1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
| | %!
%%BoundingBox: (atend)
%%Pages: (atend)
%%DocumentFonts: (atend)
%%EndComments
%
% FrameMaker PostScript Prolog 2.0, for use with FrameMaker 2.0
% Copyright (c) 1986,87,89 by Frame Technology, Inc. All rights reserved.
%
% Known Problems:
% Due to bugs in Transcript, the 'PS-Adobe-' is omitted from line 1
/FMversion (2.0) def
% Set up Color vs. Black-and-White
/FMPrintInColor systemdict /colorimage known def
% Uncomment this line to force b&w on color printer
% /FMPrintInColor false def
/FrameDict 190 dict def
systemdict /errordict known not {/errordict 10 dict def
errordict /rangecheck {stop} put} if
% The readline in 23.0 doesn't recognize cr's as nl's on AppleTalk
FrameDict /tmprangecheck errordict /rangecheck get put
errordict /rangecheck {FrameDict /bug true put} put
FrameDict /bug false put
mark
% Some PS machines read past the CR, so keep the following 3 lines together!
currentfile 5 string readline
00
0000000000
cleartomark
errordict /rangecheck FrameDict /tmprangecheck get put
FrameDict /bug get {
/readline {
/gstring exch def
/gfile exch def
/gindex 0 def
{
gfile read pop
dup 10 eq {exit} if
dup 13 eq {exit} if
gstring exch gindex exch put
/gindex gindex 1 add def
} loop
pop
gstring 0 gindex getinterval true
} def
} if
/FMVERSION {
FMversion ne {
/Times-Roman findfont 18 scalefont setfont
100 100 moveto
(FrameMaker version does not match postscript_prolog!)
dup =
show showpage
} if
} def
/FMLOCAL {
FrameDict begin
0 def
end
} def
/gstring FMLOCAL
/gfile FMLOCAL
/gindex FMLOCAL
/orgxfer FMLOCAL
/orgproc FMLOCAL
/organgle FMLOCAL
/orgfreq FMLOCAL
/yscale FMLOCAL
/xscale FMLOCAL
/manualfeed FMLOCAL
/paperheight FMLOCAL
/paperwidth FMLOCAL
/FMDOCUMENT {
array /FMfonts exch def
/#copies exch def
FrameDict begin
0 ne dup {setmanualfeed} if
/manualfeed exch def
/paperheight exch def
/paperwidth exch def
setpapername
manualfeed {true} {papersize} ifelse
{manualpapersize} {false} ifelse
{desperatepapersize} if
/yscale exch def
/xscale exch def
currenttransfer cvlit /orgxfer exch def
currentscreen cvlit /orgproc exch def
/organgle exch def /orgfreq exch def
end
} def
/pagesave FMLOCAL
/orgmatrix FMLOCAL
/landscape FMLOCAL
/FMBEGINPAGE {
FrameDict begin
/pagesave save def
3.86 setmiterlimit
/landscape exch 0 ne def
landscape {
90 rotate 0 exch neg translate pop
}
{pop pop}
ifelse
xscale yscale scale
/orgmatrix matrix def
gsave
} def
/FMENDPAGE {
grestore
pagesave restore
end
showpage
} def
/FMDEFINEFONT {
FrameDict begin
findfont
ReEncode
2 index exch
definefont exch
scalefont
FMfonts 3 1 roll
put
end
} bind def
/FMNORMALIZEGRAPHICS {
newpath
0.0 0.0 moveto
1 setlinewidth
0 setlinecap
0 0 0 sethsbcolor
0 setgray
} bind def
/fx FMLOCAL
/fy FMLOCAL
/fh FMLOCAL
/fw FMLOCAL
/llx FMLOCAL
/lly FMLOCAL
/urx FMLOCAL
/ury FMLOCAL
/FMBEGINEPSF {
end
/FMEPSF save def
/showpage {} def
FMNORMALIZEGRAPHICS
[/fy /fx /fh /fw /ury /urx /lly /llx] {exch def} forall
fx fy translate
rotate
fw urx llx sub div fh ury lly sub div scale
llx neg lly neg translate
} bind def
/FMENDEPSF {
FMEPSF restore
FrameDict begin
} bind def
FrameDict begin
/setmanualfeed {
%%BeginFeature *ManualFeed True
statusdict /manualfeed true put
%%EndFeature
} def
/max {2 copy lt {exch} if pop} bind def
/min {2 copy gt {exch} if pop} bind def
/inch {72 mul} def
/pagedimen {
paperheight sub abs 16 lt exch
paperwidth sub abs 16 lt and
{/papername exch def} {pop} ifelse
} def
/papersizedict FMLOCAL
/setpapername {
/papersizedict 14 dict def
papersizedict begin
/papername /unknown def
/Letter 8.5 inch 11.0 inch pagedimen
/LetterSmall 7.68 inch 10.16 inch pagedimen
/Tabloid 11.0 inch 17.0 inch pagedimen
/Ledger 17.0 inch 11.0 inch pagedimen
/Legal 8.5 inch 14.0 inch pagedimen
/Statement 5.5 inch 8.5 inch pagedimen
/Executive 7.5 inch 10.0 inch pagedimen
/A3 11.69 inch 16.5 inch pagedimen
/A4 8.26 inch 11.69 inch pagedimen
/A4Small 7.47 inch 10.85 inch pagedimen
/B4 10.125 inch 14.33 inch pagedimen
/B5 7.16 inch 10.125 inch pagedimen
end
} def
/papersize {
papersizedict begin
/Letter {lettertray} def
/LetterSmall {lettertray lettersmall} def
/Tabloid {11x17tray} def
/Ledger {ledgertray} def
/Legal {legaltray} def
/Statement {statementtray} def
/Executive {executivetray} def
/A3 {a3tray} def
/A4 {a4tray} def
/A4Small {a4tray a4small} def
/B4 {b4tray} def
/B5 {b5tray} def
/unknown {unknown} def
papersizedict dup papername known {papername} {/unknown} ifelse get
end
/FMdicttop countdictstack 1 add def
statusdict begin stopped end
countdictstack -1 FMdicttop {pop end} for
} def
/manualpapersize {
papersizedict begin
/Letter {letter} def
/LetterSmall {lettersmall} def
/Tabloid {11x17} def
/Ledger {ledger} def
/Legal {legal} def
/Statement {statement} def
/Executive {executive} def
/A3 {a3} def
/A4 {a4} def
/A4Small {a4small} def
/B4 {b4} def
/B5 {b5} def
/unknown {unknown} def
papersizedict dup papername known {papername} {/unknown} ifelse get
end
stopped
} def
/desperatepapersize {
statusdict /setpageparams known
{
paperwidth paperheight 0 1
statusdict begin
{setpageparams} stopped pop
end
} if
} def
/savematrix {
orgmatrix currentmatrix pop
} bind def
/restorematrix {
orgmatrix setmatrix
} bind def
/dmatrix matrix def
/dpi 72 0 dmatrix defaultmatrix dtransform
dup mul exch dup mul add sqrt def
/freq dpi 18.75 div 8 div round dup 0 eq {pop 1} if 8 mul dpi exch div def
/sangle 1 0 dmatrix defaultmatrix dtransform exch atan def
/DiacriticEncoding [
/.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef
/.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef
/.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef
/.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef
/.notdef /.notdef /.notdef /.notdef /space /exclam /quotedbl
/numbersign /dollar /percent /ampersand /quotesingle /parenleft
/parenright /asterisk /plus /comma /hyphen /period /slash /zero /one
/two /three /four /five /six /seven /eight /nine /colon /semicolon
/less /equal /greater /question /at /A /B /C /D /E /F /G /H /I /J /K
/L /M /N /O /P /Q /R /S /T /U /V /W /X /Y /Z /bracketleft /backslash
/bracketright /asciicircum /underscore /grave /a /b /c /d /e /f /g /h
/i /j /k /l /m /n /o /p /q /r /s /t /u /v /w /x /y /z /braceleft /bar
/braceright /asciitilde /.notdef /Adieresis /Aring /Ccedilla /Eacute
/Ntilde /Odieresis /Udieresis /aacute /agrave /acircumflex /adieresis
/atilde /aring /ccedilla /eacute /egrave /ecircumflex /edieresis
/iacute /igrave /icircumflex /idieresis /ntilde /oacute /ograve
/ocircumflex /odieresis /otilde /uacute /ugrave /ucircumflex
/udieresis /dagger /.notdef /cent /sterling /section /bullet
/paragraph /germandbls /registered /copyright /trademark /acute
/dieresis /.notdef /AE /Oslash /.notdef /.notdef /.notdef /.notdef
/yen /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef
/ordfeminine /ordmasculine /.notdef /ae /oslash /questiondown
/exclamdown /logicalnot /.notdef /florin /.notdef /.notdef
/guillemotleft /guillemotright /ellipsis /.notdef /Agrave /Atilde
/Otilde /OE /oe /endash /emdash /quotedblleft /quotedblright
/quoteleft /quoteright /.notdef /.notdef /ydieresis /Ydieresis
/fraction /currency /guilsinglleft /guilsinglright /fi /fl /daggerdbl
/periodcentered /quotesinglbase /quotedblbase /perthousand
/Acircumflex /Ecircumflex /Aacute /Edieresis /Egrave /Iacute
/Icircumflex /Idieresis /Igrave /Oacute /Ocircumflex /.notdef /Ograve
/Uacute /Ucircumflex /Ugrave /dotlessi /circumflex /tilde /macron
/breve /dotaccent /ring /cedilla /hungarumlaut /ogonek /caron
] def
/ReEncode {
dup
length
dict begin
{
1 index /FID ne
{def}
{pop pop} ifelse
} forall
