all messages for Emacs-related lists mirrored at yhetil.org
 help / color / mirror / code / Atom feed
blob ad2244f1dc0be13d00a60d2506e789b355a92646 62009 bytes (raw)
name: test/etags/ps-src/rfc1245.ps 	 # note: path name is non-authoritative(*)

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
 
%!
%%BoundingBox: (atend)
%%Pages: (atend)
%%DocumentFonts: (atend)
%%EndComments
%
% FrameMaker PostScript Prolog 2.0, for use with FrameMaker 2.0
% Copyright (c) 1986,87,89 by Frame Technology, Inc.  All rights reserved.
%
% Known Problems:
%	Due to bugs in Transcript, the 'PS-Adobe-' is omitted from line 1
/FMversion (2.0) def 
% Set up Color vs. Black-and-White
	/FMPrintInColor systemdict /colorimage known def
% Uncomment this line to force b&w on color printer
%   /FMPrintInColor false def
/FrameDict 190 dict def 
systemdict /errordict known not {/errordict 10 dict def
		errordict /rangecheck {stop} put} if
% The readline in 23.0 doesn't recognize cr's as nl's on AppleTalk
FrameDict /tmprangecheck errordict /rangecheck get put 
errordict /rangecheck {FrameDict /bug true put} put 
FrameDict /bug false put 
mark 
% Some PS machines read past the CR, so keep the following 3 lines together!
currentfile 5 string readline
00
0000000000
cleartomark 
errordict /rangecheck FrameDict /tmprangecheck get put 
FrameDict /bug get { 
	/readline {
		/gstring exch def
		/gfile exch def
		/gindex 0 def
		{
			gfile read pop 
			dup 10 eq {exit} if 
			dup 13 eq {exit} if 
			gstring exch gindex exch put 
			/gindex gindex 1 add def 
		} loop
		pop 
		gstring 0 gindex getinterval true 
		} def
	} if
/FMVERSION {
	FMversion ne {
		/Times-Roman findfont 18 scalefont setfont
		100 100 moveto
		(FrameMaker version does not match postscript_prolog!)
		dup =
		show showpage
		} if
	} def 
/FMLOCAL {
	FrameDict begin
	0 def 
	end 
	} def 
	/gstring FMLOCAL
	/gfile FMLOCAL
	/gindex FMLOCAL
	/orgxfer FMLOCAL
	/orgproc FMLOCAL
	/organgle FMLOCAL
	/orgfreq FMLOCAL
	/yscale FMLOCAL
	/xscale FMLOCAL
	/manualfeed FMLOCAL
	/paperheight FMLOCAL
	/paperwidth FMLOCAL
/FMDOCUMENT { 
	array /FMfonts exch def 
	/#copies exch def
	FrameDict begin
	0 ne dup {setmanualfeed} if
	/manualfeed exch def
	/paperheight exch def
	/paperwidth exch def
	setpapername
	manualfeed {true} {papersize} ifelse 
	{manualpapersize} {false} ifelse 
	{desperatepapersize} if
	/yscale exch def
	/xscale exch def
	currenttransfer cvlit /orgxfer exch def
	currentscreen cvlit /orgproc exch def
	/organgle exch def /orgfreq exch def
	end 
	} def 
	/pagesave FMLOCAL
	/orgmatrix FMLOCAL
	/landscape FMLOCAL
/FMBEGINPAGE { 
	FrameDict begin 
	/pagesave save def
	3.86 setmiterlimit
	/landscape exch 0 ne def
	landscape { 
		90 rotate 0 exch neg translate pop 
		}
		{pop pop}
		ifelse
	xscale yscale scale
	/orgmatrix matrix def
	gsave 
	} def 
/FMENDPAGE {
	grestore 
	pagesave restore
	end 
	showpage
	} def 
/FMDEFINEFONT { 
	FrameDict begin
	findfont 
	ReEncode 
	2 index exch 
	definefont exch 
	scalefont 
	FMfonts 3 1 roll 
	put
	end 
	} bind def
/FMNORMALIZEGRAPHICS { 
	newpath
	0.0 0.0 moveto
	1 setlinewidth
	0 setlinecap
	0 0 0 sethsbcolor
	0 setgray 
	} bind def
	/fx FMLOCAL
	/fy FMLOCAL
	/fh FMLOCAL
	/fw FMLOCAL
	/llx FMLOCAL
	/lly FMLOCAL
	/urx FMLOCAL
	/ury FMLOCAL
/FMBEGINEPSF { 
	end 
	/FMEPSF save def 
	/showpage {} def 
	FMNORMALIZEGRAPHICS 
	[/fy /fx /fh /fw /ury /urx /lly /llx] {exch def} forall 
	fx fy translate 
	rotate
	fw urx llx sub div fh ury lly sub div scale 
	llx neg lly neg translate 
	} bind def
/FMENDEPSF {
	FMEPSF restore
	FrameDict begin 
	} bind def
FrameDict begin 
/setmanualfeed {
%%BeginFeature *ManualFeed True
	 statusdict /manualfeed true put
%%EndFeature
	} def
/max {2 copy lt {exch} if pop} bind def
/min {2 copy gt {exch} if pop} bind def
/inch {72 mul} def
/pagedimen { 
	paperheight sub abs 16 lt exch 
	paperwidth sub abs 16 lt and
	{/papername exch def} {pop} ifelse
	} def
	/papersizedict FMLOCAL
/setpapername { 
	/papersizedict 14 dict def 
	papersizedict begin
	/papername /unknown def 
		/Letter 8.5 inch 11.0 inch pagedimen
		/LetterSmall 7.68 inch 10.16 inch pagedimen
		/Tabloid 11.0 inch 17.0 inch pagedimen
		/Ledger 17.0 inch 11.0 inch pagedimen
		/Legal 8.5 inch 14.0 inch pagedimen
		/Statement 5.5 inch 8.5 inch pagedimen
		/Executive 7.5 inch 10.0 inch pagedimen
		/A3 11.69 inch 16.5 inch pagedimen
		/A4 8.26 inch 11.69 inch pagedimen
		/A4Small 7.47 inch 10.85 inch pagedimen
		/B4 10.125 inch 14.33 inch pagedimen
		/B5 7.16 inch 10.125 inch pagedimen
	end
	} def
/papersize {
	papersizedict begin
		/Letter {lettertray} def
		/LetterSmall {lettertray lettersmall} def
		/Tabloid {11x17tray} def
		/Ledger {ledgertray} def
		/Legal {legaltray} def
		/Statement {statementtray} def
		/Executive {executivetray} def
		/A3 {a3tray} def
		/A4 {a4tray} def
		/A4Small {a4tray a4small} def
		/B4 {b4tray} def
		/B5 {b5tray} def
		/unknown {unknown} def
	papersizedict dup papername known {papername} {/unknown} ifelse get
	end
	/FMdicttop countdictstack 1 add def
	statusdict begin stopped end 
	countdictstack -1 FMdicttop {pop end} for
	} def
/manualpapersize {
	papersizedict begin
		/Letter {letter} def
		/LetterSmall {lettersmall} def
		/Tabloid {11x17} def
		/Ledger {ledger} def
		/Legal {legal} def
		/Statement {statement} def
		/Executive {executive} def
		/A3 {a3} def
		/A4 {a4} def
		/A4Small {a4small} def
		/B4 {b4} def
		/B5 {b5} def
		/unknown {unknown} def
	papersizedict dup papername known {papername} {/unknown} ifelse get
	end
	stopped 
	} def
/desperatepapersize {
	statusdict /setpageparams known
		{
		paperwidth paperheight 0 1 
		statusdict begin
		{setpageparams} stopped pop 
		end
		} if
	} def
/savematrix {
	orgmatrix currentmatrix pop
	} bind def
/restorematrix {
	orgmatrix setmatrix
	} bind def
/dmatrix matrix def
/dpi    72 0 dmatrix defaultmatrix dtransform
    dup mul exch   dup mul add   sqrt def
/freq dpi 18.75 div 8 div round dup 0 eq {pop 1} if 8 mul dpi exch div def
/sangle 1 0 dmatrix defaultmatrix dtransform exch atan def
/DiacriticEncoding [
/.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef
/.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef
/.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef
/.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef
/.notdef /.notdef /.notdef /.notdef /space /exclam /quotedbl
/numbersign /dollar /percent /ampersand /quotesingle /parenleft
/parenright /asterisk /plus /comma /hyphen /period /slash /zero /one
/two /three /four /five /six /seven /eight /nine /colon /semicolon
/less /equal /greater /question /at /A /B /C /D /E /F /G /H /I /J /K
/L /M /N /O /P /Q /R /S /T /U /V /W /X /Y /Z /bracketleft /backslash
/bracketright /asciicircum /underscore /grave /a /b /c /d /e /f /g /h
/i /j /k /l /m /n /o /p /q /r /s /t /u /v /w /x /y /z /braceleft /bar
/braceright /asciitilde /.notdef /Adieresis /Aring /Ccedilla /Eacute
/Ntilde /Odieresis /Udieresis /aacute /agrave /acircumflex /adieresis
/atilde /aring /ccedilla /eacute /egrave /ecircumflex /edieresis
/iacute /igrave /icircumflex /idieresis /ntilde /oacute /ograve
/ocircumflex /odieresis /otilde /uacute /ugrave /ucircumflex
/udieresis /dagger /.notdef /cent /sterling /section /bullet
/paragraph /germandbls /registered /copyright /trademark /acute
/dieresis /.notdef /AE /Oslash /.notdef /.notdef /.notdef /.notdef
/yen /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef
/ordfeminine /ordmasculine /.notdef /ae /oslash /questiondown
/exclamdown /logicalnot /.notdef /florin /.notdef /.notdef
/guillemotleft /guillemotright /ellipsis /.notdef /Agrave /Atilde
/Otilde /OE /oe /endash /emdash /quotedblleft /quotedblright
/quoteleft /quoteright /.notdef /.notdef /ydieresis /Ydieresis
/fraction /currency /guilsinglleft /guilsinglright /fi /fl /daggerdbl
/periodcentered /quotesinglbase /quotedblbase /perthousand
/Acircumflex /Ecircumflex /Aacute /Edieresis /Egrave /Iacute
