab character (character code 9) displays as whitespace stretching up to the next tab stop column. @xref{Text Display,,, emacs, The GNU Emacs Manual}. The variable @code{tab-width} controls the number of spaces per tab stop (see below). @item The newline character (character code 10) has a special effect: it ends the preceding line and starts a new line. @cindex ASCII control characters @item The non-printable @dfn{@acronym{ASCII} control characters}---character codes 0 through 31, as well as the @key{DEL} character (character code 127)---display in one of two ways according to the variable @code{ctl-arrow}. If this variable is non-@code{nil} (the default), these characters are displayed as sequences of two glyphs, where the first glyph is @samp{^} (a display table can specify a glyph to use instead of @samp{^}); e.g., the @key{DEL} character is displayed as @samp{^?}. If @code{ctl-arrow} is @code{nil}, these characters are displayed as octal escapes (see below). This rule also applies to carriage return (character code 13), if that character appears in the buffer. But carriage returns usually do not appear in buffer text; they are eliminated as part of end-of-line conversion (@pxref{Coding System Basics}). @cindex octal escapes @item @dfn{Raw bytes} are non-@acronym{ASCII} characters with codes 128 through 255 (@pxref{Text Representations}). These characters display as @dfn{octal escapes}: sequences of four glyphs, where the first glyph is the @acronym{ASCII} code for @samp{\}, and the others are digit characters representing the character code in octal. (A display table can specify a glyph to use instead of @samp{\}.) @item Each non-@acronym{ASCII} character with code above 255 is displayed literally, if the terminal supports it. If the terminal does not support it, the character is said to be @dfn{glyphless}, and it is usually displayed using a placeholder glyph. For example, if a graphical terminal has no font for a character, Emacs usually displays a box containing the character code in hexadecimal. @xref{Glyphless Chars}. @end itemize The above display conventions apply even when there is a display table, for any character whose entry in the active display table is @code{nil}. Thus, when you set up a display table, you need only specify the characters for which you want special behavior. The following variables affect how certain characters are displayed on the screen. Since they change the number of columns the characters occupy, they also affect the indentation functions. They also affect how the mode line is displayed; if you want to force redisplay of the mode line using the new values, call the function @code{force-mode-line-update} (@pxref{Mode Line Format}). @defopt ctl-arrow @cindex control characters in display This buffer-local variable controls how control characters are displayed. If it is non-@code{nil}, they are displayed as a caret followed by the character: @samp{^A}. If it is @code{nil}, they are displayed as octal escapes: a backslash followed by three octal digits, as in @samp{\001}. @end defopt @defopt tab-width The value of this buffer-local variable is the spacing between tab stops used for displaying tab characters in Emacs buffers. The value is in units of columns, and the default is 8. Note that this feature is completely independent of the user-settable tab stops used by the command @code{tab-to-tab-stop}. @xref{Indent Tabs}. @end defopt @node Display Tables @subsection Display Tables @cindex display table A display table is a special-purpose char-table (@pxref{Char-Tables}), with @code{display-table} as its subtype, which is used to override the usual character display conventions. This section describes how to make, inspect, and assign elements to a display table object. @defun make-display-table This creates and returns a display table. The table initially has @code{nil} in all elements. @end defun The ordinary elements of the display table are indexed by character codes; the element at index @var{c} says how to display the character code @var{c}. The value should be @code{nil} (which means to display the character @var{c} according to the usual display conventions; @pxref{Usual Display}), or a vector of glyph codes (which means to display the character @var{c} as those glyphs; @pxref{Glyphs}). @strong{Warning:} if you use the display table to change the display of newline characters, the whole buffer will be displayed as one long line. The display table also has six @dfn{extra slots} which serve special purposes. Here is a table of their meanings; @code{nil} in any slot means to use the default for that slot, as stated below. @table @asis @item 0 The glyph for the end of a truncated screen line (the default for this is @samp{$}). @xref{Glyphs}. On graphical terminals, Emacs by default uses arrows in the fringes to indicate truncation, so the display table has no effect, unless you disable the fringes (@pxref{Fringes,, Window Fringes, emacs, the GNU Emacs Manual}). @item 1 The glyph for the end of a continued line (the default is @samp{\}). On graphical terminals, Emacs by default uses curved arrows in the fringes to indicate continuation, so the display table has no effect, unless you disable the fringes. @item 2 The glyph for indicating a character displayed as an octal character code (the default is @samp{\}). @item 3 The glyph for indicating a control character (the default is @samp{^}). @item 4 A vector of glyphs for indicating the presence of invisible lines (the default is @samp{...