Encoding StandardEncoding eq
{
/Encoding DiacriticEncoding def
}if
currentdict
end
} bind def
/graymode true def
/bwidth FMLOCAL
/bpside FMLOCAL
/bstring FMLOCAL
/onbits FMLOCAL
/offbits FMLOCAL
/xindex FMLOCAL
/yindex FMLOCAL
/x FMLOCAL
/y FMLOCAL
/setpattern {
/bwidth exch def
/bpside exch def
/bstring exch def
/onbits 0 def /offbits 0 def
freq sangle landscape {90 add} if
{/y exch def
/x exch def
/xindex x 1 add 2 div bpside mul cvi def
/yindex y 1 add 2 div bpside mul cvi def
bstring yindex bwidth mul xindex 8 idiv add get
1 7 xindex 8 mod sub bitshift and 0 ne
{/onbits onbits 1 add def 1}
{/offbits offbits 1 add def 0}
ifelse
}
setscreen
{} settransfer
offbits offbits onbits add div FMsetgray
/graymode false def
} bind def
/grayness {
FMsetgray
graymode not {
/graymode true def
orgxfer cvx settransfer
orgfreq organgle orgproc cvx setscreen
} if
} bind def
/HUE FMLOCAL
/SAT FMLOCAL
/BRIGHT FMLOCAL
/Colors FMLOCAL
FMPrintInColor
{
/HUE 0 def
/SAT 0 def
/BRIGHT 0 def
% array of arrays Hue and Sat values for the separations [HUE BRIGHT]
/Colors
[[0 0 ] % black
[0 0 ] % white
[0.00 1.0] % red
[0.37 1.0] % green
[0.60 1.0] % blue
[0.50 1.0] % cyan
[0.83 1.0] % magenta
[0.16 1.0] % comment / yellow
] def
/BEGINBITMAPCOLOR {
BITMAPCOLOR} def
/BEGINBITMAPCOLORc {
BITMAPCOLORc} def
/K {
Colors exch get dup
0 get /HUE exch store
1 get /BRIGHT exch store
HUE 0 eq BRIGHT 0 eq and
{1.0 SAT sub setgray}
{HUE SAT BRIGHT sethsbcolor}
ifelse
} def
/FMsetgray {
/SAT exch 1.0 exch sub store
HUE 0 eq BRIGHT 0 eq and
{1.0 SAT sub setgray}
{HUE SAT BRIGHT sethsbcolor}
ifelse
} bind def
}
{
/BEGINBITMAPCOLOR {
BITMAPGRAY} def
/BEGINBITMAPCOLORc {
BITMAPGRAYc} def
/FMsetgray {setgray} bind def
/K {
pop
} def
}
ifelse
/normalize {
transform round exch round exch itransform
} bind def
/dnormalize {
dtransform round exch round exch idtransform
} bind def
/lnormalize {
0 dtransform exch cvi 2 idiv 2 mul 1 add exch idtransform pop
} bind def
/H {
lnormalize setlinewidth
} bind def
/Z {
setlinecap
} bind def
/X {
fillprocs exch get exec
} bind def
/V {
gsave eofill grestore
} bind def
/N {
stroke
} bind def
/M {newpath moveto} bind def
/E {lineto} bind def
/D {curveto} bind def
/O {closepath} bind def
/n FMLOCAL
/L {
/n exch def
newpath
normalize
moveto
2 1 n {pop normalize lineto} for
} bind def
/Y {
L
closepath
} bind def
/x1 FMLOCAL
/x2 FMLOCAL
/y1 FMLOCAL
/y2 FMLOCAL
/rad FMLOCAL
/R {
/y2 exch def
/x2 exch def
/y1 exch def
/x1 exch def
x1 y1
x2 y1
x2 y2
x1 y2
4 Y
} bind def
/RR {
/rad exch def
normalize
/y2 exch def
/x2 exch def
normalize
/y1 exch def
/x1 exch def
newpath
x1 y1 rad add moveto
x1 y2 x2 y2 rad arcto
x2 y2 x2 y1 rad arcto
x2 y1 x1 y1 rad arcto
x1 y1 x1 y2 rad arcto
closepath
16 {pop} repeat
} bind def
/C {
grestore
gsave
R
clip
} bind def
/U {
grestore
gsave
} bind def
/F {
FMfonts exch get
setfont
} bind def
/T {
moveto show
} bind def
/RF {
rotate
0 ne {-1 1 scale} if
} bind def
/TF {
gsave
moveto
RF
show
grestore
} bind def
/P {
moveto
0 32 3 2 roll widthshow
} bind def
/PF {
gsave
moveto
RF
0 32 3 2 roll widthshow
grestore
} bind def
/S {
moveto
0 exch ashow
} bind def
/SF {
gsave
moveto
RF
0 exch ashow
grestore
} bind def
/B {
moveto
0 32 4 2 roll 0 exch awidthshow
} bind def
/BF {
gsave
moveto
RF
0 32 4 2 roll 0 exch awidthshow
grestore
} bind def
/x FMLOCAL
/y FMLOCAL
/dx FMLOCAL
/dy FMLOCAL
/dl FMLOCAL
/t FMLOCAL
/t2 FMLOCAL
/Cos FMLOCAL
/Sin FMLOCAL
/r FMLOCAL
/W {
dnormalize
/dy exch def
/dx exch def
normalize
/y exch def
/x exch def
/dl dx dx mul dy dy mul add sqrt def
dl 0.0 gt {
/t currentlinewidth def
savematrix
/Cos dx dl div def
/Sin dy dl div def
/r [Cos Sin Sin neg Cos 0.0 0.0] def
/t2 t 2.5 mul 3.5 max def
newpath
x y translate
r concat
0.0 0.0 moveto
dl t 2.7 mul sub 0.0 rlineto
stroke
restorematrix
x dx add y dy add translate
r concat
t 0.67 mul setlinewidth
t 1.61 mul neg 0.0 translate
0.0 0.0 moveto
t2 1.7 mul neg t2 2.0 div moveto
0.0 0.0 lineto
t2 1.7 mul neg t2 2.0 div neg lineto
stroke
t setlinewidth
restorematrix
} if
} bind def
/G {
gsave
newpath
normalize translate 0.0 0.0 moveto
dnormalize scale
0.0 0.0 1.0 5 3 roll arc
closepath fill
grestore
} bind def
/A {
gsave
savematrix
newpath
2 index 2 div add exch 3 index 2 div sub exch
normalize 2 index 2 div sub exch 3 index 2 div add exch
translate
scale
0.0 0.0 1.0 5 3 roll arc
restorematrix
stroke
grestore
} bind def
/x FMLOCAL
/y FMLOCAL
/w FMLOCAL
/h FMLOCAL
/xx FMLOCAL
/yy FMLOCAL
/ww FMLOCAL
/hh FMLOCAL
/FMsaveobject FMLOCAL
/FMoptop FMLOCAL
/FMdicttop FMLOCAL
/BEGINPRINTCODE {
/FMdicttop countdictstack 1 add def
/FMoptop count 4 sub def
/FMsaveobject save def
userdict begin
/showpage {} def
FMNORMALIZEGRAPHICS
3 index neg 3 index neg translate
} bind def
/ENDPRINTCODE {
count -1 FMoptop {pop pop} for
countdictstack -1 FMdicttop {pop end} for
FMsaveobject restore
} bind def
/gn {
0
{ 46 mul
cf read pop
32 sub
dup 46 lt {exit} if
46 sub add
} loop
add
} bind def
/str FMLOCAL
/cfs {
/str sl string def
0 1 sl 1 sub {str exch val put} for
str def
} bind def
/ic [
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0223
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0223
0
{0 hx} {1 hx} {2 hx} {3 hx} {4 hx} {5 hx} {6 hx} {7 hx} {8 hx} {9 hx}
{10 hx} {11 hx} {12 hx} {13 hx} {14 hx} {15 hx} {16 hx} {17 hx} {18 hx}
{19 hx} {gn hx} {0} {1} {2} {3} {4} {5} {6} {7} {8} {9} {10} {11} {12}
{13} {14} {15} {16} {17} {18} {19} {gn} {0 wh} {1 wh} {2 wh} {3 wh}
{4 wh} {5 wh} {6 wh} {7 wh} {8 wh} {9 wh} {10 wh} {11 wh} {12 wh}
{13 wh} {14 wh} {gn wh} {0 bl} {1 bl} {2 bl} {3 bl} {4 bl} {5 bl} {6 bl}
{7 bl} {8 bl} {9 bl} {10 bl} {11 bl} {12 bl} {13 bl} {14 bl} {gn bl}
{0 fl} {1 fl} {2 fl} {3 fl} {4 fl} {5 fl} {6 fl} {7 fl} {8 fl} {9 fl}
{10 fl} {11 fl} {12 fl} {13 fl} {14 fl} {gn fl}
] def
/sl FMLOCAL
/val FMLOCAL
/ws FMLOCAL
/im FMLOCAL
/bs FMLOCAL
/cs FMLOCAL
/len FMLOCAL
/pos FMLOCAL
/ms {
/sl exch def
/val 255 def
/ws cfs
/im cfs
/val 0 def
/bs cfs
/cs cfs
} bind def
400 ms
/ip {
is
0
cf cs readline pop
{ ic exch get exec
add
} forall
pop
} bind def
/wh {
/len exch def
/pos exch def
ws 0 len getinterval im pos len getinterval copy pop
pos len
} bind def
/bl {
/len exch def
/pos exch def
bs 0 len getinterval im pos len getinterval copy pop
pos len
} bind def
/s1 1 string def
/fl {
/len exch def
/pos exch def
/val cf s1 readhexstring pop 0 get def
pos 1 pos len add 1 sub {im exch val put} for
pos len
} bind def
/hx {
3 copy getinterval
cf exch readhexstring pop pop
} bind def
/h FMLOCAL
/w FMLOCAL
/d FMLOCAL
/lb FMLOCAL
/bitmapsave FMLOCAL
/is FMLOCAL
/cf FMLOCAL
/wbytes {
dup
8 eq {pop} {1 eq {7 add 8 idiv} {3 add 4 idiv} ifelse} ifelse
} bind def
/BEGINBITMAPBWc {
1 {} COMMONBITMAPc
} bind def
/BEGINBITMAPGRAYc {
8 {} COMMONBITMAPc
} bind def
/BEGINBITMAP2BITc {
2 {} COMMONBITMAPc
} bind def
/COMMONBITMAPc {
/r exch def
/d exch def
gsave
translate rotate scale /h exch def /w exch def
/lb w d wbytes def
sl lb lt {lb ms} if
/bitmapsave save def
r
/is im 0 lb getinterval def
ws 0 lb getinterval is copy pop
/cf currentfile def
w h d [w 0 0 h neg 0 h]
{ip} image
bitmapsave restore
grestore
} bind def
/BEGINBITMAPBW {
1 {} COMMONBITMAP
} bind def
/BEGINBITMAPGRAY {
8 {} COMMONBITMAP
} bind def
/BEGINBITMAP2BIT {
2 {} COMMONBITMAP
} bind def
/COMMONBITMAP {
/r exch def
/d exch def
gsave
translate rotate scale /h exch def /w exch def
/bitmapsave save def
r
/is w d wbytes string def
/cf currentfile def
w h d [w 0 0 h neg 0 h]
{cf is readhexstring pop} image
bitmapsave restore
grestore
} bind def
/proc1 FMLOCAL
/proc2 FMLOCAL
/newproc FMLOCAL
/Fmcc {
/proc2 exch cvlit def
/proc1 exch cvlit def