/Icircumflex /Idieresis /Igrave /Oacute /Ocircumflex /.notdef /Ograve
/Uacute /Ucircumflex /Ugrave /dotlessi /circumflex /tilde /macron
/breve /dotaccent /ring /cedilla /hungarumlaut /ogonek /caron
] def
/ReEncode { 
	dup 
	length 
	dict begin 
	{
	1 index /FID ne 
		{def} 
		{pop pop} ifelse 
	} forall
	Encoding StandardEncoding eq 
	{
		/Encoding DiacriticEncoding def
	}if
	currentdict 
	end 
	} bind def
/graymode true def
	/bwidth FMLOCAL
	/bpside FMLOCAL
	/bstring FMLOCAL
	/onbits FMLOCAL
	/offbits FMLOCAL
	/xindex FMLOCAL
	/yindex FMLOCAL
	/x FMLOCAL
	/y FMLOCAL
/setpattern {
	 /bwidth  exch def
	 /bpside  exch def
	 /bstring exch def
	 /onbits 0 def  /offbits 0 def
	 freq sangle landscape {90 add} if 
		{/y exch def
		 /x exch def
		 /xindex x 1 add 2 div bpside mul cvi def
		 /yindex y 1 add 2 div bpside mul cvi def
		 bstring yindex bwidth mul xindex 8 idiv add get
		 1 7 xindex 8 mod sub bitshift and 0 ne
		 {/onbits  onbits  1 add def 1}
		 {/offbits offbits 1 add def 0}
		 ifelse
		}
		setscreen
	 {} settransfer
	 offbits offbits onbits add div FMsetgray
	/graymode false def
	} bind def
/grayness {
	FMsetgray
	graymode not {
		/graymode true def
		orgxfer cvx settransfer
		orgfreq organgle orgproc cvx setscreen
		} if
	} bind def
	/HUE FMLOCAL
	/SAT FMLOCAL
	/BRIGHT FMLOCAL
	/Colors FMLOCAL
FMPrintInColor 
	
	{
	/HUE 0 def
	/SAT 0 def
	/BRIGHT 0 def
	% array of arrays Hue and Sat values for the separations [HUE BRIGHT]
	/Colors   
	[[0    0  ]    % black
	 [0    0  ]    % white
	 [0.00 1.0]    % red
	 [0.37 1.0]    % green
	 [0.60 1.0]    % blue
	 [0.50 1.0]    % cyan
	 [0.83 1.0]    % magenta
	 [0.16 1.0]    % comment / yellow
	 ] def
      
	/BEGINBITMAPCOLOR { 
		BITMAPCOLOR} def
	/BEGINBITMAPCOLORc { 
		BITMAPCOLORc} def
	/K { 
		Colors exch get dup
		0 get /HUE exch store 
		1 get /BRIGHT exch store
		  HUE 0 eq BRIGHT 0 eq and
			{1.0 SAT sub setgray}
			{HUE SAT BRIGHT sethsbcolor} 
		  ifelse
		} def
	/FMsetgray { 
		/SAT exch 1.0 exch sub store 
		  HUE 0 eq BRIGHT 0 eq and
			{1.0 SAT sub setgray}
			{HUE SAT BRIGHT sethsbcolor} 
		  ifelse
		} bind def
	}
	
	{
	/BEGINBITMAPCOLOR { 
		BITMAPGRAY} def
	/BEGINBITMAPCOLORc { 
		BITMAPGRAYc} def
	/FMsetgray {setgray} bind def
	/K { 
		pop
		} def
	}
ifelse
/normalize {
	transform round exch round exch itransform
	} bind def
/dnormalize {
	dtransform round exch round exch idtransform
	} bind def
/lnormalize { 
	0 dtransform exch cvi 2 idiv 2 mul 1 add exch idtransform pop
	} bind def
/H { 
	lnormalize setlinewidth
	} bind def
/Z {
	setlinecap
	} bind def
/X { 
	fillprocs exch get exec
	} bind def
/V { 
	gsave eofill grestore
	} bind def
/N { 
	stroke
	} bind def
/M {newpath moveto} bind def
/E {lineto} bind def
/D {curveto} bind def
/O {closepath} bind def
	/n FMLOCAL
/L { 
 	/n exch def
	newpath
	normalize
	moveto 
	2 1 n {pop normalize lineto} for
	} bind def
/Y { 
	L 
	closepath
	} bind def
	/x1 FMLOCAL
	/x2 FMLOCAL
	/y1 FMLOCAL
	/y2 FMLOCAL
	/rad FMLOCAL
/R { 
	/y2 exch def
	/x2 exch def
	/y1 exch def
	/x1 exch def
	x1 y1
	x2 y1
	x2 y2
	x1 y2
	4 Y 
	} bind def
/RR { 
	/rad exch def
	normalize
	/y2 exch def
	/x2 exch def
	normalize
	/y1 exch def
	/x1 exch def
	newpath
	x1 y1 rad add moveto
	x1 y2 x2 y2 rad arcto
	x2 y2 x2 y1 rad arcto
	x2 y1 x1 y1 rad arcto
	x1 y1 x1 y2 rad arcto
	closepath
	16 {pop} repeat
	} bind def
/C { 
	grestore
	gsave
	R 
	clip
	} bind def
/U { 
	grestore
	gsave
	} bind def
/F { 
	FMfonts exch get
	setfont
	} bind def
/T { 
	moveto show
	} bind def
/RF { 
	rotate
	0 ne {-1 1 scale} if
	} bind def
/TF { 
	gsave
	moveto 
	RF
	show
	grestore
	} bind def
/P { 
	moveto
	0 32 3 2 roll widthshow
	} bind def
/PF { 
	gsave
	moveto 
	RF
	0 32 3 2 roll widthshow
	grestore
	} bind def
/S { 
	moveto
	0 exch ashow
	} bind def
/SF { 
	gsave
	moveto
	RF
	0 exch ashow
	grestore
	} bind def
/B { 
	moveto
	0 32 4 2 roll 0 exch awidthshow
	} bind def
/BF { 
	gsave
	moveto
	RF
	0 32 4 2 roll 0 exch awidthshow
	grestore
	} bind def
	/x FMLOCAL
	/y FMLOCAL
	/dx FMLOCAL
	/dy FMLOCAL
	/dl FMLOCAL
	/t FMLOCAL
	/t2 FMLOCAL
	/Cos FMLOCAL
	/Sin FMLOCAL
	/r FMLOCAL
/W { 
	dnormalize
	/dy exch def
	/dx exch def
	normalize
	/y  exch def
	/x  exch def
	/dl dx dx mul dy dy mul add sqrt def
	dl 0.0 gt {
		/t currentlinewidth def
		savematrix
		/Cos dx dl div def
		/Sin dy dl div def
		/r [Cos Sin Sin neg Cos 0.0 0.0] def
		/t2 t 2.5 mul 3.5 max def
		newpath
		x y translate
		r concat
		0.0 0.0 moveto
		dl t 2.7 mul sub 0.0 rlineto
		stroke
		restorematrix
		x dx add y dy add translate
		r concat
		t 0.67 mul setlinewidth
		t 1.61 mul neg  0.0 translate
		0.0 0.0 moveto
		t2 1.7 mul neg  t2 2.0 div     moveto
		0.0 0.0 lineto
		t2 1.7 mul neg  t2 2.0 div neg lineto
		stroke
		t setlinewidth
		restorematrix
		} if
	} bind def
/G { 
	gsave
	newpath
	normalize translate 0.0 0.0 moveto 
	dnormalize scale 
	0.0 0.0 1.0 5 3 roll arc 
	closepath fill
	grestore
	} bind def
/A { 
	gsave
	savematrix
	newpath
	2 index 2 div add exch 3 index 2 div sub exch 
	normalize 2 index 2 div sub exch 3 index 2 div add exch 
	translate 
	scale 
	0.0 0.0 1.0 5 3 roll arc 
	restorematrix
	stroke
	grestore
	} bind def
	/x FMLOCAL
	/y FMLOCAL
	/w FMLOCAL
	/h FMLOCAL
	/xx FMLOCAL
	/yy FMLOCAL
	/ww FMLOCAL
	/hh FMLOCAL
	/FMsaveobject FMLOCAL
	/FMoptop FMLOCAL
	/FMdicttop FMLOCAL
/BEGINPRINTCODE { 
	/FMdicttop countdictstack 1 add def 
	/FMoptop count 4 sub def 
	/FMsaveobject save def
	userdict begin 
	/showpage {} def 
	FMNORMALIZEGRAPHICS 
	3 index neg 3 index neg translate
	} bind def
/ENDPRINTCODE {
	count -1 FMoptop {pop pop} for 
	countdictstack -1 FMdicttop {pop end} for 
	FMsaveobject restore 
	} bind def
/gn { 
	0 
	{	46 mul 
		cf read pop 
		32 sub 
		dup 46 lt {exit} if 
		46 sub add 
		} loop
	add 
	} bind def
	/str FMLOCAL
/cfs { 
	/str sl string def 
	0 1 sl 1 sub {str exch val put} for 
	str def 
	} bind def
/ic [ 
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0223
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0223
	0
	{0 hx} {1 hx} {2 hx} {3 hx} {4 hx} {5 hx} {6 hx} {7 hx} {8 hx} {9 hx}
	{10 hx} {11 hx} {12 hx} {13 hx} {14 hx} {15 hx} {16 hx} {17 hx} {18 hx}
	{19 hx} {gn hx} {0} {1} {2} {3} {4} {5} {6} {7} {8} {9} {10} {11} {12}
	{13} {14} {15} {16} {17} {18} {19} {gn} {0 wh} {1 wh} {2 wh} {3 wh}
	{4 wh} {5 wh} {6 wh} {7 wh} {8 wh} {9 wh} {10 wh} {11 wh} {12 wh}
	{13 wh} {14 wh} {gn wh} {0 bl} {1 bl} {2 bl} {3 bl} {4 bl} {5 bl} {6 bl}
	{7 bl} {8 bl} {9 bl} {10 bl} {11 bl} {12 bl} {13 bl} {14 bl} {gn bl}
	{0 fl} {1 fl} {2 fl} {3 fl} {4 fl} {5 fl} {6 fl} {7 fl} {8 fl} {9 fl}
	{10 fl} {11 fl} {12 fl} {13 fl} {14 fl} {gn fl}
	] def
	/sl FMLOCAL
	/val FMLOCAL
	/ws FMLOCAL
	/im FMLOCAL
	/bs FMLOCAL
	/cs FMLOCAL
	/len FMLOCAL
	/pos FMLOCAL
/ms { 
	/sl exch def 
	/val 255 def 
	/ws cfs 
	/im cfs 
	/val 0 def 
	/bs cfs 
	/cs cfs 
	} bind def
400 ms 
/ip { 
	is 
	0 
	cf cs readline pop 
	{	ic exch get exec 
		add 
		} forall 
	pop 
	
	} bind def
/wh { 
	/len exch def 
	/pos exch def 
	ws 0 len getinterval im pos len getinterval copy pop
	pos len 
	} bind def
/bl { 
	/len exch def 
	/pos exch def 
	bs 0 len getinterval im pos len getinterval copy pop
	pos len 
	} bind def
/s1 1 string def
/fl { 
	/len exch def 
	/pos exch def 
	/val cf s1 readhexstring pop 0 get def
	pos 1 pos len add 1 sub {im exch val put} for
	pos len 
	} bind def
/hx { 
	3 copy getinterval 
	cf exch readhexstring pop pop 
	} bind def
	/h FMLOCAL
	/w FMLOCAL
	/d FMLOCAL
	/lb FMLOCAL
	/bitmapsave FMLOCAL
	/is FMLOCAL
	/cf FMLOCAL
/wbytes { 
	dup 
	8 eq {pop} {1 eq {7 add 8 idiv} {3 add 4 idiv} ifelse} ifelse
	} bind def
/BEGINBITMAPBWc { 
	1 {} COMMONBITMAPc
	} bind def
/BEGINBITMAPGRAYc { 
	8 {} COMMONBITMAPc
	} bind def
/BEGINBITMAP2BITc { 
	2 {} COMMONBITMAPc
	} bind def
/COMMONBITMAPc { 
	/r exch def
	/d exch def
	gsave
	translate rotate scale /h exch def /w exch def