}). @xref{Selective Display}. @item 5 The glyph used to draw the border between side-by-side windows (the default is @samp{|}). @xref{Splitting Windows}. This currently has effect only on text terminals; on graphical terminals, if vertical scroll bars are supported and in use, a scroll bar separates the two windows, and if there are no vertical scroll bars and no dividers (@pxref{Window Dividers}), Emacs uses a thin line to indicate the border. @end table For example, here is how to construct a display table that mimics the effect of setting @code{ctl-arrow} to a non-@code{nil} value (@pxref{Glyphs}, for the function @code{make-glyph-code}): @example (setq disptab (make-display-table)) (dotimes (i 32) (or (= i ?\t) (= i ?\n) (aset disptab i (vector (make-glyph-code ?^ 'escape-glyph) (make-glyph-code (+ i 64) 'escape-glyph))))) (aset disptab 127 (vector (make-glyph-code ?^ 'escape-glyph) (make-glyph-code ?? 'escape-glyph))))) @end example @defun display-table-slot display-table slot This function returns the value of the extra slot @var{slot} of @var{display-table}. The argument @var{slot} may be a number from 0 to 5 inclusive, or a slot name (symbol). Valid symbols are @code{truncation}, @code{wrap}, @code{escape}, @code{control}, @code{selective-display}, and @code{vertical-border}. @end defun @defun set-display-table-slot display-table slot value This function stores @var{value} in the extra slot @var{slot} of @var{display-table}. The argument @var{slot} may be a number from 0 to 5 inclusive, or a slot name (symbol). Valid symbols are @code{truncation}, @code{wrap}, @code{escape}, @code{control}, @code{selective-display}, and @code{vertical-border}. @end defun @defun describe-display-table display-table This function displays a description of the display table @var{display-table} in a help buffer. @end defun @deffn Command describe-current-display-table This command displays a description of the current display table in a help buffer. @end deffn @node Active Display Table @subsection Active Display Table @cindex active display table Each window can specify a display table, and so can each buffer. The window's display table, if there is one, takes precedence over the buffer's display table. If neither exists, Emacs tries to use the standard display table; if that is @code{nil}, Emacs uses the usual character display conventions (@pxref{Usual Display}). Note that display tables affect how the mode line is displayed, so if you want to force redisplay of the mode line using a new display table, call @code{force-mode-line-update} (@pxref{Mode Line Format}). @defun window-display-table &optional window This function returns @var{window}'s display table, or @code{nil} if there is none. The default for @var{window} is the selected window. @end defun @defun set-window-display-table window table This function sets the display table of @var{window} to @var{table}. The argument @var{table} should be either a display table or @code{nil}. @end defun @defvar buffer-display-table This variable is automatically buffer-local in all buffers; its value specifies the buffer's display table. If it is @code{nil}, there is no buffer display table. @end defvar @defvar standard-display-table The value of this variable is the standard display table, which is used when Emacs is displaying a buffer in a window with neither a window display table nor a buffer display table defined, or when Emacs is outputting text to the standard output or error streams. Although its default is typically @code{nil}, in an interactive session if the terminal cannot display curved quotes, its default maps curved quotes to ASCII approximations. @xref{Text Quoting Style}. @end defvar The @file{disp-table} library defines several functions for changing the standard display table. @node Glyphs @subsection Glyphs @cindex glyph @cindex glyph code A @dfn{glyph} is a graphical symbol which occupies a single character position on the screen. Each glyph is represented in Lisp as a @dfn{glyph code}, which specifies a character and optionally a face to display it in (@pxref{Faces}). The main use