/newproc proc1 length proc2 length add array def
newproc 0 proc1 putinterval
newproc proc1 length proc2 putinterval
newproc cvx
} bind def
/ngrayt 256 array def
/nredt 256 array def
/nbluet 256 array def
/ngreent 256 array def
/gryt FMLOCAL
/blut FMLOCAL
/grnt FMLOCAL
/redt FMLOCAL
/indx FMLOCAL
/cynu FMLOCAL
/magu FMLOCAL
/yelu FMLOCAL
/k FMLOCAL
/u FMLOCAL
/colorsetup {
currentcolortransfer
/gryt exch def
/blut exch def
/grnt exch def
/redt exch def
0 1 255 {
/indx exch def
/cynu 1 red indx get 255 div sub def
/magu 1 green indx get 255 div sub def
/yelu 1 blue indx get 255 div sub def
/k cynu magu min yelu min def
/u k currentundercolorremoval exec def
nredt indx 1 0 cynu u sub max sub redt exec put
ngreent indx 1 0 magu u sub max sub grnt exec put
nbluet indx 1 0 yelu u sub max sub blut exec put
ngrayt indx 1 k currentblackgeneration exec sub gryt exec put
} for
{255 mul cvi nredt exch get}
{255 mul cvi ngreent exch get}
{255 mul cvi nbluet exch get}
{255 mul cvi ngrayt exch get}
setcolortransfer
{pop 0} setundercolorremoval
{} setblackgeneration
} bind def
/tran FMLOCAL
/fakecolorsetup {
/tran 256 string def
0 1 255 {/indx exch def
tran indx
red indx get 77 mul
green indx get 151 mul
blue indx get 28 mul
add add 256 idiv put} for
currenttransfer
{255 mul cvi tran exch get 255.0 div}
exch Fmcc settransfer
} bind def
/BITMAPCOLOR {
/d 8 def
gsave
translate rotate scale /h exch def /w exch def
/bitmapsave save def
colorsetup
/is w d wbytes string def
/cf currentfile def
w h d [w 0 0 h neg 0 h]
{cf is readhexstring pop} {is} {is} true 3 colorimage
bitmapsave restore
grestore
} bind def
/BITMAPCOLORc {
/d 8 def
gsave
translate rotate scale /h exch def /w exch def
/lb w d wbytes def
sl lb lt {lb ms} if
/bitmapsave save def
colorsetup
/is im 0 lb getinterval def
ws 0 lb getinterval is copy pop
/cf currentfile def
w h d [w 0 0 h neg 0 h]
{ip} {is} {is} true 3 colorimage
bitmapsave restore
grestore
} bind def
/BITMAPGRAY {
8 {fakecolorsetup} COMMONBITMAP
} bind def
/BITMAPGRAYc {
8 {fakecolorsetup} COMMONBITMAPc
} bind def
/ENDBITMAP {
} bind def
end
%%EndProlog
%%BeginSetup
(2.0) FMVERSION
1 1 612 792 0 1 7 FMDOCUMENT
/fillprocs 32 array def
fillprocs 0 { 0.000000 grayness } put
fillprocs 1 { 0.100000 grayness } put
fillprocs 2 { 0.300000 grayness } put
fillprocs 3 { 0.500000 grayness } put
fillprocs 4 { 0.700000 grayness } put
fillprocs 5 { 0.900000 grayness } put
fillprocs 6 { 0.970000 grayness } put
fillprocs 7 { 1.000000 grayness } put
fillprocs 8 {<0f87c3e1f0783c1e> 8 1 setpattern } put
fillprocs 9 {<0f1e3c78f0e1c387> 8 1 setpattern } put
fillprocs 10 {<cccccccccccccccc> 8 1 setpattern } put
fillprocs 11 {<ffff0000ffff0000> 8 1 setpattern } put
fillprocs 12 {<8142241818244281> 8 1 setpattern } put
fillprocs 13 {<8040201008040201> 8 1 setpattern } put
fillprocs 14 {<03060c183060c081> 8 1 setpattern } put
fillprocs 15 {} put
fillprocs 16 { 1.000000 grayness } put
fillprocs 17 { 0.900000 grayness } put
fillprocs 18 { 0.700000 grayness } put
fillprocs 19 { 0.500000 grayness } put
fillprocs 20 { 0.300000 grayness } put
fillprocs 21 { 0.100000 grayness } put
fillprocs 22 { 0.030000 grayness } put
fillprocs 23 { 0.000000 grayness } put
fillprocs 24 {<f0783c1e0f87c3e1> 8 1 setpattern } put
fillprocs 25 {<f0e1c3870f1e3c78> 8 1 setpattern } put
fillprocs 26 {<3333333333333333> 8 1 setpattern } put
fillprocs 27 {<0000ffff0000ffff> 8 1 setpattern } put
fillprocs 28 {<7ebddbe7e7dbbd7e> 8 1 setpattern } put
fillprocs 29 {<7fbfdfeff7fbfdfe> 8 1 setpattern } put
fillprocs 30 {<fcf9f3e7cf9f3f7e> 8 1 setpattern } put
fillprocs 31 {} put
%%EndSetup
0 12 /Times-Roman FMDEFINEFONT
1 24 /Times-Roman FMDEFINEFONT
2 16 /Times-Bold FMDEFINEFONT
%%Page: "1" 1
%%BeginPaperSize: Letter
%%EndPaperSize
612 792 0 FMBEGINPAGE
72 675 540 720 R
7 X
0 K
V
0 F
0 X
(Network Working Group) 72 712 T
(J. Moy, Editor) 470.7 712 T
(Request for Comments: 1245) 72 698 T
(Proteon, Inc.) 478.38 698 T
(July 1991) 493.02 684 T
72 72 540 83.95 R
7 X
V
0 X
([Moy]) 72 75.95 T
([Page 1]) 499.7 75.95 T
72 117 540 603 R
7 X
V
1 F
0 X
(OSPF protocol analysis) 192.72 587 T
2 F
(Status of this Memo) 72 514.33 T
0 F
-0.23 (This memo provides information for the Internet community) 72 487 P
-0.23 (. It does not specify any Internet stan-) 360.42 487 P
(dard. Distribution of this memo is unlimited.) 72 473 T
2 F
(Abstract) 72 447 T
0 F
-0.11 (This is the \336rst of two reports on the OSPF protocol. These reports are required by the IAB/IESG ) 72 421 P
(in order for an Internet routing protocol to advance to Draft Standard Status. OSPF is a TCP/IP ) 72 407 T
-0.28 (routing protocol, designed to be used internal to an Autonomous System \050in other words, OSPF is ) 72 393 P
(an Interior Gateway Protocol\051.) 72 379 T
-0.09 (V) 72 353 P
-0.09 (ersion 1 of the OSPF protocol was published in RFC 1) 79.33 353 P
-0.09 (131. Since then OSPF version 2 has been ) 339.85 353 P
-0.22 (developed. V) 72 339 P
-0.22 (ersion 2 has been documented in RFC 1247. The changes between version 1 and ver-) 134.4 339 P
-0 (sion 2 of the OSPF protocol are explained in Appendix F of RFC 1247. It is OSPF V) 72 325 P
-0 (ersion 2 that ) 477.72 325 P
(is the subject of this report.) 72 311 T
(This report attempts to summarize the key features of OSPF V2. It also attempts to analyze how ) 72 285 T
(the protocol will perform and scale in the Internet.) 72 271 T
(Please send comments to ospf@trantor) 72 245 T
(.umd.edu.) 258.27 245 T
FMENDPAGE
%%EndPage: "1" 2
1 10 /Times-Roman FMDEFINEFONT
%%Page: "2" 2
612 792 0 FMBEGINPAGE
72 702 540 720 R
7 X
0 K
V
0 F
0 X
(RFC 1245) 72 712 T
(OSPF protocol analysis) 249.36 712 T
(July 1991) 493.02 712 T
72 69.05 540 81 R
7 X
V
0 X
([Moy]) 72 73 T
([Page 2]) 499.7 73 T
72 108 540 684 R
7 X
V
2 F
0 X
(T) 72 673.33 T
(able of Contents) 81.19 673.33 T
0 F
(1.0) 72 650 T
(Introduction) 108 650 T
(..............................................................................................................) 167.91 650 T
(3) 498 650 T
1 F
(1.1) 108 635.33 T
(Acknowledgments) 144 635.33 T
(...............................................................................................................) 219.88 635.33 T
(3) 499 635.33 T
0 F
(2.0) 72 616 T
(Key features of the OSPF protocol) 108 616 T
(..........................................................................) 275.85 616 T
(4) 498 616 T
(3.0) 72 596 T
(Cost of the protocol) 108 596 T
(..................................................................................................) 203.89 596 T
(7) 498 596 T
1 F
(3.1) 108 581.33 T
( Operational data) 144 581.33 T
(.................................................................................................................) 214.88 581.33 T
(7) 499 581.33 T
(3.2) 108 567.33 T
(Link bandwidth) 144 567.33 T
(...................................................................................................................) 209.88 567.33 T
(9) 499 567.33 T
(3.3) 108 553.33 T
(Router memory) 144 553.33 T
(....................................................................................................................) 207.39 553.33 T
(9) 499 553.33 T
(3.4) 108 539.33 T
(Router CPU) 144 539.33 T
(.......................................................................................................................) 194.89 539.33 T
(10) 494.01 539.33 T
(3.5) 108 525.33 T
(Role of Designated Router) 144 525.33 T
(................................................................................................) 252.36 525.33 T
(1) 494.38 525.33 T
(1) 499 525.33 T
(3.6) 108 511.33 T
(Summary) 144 511.33 T