	/lb w d wbytes def 
	sl lb lt {lb ms} if 
	/bitmapsave save def 
	r                    
	/is im 0 lb getinterval def 
	ws 0 lb getinterval is copy pop 
	/cf currentfile def 
	w h d [w 0 0 h neg 0 h] 
	{ip} image 
	bitmapsave restore 
	grestore
	} bind def
/BEGINBITMAPBW { 
	1 {} COMMONBITMAP
	} bind def
/BEGINBITMAPGRAY { 
	8 {} COMMONBITMAP
	} bind def
/BEGINBITMAP2BIT { 
	2 {} COMMONBITMAP
	} bind def
/COMMONBITMAP { 
	/r exch def
	/d exch def
	gsave
	translate rotate scale /h exch def /w exch def
	/bitmapsave save def 
	r                    
	/is w d wbytes string def
	/cf currentfile def 
	w h d [w 0 0 h neg 0 h] 
	{cf is readhexstring pop} image
	bitmapsave restore 
	grestore
	} bind def
	/proc1 FMLOCAL
	/proc2 FMLOCAL
	/newproc FMLOCAL
/Fmcc {
    /proc2 exch cvlit def
    /proc1 exch cvlit def
    /newproc proc1 length proc2 length add array def
    newproc 0 proc1 putinterval
    newproc proc1 length proc2 putinterval
    newproc cvx
} bind def
/ngrayt 256 array def
/nredt 256 array def
/nbluet 256 array def
/ngreent 256 array def
	/gryt FMLOCAL
	/blut FMLOCAL
	/grnt FMLOCAL
	/redt FMLOCAL
	/indx FMLOCAL
	/cynu FMLOCAL
	/magu FMLOCAL
	/yelu FMLOCAL
	/k FMLOCAL
	/u FMLOCAL
/colorsetup {
	currentcolortransfer
	/gryt exch def
	/blut exch def
	/grnt exch def
	/redt exch def
	0 1 255 {
		/indx exch def
		/cynu 1 red indx get 255 div sub def
		/magu 1 green indx get 255 div sub def
		/yelu 1 blue indx get 255 div sub def
		/k cynu magu min yelu min def
		/u k currentundercolorremoval exec def
		nredt indx 1 0 cynu u sub max sub redt exec put
		ngreent indx 1 0 magu u sub max sub grnt exec put
		nbluet indx 1 0 yelu u sub max sub blut exec put
		ngrayt indx 1 k currentblackgeneration exec sub gryt exec put
	} for
	{255 mul cvi nredt exch get}
	{255 mul cvi ngreent exch get}
	{255 mul cvi nbluet exch get}
	{255 mul cvi ngrayt exch get}
	setcolortransfer
	{pop 0} setundercolorremoval
	{} setblackgeneration
	} bind def
	/tran FMLOCAL
/fakecolorsetup {
	/tran 256 string def
	0 1 255 {/indx exch def 
		tran indx
		red indx get 77 mul
		green indx get 151 mul
		blue indx get 28 mul
		add add 256 idiv put} for
	currenttransfer
	{255 mul cvi tran exch get 255.0 div}
	exch Fmcc settransfer
} bind def
/BITMAPCOLOR { 
	/d 8 def
	gsave
	translate rotate scale /h exch def /w exch def
	/bitmapsave save def 
	colorsetup
	/is w d wbytes string def
	/cf currentfile def 
	w h d [w 0 0 h neg 0 h] 
	{cf is readhexstring pop} {is} {is} true 3 colorimage 
	bitmapsave restore 
	grestore
	} bind def
/BITMAPCOLORc { 
	/d 8 def
	gsave
	translate rotate scale /h exch def /w exch def
	/lb w d wbytes def 
	sl lb lt {lb ms} if 
	/bitmapsave save def 
	colorsetup
	/is im 0 lb getinterval def 
	ws 0 lb getinterval is copy pop 
	/cf currentfile def 
	w h d [w 0 0 h neg 0 h] 
	{ip} {is} {is} true 3 colorimage
	bitmapsave restore 
	grestore
	} bind def
/BITMAPGRAY { 
	8 {fakecolorsetup} COMMONBITMAP
	} bind def
/BITMAPGRAYc { 
	8 {fakecolorsetup} COMMONBITMAPc
	} bind def
/ENDBITMAP {
	} bind def
end 
%%EndProlog
%%BeginSetup
(2.0) FMVERSION
1 1 612 792 0 1 7 FMDOCUMENT
/fillprocs 32 array def
fillprocs 0 { 0.000000 grayness } put
fillprocs 1 { 0.100000 grayness } put
fillprocs 2 { 0.300000 grayness } put
fillprocs 3 { 0.500000 grayness } put
fillprocs 4 { 0.700000 grayness } put
fillprocs 5 { 0.900000 grayness } put
fillprocs 6 { 0.970000 grayness } put
fillprocs 7 { 1.000000 grayness } put
fillprocs 8 {<0f87c3e1f0783c1e> 8 1 setpattern } put
fillprocs 9 {<0f1e3c78f0e1c387> 8 1 setpattern } put
fillprocs 10 {<cccccccccccccccc> 8 1 setpattern } put
fillprocs 11 {<ffff0000ffff0000> 8 1 setpattern } put
fillprocs 12 {<8142241818244281> 8 1 setpattern } put
fillprocs 13 {<8040201008040201> 8 1 setpattern } put
fillprocs 14 {<03060c183060c081> 8 1 setpattern } put
fillprocs 15 {} put
fillprocs 16 { 1.000000 grayness } put
fillprocs 17 { 0.900000 grayness } put
fillprocs 18 { 0.700000 grayness } put
fillprocs 19 { 0.500000 grayness } put
fillprocs 20 { 0.300000 grayness } put
fillprocs 21 { 0.100000 grayness } put
fillprocs 22 { 0.030000 grayness } put
fillprocs 23 { 0.000000 grayness } put
fillprocs 24 {<f0783c1e0f87c3e1> 8 1 setpattern } put
fillprocs 25 {<f0e1c3870f1e3c78> 8 1 setpattern } put
fillprocs 26 {<3333333333333333> 8 1 setpattern } put
fillprocs 27 {<0000ffff0000ffff> 8 1 setpattern } put
fillprocs 28 {<7ebddbe7e7dbbd7e> 8 1 setpattern } put
fillprocs 29 {<7fbfdfeff7fbfdfe> 8 1 setpattern } put
fillprocs 30 {<fcf9f3e7cf9f3f7e> 8 1 setpattern } put
fillprocs 31 {} put
%%EndSetup
0 12 /Times-Roman FMDEFINEFONT
1 24 /Times-Roman FMDEFINEFONT
2 16 /Times-Bold FMDEFINEFONT
%%Page: "1" 1
%%BeginPaperSize: Letter
%%EndPaperSize
612 792 0 FMBEGINPAGE
72 675 540 720 R
7 X
0 K
V
0 F
0 X
(Network Working Group) 72 712 T
(J. Moy, Editor) 470.7 712 T
(Request for Comments: 1245) 72 698 T
(Proteon, Inc.) 478.38 698 T
(July 1991) 493.02 684 T
72 72 540 83.95 R
7 X
V
0 X
([Moy]) 72 75.95 T
([Page 1]) 499.7 75.95 T
72 117 540 603 R
7 X
V
1 F
0 X
(OSPF protocol analysis) 192.72 587 T
2 F
(Status of this Memo) 72 514.33 T
0 F
-0.23 (This memo provides information for the Internet community) 72 487 P
-0.23 (. It does not specify any Internet stan-) 360.42 487 P
(dard. Distribution of this memo is unlimited.) 72 473 T
2 F
(Abstract) 72 447 T
0 F
-0.11 (This is the \336rst of two reports on the OSPF protocol. These reports are required by the IAB/IESG ) 72 421 P
(in order for an Internet routing protocol to advance to Draft Standard Status. OSPF is a TCP/IP ) 72 407 T
-0.28 (routing protocol, designed to be used internal to an Autonomous System \050in other words, OSPF is ) 72 393 P
(an Interior Gateway Protocol\051.) 72 379 T
-0.09 (V) 72 353 P
-0.09 (ersion 1 of the OSPF protocol was published in RFC 1) 79.33 353 P
-0.09 (131. Since then OSPF version 2 has been ) 339.85 353 P
-0.22 (developed. V) 72 339 P
-0.22 (ersion 2 has been documented in RFC 1247. The changes between version 1 and ver-) 134.4 339 P
-0 (sion 2 of the OSPF protocol are explained in Appendix F of RFC 1247. It is OSPF V) 72 325 P
-0 (ersion 2 that ) 477.72 325 P
(is the subject of this report.) 72 311 T
(This report attempts to summarize the key features of OSPF V2. It also attempts to analyze how ) 72 285 T
(the protocol will perform and scale in the Internet.) 72 271 T
(Please send comments to ospf@trantor) 72 245 T
(.umd.edu.) 258.27 245 T
FMENDPAGE
%%EndPage: "1" 2
1 10 /Times-Roman FMDEFINEFONT
%%Page: "2" 2
612 792 0 FMBEGINPAGE
72 702 540 720 R
7 X
0 K
V
0 F
0 X
(RFC 1245) 72 712 T
(OSPF protocol analysis) 249.36 712 T
(July 1991) 493.02 712 T
72 69.05 540 81 R
7 X
V
0 X
([Moy]) 72 73 T
([Page 2]) 499.7 73 T
72 108 540 684 R
7 X
V
2 F
0 X
(T) 72 673.33 T
(able of Contents) 81.19 673.33 T
0 F
(1.0) 72 650 T
(Introduction) 108 650 T
(..............................................................................................................) 167.91 650 T
(3) 498 650 T
1 F
(1.1) 108 635.33 T
(Acknowledgments) 144 635.33 T
(...............................................................................................................) 219.88 635.33 T
(3) 499 635.33 T
0 F
(2.0) 72 616 T
(Key features of the OSPF protocol) 108 616 T
(..........................................................................) 275.85 616 T
(4) 498 616 T
(3.0) 72 596 T
(Cost of the protocol) 108 596 T
(..................................................................................................) 203.89 596 T
(7) 498 596 T
1 F
(3.1) 108 581.33 T
( Operational data) 144 581.33 T
(.................................................................................................................) 214.88 581.33 T
(7) 499 581.33 T
(3.2) 108 567.33 T
(Link bandwidth) 144 567.33 T
(...................................................................................................................) 209.88 567.33 T
(9) 499 567.33 T