of glyph codes is as the entries of display tables (@pxref{Display Tables}). The following functions are used to manipulate glyph codes: @defun make-glyph-code char &optional face This function returns a glyph code representing char @var{char} with face @var{face}. If @var{face} is omitted or @code{nil}, the glyph uses the default face; in that case, the glyph code is an integer. If @var{face} is non-@code{nil}, the glyph code is not necessarily an integer object. @end defun @defun glyph-char glyph This function returns the character of glyph code @var{glyph}. @end defun @defun glyph-face glyph This function returns face of glyph code @var{glyph}, or @code{nil} if @var{glyph} uses the default face. @end defun @ifnottex You can set up a @dfn{glyph table} to change how glyph codes are actually displayed on text terminals. This feature is semi-obsolete; use @code{glyphless-char-display} instead (@pxref{Glyphless Chars}). @defvar glyph-table The value of this variable, if non-@code{nil}, is the current glyph table. It takes effect only on character terminals; on graphical displays, all glyphs are displayed literally. The glyph table should be a vector whose @var{g}th element specifies how to display glyph code @var{g}, where @var{g} is the glyph code for a glyph whose face is unspecified. Each element should be one of the following: @table @asis @item @code{nil} Display this glyph literally. @item a string Display this glyph by sending the specified string to the terminal. @item a glyph code Display the specified glyph code instead. @end table Any integer glyph code greater than or equal to the length of the glyph table is displayed literally. @end defvar @end ifnottex @node Glyphless Chars @subsection Glyphless Character Display @cindex glyphless characters @dfn{Glyphless characters} are characters which are displayed in a special way, e.g., as a box containing a hexadecimal code, instead of being displayed literally. These include characters which are explicitly defined to be glyphless, as well as characters for which there is no available font (on a graphical display), and characters which cannot be encoded by the terminal's coding system (on a text terminal). @defvar glyphless-char-display The value of this variable is a char-table which defines glyphless characters and how they are displayed. Each entry must be one of the following display methods: @table @asis @item @code{nil} Display the character in the usual way. @item @code{zero-width} Don't display the character. @item @code{thin-space} Display a thin space, 1-pixel wide on graphical displays, or 1-character wide on text terminals. @item @code{empty-box} Display an empty box. @item @code{hex-code} Display a box containing the Unicode codepoint of the character, in hexadecimal notation. @item an @acronym{ASCII} string Display a box containing that string. The string should contain at most 6 @acronym{ASCII} characters. @item a cons cell @code{(@var{graphical} . @var{text})} Display with @var{graphical} on graphical displays, and with @var{text} on text terminals. Both @var{graphical} and @var{text} must be one of the display methods described above. @end table @noindent The @code{thin-space}, @code{empty-box}, @code{hex-code}, and @acronym{ASCII} string display methods are drawn with the @code{glyphless-char} face. On text terminals, a box is emulated by square brackets, @samp{[]}. The char-table has one extra slot, which determines how to display any character that cannot be displayed with any available font, or cannot be encoded by the terminal's coding system. Its value should be one of the above display methods, except @code{zero-width} or a cons cell. If a character has a non-@code{nil} entry in an active display table, the display table takes effect; in this case, Emacs does not consult @code{glyphless-char-display} at all. @end defvar @defopt glyphless-char-display-control This user option provides a convenient way to set @code{glyphless-char-display} for groups of similar characters. Do not set its value directly from Lisp code; the value takes effect only via a custom @code{:set} function (@pxref{Variable Definitions}), which updates @code{glyphless-char-display}. Its value should be an alist of elements @code{(@var{group} . @var{method})}, where @var{group} is a symbol specifying a group of characters, and @var{method} is a symbol specifying how to display them. @var{group} should be one of the following: @table @code @item c0-control @acronym{ASCII} control characters @code{U+0000} to @code{U+001F}, excluding the newline and tab characters (normally displayed as escape sequences like @samp{^A}; @pxref{Text Display,, How Text Is Displayed, emacs, The GNU Emacs Manual}). @item c1-control Non-@acronym{ASCII}, non-printing characters @code{U+0080} to @code{U+009F} (normally