(...........................................................................................................................) 184.9 511.33 T
(1) 494.38 511.33 T
(1) 499 511.33 T
0 F
(4.0) 72 492 T
(Suitable environments) 108 492 T
(............................................................................................) 215.88 492 T
(13) 492.01 492 T
(5.0) 72 472 T
(Unsuitable environments) 108 472 T
(.......................................................................................) 230.87 472 T
(13) 492.01 472 T
(6.0) 72 452 T
(Reference Documents) 108 452 T
(............................................................................................) 215.88 452 T
(14) 492.01 452 T
FMENDPAGE
%%EndPage: "2" 3
3 14 /Times-Bold FMDEFINEFONT
%%Page: "3" 3
612 792 0 FMBEGINPAGE
72 702 540 720 R
7 X
0 K
V
0 F
0 X
(RFC 1245) 72 712 T
(OSPF protocol analysis) 249.36 712 T
(July 1991) 493.02 712 T
72 69.05 540 81 R
7 X
V
0 X
([Moy]) 72 73 T
([Page 3]) 499.7 73 T
72 108 540 684 R
7 X
V
2 F
0 X
(1.0 Intr) 72 673.33 T
(oduction) 127.23 673.33 T
0 F
-0.02 (This document addresses, for OSPF V2, the requirements set forth by the IAB/IESG for an Inter-) 72 646 P
-0.19 (net routing protocol to advance to Draft Standard state. This requirements are brie\337y summarized ) 72 632 P
(below) 72 618 T
(. The remaining sections of this report document how OSPF V2 satis\336es these require-) 100.53 618 T
(ments:) 72 604 T
(\245) 72 584 T
(What are the key features and algorithms of the protocol?) 85.54 584 T
(\245) 72 564 T
(How much link bandwidth, router memory and router CPU cycles does the protocol consume ) 85.54 564 T
(under normal conditions?) 85.54 550 T
(\245) 72 530 T
(For these metrics, how does the usage scale as the routing environment grows? This should ) 85.54 530 T
(include topologies at least an order of magnitude lar) 85.54 516 T
(ger than the current environment.) 335.14 516 T
(\245) 72 496 T
(What are the limits of the protocol for these metrics? \050i.e., when will the routing protocol ) 85.54 496 T
(break?\051 ) 85.54 482 T
(\245) 72 462 T
(For what environments is the protocol well suited, and for what is it not suitable? ) 85.54 462 T
3 F
(1.1 Acknowledgments) 72 428.67 T
0 F
-0.03 (The OSPF protocol has been developed by the OSPF W) 72 402 P
-0.03 (orking Group of the Internet Engineering ) 339.64 402 P
(T) 72 388 T
(ask Force. ) 78.49 388 T
FMENDPAGE
%%EndPage: "3" 4
4 12 /Times-Bold FMDEFINEFONT
%%Page: "4" 4
612 792 0 FMBEGINPAGE
72 702 540 720 R
7 X
0 K
V
0 F
0 X
(RFC 1245) 72 712 T
(OSPF protocol analysis) 249.36 712 T
(July 1991) 493.02 712 T
72 69.05 540 81 R
7 X
V
0 X
([Moy]) 72 73 T
([Page 4]) 499.7 73 T
72 108 540 684 R
7 X
V
2 F
0 X
(2.0 Key featur) 72 673.33 T
(es of the OSPF pr) 172.97 673.33 T
(otocol) 293.49 673.33 T
0 F
(This section summarizes the key features of the OSPF protocol. OSPF is an) 72 646 T
4 F
( Internal gateway ) 434.78 646 T
-0.2 (pr) 72 632 P
-0.2 (otocol) 83.78 632 P
0 F
-0.2 (; it is designed to be used internal to a single Autonomous System. OSPF uses) 114.42 632 P
4 F
-0.2 ( link-state ) 486.43 632 P
-0.36 (or SPF-based) 72 618 P
0 F
-0.36 ( technology \050as compared to the distance-vector or Bellman-Ford technology found ) 140.6 618 P
-0.48 (in routing protocols such as RIP\051. Individual ) 72 604 P
4 F
-0.48 (link state advertisements \050LSAs\051) 285.2 604 P
0 F
-0.48 ( describe pieces of ) 449.99 604 P
-0.13 (the OSPF routing domain \050Autonomous System\051. These LSAs are \337ooded throughout the routing ) 72 590 P
(domain, forming the ) 72 576 T
4 F
(link state database) 173.27 576 T
0 F
(. Each router has an identical link state database; syn-) 268.56 576 T
(chronization of link state databases is maintained via a ) 72 562 T
4 F
(r) 336.81 562 T
(eliable \337ooding algorithm) 341.92 562 T
0 F
(. From this ) 473.2 562 T
(link state database, each router builds a routing table by calculating a shortest-path tree, with the ) 72 548 T
(root of the tree being the calculating router itself. This calculation is commonly referred to as the ) 72 534 T
4 F
(Dijkstra pr) 72 520 T
(ocedur) 129.41 520 T
(e) 164.51 520 T
0 F
(.) 169.83 520 T
(Link state advertisements are small. Each advertisement describes a small pieces of the OSPF ) 72 494 T
(routing domain, namely either: the neighborhood of a single router) 72 480 T
(, the neighborhood of a single ) 391.97 480 T
(transit network, a single inter) 72 466 T
(-area route \050see below\051 or a single external route.) 212 466 T
(The other key features of the OSPF protocol are:) 72 440 T
(\245) 72 420 T
4 F
-0.31 (Adjacency bringup) 85.54 420 P
0 F
-0.31 (. ) 183.51 420 P
4 F
-0.31 (Certain pairs of OSPF r) 189.2 420 P
-0.31 (outers become \322adjacent\323) 311.01 420 P
0 F
-0.31 (. As an adjacency is ) 442.96 420 P
(formed, the two routers synchronize their link state databases by ) 85.54 406 T
4 F
(exchanging database sum-) 397.64 406 T
(maries) 85.54 392 T
0 F
( in the form of OSPF Database Exchange packets. Adjacent routers then maintain syn-) 120.17 392 T
(chronization of their link state databases through the ) 85.54 378 T
4 F
(r) 340.02 378 T
(eliable \337ooding algorithm) 345.13 378 T
0 F
(. Routers ) 476.41 378 T
-0.27 (connected by serial lines always become adjacent. On multi-access networks \050e.g., ethernets or ) 85.54 364 P
(X.25 PDNs\051, all routers attached to the network become adjacent to both the Designated ) 85.54 350 T
(Router and the Backup Designated router) 85.54 336 T
(.) 283.73 336 T
(\245) 72 316 T
4 F
-0.02 (Designated r) 85.54 316 P
-0.02 (outer) 150.26 316 P
-0.02 (.) 176.46 316 P
0 F
-0.02 ( A Designated Router is elected on all multi-access networks \050e.g., ether-) 179.46 316 P
(nets or X.25 PDNs\051. The network\325) 85.54 302 T
(s Designated Router ) 250.42 302 T
4 F
(originates the network LSA) 350.69 302 T
0 F
( describ-) 492.27 302 T
(ing the network\325) 85.54 288 T
(s local environment. It also plays a ) 164.15 288 T
4 F
(special r) 334.04 288 T
(ole in the \337ooding algorithm) 376.8 288 T
0 F
(, ) 521.4 288 T
(since all routers on the network are synchronizing their link state databases by sending and ) 85.54 274 T
(receiving LSAs to/from the Designated Router during the \337ooding process.) 85.54 260 T
(\245) 72 240 T
4 F
-0.46 (Backup Designated Router) 85.54 240 P
0 F
-0.46 (. A Backup Designated Router is elected on multi-access networks ) 221.87 240 P
(to speed/ease the transition of Designated Routers when the current Designated Router disap-) 85.54 226 T
(pears. In that event, the Backup DR takes over) 85.54 212 T
(, and does not need to go through the adjacency ) 308.22 212 T
-0.13 (bringup process on the LAN \050since it already had done this in its Backup capacity\051. Also, even ) 85.54 198 P
(before the disappearance of the Designated Router is noticed, the Backup DR will enable the ) 85.54 184 T
(reliable \337ooding algorithm to proceed in the DR\325) 85.54 170 T
(s absence.) 320.39 170 T
FMENDPAGE
%%EndPage: "4" 5
%%Page: "5" 5
612 792 0 FMBEGINPAGE
72 702 540 720 R
7 X
0 K
V
0 F
0 X
(RFC 1245) 72 712 T
(OSPF protocol analysis) 249.36 712 T
(July 1991) 493.02 712 T
72 69.05 540 81 R
7 X
V
0 X
([Moy]) 72 73 T
([Page 5]) 499.7 73 T
72 108 540 684 R
7 X
V
0 X
(\245) 72 676 T
4 F
(Non-br) 85.54 676 T
(oadcast multi-access network support.) 122.63 676 T
0 F
( OSPF treats these networks \050e.g., X.25 ) 318.51 676 T
-0.01 (PDNs\051 pretty much as if they were LANs \050i.e., a DR is elected, and a network LSA is gener-) 85.54 662 P
-0.29 (ated\051. Additional con\336guration information is needed however for routers attached to these net-) 85.54 648 P