(3.3) 108 553.33 T
(Router memory) 144 553.33 T
(....................................................................................................................) 207.39 553.33 T
(9) 499 553.33 T
(3.4) 108 539.33 T
(Router CPU) 144 539.33 T
(.......................................................................................................................) 194.89 539.33 T
(10) 494.01 539.33 T
(3.5) 108 525.33 T
(Role of Designated Router) 144 525.33 T
(................................................................................................) 252.36 525.33 T
(1) 494.38 525.33 T
(1) 499 525.33 T
(3.6) 108 511.33 T
(Summary) 144 511.33 T
(...........................................................................................................................) 184.9 511.33 T
(1) 494.38 511.33 T
(1) 499 511.33 T
0 F
(4.0) 72 492 T
(Suitable environments) 108 492 T
(............................................................................................) 215.88 492 T
(13) 492.01 492 T
(5.0) 72 472 T
(Unsuitable environments) 108 472 T
(.......................................................................................) 230.87 472 T
(13) 492.01 472 T
(6.0) 72 452 T
(Reference Documents) 108 452 T
(............................................................................................) 215.88 452 T
(14) 492.01 452 T
FMENDPAGE
%%EndPage: "2" 3
3 14 /Times-Bold FMDEFINEFONT
%%Page: "3" 3
612 792 0 FMBEGINPAGE
72 702 540 720 R
7 X
0 K
V
0 F
0 X
(RFC 1245) 72 712 T
(OSPF protocol analysis) 249.36 712 T
(July 1991) 493.02 712 T
72 69.05 540 81 R
7 X
V
0 X
([Moy]) 72 73 T
([Page 3]) 499.7 73 T
72 108 540 684 R
7 X
V
2 F
0 X
(1.0  Intr) 72 673.33 T
(oduction) 127.23 673.33 T
0 F
-0.02 (This document addresses, for OSPF V2, the requirements set forth by the IAB/IESG for an Inter-) 72 646 P
-0.19 (net routing protocol to advance to Draft Standard state. This requirements are brie\337y summarized ) 72 632 P
(below) 72 618 T
(. The remaining sections of this report document how OSPF V2 satis\336es these require-) 100.53 618 T
(ments:) 72 604 T
(\245) 72 584 T
(What are the key features and algorithms of the protocol?) 85.54 584 T
(\245) 72 564 T
(How much link bandwidth, router memory and router CPU cycles does the protocol consume ) 85.54 564 T
(under normal conditions?) 85.54 550 T
(\245) 72 530 T
(For these metrics, how does the usage scale as the routing environment grows? This should ) 85.54 530 T
(include topologies at least an order of magnitude lar) 85.54 516 T
(ger than the current environment.) 335.14 516 T
(\245) 72 496 T
(What are the limits of the protocol for these metrics? \050i.e., when will the routing protocol ) 85.54 496 T
(break?\051 ) 85.54 482 T
(\245) 72 462 T
(For what environments is the protocol well suited, and for what is it not suitable? ) 85.54 462 T
3 F
(1.1  Acknowledgments) 72 428.67 T
0 F
-0.03 (The OSPF protocol has been developed by the OSPF W) 72 402 P
-0.03 (orking Group of the Internet Engineering ) 339.64 402 P
(T) 72 388 T
(ask Force. ) 78.49 388 T
FMENDPAGE
%%EndPage: "3" 4
4 12 /Times-Bold FMDEFINEFONT
%%Page: "4" 4
612 792 0 FMBEGINPAGE
72 702 540 720 R
7 X
0 K
V
0 F
0 X
(RFC 1245) 72 712 T
(OSPF protocol analysis) 249.36 712 T
(July 1991) 493.02 712 T
72 69.05 540 81 R
7 X
V
0 X
([Moy]) 72 73 T
([Page 4]) 499.7 73 T
72 108 540 684 R
7 X
V
2 F
0 X
(2.0  Key featur) 72 673.33 T
(es of the OSPF pr) 172.97 673.33 T
(otocol) 293.49 673.33 T
0 F
(This section summarizes the key features of the OSPF protocol. OSPF is an) 72 646 T
4 F
( Internal gateway ) 434.78 646 T
-0.2 (pr) 72 632 P
-0.2 (otocol) 83.78 632 P
0 F
-0.2 (; it is designed to be used internal to a single Autonomous System. OSPF uses) 114.42 632 P
4 F
-0.2 ( link-state ) 486.43 632 P
-0.36 (or SPF-based) 72 618 P
0 F
-0.36 ( technology \050as compared to the distance-vector or Bellman-Ford technology found ) 140.6 618 P
-0.48 (in routing protocols such as RIP\051. Individual ) 72 604 P
4 F
-0.48 (link state advertisements \050LSAs\051) 285.2 604 P
0 F
-0.48 ( describe pieces of ) 449.99 604 P
-0.13 (the OSPF routing domain \050Autonomous System\051. These LSAs are \337ooded throughout the routing ) 72 590 P
(domain, forming the ) 72 576 T
4 F
(link state database) 173.27 576 T
0 F
(. Each router has an identical link state database; syn-) 268.56 576 T
(chronization of link state databases is maintained via a ) 72 562 T
4 F
(r) 336.81 562 T
(eliable \337ooding algorithm) 341.92 562 T
0 F
(. From this ) 473.2 562 T
(link state database, each router builds a routing table by calculating a shortest-path tree, with the ) 72 548 T
(root of the tree being the calculating router itself. This calculation is commonly referred to as the ) 72 534 T
4 F
(Dijkstra pr) 72 520 T
(ocedur) 129.41 520 T
(e) 164.51 520 T
0 F
(.) 169.83 520 T
(Link state advertisements are small. Each advertisement describes a small pieces of the OSPF ) 72 494 T
(routing domain, namely either: the neighborhood of a single router) 72 480 T
(, the neighborhood of a single ) 391.97 480 T
(transit network, a single inter) 72 466 T
(-area route \050see below\051 or a single external route.) 212 466 T
(The other key features of the OSPF protocol are:) 72 440 T
(\245) 72 420 T
4 F
-0.31 (Adjacency bringup) 85.54 420 P
0 F
-0.31 (. ) 183.51 420 P
4 F
-0.31 (Certain pairs of OSPF r) 189.2 420 P
-0.31 (outers become \322adjacent\323) 311.01 420 P
0 F
-0.31 (. As an adjacency is ) 442.96 420 P
(formed, the two routers synchronize their link state databases by ) 85.54 406 T
4 F
(exchanging database sum-) 397.64 406 T
(maries) 85.54 392 T
0 F
( in the form of OSPF Database Exchange packets. Adjacent routers then maintain syn-) 120.17 392 T
(chronization of their link state databases through the ) 85.54 378 T
4 F
(r) 340.02 378 T
(eliable \337ooding algorithm) 345.13 378 T
0 F
(. Routers ) 476.41 378 T
-0.27 (connected by serial lines always become adjacent. On multi-access networks \050e.g., ethernets or ) 85.54 364 P
(X.25 PDNs\051, all routers attached to the network become adjacent to both the Designated ) 85.54 350 T
(Router and the Backup Designated router) 85.54 336 T
(.) 283.73 336 T
(\245) 72 316 T
4 F
-0.02 (Designated r) 85.54 316 P
-0.02 (outer) 150.26 316 P
-0.02 (.) 176.46 316 P
0 F
-0.02 ( A Designated Router is elected on all multi-access networks \050e.g., ether-) 179.46 316 P
(nets or X.25 PDNs\051. The network\325) 85.54 302 T
(s Designated Router ) 250.42 302 T
4 F
(originates the network LSA) 350.69 302 T
0 F
( describ-) 492.27 302 T
(ing the network\325) 85.54 288 T
(s local environment. It also plays a ) 164.15 288 T
4 F
(special r) 334.04 288 T
(ole in the \337ooding algorithm) 376.8 288 T
0 F
(, ) 521.4 288 T
(since all routers on the network are synchronizing their link state databases by sending and ) 85.54 274 T
(receiving LSAs to/from the Designated Router during the \337ooding process.) 85.54 260 T
(\245) 72 240 T
4 F
-0.46 (Backup Designated Router) 85.54 240 P
0 F
-0.46 (. A Backup Designated Router is elected on multi-access networks ) 221.87 240 P
(to speed/ease the transition of Designated Routers when the current Designated Router disap-) 85.54 226 T
(pears. In that event, the Backup DR takes over) 85.54 212 T
(, and does not need to go through the adjacency ) 308.22 212 T
-0.13 (bringup process on the LAN \050since it already had done this in its Backup capacity\051. Also, even ) 85.54 198 P
(before the disappearance of the Designated Router is noticed, the Backup DR will enable the ) 85.54 184 T
(reliable \337ooding algorithm to proceed in the DR\325) 85.54 170 T
(s absence.) 320.39 170 T
FMENDPAGE
%%EndPage: "4" 5
%%Page: "5" 5
612 792 0 FMBEGINPAGE
72 702 540 720 R
7 X
0 K
V
0 F
0 X
(RFC 1245) 72 712 T
(OSPF protocol analysis) 249.36 712 T
(July 1991) 493.02 712 T
72 69.05 540 81 R
7 X
V
0 X
([Moy]) 72 73 T