displayed as octal escape sequences like @samp{\230}). @item format-control Characters of Unicode General Category [Cf], such as @samp{U+200E} (Left-to-Right Mark), but excluding characters that have graphic images, such as @samp{U+00AD} (Soft Hyphen). @item no-font Characters for which there is no suitable font, or which cannot be encoded by the terminal's coding system. @end table @c FIXME: this can also be 'acronym', but that's not currently @c completely implemented; it applies only to the format-control @c group, and only works if the acronym is in 'char-acronym-table'. The @var{method} symbol should be one of @code{zero-width}, @code{thin-space}, @code{empty-box}, or @code{hex-code}. These have the same meanings as in @code{glyphless-char-display}, above. @end defopt @node Beeping @section Beeping @cindex bell This section describes how to make Emacs ring the bell (or blink the screen) to attract the user's attention. Be conservative about how often you do this; frequent bells can become irritating. Also be careful not to use just beeping when signaling an error is more appropriate (@pxref{Errors}). @defun ding &optional do-not-terminate @cindex keyboard macro termination This function beeps, or flashes the screen (see @code{visible-bell} below). It also terminates any keyboard macro currently executing unless @var{do-not-terminate} is non-@code{nil}. @end defun @defun beep &optional do-not-terminate This is a synonym for @code{ding}. @end defun @defopt visible-bell This variable determines whether Emacs should flash the screen to represent a bell. Non-@code{nil} means yes, @code{nil} means no. This is effective on graphical displays, and on text terminals provided the terminal's Termcap entry defines the visible bell capability (@samp{vb}). @end defopt @defopt ring-bell-function If this is non-@code{nil}, it specifies how Emacs should ring the bell. Its value should be a function of no arguments. If this is non-@code{nil}, it takes precedence over the @code{visible-bell} variable. @end defopt @node Window Systems @section Window Systems Emacs works with several window systems, most notably the X Window System. Both Emacs and X use the term ``window'', but use it differently. An Emacs frame is a single window as far as X is concerned; the individual Emacs windows are not known to X at all. @defvar window-system This terminal-local variable tells Lisp programs what window system Emacs is using for displaying the frame. The possible values are @table @code @item x @cindex X Window System Emacs is displaying the frame using X. @item w32 Emacs is displaying the frame using native MS-Windows GUI. @item ns Emacs is displaying the frame using the Nextstep interface (used on GNUstep and macOS). @item pc Emacs is displaying the frame using MS-DOS direct screen writes. @item nil Emacs is displaying the frame on a character-based terminal. @end table @end defvar @defvar initial-window-system This variable holds the value of @code{window-system} used for the first frame created by Emacs during startup. (When Emacs is invoked as a daemon, it does not create any initial frames, so @code{initial-window-system} is @code{nil}, except on MS-Windows, where it is still @code{w32}. @xref{Initial Options, daemon,, emacs, The GNU Emacs Manual}.) @end defvar @defun window-system &optional frame This function returns a symbol whose name tells what window system is used for displaying @var{frame} (which defaults to the currently selected frame). The list of possible symbols it returns is the same one documented for the variable @code{window-system} above. @end defun Do @emph{not} use @code{window-system} and @code{initial-window-system} as predicates or boolean flag variables, if you want to write code that works differently on text terminals and graphic displays. That is because @code{window-system} is not a good indicator of Emacs capabilities on a given display type. Instead, use @code{display-graphic-p} or any of the other @code{display-*-p} predicates described in @ref{Display Feature Testing}. @node Tooltips @section Tooltips @cindex tooltips @dfn{Tooltips} are special frames (@pxref{Frames}) that are used to display helpful hints (a.k.a.@: ``tips'') related to the current position of the mouse pointer. Emacs uses tooltips to display help strings about active portions of text (@pxref{Special Properties}) and about various UI elements, such as menu items (@pxref{Extended Menu Items}) and tool-bar buttons (@pxref{Tool Bar}). @defun tooltip-mode Tooltip Mode is a minor mode that enables display of tooltips. Turning off this mode causes the tooltips be displayed in the echo area. On text-mode (a.k.a.