(work to initially \336nd each other) 85.54 634 T
(.) 236.45 634 T
(\245) 72 614 T
4 F
(OSPF ar) 85.54 614 T
(eas) 130.29 614 T
0 F
(. OSPF allows the Autonomous Systems to be broken up into regions call areas. ) 146.28 614 T
(This is useful for several reasons. First, it provides an extra level of ) 85.54 600 T
4 F
(r) 411.64 600 T
(outing pr) 416.75 600 T
(otection) 464.18 600 T
0 F
(: rout-) 504.81 600 T
-0.29 (ing within an area is protected from all information external to the area. Second, by splitting an ) 85.54 586 P
-0.3 (Autonomous System into areas the ) 85.54 572 P
4 F
-0.3 (cost of the Dijkstra pr) 254.27 572 P
-0.3 (ocedur) 365.44 572 P
-0.3 (e ) 400.53 572 P
0 F
-0.3 (\050in terms of CPU cycles\051 is ) 408.55 572 P
(reduced.) 85.54 558 T
(\245) 72 538 T
4 F
(Flexible import of external r) 85.54 538 T
(outing information.) 230.55 538 T
0 F
( In OSPF) 330.5 538 T
(, ) 374.19 538 T
4 F
(each external r) 380.19 538 T
(oute) 456.58 538 T
0 F
( is imported ) 478.56 538 T
(into the Autonomous System in ) 85.54 524 T
4 F
(a separate LSA) 240.47 524 T
0 F
(. This reduces the amount of \337ooding traf) 319.08 524 T
(\336c ) 518.07 524 T
(\050since external routes change often, and you want to only \337ood the changes\051. It also enables ) 85.54 510 T
4 F
-0.43 (partial r) 85.54 496 P
-0.43 (outing table updates) 127.86 496 P
0 F
-0.43 ( when only a single external route changes. OSPF external LSAs ) 230.96 496 P
(also provide the following features. A ) 85.54 482 T
4 F
(forwarding addr) 270.4 482 T
(ess) 355.81 482 T
0 F
( can be included in the external ) 370.46 482 T
(LSA, eliminating extra-hops at the edge of the Autonomous System. There are two levels of ) 85.54 468 T
(external metrics that can be speci\336ed, ) 85.54 454 T
4 F
(type 1) 269.06 454 T
0 F
( and ) 300.04 454 T
4 F
(type 2) 323.35 454 T
0 F
(. Also, external routes can be tagged ) 354.33 454 T
(with a 32-bit number \050the ) 85.54 440 T
4 F
(external r) 211.12 440 T
(oute tag) 261.19 440 T
0 F
(; commonly used as an AS number of the route\325) 302.16 440 T
(s ) 531.68 440 T
(origin\051, simplifying external route management in a transit Autonomous System.) 85.54 426 T
(\245) 72 406 T
4 F
(Four level r) 85.54 406 T
(outing hierar) 145.27 406 T
(chy) 212.69 406 T
0 F
(. OSPF has a four level routing hierarchy) 229.9 406 T
(, or trust model: ) 426.32 406 T
4 F
(intra-) 505.94 406 T
(ar) 85.54 392 T
(ea) 96.64 392 T
0 F
(, ) 107.96 392 T
4 F
(inter) 113.96 392 T
(-ar) 138.16 392 T
(ea) 153.26 392 T
0 F
(, ) 164.59 392 T
4 F
(external type 1) 170.58 392 T
0 F
( and ) 246.52 392 T
4 F
(external type 2) 269.84 392 T
0 F
( routes. This enables multiple levels of ) 345.78 392 T
(routing protection, and simpli\336es routing management in an Autonomous System.) 85.54 378 T
(\245) 72 358 T
4 F
(V) 85.54 358 T
(irtual links) 93.75 358 T
0 F
(. By allowing the con\336guration of virtual links, OSPF ) 150.07 358 T
4 F
(r) 410.94 358 T
(emoves topological ) 416.05 358 T
(r) 85.54 344 T
(estrictions) 90.64 344 T
0 F
( on area layout in an Autonomous System.) 143.27 344 T
(\245) 72 324 T
4 F
-0.32 (Authentication of r) 85.54 324 P
-0.32 (outing pr) 182.62 324 P
-0.32 (otocol exchanges) 229.74 324 P
0 F
-0.32 (. Every time an OSPF router receives a routing ) 315.03 324 P
(protocol packet, it authenticates the packet before processing it further) 85.54 310 T
(.) 422.61 310 T
(\245) 72 290 T
4 F
-0.03 (Flexible r) 85.54 290 P
-0.03 (outing metric.) 134.26 290 P
0 F
-0.03 ( In OSPF) 206.18 290 P
-0.03 (, metric are assigned to outbound router interfaces. The cost ) 249.82 290 P
(of a path is then the sum of the path\325) 85.54 276 T
(s component interfaces. The routing metric itself can be ) 260.42 276 T
(assigned by the system administrator to indicate any combination of network characteristics ) 85.54 262 T
(\050e.g., delay) 85.54 248 T
(, bandwidth, dollar cost, etc.\051.) 138.04 248 T
(\245) 72 228 T
4 F
-0.09 (Equal-cost multipath.) 85.54 228 P
0 F
-0.09 ( When multiple best cost routes to a destination exist, OSPF \336nds them ) 196.73 228 P
(and they can be then used to load share traf) 85.54 214 T
(\336c to the destination.) 292.82 214 T
(\245) 72 194 T
4 F
(T) 85.54 194 T
(OS-based r) 93.32 194 T
(outing.) 150.74 194 T
0 F
( Separate sets of routes can be calculated for each IP type of service. For ) 186.4 194 T
(example, low delay traf) 85.54 180 T
(\336c could be routed on one path, while high bandwidth traf) 198.56 180 T
(\336c is routed ) 477.16 180 T
-0.39 (on another) 85.54 166 P
-0.39 (. This is done by \050optionally\051 assigning, to each outgoing router interface, one metric ) 135.44 166 P
(for each IP T) 85.54 152 T
(OS.) 148.26 152 T
(\245) 72 132 T
4 F
(V) 85.54 132 T
(ariable-length subnet support.) 93.09 132 T
0 F
( OSPF includes support for variable-length subnet masks by ) 248.02 132 T
(carrying a network mask with each advertised destination.) 85.54 118 T
FMENDPAGE
%%EndPage: "5" 6
%%Page: "6" 6
612 792 0 FMBEGINPAGE
72 702 540 720 R
7 X
0 K
V
0 F
0 X
(RFC 1245) 72 712 T
(OSPF protocol analysis) 249.36 712 T
(July 1991) 493.02 712 T
72 69.05 540 81 R
7 X
V
0 X
([Moy]) 72 73 T
([Page 6]) 499.7 73 T
72 108 540 684 R
7 X
V
0 X
(\245) 72 676 T
4 F
-0.08 (Stub ar) 85.54 676 P
-0.08 (ea support. ) 123.56 676 P
0 F
-0.08 (T) 183.69 676 P
-0.08 (o support routers having insuf) 190.18 676 P
-0.08 (\336cient memory) 333.53 676 P
-0.08 (, areas can be con\336gured as ) 405.63 676 P
(stubs. External LSAs \050often making up the bulk of the Autonomous System\051 are not \337ooded ) 85.54 662 T
(into/throughout stub areas. Routing to external destinations in stub areas is based solely on ) 85.54 648 T
(default.) 85.54 634 T
FMENDPAGE
%%EndPage: "6" 7
%%Page: "7" 7
612 792 0 FMBEGINPAGE
72 702 540 720 R
7 X
0 K
V
0 F
0 X
(RFC 1245) 72 712 T
(OSPF protocol analysis) 249.36 712 T
(July 1991) 493.02 712 T
72 69.05 540 81 R
7 X
V
0 X
([Moy]) 72 73 T
([Page 7]) 499.7 73 T
72 108 540 684 R
7 X
V
2 F
0 X
(3.0 Cost of the pr) 72 673.33 T
(otocol) 193.4 673.33 T
0 F
-0.1 (This section attempts to analyze how the OSPF protocol will perform and scale in the Internet. In ) 72 646 P
(this analysis, we will concentrate on the following four areas:) 72 632 T
(\245) 72 612 T
4 F
(Link bandwidth) 85.54 612 T
0 F
(. In OSPF) 168.53 612 T
(, a reliable \337ooding mechanism is used to ensure that router link ) 215.22 612 T
(state databases are remained synchronized. Individual components of the link state databases ) 85.54 598 T
-0.17 (\050the LSAs\051 are refreshed infrequently \050every 30 minutes\051, at least in the absence of topological ) 85.54 584 P
(changes. Still, as the size of the database increases, the amount of link bandwidth used by the ) 85.54 570 T
(\337ooding procedure also increases.) 85.54 556 T
(\245) 72 536 T
4 F
-0.03 (Router memory) 85.54 536 P
0 F
-0.03 (. The size of an OSPF link state database can get quite lar) 166.32 536 P
-0.03 (ge, especially in the ) 441.86 536 P
(presence of many external LSAs. This imposes requirements on the amount of router memory ) 85.54 522 T
(available.) 85.54 508 T
(\245) 72 488 T
4 F
(CPU usage) 85.54 488 T
0 F
(. In OSPF) 141.83 488 T
(, this is dominated by the length of time it takes to run the shortest path ) 188.52 488 T
(calculation \050Dijkstra procedure\051. This is a function of the number of routers in the OSPF sys-) 85.54 474 T
(tem.) 85.54 460 T
(\245) 72 440 T
4 F
(Role of the Designated Router) 85.54 440 T
(.) 238.32 440 T
0 F
( The Designated router receives and sends more packets on a ) 241.32 440 T