([Page 5]) 499.7 73 T
72 108 540 684 R
7 X
V
0 X
(\245) 72 676 T
4 F
(Non-br) 85.54 676 T
(oadcast multi-access network support.) 122.63 676 T
0 F
( OSPF treats these networks \050e.g., X.25 ) 318.51 676 T
-0.01 (PDNs\051 pretty much as if they were LANs \050i.e., a DR is elected, and a network LSA is gener-) 85.54 662 P
-0.29 (ated\051. Additional con\336guration information is needed however for routers attached to these net-) 85.54 648 P
(work to initially \336nd each other) 85.54 634 T
(.) 236.45 634 T
(\245) 72 614 T
4 F
(OSPF ar) 85.54 614 T
(eas) 130.29 614 T
0 F
(. OSPF allows the Autonomous Systems to be broken up into regions call areas. ) 146.28 614 T
(This is useful for several reasons. First, it provides an extra level of ) 85.54 600 T
4 F
(r) 411.64 600 T
(outing pr) 416.75 600 T
(otection) 464.18 600 T
0 F
(: rout-) 504.81 600 T
-0.29 (ing within an area is protected from all information external to the area. Second, by splitting an ) 85.54 586 P
-0.3 (Autonomous System into areas the ) 85.54 572 P
4 F
-0.3 (cost of the Dijkstra pr) 254.27 572 P
-0.3 (ocedur) 365.44 572 P
-0.3 (e ) 400.53 572 P
0 F
-0.3 (\050in terms of CPU cycles\051 is ) 408.55 572 P
(reduced.) 85.54 558 T
(\245) 72 538 T
4 F
(Flexible import of external r) 85.54 538 T
(outing information.) 230.55 538 T
0 F
( In OSPF) 330.5 538 T
(, ) 374.19 538 T
4 F
(each external r) 380.19 538 T
(oute) 456.58 538 T
0 F
( is imported ) 478.56 538 T
(into the Autonomous System in ) 85.54 524 T
4 F
(a separate LSA) 240.47 524 T
0 F
(. This reduces the amount of \337ooding traf) 319.08 524 T
(\336c ) 518.07 524 T
(\050since external routes change often, and you want to only \337ood the changes\051. It also enables ) 85.54 510 T
4 F
-0.43 (partial r) 85.54 496 P
-0.43 (outing table updates) 127.86 496 P
0 F
-0.43 ( when only a single external route changes. OSPF external LSAs ) 230.96 496 P
(also provide the following features. A ) 85.54 482 T
4 F
(forwarding addr) 270.4 482 T
(ess) 355.81 482 T
0 F
( can be included in the external ) 370.46 482 T
(LSA, eliminating extra-hops at the edge of the Autonomous System. There are two levels of ) 85.54 468 T
(external metrics that can be speci\336ed, ) 85.54 454 T
4 F
(type 1) 269.06 454 T
0 F
( and ) 300.04 454 T
4 F
(type 2) 323.35 454 T
0 F
(. Also, external routes can be tagged ) 354.33 454 T
(with a 32-bit number \050the ) 85.54 440 T
4 F
(external r) 211.12 440 T
(oute tag) 261.19 440 T
0 F
(; commonly used as an AS number of the route\325) 302.16 440 T
(s ) 531.68 440 T
(origin\051, simplifying external route management in a transit Autonomous System.) 85.54 426 T
(\245) 72 406 T
4 F
(Four level r) 85.54 406 T
(outing hierar) 145.27 406 T
(chy) 212.69 406 T
0 F
(. OSPF has a four level routing hierarchy) 229.9 406 T
(, or trust model: ) 426.32 406 T
4 F
(intra-) 505.94 406 T
(ar) 85.54 392 T
(ea) 96.64 392 T
0 F
(, ) 107.96 392 T
4 F
(inter) 113.96 392 T
(-ar) 138.16 392 T
(ea) 153.26 392 T
0 F
(, ) 164.59 392 T
4 F
(external type 1) 170.58 392 T
0 F
( and ) 246.52 392 T
4 F
(external type 2) 269.84 392 T
0 F
( routes. This enables multiple levels of ) 345.78 392 T
(routing protection, and simpli\336es routing management in an Autonomous System.) 85.54 378 T
(\245) 72 358 T
4 F
(V) 85.54 358 T
(irtual links) 93.75 358 T
0 F
(. By allowing the con\336guration of virtual links, OSPF ) 150.07 358 T
4 F
(r) 410.94 358 T
(emoves topological ) 416.05 358 T
(r) 85.54 344 T
(estrictions) 90.64 344 T
0 F
( on area layout in an Autonomous System.) 143.27 344 T
(\245) 72 324 T
4 F
-0.32 (Authentication of r) 85.54 324 P
-0.32 (outing pr) 182.62 324 P
-0.32 (otocol exchanges) 229.74 324 P
0 F
-0.32 (. Every time an OSPF router receives a routing ) 315.03 324 P
(protocol packet, it authenticates the packet before processing it further) 85.54 310 T
(.) 422.61 310 T
(\245) 72 290 T
4 F
-0.03 (Flexible r) 85.54 290 P
-0.03 (outing metric.) 134.26 290 P
0 F
-0.03 ( In OSPF) 206.18 290 P
-0.03 (, metric are assigned to outbound router interfaces. The cost ) 249.82 290 P
(of a path is then the sum of the path\325) 85.54 276 T
(s component interfaces. The routing metric itself can be ) 260.42 276 T
(assigned by the system administrator to indicate any combination of network characteristics ) 85.54 262 T
(\050e.g., delay) 85.54 248 T
(, bandwidth, dollar cost, etc.\051.) 138.04 248 T
(\245) 72 228 T
4 F
-0.09 (Equal-cost multipath.) 85.54 228 P
0 F
-0.09 ( When multiple best cost routes to a destination exist, OSPF \336nds them ) 196.73 228 P
(and they can be then used to load share traf) 85.54 214 T
(\336c to the destination.) 292.82 214 T
(\245) 72 194 T
4 F
(T) 85.54 194 T
(OS-based r) 93.32 194 T
(outing.) 150.74 194 T
0 F
( Separate sets of routes can be calculated for each IP type of service. For ) 186.4 194 T
(example, low delay traf) 85.54 180 T
(\336c could be routed on one path, while high bandwidth traf) 198.56 180 T
(\336c is routed ) 477.16 180 T
-0.39 (on another) 85.54 166 P
-0.39 (. This is done by \050optionally\051 assigning, to each outgoing router interface, one metric ) 135.44 166 P
(for each IP T) 85.54 152 T
(OS.) 148.26 152 T
(\245) 72 132 T
4 F
(V) 85.54 132 T
(ariable-length subnet support.) 93.09 132 T
0 F
( OSPF includes support for variable-length subnet masks by ) 248.02 132 T
(carrying a network mask with each advertised destination.) 85.54 118 T
FMENDPAGE
%%EndPage: "5" 6
%%Page: "6" 6
612 792 0 FMBEGINPAGE
72 702 540 720 R
7 X
0 K
V
0 F
0 X
(RFC 1245) 72 712 T
(OSPF protocol analysis) 249.36 712 T
(July 1991) 493.02 712 T
72 69.05 540 81 R
7 X
V
0 X
([Moy]) 72 73 T
([Page 6]) 499.7 73 T
72 108 540 684 R
7 X
V
0 X
(\245) 72 676 T
4 F
-0.08 (Stub ar) 85.54 676 P
-0.08 (ea support. ) 123.56 676 P
0 F
-0.08 (T) 183.69 676 P
-0.08 (o support routers having insuf) 190.18 676 P
-0.08 (\336cient memory) 333.53 676 P
-0.08 (, areas can be con\336gured as ) 405.63 676 P
(stubs. External LSAs \050often making up the bulk of the Autonomous System\051 are not \337ooded ) 85.54 662 T
(into/throughout stub areas. Routing to external destinations in stub areas is based solely on ) 85.54 648 T
(default.) 85.54 634 T
FMENDPAGE
%%EndPage: "6" 7
%%Page: "7" 7
612 792 0 FMBEGINPAGE
72 702 540 720 R
7 X
0 K
V
0 F
0 X
(RFC 1245) 72 712 T
(OSPF protocol analysis) 249.36 712 T
(July 1991) 493.02 712 T
72 69.05 540 81 R
7 X
V
0 X
([Moy]) 72 73 T
([Page 7]) 499.7 73 T
72 108 540 684 R
7 X
V
2 F
0 X
(3.0  Cost of the pr) 72 673.33 T
(otocol) 193.4 673.33 T
0 F
-0.1 (This section attempts to analyze how the OSPF protocol will perform and scale in the Internet. In ) 72 646 P
(this analysis, we will concentrate on the following four areas:) 72 632 T
(\245) 72 612 T
4 F
(Link bandwidth) 85.54 612 T
0 F
(. In OSPF) 168.53 612 T
(, a reliable \337ooding mechanism is used to ensure that router link ) 215.22 612 T
(state databases are remained synchronized. Individual components of the link state databases ) 85.54 598 T
-0.17 (\050the LSAs\051 are refreshed infrequently \050every 30 minutes\051, at least in the absence of topological ) 85.54 584 P
(changes. Still, as the size of the database increases, the amount of link bandwidth used by the ) 85.54 570 T
(\337ooding procedure also increases.) 85.54 556 T
(\245) 72 536 T
4 F
-0.03 (Router memory) 85.54 536 P
0 F
-0.03 (. The size of an OSPF link state database can get quite lar) 166.32 536 P
-0.03 (ge, especially in the ) 441.86 536 P
(presence of many external LSAs. This imposes requirements on the amount of router memory ) 85.54 522 T
(available.) 85.54 508 T
(\245) 72 488 T
4 F
(CPU usage) 85.54 488 T
0 F
(. In OSPF) 141.83 488 T
(, this is dominated by the length of time it takes to run the shortest path ) 188.52 488 T
(calculation \050Dijkstra procedure\051. This is a function of the number of routers in the OSPF sys-) 85.54 474 T
(tem.) 85.54 460 T
(\245) 72 440 T
4 F