@: ``TTY'') frames, tooltips are always displayed in the echo area. @end defun @vindex x-gtk-use-system-tooltips When Emacs is built with GTK+ support, it by default displays tooltips using GTK+ functions, and the appearance of the tooltips is then controlled by GTK+ settings. GTK+ tooltips can be disabled by changing the value of the variable @code{x-gtk-use-system-tooltips} to @code{nil}. The rest of this subsection describes how to control non-GTK+ tooltips, which are presented by Emacs itself. @cindex tooltip frames Tooltips are displayed in special frames called tooltip frames, which have their own frame parameters (@pxref{Frame Parameters}). Unlike other frames, the default parameters for tooltip frames are stored in a special variable. @defopt tooltip-frame-parameters This customizable option holds the default frame parameters used for displaying tooltips. Any font and color parameters are ignored, and the corresponding attributes of the @code{tooltip} face are used instead. If @code{left} or @code{top} parameters are included, they are used as absolute frame-relative coordinates where the tooltip should be shown. (Mouse-relative position of the tooltip can be customized using the variables described in @ref{Tooltips,,, emacs, The GNU Emacs Manual}.) Note that the @code{left} and @code{top} parameters, if present, override the values of mouse-relative offsets. @end defopt @vindex tooltip@r{ face} The @code{tooltip} face determines the appearance of text shown in tooltips. It should generally use a variable-pitch font of size that is preferably smaller than the default frame font. @findex tooltip-help-tips @defvar tooltip-functions This abnormal hook is a list of functions to call when Emacs needs to display a tooltip. Each function is called with a single argument @var{event} which is a copy of the last mouse movement event. If a function on this list actually displays the tooltip, it should return non-@code{nil}, and then the rest of the functions will not be called. The default value of this variable is a single function @code{tooltip-help-tips}. @end defvar If you write your own function to be put on the @code{tooltip-functions} list, you may need to know the buffer of the mouse event that triggered the tooltip display. The following function provides that information. @defun tooltip-event-buffer event This function returns the buffer over which @var{event} occurred. Call it with the argument of the function from @code{tooltip-functions} to obtain the buffer whose text triggered the tooltip. Note that the event might occur not over a buffer (e.g., over the tool bar), in which case this function will return @code{nil}. @end defun Other aspects of tooltip display are controlled by several customizable settings; see @ref{Tooltips,,, emacs, The GNU Emacs Manual}. @node Bidirectional Display @section Bidirectional Display @cindex bidirectional display @cindex right-to-left text Emacs can display text written in scripts, such as Arabic, Farsi, and Hebrew, whose natural ordering for horizontal text display runs from right to left. Furthermore, segments of Latin script and digits embedded in right-to-left text are displayed left-to-right, while segments of right-to-left script embedded in left-to-right text (e.g., Arabic or Hebrew text in comments or strings in a program source file) are appropriately displayed right-to-left. We call such mixtures of left-to-right and right-to-left text @dfn{bidirectional text}. This section describes the facilities and options for editing and displaying bidirectional text. @cindex logical order @cindex reading order @cindex visual order @cindex unicode bidirectional algorithm @cindex UBA @cindex bidirectional reordering @cindex reordering, of bidirectional text Text is stored in Emacs buffers and strings in @dfn{logical} (or @dfn{reading}) order, i.e., the order in which a human would read each character. In right-to-left and bidirectional text, the order in which characters are displayed on the screen (called @dfn{visual order}) is not the same as logical order; the characters' screen positions do not increase monotonically with string or buffer position. In performing this @dfn{bidirectional reordering}, Emacs follows the Unicode Bidirectional Algorithm (a.k.a.