-0.46 (multi-access networks than the other routers connected to the network. Also, there is some time ) 85.54 426 P
(involved in cutting over to a new Designated Router after the old one fails \050especially when ) 85.54 412 T
(both the Backup Designated Router and the Designated Router fail at the same time\051. For this ) 85.54 398 T
-0.27 (reason, it is possible that you may want to limit the number of routers connected to a single net-) 85.54 384 P
(work.) 85.54 370 T
(The remaining section will analyze these areas, estimating how much resources the OSPF proto-) 72 344 T
-0.05 (col will consume, both now and in the future. T) 72 330 P
-0.05 (o aid in this analysis, the next section will present ) 298.93 330 P
(some data that have been collected in actual OSPF \336eld deployments.) 72 316 T
3 F
(3.1 Operational data) 72 282.67 T
0 F
-0.44 (The OSPF protocol has been deployed in a number of places in the Internet. For a summary of this ) 72 256 P
(deployment, see [1]. Some statistics have been gathered from this operational experience, via ) 72 242 T
-0.03 (local network management facilities. Some of these statistics are presented in the following table:) 72 228 P
FMENDPAGE
%%EndPage: "7" 8
5 10 /Times-Bold FMDEFINEFONT
%%Page: "8" 8
612 792 0 FMBEGINPAGE
72 702 540 720 R
7 X
0 K
V
0 F
0 X
(RFC 1245) 72 712 T
(OSPF protocol analysis) 249.36 712 T
(July 1991) 493.02 712 T
72 69.05 540 81 R
7 X
V
0 X
([Moy]) 72 73 T
([Page 8]) 499.7 73 T
72 108 540 684 R
7 X
V
72 666.01 540 674 C
72 671.98 540 671.98 2 L
0.5 H
0 Z
0 X
0 K
N
0 0 612 792 C
5 F
0 X
0 K
(T) 72 677.33 T
(ABLE 1. Pertinent operational statistics) 77.93 677.33 T
(Statistic) 72 655.34 T
(BARRNet) 216 655.34 T
(NSI) 324 655.34 T
(OARnet) 432 655.34 T
1 F
(Data gathering \050duration\051) 72 638.34 T
(99 hours) 216 638.34 T
(277 hours) 324 638.34 T
(28 hours) 432 638.34 T
(Dijkstra frequency) 72 622.34 T
(50 minutes) 216 622.34 T
(25 minutes) 324 622.34 T
(13 minutes) 432 622.34 T
(External incremental frequency) 72 606.34 T
(1.2 minutes) 216 606.34 T
(.98 minutes) 324 606.34 T
(not gathered) 432 606.34 T
(Database turnover) 72 590.34 T
(29.7 minutes) 216 590.34 T
(30.9 minutes) 324 590.34 T
(28.2 minutes) 432 590.34 T
(LSAs per packet) 72 574.34 T
(3.38) 216 574.34 T
(3.16) 324 574.34 T
(2.99) 432 574.34 T
(Flooding retransmits) 72 558.34 T
(1.3%) 216 558.34 T
(1.4%) 324 558.34 T
(.7%) 432 558.34 T
0 F
(The \336rst line in the above table show the length of time that statistics were gathered on the three ) 72 533.01 T
(networks. A brief description of the other statistics follows:) 72 519.01 T
(\245) 72 499.01 T
4 F
(Dijkstra fr) 85.54 499.01 T
(equency) 140.27 499.01 T
(. ) 181.59 499.01 T
0 F
(In OSPF) 187.59 499.01 T
(, the Dijkstra calculation involves only those routers and transit ) 228.28 499.01 T
-0.14 (networks belonging to the AS. The Dijkstra is run only when something in the system changes ) 85.54 485.01 P
(\050like a serial line between two routers goes down\051. Note that in these operational systems, the ) 85.54 471.01 T
(Dijkstra process runs only infrequently \050the most frequent being every 13 minutes\051.) 85.54 457.01 T
(\245) 72 437.01 T
4 F
(External incr) 85.54 437.01 T
(emental fr) 153.61 437.01 T
(equency) 206.35 437.01 T
0 F
(. In OSPF) 247.54 437.01 T
(, when an external route changes only its entry in ) 294.23 437.01 T
-0.13 (the routing table is recalculated. These are called external incremental updates. Note that these ) 85.54 423.01 P
(happen much more frequently than the Dijkstra procedure. \050in other words, incremental ) 85.54 409.01 T
(updates are saving quite a bit of processor time\051.) 85.54 395.01 T
(\245) 72 375.01 T
4 F
-0.45 (Database turnover) 85.54 375.01 P
-0.45 (.) 179.58 375.01 P
0 F
-0.45 ( In OSPF) 182.58 375.01 P
-0.45 (, link state advertisements are refreshed at a minimum of every 30 ) 225.36 375.01 P
(minutes. New advertisement instances are sent out more frequently when some part of the ) 85.54 361.01 T
-0.2 (topology changes. The table shows that, even taking topological changes into account, on aver-) 85.54 347.01 P
(age an advertisement is updated close to only every 30 minutes. This statistic will be used in ) 85.54 333.01 T
(the link bandwidth calculations below) 85.54 319.01 T
(. Note that NSI actually shows advertisements updated ) 267.31 319.01 T
(every 30.7 \050> 30\051 minutes. This probably means that at one time earlier in the measurement ) 85.54 305.01 T
(period, NSI had a smaller link state database that it did at the end.) 85.54 291.01 T
(\245) 72 271.01 T
4 F
-0.39 (LSAs per packet.) 85.54 271.01 P
0 F
-0.39 ( In OSPF) 173.04 271.01 P
-0.39 (, multiple LSAs can be included in either Link State Update or Link ) 215.95 271.01 P
-0.35 (State Acknowledgment packets.The table shows that, on average, around 3 LSAs are carried in ) 85.54 257.01 P
(a single packet. This statistic is used when calculating the header overhead in the link band-) 85.54 243.01 T
(width calculation below) 85.54 229.01 T
(. This statistic was derived by diving the number of LSAs \337ooded by ) 200.01 229.01 T
(the number of \050non-hello\051 multicasts sent.) 85.54 215.01 T
(\245) 72 195.01 T
4 F
(Flooding r) 85.54 195.01 T
(etransmits.) 138.97 195.01 T
0 F
( This counts both retransmission of LS Update packets and Link State ) 195.92 195.01 T
(Acknowledgment packets, as a percentage of the original multicast \337ooded packets. The table ) 85.54 181.01 T
(shows that \337ooding is working well, and that retransmits can be ignored in the link bandwidth ) 85.54 167.01 T
(calculation below) 85.54 153.01 T
(.) 169.69 153.01 T
FMENDPAGE
%%EndPage: "8" 9
%%Page: "9" 9
612 792 0 FMBEGINPAGE
72 702 540 720 R
7 X
0 K
V
0 F
0 X
(RFC 1245) 72 712 T
(OSPF protocol analysis) 249.36 712 T
(July 1991) 493.02 712 T
72 69.05 540 81 R
7 X
V
0 X
([Moy]) 72 73 T
([Page 9]) 499.7 73 T
72 108 540 684 R
7 X
V
3 F
0 X
(3.2 Link bandwidth) 72 674.67 T
0 F
-0.02 (In this section we attempt to calculate how much link bandwidth is consumed by the OSPF \337ood-) 72 648 P
(ing process. The amount of link bandwidth consumed increases linearly with the number of ) 72 634 T
(advertisements present in the OSPF database.W) 72 620 T
(e assume that the majority of advertisements in ) 300.88 620 T
(the database will be AS external LSAs \050operationally this is true, see [1]\051.) 72 606 T
(From the statistics presented in Section 3.1, any particular advertisement is \337ooded \050on average\051 ) 72 580 T
(every 30 minutes. In addition, three advertisements \336t in a single packet. \050This packet could be ) 72 566 T
(either a Link State Update packet or a Link State Acknowledgment packet; in this analysis we ) 72 552 T
(select the Link State Update packet, which is the lar) 72 538 T
(ger\051. An AS external LSA is 36 bytes long. ) 320.93 538 T
(Adding one third of a packet header \050IP header plus OSPF Update packet\051 yields 52 bytes. T) 72 524 T
(rans-) 515.59 524 T
(mitting this amount of data every 30 minutes gives an average rate of 23/100 bits/second.) 72 510 T
-0.05 (If you want to limit your routing traf) 72 484 P
-0.05 (\336c to 5% of the link\325) 247.03 484 P
-0.05 (s total bandwidth, you get the following ) 345.75 484 P
(maximums for database size:) 72 470 T
72 434.01 540 442 C
72 439.98 540 439.98 2 L
0.5 H
0 Z
0 X
0 K
N
0 0 612 792 C
5 F
0 X
0 K
(T) 72 445.33 T
(ABLE 2. Database size as a function of link speed \0505% utilization\051) 77.93 445.33 T
(Speed) 180 423.34 T
(# external advertisements) 288 423.34 T
1 F
(9.6 Kb) 180 406.34 T
(2087) 288 406.34 T
(56 Kb) 180 390.34 T
(12,174) 288 390.34 T
0 F