(Role of the Designated Router) 85.54 440 T
(.) 238.32 440 T
0 F
( The Designated router receives and sends more packets on a ) 241.32 440 T
-0.46 (multi-access networks than the other routers connected to the network. Also, there is some time ) 85.54 426 P
(involved in cutting over to a new Designated Router after the old one fails \050especially when ) 85.54 412 T
(both the Backup Designated Router and the Designated Router fail at the same time\051. For this ) 85.54 398 T
-0.27 (reason, it is possible that you may want to limit the number of routers connected to a single net-) 85.54 384 P
(work.) 85.54 370 T
(The remaining section will analyze these areas, estimating how much resources the OSPF proto-) 72 344 T
-0.05 (col will consume, both now and in the future. T) 72 330 P
-0.05 (o aid in this analysis, the next section will present ) 298.93 330 P
(some data that have been collected in actual OSPF \336eld deployments.) 72 316 T
3 F
(3.1   Operational data) 72 282.67 T
0 F
-0.44 (The OSPF protocol has been deployed in a number of places in the Internet. For a summary of this ) 72 256 P
(deployment, see [1]. Some statistics have been gathered from this operational experience, via ) 72 242 T
-0.03 (local network management facilities. Some of these statistics are presented in the following table:) 72 228 P
FMENDPAGE
%%EndPage: "7" 8
5 10 /Times-Bold FMDEFINEFONT
%%Page: "8" 8
612 792 0 FMBEGINPAGE
72 702 540 720 R
7 X
0 K
V
0 F
0 X
(RFC 1245) 72 712 T
(OSPF protocol analysis) 249.36 712 T
(July 1991) 493.02 712 T
72 69.05 540 81 R
7 X
V
0 X
([Moy]) 72 73 T
([Page 8]) 499.7 73 T
72 108 540 684 R
7 X
V
72 666.01 540 674 C
72 671.98 540 671.98 2 L
0.5 H
0 Z
0 X
0 K
N
0 0 612 792 C
5 F
0 X
0 K
(T) 72 677.33 T
(ABLE 1. Pertinent operational statistics) 77.93 677.33 T
(Statistic) 72 655.34 T
(BARRNet) 216 655.34 T
(NSI) 324 655.34 T
(OARnet) 432 655.34 T
1 F
(Data gathering \050duration\051) 72 638.34 T
(99 hours) 216 638.34 T
(277 hours) 324 638.34 T
(28 hours) 432 638.34 T
(Dijkstra frequency) 72 622.34 T
(50 minutes) 216 622.34 T
(25 minutes) 324 622.34 T
(13 minutes) 432 622.34 T
(External incremental frequency) 72 606.34 T
(1.2 minutes) 216 606.34 T
(.98 minutes) 324 606.34 T
(not gathered) 432 606.34 T
(Database turnover) 72 590.34 T
(29.7 minutes) 216 590.34 T
(30.9 minutes) 324 590.34 T
(28.2 minutes) 432 590.34 T
(LSAs per packet) 72 574.34 T
(3.38) 216 574.34 T
(3.16) 324 574.34 T
(2.99) 432 574.34 T
(Flooding retransmits) 72 558.34 T
(1.3%) 216 558.34 T
(1.4%) 324 558.34 T
(.7%) 432 558.34 T
0 F
(The \336rst line in the above table show the length of time that statistics were gathered on the three ) 72 533.01 T
(networks. A brief description of the other statistics follows:) 72 519.01 T
(\245) 72 499.01 T
4 F
(Dijkstra fr) 85.54 499.01 T
(equency) 140.27 499.01 T
(. ) 181.59 499.01 T
0 F
(In OSPF) 187.59 499.01 T
(, the Dijkstra calculation involves only those routers and transit ) 228.28 499.01 T
-0.14 (networks belonging to the AS. The Dijkstra is run only when something in the system changes ) 85.54 485.01 P
(\050like a serial line between two routers goes down\051. Note that in these operational systems, the ) 85.54 471.01 T
(Dijkstra process runs only infrequently \050the most frequent being every 13 minutes\051.) 85.54 457.01 T
(\245) 72 437.01 T
4 F
(External incr) 85.54 437.01 T
(emental fr) 153.61 437.01 T
(equency) 206.35 437.01 T
0 F
(. In OSPF) 247.54 437.01 T
(, when an external route changes only its entry in ) 294.23 437.01 T
-0.13 (the routing table is recalculated. These are called external incremental updates. Note that these ) 85.54 423.01 P
(happen much more frequently than the Dijkstra procedure. \050in other words, incremental ) 85.54 409.01 T
(updates are saving quite a bit of processor time\051.) 85.54 395.01 T
(\245) 72 375.01 T
4 F
-0.45 (Database turnover) 85.54 375.01 P
-0.45 (.) 179.58 375.01 P
0 F
-0.45 ( In OSPF) 182.58 375.01 P
-0.45 (, link state advertisements are refreshed at a minimum of every 30 ) 225.36 375.01 P
(minutes. New advertisement instances are sent out more frequently when some part of the ) 85.54 361.01 T
-0.2 (topology changes. The table shows that, even taking topological changes into account, on aver-) 85.54 347.01 P
(age an advertisement is updated close to only every 30 minutes. This statistic will be used in ) 85.54 333.01 T
(the link bandwidth calculations below) 85.54 319.01 T
(. Note that NSI actually shows advertisements updated ) 267.31 319.01 T
(every 30.7 \050> 30\051 minutes. This probably means that at one time earlier in the measurement ) 85.54 305.01 T
(period, NSI had a smaller link state database that it did at the end.) 85.54 291.01 T
(\245) 72 271.01 T
4 F
-0.39 (LSAs per packet.) 85.54 271.01 P
0 F
-0.39 ( In OSPF) 173.04 271.01 P
-0.39 (, multiple LSAs can be included in either Link State Update or Link ) 215.95 271.01 P
-0.35 (State Acknowledgment packets.The table shows that, on average, around 3 LSAs are carried in ) 85.54 257.01 P
(a single packet. This statistic is used when calculating the header overhead in the link band-) 85.54 243.01 T
(width calculation below) 85.54 229.01 T
(. This statistic was derived by diving the number of LSAs \337ooded by ) 200.01 229.01 T
(the number of \050non-hello\051 multicasts sent.) 85.54 215.01 T
(\245) 72 195.01 T
4 F
(Flooding r) 85.54 195.01 T
(etransmits.) 138.97 195.01 T
0 F
( This counts both retransmission of LS Update packets and Link State ) 195.92 195.01 T
(Acknowledgment packets, as a percentage of the original multicast \337ooded packets. The table ) 85.54 181.01 T
(shows that \337ooding is working well, and that retransmits can be ignored in the link bandwidth ) 85.54 167.01 T
(calculation below) 85.54 153.01 T
(.) 169.69 153.01 T
FMENDPAGE
%%EndPage: "8" 9
%%Page: "9" 9
612 792 0 FMBEGINPAGE
72 702 540 720 R
7 X
0 K
V
0 F
0 X
(RFC 1245) 72 712 T
(OSPF protocol analysis) 249.36 712 T
(July 1991) 493.02 712 T
72 69.05 540 81 R
7 X
V
0 X
([Moy]) 72 73 T
([Page 9]) 499.7 73 T
72 108 540 684 R
7 X
V
3 F
0 X
(3.2  Link bandwidth) 72 674.67 T
0 F
-0.02 (In this section we attempt to calculate how much link bandwidth is consumed by the OSPF \337ood-) 72 648 P
(ing process. The amount of link bandwidth consumed increases linearly with the number of ) 72 634 T
(advertisements present in the OSPF database.W) 72 620 T
(e assume that the majority of advertisements in ) 300.88 620 T
(the database will be AS external LSAs \050operationally this is true, see [1]\051.) 72 606 T
(From the statistics presented in Section 3.1, any particular advertisement is \337ooded \050on average\051 ) 72 580 T
(every 30 minutes. In addition, three advertisements \336t in a single packet. \050This packet could be ) 72 566 T
(either a Link State Update packet or a Link State Acknowledgment packet; in this analysis we ) 72 552 T
(select the Link State Update packet, which is the lar) 72 538 T
(ger\051. An AS external LSA is 36 bytes long. ) 320.93 538 T
(Adding one third of a packet header \050IP header plus OSPF Update packet\051 yields 52 bytes. T) 72 524 T
(rans-) 515.59 524 T
(mitting this amount of data every 30 minutes gives an average rate of 23/100 bits/second.) 72 510 T
-0.05 (If you want to limit your routing traf) 72 484 P
-0.05 (\336c to 5% of the link\325) 247.03 484 P
-0.05 (s total bandwidth, you get the following ) 345.75 484 P
(maximums for database size:) 72 470 T
72 434.01 540 442 C
72 439.98 540 439.98 2 L
0.5 H
0 Z
0 X
0 K
N
0 0 612 792 C
5 F
0 X
0 K
(T) 72 445.33 T
(ABLE 2. Database size as a function of link speed \0505% utilization\051) 77.93 445.33 T
(Speed) 180 423.34 T
(# external advertisements) 288 423.34 T
1 F
(9.6 Kb) 180 406.34 T
(2087) 288 406.34 T
(56 Kb) 180 390.34 T
(12,174) 288 390.34 T
0 F
-0.46 (Higher line speeds have not been included, because other factors will then limit database size \050like ) 72 365.01 P