@: @acronym{UBA}), which is described in Annex #9 of the Unicode standard (@url{http://www.unicode.org/reports/tr9/}). Emacs provides a ``Full Bidirectionality'' class implementation of the @acronym{UBA}, consistent with the requirements of the Unicode Standard v9.0. Note, however, that the way Emacs displays continuation lines when text direction is opposite to the base paragraph direction deviates from the UBA, which requires to perform line wrapping before reordering text for display. @defvar bidi-display-reordering If the value of this buffer-local variable is non-@code{nil} (the default), Emacs performs bidirectional reordering for display. The reordering affects buffer text, as well as display strings and overlay strings from text and overlay properties in the buffer (@pxref{Overlay Properties}, and @pxref{Display Property}). If the value is @code{nil}, Emacs does not perform bidirectional reordering in the buffer. The default value of @code{bidi-display-reordering} controls the reordering of strings which are not directly supplied by a buffer, including the text displayed in mode lines (@pxref{Mode Line Format}) and header lines (@pxref{Header Lines}). @end defvar @cindex unibyte buffers, and bidi reordering Emacs never reorders the text of a unibyte buffer, even if @code{bidi-display-reordering} is non-@code{nil} in the buffer. This is because unibyte buffers contain raw bytes, not characters, and thus lack the directionality properties required for reordering. Therefore, to test whether text in a buffer will be reordered for display, it is not enough to test the value of @code{bidi-display-reordering} alone. The correct test is this: @example (if (and enable-multibyte-characters bidi-display-reordering) ;; Buffer is being reordered for display ) @end example However, unibyte display and overlay strings @emph{are} reordered if their parent buffer is reordered. This is because plain-@sc{ascii} strings are stored by Emacs as unibyte strings. If a unibyte display or overlay string includes non-@sc{ascii} characters, these characters are assumed to have left-to-right direction. @cindex display properties, and bidi reordering of text Text covered by @code{display} text properties, by overlays with @code{display} properties whose value is a string, and by any other properties that replace buffer text, is treated as a single unit when it is reordered for display. That is, the entire chunk of text covered by these properties is reordered together. Moreover, the bidirectional properties of the characters in such a chunk of text are ignored, and Emacs reorders them as if they were replaced with a single character @code{U+FFFC}, known as the @dfn{Object Replacement Character}. This means that placing a display property over a portion of text may change the way that the surrounding text is reordered for display. To prevent this unexpected effect, always place such properties on text whose directionality is identical with text that surrounds it. @cindex base direction of a paragraph Each paragraph of bidirectional text has a @dfn{base direction}, either right-to-left or left-to-right. Left-to-right paragraphs are displayed beginning at the left margin of the window, and are truncated or continued when the text reaches the right margin. Right-to-left paragraphs are displayed beginning at the right margin, and are continued or truncated at the left margin. @cindex paragraph-start, and bidirectional display @cindex paragraph-separate, and bidirectional display Where exactly paragraphs start and end, for the purpose of the Emacs @acronym{UBA} implementation, is determined by the following two buffer-local variables (note that @code{paragraph-start} and @code{paragraph-separate} have no influence on this). By default both of these variables are @code{nil}, and paragraphs are bounded by empty lines, i.e., lines that consist entirely of zero or more whitespace characters followed by a newline. @defvar bidi-paragraph-start-re If non-@code{nil}, this variable's value should be a regular expression matching a line that starts or separates two paragraphs. The regular expression is always matched after a newline, so it is best to anchor it, i.e., begin it with a @code{"^"}. @end defvar @defvar bidi-paragraph-separate-re If non-@code{nil}, this variable's value should be a regular expression matching a line separates two paragraphs. The regular expression is always matched after a newline, so it is best to anchor it, i.e., begin it with a @code{"^"}. @end defvar If you modify any of these two variables, you should normally modify both, to make sure they describe paragraphs consistently. For example, to have each new line start a new paragraph for bidi-reordering purposes, set both variables to @code{"^"}. By default, Emacs determines the base direction of each paragraph by looking at the text at its beginning. The precise method of determining the base direction is specified by the @acronym{UBA}; in a nutshell, the first character in a paragraph that has an explicit directionality determines the base direction of the paragraph. However, sometimes a buffer may need to force a certain base direction for its paragraphs. For example, buffers containing program source code should force all paragraphs to be displayed left-to-right. You can use following variable to do this: @defopt bidi-paragraph-direction If the value of this buffer-local variable is the symbol @code{right-to-left} or @code{left-to-right}, all paragraphs in the