-0.46 (Higher line speeds have not been included, because other factors will then limit database size \050like ) 72 365.01 P
-0.12 (router memory\051 before line speed becomes a factor) 72 351.01 P
-0.12 (. Note that in the above calculation, the size of ) 315.32 351.01 P
-0.06 (the data link header was not taken into account. Also, note that while the OSPF database is likely ) 72 337.01 P
(to be mostly external LSAs, other LSAs have a size also. As a ballpark estimate, router links and ) 72 323.01 T
-0.01 (network links are generally three times as lar) 72 309.01 P
-0.01 (ge as an AS external link, with summary link adver-) 287.18 309.01 P
(tisements being the same size as external link LSAs.) 72 295.01 T
(OSPF consumes considerably less link bandwidth than RIP) 72 269.01 T
(. This has been shown experimentally ) 355.51 269.01 T
(in the NSI network. See Jef) 72 255.01 T
(frey Bur) 203.69 255.01 T
(gan\325) 243.77 255.01 T
(s \322NASA Sciences Internet\323 report in [3].) 264.42 255.01 T
3 F
(3.3 Router memory) 72 221.67 T
0 F
-0.1 (Memory requirements in OSPF are dominated by the size of the link state database. As in the pre-) 72 195.01 P
(vious section, it is probably safe to assume that most of the advertisements in the database are ) 72 181.01 T
(external LSAs. While an external LSA is 36 bytes long, it is generally stored by an OSPF imple-) 72 167.01 T
-0.34 (mentation together with some support data. So a good estimate of router memory consumed by an ) 72 153.01 P
(external LSA is probably 64 bytes. So a database having 10,000 external LSAs will consume ) 72 139.01 T
(640K bytes of router memory) 72 125.01 T
(. OSPF de\336nitely requires more memory than RIP) 213.79 125.01 T
(.) 452.98 125.01 T
FMENDPAGE
%%EndPage: "9" 10
%%Page: "10" 10
612 792 0 FMBEGINPAGE
72 702 540 720 R
7 X
0 K
V
0 F
0 X
(RFC 1245) 72 712 T
(OSPF protocol analysis) 249.36 712 T
(July 1991) 493.02 712 T
72 69.05 540 81 R
7 X
V
0 X
([Moy]) 72 73 T
([Page 10]) 493.7 73 T
72 108 540 684 R
7 X
V
0 X
-0.35 (Using the Proteon P4200 implementation as an example, the P4200 has 2Mbytes of memory) 72 676 P
-0.35 (. This ) 510.38 676 P
-0.02 (is shared between instruction, data and packet buf) 72 662 P
-0.02 (fer memory) 310.78 662 P
-0.02 (. The P4200 has enough memory to ) 366.26 662 P
(store 10, 000 external LSAs, and still have enough packet buf) 72 648 T
(fer memory available to run a rea-) 367.58 648 T
(sonable number of interfaces.) 72 634 T
(Also, note that while the OSPF database is likely to be mostly external LSAs, other LSAs have a ) 72 608 T
-0.06 (size also. As a ballpark estimate, router links and network links consume generally three times as ) 72 594 P
(much memory as an AS external link, with summary link advertisements being the same size as ) 72 580 T
(external link LSAs.) 72 566 T
3 F
(3.4 Router CPU) 72 532.67 T
0 F
(Assume that, as the size of the OSPF routing domain grows, the number of interfaces per router ) 72 506 T
(stays bounded. Then the Dijkstra calculation is of order \050n * log \050n\051\051, where n is the number of ) 72 492 T
(routers in the routing domain. \050This is the complexity of the Dijkstra algorithm in a sparse net-) 72 478 T
(work\051. Of course, it is implementation speci\336c as to how expensive the Dijkstra really is.) 72 464 T
(W) 72 438 T
(e have no experimental numbers for the cost of the Dijkstra calculation in a real OSPF imple-) 82.36 438 T
(mentation. However) 72 424 T
(, Steve Deering presented results for the Dijkstra calculation in the \322MOSPF ) 169.45 424 T
(meeting report\323 in [3]. Steve\325) 72 410 T
(s calculation was done on a DEC 5000 \05010 mips processor\051, using ) 212.9 410 T
(the Stanford internet as a model. His graphs are based on numbers of networks, not number of ) 72 396 T
(routers. However) 72 382 T
(, if we extrapolate that the ratio of routers to networks remains the same, the ) 154.78 382 T
(time to run Dijkstra for 200 routers in Steve\325) 72 368 T
(s implementation was around 15 milliseconds.) 285.87 368 T
-0.46 (This seems a reasonable cost, particularly when you notice that the Dijkstra calculation is run very ) 72 342 P
(infrequently in operational deployments. In the three networks presented in Section 3.1, Dijkstra ) 72 328 T
-0.35 (was run on average only every 13 to 50 minutes. Since the Dijkstra is run so infrequently) 72 314 P
-0.35 (, it seems ) 493.06 314 P
-0.02 (likely that OSPF overall consumes less CPU than RIP \050because of RIP\325) 72 300 P
-0.02 (s frequent updates, requir-) 413.95 300 P
(ing routing table lookups\051.) 72 286 T
(As another example, the routing algorithm in MILNET is SPF-based. MILNET\325) 72 260 T
(s current size is ) 456.42 260 T
-0.02 (230 nodes, and the routing calculation still consumes less than 5% of the MILNET switches\325 pro-) 72 246 P
(cessor bandwidth [4]. Because the routing algorithm in the MILNET adapts to network load, it ) 72 232 T
(runs the Dijkstra process quite frequently \050on the order of seconds as compared to OSPF\325) 72 218 T
(s min-) 499.7 218 T
(utes\051. However) 72 204 T
(, it should be noted that the routing algorithm in MILNET incrementally updates ) 144.79 204 T
(the SPF-tree, while OSPF rebuilds it from scratch at each Dijkstra calculation) 72 190 T
(OSPF\325) 72 164 T
(s Area capability provides a way to reduce Dijkstra overhead, if it becomes a burden. The ) 104 164 T
-0 (routing domain can be split into areas. The extent of the Dijkstra calculation \050and its complexity\051 ) 72 150 P
(is limited to a single area at a time.) 72 136 T
FMENDPAGE
%%EndPage: "10" 11
%%Page: "11" 11
612 792 0 FMBEGINPAGE
72 702 540 720 R
7 X
0 K
V
0 F
0 X
(RFC 1245) 72 712 T
(OSPF protocol analysis) 249.36 712 T
(July 1991) 493.02 712 T
72 69.05 540 81 R
7 X
V
0 X
([Moy]) 72 73 T
([Page 11]) 493.7 73 T
72 108 540 684 R
7 X
V
3 F
0 X
(3.5 Role of Designated Router) 72 674.67 T
0 F
(This section explores the number of routers that can be attached to a single network. As the num-) 72 648 T
-0.36 (ber of routers attached to a network grows, so does the amount of OSPF routing traf) 72 634 P
-0.36 (\336c seen on the ) 469.48 634 P
(network. Some of this is Hello traf) 72 620 T
(\336c, which is generally multicast by each router every 10 sec-) 238.01 620 T
-0.07 (onds. This burden is borne by all routers attached to the network. However) 72 606 P
-0.07 (, because of its special ) 429.77 606 P
-0.08 (role in the \337ooding process, the Designated router ends up sending more Link State Updates than ) 72 592 P
(the other routers on the network. Also, the Designated Router receives Link State Acknowledg-) 72 578 T
-0.15 (ments from all attached routers, while the other routers just receive them from the DR. \050Although ) 72 564 P
(it is important to note that the rate of Link State Acknowledgments will generally be limited to ) 72 550 T
(one per second from each router) 72 536 T
(, because acknowledgments are generally delayed.\051) 226.38 536 T
-0.22 (So, if the amount of protocol traf) 72 510 P
-0.22 (\336c on the LAN becomes a limiting factor) 228.71 510 P
-0.22 (, the limit is likely to be ) 424.24 510 P
(detected in the Designated Router \336rst. However) 72 496 T
(, such a limit is not expected to be reached in ) 305.68 496 T
(practice. The amount of routing protocol traf) 72 482 T
(\336c generated by OSPF has been shown to be small ) 286.62 482 T
-0.11 (\050see Section 3.2\051. Also, if need be OSPF\325) 72 468 P
-0.11 (s hello timers can be con\336gured to reduce the amount of ) 268.43 468 P
(protocol traf) 72 454 T
(\336c on the network. Note that more than 50 routers have been simulated attached to a ) 131.4 454 T