-0.12 (router memory\051 before line speed becomes a factor) 72 351.01 P
-0.12 (. Note that in the above calculation, the size of ) 315.32 351.01 P
-0.06 (the data link header was not taken into account. Also, note that while the OSPF database is likely ) 72 337.01 P
(to be mostly external LSAs, other LSAs have a size also. As a ballpark estimate, router links and ) 72 323.01 T
-0.01 (network links are generally three times as lar) 72 309.01 P
-0.01 (ge as an AS external link, with summary link adver-) 287.18 309.01 P
(tisements being the same size as external link LSAs.) 72 295.01 T
(OSPF consumes considerably less link bandwidth than RIP) 72 269.01 T
(. This has been shown experimentally ) 355.51 269.01 T
(in the NSI network. See Jef) 72 255.01 T
(frey Bur) 203.69 255.01 T
(gan\325) 243.77 255.01 T
(s \322NASA Sciences Internet\323 report in [3].) 264.42 255.01 T
3 F
(3.3  Router memory) 72 221.67 T
0 F
-0.1 (Memory requirements in OSPF are dominated by the size of the link state database. As in the pre-) 72 195.01 P
(vious section, it is probably safe to assume that most of the advertisements in the database are ) 72 181.01 T
(external LSAs. While an external LSA is 36 bytes long, it is generally stored by an OSPF imple-) 72 167.01 T
-0.34 (mentation together with some support data. So a good estimate of router memory consumed by an ) 72 153.01 P
(external LSA is probably 64 bytes. So a database having 10,000 external LSAs will consume ) 72 139.01 T
(640K bytes of router memory) 72 125.01 T
(. OSPF de\336nitely requires more memory than RIP) 213.79 125.01 T
(.) 452.98 125.01 T
FMENDPAGE
%%EndPage: "9" 10
%%Page: "10" 10
612 792 0 FMBEGINPAGE
72 702 540 720 R
7 X
0 K
V
0 F
0 X
(RFC 1245) 72 712 T
(OSPF protocol analysis) 249.36 712 T
(July 1991) 493.02 712 T
72 69.05 540 81 R
7 X
V
0 X
([Moy]) 72 73 T
([Page 10]) 493.7 73 T
72 108 540 684 R
7 X
V
0 X
-0.35 (Using the Proteon P4200 implementation as an example, the P4200 has 2Mbytes of memory) 72 676 P
-0.35 (. This ) 510.38 676 P
-0.02 (is shared between instruction, data and packet buf) 72 662 P
-0.02 (fer memory) 310.78 662 P
-0.02 (. The P4200 has enough memory to ) 366.26 662 P
(store 10, 000 external LSAs, and still have enough packet buf) 72 648 T
(fer memory available to run a rea-) 367.58 648 T
(sonable number of interfaces.) 72 634 T
(Also, note that while the OSPF database is likely to be mostly external LSAs, other LSAs have a ) 72 608 T
-0.06 (size also. As a ballpark estimate, router links and network links consume generally three times as ) 72 594 P
(much memory as an AS external link, with summary link advertisements being the same size as ) 72 580 T
(external link LSAs.) 72 566 T
3 F
(3.4  Router CPU) 72 532.67 T
0 F
(Assume that, as the size of the OSPF routing domain grows, the number of interfaces per router ) 72 506 T
(stays bounded. Then the Dijkstra calculation is of order \050n * log \050n\051\051, where n is the number of ) 72 492 T
(routers in the routing domain. \050This is the complexity of the Dijkstra algorithm in a sparse net-) 72 478 T
(work\051. Of course, it is implementation speci\336c as to how expensive the Dijkstra really is.) 72 464 T
(W) 72 438 T
(e have no experimental numbers for the cost of the Dijkstra calculation in a real OSPF imple-) 82.36 438 T
(mentation. However) 72 424 T
(, Steve Deering presented results for the Dijkstra calculation in the \322MOSPF ) 169.45 424 T
(meeting report\323 in [3]. Steve\325) 72 410 T
(s calculation was done on a DEC 5000 \05010 mips processor\051, using ) 212.9 410 T
(the Stanford internet as a model. His graphs are based on numbers of networks, not number of ) 72 396 T
(routers. However) 72 382 T
(, if we extrapolate that the ratio of routers to networks remains the same, the ) 154.78 382 T
(time to run Dijkstra for 200 routers in Steve\325) 72 368 T
(s implementation was around 15 milliseconds.) 285.87 368 T
-0.46 (This seems a reasonable cost, particularly when you notice that the Dijkstra calculation is run very ) 72 342 P
(infrequently in operational deployments. In the three networks presented in Section 3.1, Dijkstra ) 72 328 T
-0.35 (was run on average only every 13 to 50 minutes. Since the Dijkstra is run so infrequently) 72 314 P
-0.35 (, it seems ) 493.06 314 P
-0.02 (likely that OSPF overall consumes less CPU than RIP \050because of RIP\325) 72 300 P
-0.02 (s frequent updates, requir-) 413.95 300 P
(ing routing table lookups\051.) 72 286 T
(As another example, the routing algorithm in MILNET is SPF-based. MILNET\325) 72 260 T
(s current size is ) 456.42 260 T
-0.02 (230 nodes, and the routing calculation still consumes less than 5% of the MILNET switches\325 pro-) 72 246 P
(cessor bandwidth [4]. Because the routing algorithm in the MILNET adapts to network load, it ) 72 232 T
(runs the Dijkstra process quite frequently \050on the order of seconds as compared to OSPF\325) 72 218 T
(s min-) 499.7 218 T
(utes\051. However) 72 204 T
(, it should be noted that the routing algorithm in MILNET incrementally updates ) 144.79 204 T
(the SPF-tree, while OSPF rebuilds it from scratch at each Dijkstra calculation) 72 190 T
(OSPF\325) 72 164 T
(s Area capability provides a way to reduce Dijkstra overhead, if it becomes a burden. The ) 104 164 T
-0 (routing domain can be split into areas. The extent of the Dijkstra calculation \050and its complexity\051 ) 72 150 P
(is limited to a single area at a time.) 72 136 T
FMENDPAGE
%%EndPage: "10" 11
%%Page: "11" 11
612 792 0 FMBEGINPAGE
72 702 540 720 R
7 X
0 K
V
0 F
0 X
(RFC 1245) 72 712 T
(OSPF protocol analysis) 249.36 712 T
(July 1991) 493.02 712 T
72 69.05 540 81 R
7 X
V
0 X
([Moy]) 72 73 T
([Page 11]) 493.7 73 T
72 108 540 684 R
7 X
V
3 F
0 X
(3.5  Role of Designated Router) 72 674.67 T
0 F
(This section explores the number of routers that can be attached to a single network. As the num-) 72 648 T
-0.36 (ber of routers attached to a network grows, so does the amount of OSPF routing traf) 72 634 P
-0.36 (\336c seen on the ) 469.48 634 P
(network. Some of this is Hello traf) 72 620 T
(\336c, which is generally multicast by each router every 10 sec-) 238.01 620 T
-0.07 (onds. This burden is borne by all routers attached to the network. However) 72 606 P
-0.07 (, because of its special ) 429.77 606 P
-0.08 (role in the \337ooding process, the Designated router ends up sending more Link State Updates than ) 72 592 P
(the other routers on the network. Also, the Designated Router receives Link State Acknowledg-) 72 578 T
-0.15 (ments from all attached routers, while the other routers just receive them from the DR. \050Although ) 72 564 P
(it is important to note that the rate of Link State Acknowledgments will generally be limited to ) 72 550 T
(one per second from each router) 72 536 T
(, because acknowledgments are generally delayed.\051) 226.38 536 T
-0.22 (So, if the amount of protocol traf) 72 510 P
-0.22 (\336c on the LAN becomes a limiting factor) 228.71 510 P
-0.22 (, the limit is likely to be ) 424.24 510 P
(detected in the Designated Router \336rst. However) 72 496 T
(, such a limit is not expected to be reached in ) 305.68 496 T
(practice. The amount of routing protocol traf) 72 482 T
(\336c generated by OSPF has been shown to be small ) 286.62 482 T
-0.11 (\050see Section 3.2\051. Also, if need be OSPF\325) 72 468 P
-0.11 (s hello timers can be con\336gured to reduce the amount of ) 268.43 468 P
(protocol traf) 72 454 T
(\336c on the network. Note that more than 50 routers have been simulated attached to a ) 131.4 454 T
(single LAN \050see [1]\051. Also, in interoperability testing 13 routers have been attached to a single ) 72 440 T
(ethernet with no problems encountered.) 72 426 T
-0.02 (Another factor in the number of routers attached to a single network is the cutover time when the ) 72 400 P