buffer are assumed to have that specified direction. Any other value is equivalent to @code{nil} (the default), which means to determine the base direction of each paragraph from its contents. @cindex @code{prog-mode}, and @code{bidi-paragraph-direction} Modes for program source code should set this to @code{left-to-right}. Prog mode does this by default, so modes derived from Prog mode do not need to set this explicitly (@pxref{Basic Major Modes}). @end defopt @defun current-bidi-paragraph-direction &optional buffer This function returns the paragraph direction at point in the named @var{buffer}. The returned value is a symbol, either @code{left-to-right} or @code{right-to-left}. If @var{buffer} is omitted or @code{nil}, it defaults to the current buffer. If the buffer-local value of the variable @code{bidi-paragraph-direction} is non-@code{nil}, the returned value will be identical to that value; otherwise, the returned value reflects the paragraph direction determined dynamically by Emacs. For buffers whose value of @code{bidi-display-reordering} is @code{nil} as well as unibyte buffers, this function always returns @code{left-to-right}. @end defun @cindex visual-order cursor motion Sometimes there's a need to move point in strict visual order, either to the left or to the right of its current screen position. Emacs provides a primitive to do that. @defun move-point-visually direction This function moves point of the currently selected window to the buffer position that appears immediately to the right or to the left of point on the screen. If @var{direction} is positive, point will move one screen position to the right, otherwise it will move one screen position to the left. Note that, depending on the surrounding bidirectional context, this could potentially move point many buffer positions away. If invoked at the end of a screen line, the function moves point to the rightmost or leftmost screen position of the next or previous screen line, as appropriate for the value of @var{direction}. The function returns the new buffer position as its value. @end defun @cindex layout on display, and bidirectional text @cindex jumbled display of bidirectional text @cindex concatenating bidirectional strings Bidirectional reordering can have surprising and unpleasant effects when two strings with bidirectional content are juxtaposed in a buffer, or otherwise programmatically concatenated into a string of text. A typical problematic case is when a buffer consists of sequences of text fields separated by whitespace or punctuation characters, like Buffer Menu mode or Rmail Summary Mode. Because the punctuation characters used as separators have @dfn{weak directionality}, they take on the directionality of surrounding text. As result, a numeric field that follows a field with bidirectional content can be displayed @emph{to the left} of the preceding field, messing up the expected layout. There are several ways to avoid this problem: @itemize @minus @item Append the special character @code{U+200E}, LEFT-TO-RIGHT MARK, or @acronym{LRM}, to the end of each field that may have bidirectional content, or prepend it to the beginning of the following field. The function @code{bidi-string-mark-left-to-right}, described below, comes in handy for this purpose. (In a right-to-left paragraph, use @code{U+200F}, RIGHT-TO-LEFT MARK, or @acronym{RLM}, instead.) This is one of the solutions recommended by the UBA. @item Include the tab character in the field separator. The tab character plays the role of @dfn{segment separator} in bidirectional reordering, causing the text on either side to be reordered separately. @cindex @code{space} display spec, and bidirectional text @item Separate fields with a @code{display} property or overlay with a property value of the form @code{(space . PROPS)} (@pxref{Specified Space}). Emacs treats this display specification as a @dfn{paragraph separator}, and reorders the text on either side separately. @end itemize @defun bidi-string-mark-left-to-right string This function returns its argument @var{string}, possibly modified, such that the result can be safely concatenated with another string, or juxtaposed with another string in a buffer, without disrupting the relative layout of this string and the next one on display. If the string returned by this function is displayed as part of a left-to-right paragraph, it will always appear on display to the left of the text that follows it. The function works by examining the characters of its argument, and if any of those characters could cause reordering on display, the function appends the @acronym{LRM} character to the string. The appended @acronym{LRM} character is made invisible by giving it an @code{invisible} text property of @code{t} (@pxref{Invisible Text}). @end defun The