(single LAN \050see [1]\051. Also, in interoperability testing 13 routers have been attached to a single ) 72 440 T
(ethernet with no problems encountered.) 72 426 T
-0.02 (Another factor in the number of routers attached to a single network is the cutover time when the ) 72 400 P
-0.17 (Designated Router fails. OSPF has a Backup Designated Router so that the cutover does not have ) 72 386 P
-0.31 (to wait for the new DR to synchronize \050the adjacency bring-up process mentioned earlier\051 with all ) 72 372 P
-0.43 (the other routers on the LAN; as a Backup DR it had already synchronized. However) 72 358 P
-0.43 (, in those rare ) 473.46 358 P
-0.33 (cases when both DR and Backup DR crash at the same time, the new DR will have to synchronize ) 72 344 P
(\050via the adjacency bring-up process\051 with all other routers before becoming functional. Field ) 72 330 T
-0.44 (experience show that this synchronization process takes place in a timely fashion \050see the OARnet ) 72 316 P
(report in [1]\051. However) 72 302 T
(, this may be an issue in systems that have many routers attached to a sin-) 183.42 302 T
(gle network.) 72 288 T
-0.15 (In the unlikely event that the number of routers attached to a LAN becomes a problem, either due ) 72 262 P
(to the amount of routing protocol traf) 72 248 T
(\336c or the cutover time, the LAN can be split into separate ) 251 248 T
(pieces \050similar to splitting up the AS into separate areas\051.) 72 234 T
3 F
(3.6 Summary) 72 200.67 T
0 F
(In summary) 72 174 T
(, it seems like the most likely limitation to the size of an OSPF system is available ) 128.85 174 T
-0.4 (router memory) 72 160 P
-0.4 (. W) 142.43 160 P
-0.4 (e have given as 10,000 as the number of external LSAs that can be supported by ) 158.39 160 P
(the memory available in one con\336guration of a particular implementation \050the Proteon P4200\051. ) 72 146 T
-0.09 (Other implementations may vary; nowadays routers are being built with more and more memory) 72 132 P
-0.09 (. ) 534.09 132 P
FMENDPAGE
%%EndPage: "11" 12
%%Page: "12" 12
612 792 0 FMBEGINPAGE
72 702 540 720 R
7 X
0 K
V
0 F
0 X
(RFC 1245) 72 712 T
(OSPF protocol analysis) 249.36 712 T
(July 1991) 493.02 712 T
72 69.05 540 81 R
7 X
V
0 X
([Moy]) 72 73 T
([Page 12]) 493.7 73 T
72 108 540 684 R
7 X
V
0 X
(Note that 10,000 routes is considerably lar) 72 676 T
(ger than the lar) 275.31 676 T
(gest \336eld implementation \050BARRNet; ) 347.37 676 T
(which at 1816 external LSAs is still very lar) 72 662 T
(ge\051.) 283.65 662 T
(Note that there may be ways to reduce database size in a routing domain. First, the domain can ) 72 636 T
-0.19 (make use of default routing, reducing the number of external routes that need to be imported. Sec-) 72 622 P
(ondly) 72 608 T
(, an EGP can be used that will transport its own information through the AS instead of rely-) 98.54 608 T
-0.21 (ing on the IGP \050OSPF in this case\051 to do transfer the information for it \050the EGP\051. Thirdly) 72 594 P
-0.21 (, routers ) 498.11 594 P
(having insuf) 72 580 T
(\336cient memory may be able to be assigned to stub areas \050whose databases are drasti-) 131.41 580 T
(cally smaller\051. Lastly) 72 566 T
(, if the Internet went away from a \337at address space the amount of external ) 172.82 566 T
(information imported into an OSPF domain could be reduced drastically) 72 552 T
(.) 418.67 552 T
(While not as likely) 72 526 T
(, there could be other issues that would limit the size of an OSPF routing ) 162.17 526 T
(domain. If there are slow lines \050like 9600 baud\051, the size of the database will be limited \050see Sec-) 72 512 T
(tion 3.2\051. Dijkstra may get to be expensive when there are hundreds of routers in the OSPF ) 72 498 T
(domain; although at this point the domain can be split into areas. Finally) 72 484 T
(, when there are many ) 418.69 484 T
(routers attached to a single network, there may be undue burden imposed upon the Designated ) 72 470 T
(Router; although at that point a LAN can be split into separate LANs.) 72 456 T
FMENDPAGE
%%EndPage: "12" 13
%%Page: "13" 13
612 792 0 FMBEGINPAGE
72 702 540 720 R
7 X
0 K
V
0 F
0 X
(RFC 1245) 72 712 T
(OSPF protocol analysis) 249.36 712 T
(July 1991) 493.02 712 T
72 69.05 540 81 R
7 X
V
0 X
([Moy]) 72 73 T
([Page 13]) 493.7 73 T
72 108 540 684 R
7 X
V
2 F
0 X
(4.0 Suitable envir) 72 673.33 T
(onments) 195.21 673.33 T
0 F
-0.14 (Suitable environments for the OSPF protocol range from lar) 72 646 P
-0.14 (ge to small. OSPF is particular suited ) 359.11 646 P
(for transit Autonomous Systems for the following reasons. OSPF can accommodate a lar) 72 632 T
(ge num-) 497.84 632 T
(ber of external routes. In OSPF the import of external information is very \337exible, having provi-) 72 618 T
-0.39 (sions for a forwarding address, two levels of external metrics, and the ability to tag external routes ) 72 604 P
-0.29 (with their AS number for easy management. Also OSPF\325) 72 590 P
-0.29 (s ability to do partial updates when exter-) 343.17 590 P
(nal information changes is very useful on these networks.) 72 576 T
(OSPF is also suited for smaller) 72 550 T
(, either stand alone or stub Autonomous Systems, because of its ) 220.44 550 T
(wide array of features: fast conver) 72 536 T
(gence, equal-cost-multipath, T) 235.96 536 T
(OS routing, areas, etc.) 382.3 536 T
2 F
(5.0 Unsuitable envir) 72 469.33 T
(onments) 212.98 469.33 T
0 F
-0.22 (OSPF has a very limited ability to express policy) 72 442 P
-0.22 (. Basically) 304.62 442 P
-0.22 (, its only policy mechanisms are in the ) 354.25 442 P
(establishment of a four level routing hierarchy: intra-area, inter) 72 428 T
(-area, type 1 and type 2 external ) 374.52 428 T
(routes. A system wanting more sophisticated policies would have to be split up into separate ) 72 414 T
(ASes, running a policy-based EGP between them.) 72 400 T
FMENDPAGE
%%EndPage: "13" 14
%%Page: "14" 14
612 792 0 FMBEGINPAGE
72 702 540 720 R
7 X
0 K
V
0 F
0 X
(RFC 1245) 72 712 T
(OSPF protocol analysis) 249.36 712 T
(July 1991) 493.02 712 T
72 69.05 540 81 R
7 X
V
0 X
([Moy]) 72 73 T
([Page 14]) 493.7 73 T
72 108 540 684 R
7 X
V
2 F
0 X
(6.0 Refer) 72 673.33 T
(ence Documents) 137.87 673.33 T
0 F
(The following documents have been referenced by this report:) 72 646 T
([1]) 72 626 T
(Moy) 108 626 T
(, J., \322Experience with the OSPF protocol\323, RFC 1246, July 1991.) 129.88 626 T
([2]) 72 608 T
(Moy) 108 608 T
(, J., \322OSPF V) 129.88 608 T
(ersion 2\323, RFC 1247, July 1991.) 193.85 608 T
([3]) 72 590 T
(Corporation for National Research Initiatives, \322Proceedings of the Eighteenth Internet ) 108 590 T
(Engineering T) 108 576 T
(ask Force\323, University of British Columbia, July 30-August 3, 1990.) 176.11 576 T
FMENDPAGE
%%EndPage: "14" 15
%%Page: "15" 15
612 792 0 FMBEGINPAGE
72 702 540 720 R
7 X
0 K
V
0 F
0 X
(RFC 1245) 72 712 T
(OSPF protocol analysis) 249.36 712 T
(July 1991) 493.02 712 T
72 69.05 540 81 R
7 X
V
0 X
([Moy]) 72 73 T
([Page 15]) 493.7 73 T
72 108 540 684 R
7 X
V
2 F
0 X
(Security Considerations) 72 673.33 T
0 F
(Security issues are not discussed in this memo.) 72 646 T
2 F
(Author) 72 617.33 T
(\325) 122.04 617.33 T
(s Addr) 126.77 617.33 T
(ess) 173.13 617.33 T
0 F
(John Moy) 72 590 T
(Proteon Inc.) 72 576 T
(2 T) 72 562 T
(echnology Drive) 87.48 562 T
(W) 72 548 T
(estborough, MA 01581) 82.36 548 T
(Phone: \050508\051 898-2800) 72 522 T
(Email: jmoy@proteon.com) 72 508 T
FMENDPAGE
%%EndPage: "15" 16
%%Trailer
%%BoundingBox: 0 0 612 792
%%Pages: 15 1
%%DocumentFonts: Times-Roman
%%+ Times-Bold
|