-0.17 (Designated Router fails. OSPF has a Backup Designated Router so that the cutover does not have ) 72 386 P
-0.31 (to wait for the new DR to synchronize \050the adjacency bring-up process mentioned earlier\051 with all ) 72 372 P
-0.43 (the other routers on the LAN; as a Backup DR it had already synchronized. However) 72 358 P
-0.43 (, in those rare ) 473.46 358 P
-0.33 (cases when both DR and Backup DR crash at the same time, the new DR will have to synchronize ) 72 344 P
(\050via the adjacency bring-up process\051 with all other routers before becoming functional. Field ) 72 330 T
-0.44 (experience show that this synchronization process takes place in a timely fashion \050see the OARnet ) 72 316 P
(report in [1]\051. However) 72 302 T
(, this may be an issue in systems that have many routers attached to a sin-) 183.42 302 T
(gle network.) 72 288 T
-0.15 (In the unlikely event that the number of routers attached to a LAN becomes a problem, either due ) 72 262 P
(to the amount of routing protocol traf) 72 248 T
(\336c or the cutover time, the LAN can be split into separate ) 251 248 T
(pieces \050similar to splitting up the AS into separate areas\051.) 72 234 T
3 F
(3.6  Summary) 72 200.67 T
0 F
(In summary) 72 174 T
(, it seems like the most likely limitation to the size of an OSPF system is available ) 128.85 174 T
-0.4 (router memory) 72 160 P
-0.4 (. W) 142.43 160 P
-0.4 (e have given as 10,000 as the number of external LSAs that can be supported by ) 158.39 160 P
(the memory available in one con\336guration of a particular implementation \050the Proteon P4200\051. ) 72 146 T
-0.09 (Other implementations may vary; nowadays routers are being built with more and more memory) 72 132 P
-0.09 (. ) 534.09 132 P
FMENDPAGE
%%EndPage: "11" 12
%%Page: "12" 12
612 792 0 FMBEGINPAGE
72 702 540 720 R
7 X
0 K
V
0 F
0 X
(RFC 1245) 72 712 T
(OSPF protocol analysis) 249.36 712 T
(July 1991) 493.02 712 T
72 69.05 540 81 R
7 X
V
0 X
([Moy]) 72 73 T
([Page 12]) 493.7 73 T
72 108 540 684 R
7 X
V
0 X
(Note that 10,000 routes is considerably lar) 72 676 T
(ger than the lar) 275.31 676 T
(gest \336eld implementation \050BARRNet; ) 347.37 676 T
(which at 1816 external LSAs is still very lar) 72 662 T
(ge\051.) 283.65 662 T
(Note that there may be ways to reduce database size in a routing domain. First, the domain can ) 72 636 T
-0.19 (make use of default routing, reducing the number of external routes that need to be imported. Sec-) 72 622 P
(ondly) 72 608 T
(, an EGP can be used that will transport its own information through the AS instead of rely-) 98.54 608 T
-0.21 (ing on the IGP \050OSPF in this case\051 to do transfer the information for it \050the EGP\051. Thirdly) 72 594 P
-0.21 (, routers ) 498.11 594 P
(having insuf) 72 580 T
(\336cient memory may be able to be assigned to stub areas \050whose databases are drasti-) 131.41 580 T
(cally smaller\051. Lastly) 72 566 T
(, if the Internet went away from a \337at address space the amount of external ) 172.82 566 T
(information imported into an OSPF domain could be reduced drastically) 72 552 T
(.) 418.67 552 T
(While not as likely) 72 526 T
(, there could be other issues that would limit the size of an OSPF routing ) 162.17 526 T
(domain. If there are slow lines \050like 9600 baud\051, the size of the database will be limited \050see Sec-) 72 512 T
(tion 3.2\051. Dijkstra may get to be expensive when there are hundreds of routers in the OSPF ) 72 498 T
(domain; although at this point the domain can be split into areas. Finally) 72 484 T
(, when there are many ) 418.69 484 T
(routers attached to a single network, there may be undue burden imposed upon the Designated ) 72 470 T
(Router; although at that point a LAN can be split into separate LANs.) 72 456 T
FMENDPAGE
%%EndPage: "12" 13
%%Page: "13" 13
612 792 0 FMBEGINPAGE
72 702 540 720 R
7 X
0 K
V
0 F
0 X
(RFC 1245) 72 712 T
(OSPF protocol analysis) 249.36 712 T
(July 1991) 493.02 712 T
72 69.05 540 81 R
7 X
V
0 X
([Moy]) 72 73 T
([Page 13]) 493.7 73 T
72 108 540 684 R
7 X
V
2 F
0 X
(4.0  Suitable envir) 72 673.33 T
(onments) 195.21 673.33 T
0 F
-0.14 (Suitable environments for the OSPF protocol range from lar) 72 646 P
-0.14 (ge to small. OSPF is particular suited ) 359.11 646 P
(for transit Autonomous Systems for the following reasons. OSPF can accommodate a lar) 72 632 T
(ge num-) 497.84 632 T
(ber of external routes. In OSPF the import of external information is very \337exible, having provi-) 72 618 T
-0.39 (sions for a forwarding address, two levels of external metrics, and the ability to tag external routes ) 72 604 P
-0.29 (with their AS number for easy management. Also OSPF\325) 72 590 P
-0.29 (s ability to do partial updates when exter-) 343.17 590 P
(nal information changes is very useful on these networks.) 72 576 T
(OSPF is also suited for smaller) 72 550 T
(, either stand alone or stub Autonomous Systems, because of its ) 220.44 550 T
(wide array of features: fast conver) 72 536 T
(gence, equal-cost-multipath, T) 235.96 536 T
(OS routing, areas, etc.) 382.3 536 T
2 F
(5.0  Unsuitable envir) 72 469.33 T
(onments) 212.98 469.33 T
0 F
-0.22 (OSPF has a very limited ability to express policy) 72 442 P
-0.22 (. Basically) 304.62 442 P
-0.22 (, its only policy mechanisms are in the ) 354.25 442 P
(establishment of a four level routing hierarchy: intra-area, inter) 72 428 T
(-area, type 1 and type 2 external ) 374.52 428 T
(routes. A system wanting more sophisticated policies would have to be split up into separate ) 72 414 T
(ASes, running a policy-based EGP between them.) 72 400 T
FMENDPAGE
%%EndPage: "13" 14
%%Page: "14" 14
612 792 0 FMBEGINPAGE
72 702 540 720 R
7 X
0 K
V
0 F
0 X
(RFC 1245) 72 712 T
(OSPF protocol analysis) 249.36 712 T
(July 1991) 493.02 712 T
72 69.05 540 81 R
7 X
V
0 X
([Moy]) 72 73 T
([Page 14]) 493.7 73 T
72 108 540 684 R
7 X
V
2 F
0 X
(6.0  Refer) 72 673.33 T
(ence Documents) 137.87 673.33 T
0 F
(The following documents have been referenced by this report:) 72 646 T
([1]) 72 626 T
(Moy) 108 626 T
(, J., \322Experience with the OSPF protocol\323, RFC 1246, July 1991.) 129.88 626 T
([2]) 72 608 T
(Moy) 108 608 T
(, J., \322OSPF V) 129.88 608 T
(ersion 2\323, RFC 1247, July 1991.) 193.85 608 T
([3]) 72 590 T
(Corporation for National Research Initiatives, \322Proceedings of the Eighteenth Internet ) 108 590 T
(Engineering T) 108 576 T
(ask Force\323, University of British Columbia, July 30-August 3, 1990.) 176.11 576 T
FMENDPAGE
%%EndPage: "14" 15
%%Page: "15" 15
612 792 0 FMBEGINPAGE
72 702 540 720 R
7 X
0 K
V
0 F
0 X
(RFC 1245) 72 712 T
(OSPF protocol analysis) 249.36 712 T
(July 1991) 493.02 712 T
72 69.05 540 81 R
7 X
V
0 X
([Moy]) 72 73 T
([Page 15]) 493.7 73 T
72 108 540 684 R
7 X
V
2 F
0 X
(Security Considerations) 72 673.33 T
0 F
(Security issues are not discussed in this memo.) 72 646 T
2 F
(Author) 72 617.33 T
(\325) 122.04 617.33 T
(s Addr) 126.77 617.33 T
(ess) 173.13 617.33 T
0 F
(John Moy) 72 590 T
(Proteon Inc.) 72 576 T
(2 T) 72 562 T
(echnology Drive) 87.48 562 T
(W) 72 548 T
(estborough, MA 01581) 82.36 548 T
(Phone: \050508\051 898-2800) 72 522 T
(Email: jmoy@proteon.com) 72 508 T
FMENDPAGE
%%EndPage: "15" 16
%%Trailer
%%BoundingBox: 0 0 612 792
%%Pages: 15 1
%%DocumentFonts: Times-Roman
%%+ Times-Bold

debug log:

solving ad2244f1dc0be13d00a60d2506e789b355a92646 ...
found ad2244f1dc0be13d00a60d2506e789b355a92646 in https://git.savannah.gnu.org/cgit/emacs.git

(*) Git path names are given by the tree(s) the blob belongs to.
    Blobs themselves have no identifier aside from the hash of its contents.^

Code repositories for project(s) associated with this external index

	https://git.savannah.gnu.org/cgit/emacs.git
	https://git.savannah.gnu.org/cgit/emacs/org-mode.git

This is an external index of several public inboxes,
see mirroring instructions on how to clone and mirror
all data and code used by this external index.