reordering algorithm uses the bidirectional properties of the characters stored as their @code{bidi-class} property (@pxref{Character Properties}). Lisp programs can change these properties by calling the @code{put-char-code-property} function. However, doing this requires a thorough understanding of the @acronym{UBA}, and is therefore not recommended. Any changes to the bidirectional properties of a character have global effect: they affect all Emacs frames and windows. Similarly, the @code{mirroring} property is used to display the appropriate mirrored character in the reordered text. Lisp programs can affect the mirrored display by changing this property. Again, any such changes affect all of Emacs display. @cindex overriding bidirectional properties @cindex directional overrides @cindex LRO @cindex RLO The bidirectional properties of characters can be overridden by inserting into the text special directional control characters, LEFT-TO-RIGHT OVERRIDE (@acronym{LRO}) and RIGHT-TO-LEFT OVERRIDE (@acronym{RLO}). Any characters between a @acronym{RLO} and the following newline or POP DIRECTIONAL FORMATTING (@acronym{PDF}) control character, whichever comes first, will be displayed as if they were strong right-to-left characters, i.e.@: they will be reversed on display. Similarly, any characters between @acronym{LRO} and @acronym{PDF} or newline will display as if they were strong left-to-right, and will @emph{not} be reversed even if they are strong right-to-left characters. @cindex phishing using directional overrides @cindex malicious use of directional overrides These overrides are useful when you want to make some text unaffected by the reordering algorithm, and instead directly control the display order. But they can also be used for malicious purposes, known as @dfn{phishing}. Specifically, a URL on a Web page or a link in an email message can be manipulated to make its visual appearance unrecognizable, or similar to some popular benign location, while the real location, interpreted by a browser in the logical order, is very different. Emacs provides a primitive that applications can use to detect instances of text whose bidirectional properties were overridden so as to make a left-to-right character display as if it were a right-to-left character, or vise versa. @defun bidi-find-overridden-directionality from to &optional object This function looks at the text of the specified @var{object} between positions @var{from} (inclusive) and @var{to} (exclusive), and returns the first position where it finds a strong left-to-right character whose directional properties were forced to display the character as right-to-left, or for a strong right-to-left character that was forced to display as left-to-right. If it finds no such characters in the specified region of text, it returns @code{nil}. The optional argument @var{object} specifies which text to search, and defaults to the current buffer. If @var{object} is non-@code{nil}, it can be some other buffer, or it can be a string or a window. If it is a string, the function searches that string. If it is a window, the function searches the buffer displayed in that window. If a buffer whose text you want to examine is displayed in some window, we recommend to specify it by that window, rather than pass the buffer to the function. This is because telling the function about the window allows it to correctly account for window-specific overlays, which might change the result of the function if some text in the buffer is covered by overlays. @end defun @cindex copying bidirectional text, preserve visual order @cindex visual order, preserve when copying bidirectional text When text that includes mixed right-to-left and left-to-right characters and bidirectional controls is copied into a different location, it can change its visual appearance, and also can affect the visual appearance of the surrounding text at destination. This is because reordering of bidirectional text specified by the @acronym{UBA} has non-trivial context-dependent effects both on the copied text and on the text at copy destination that will surround it. Sometimes, a Lisp program may need to preserve the exact visual appearance of the copied text at destination, and of the text that surrounds the copy. Lisp programs can use the following function to achieve that effect. @defun buffer-substring-with-bidi-context start end &optional no-properties This function works similar to @code{buffer-substring} (@pxref{Buffer Contents}), but it prepends and appends to the copied text bidi directional control characters necessary to preserve the visual appearance of the text when it is inserted at another place. Optional argument @var{no-properties}, if non-@code{nil}, means remove the text properties from the copy of the text. @end defun