1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
| | # cp932.awk -- Add sort keys and append user defined area to CP932-2BYTE.map.
# Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
# National Institute of Advanced Industrial Science and Technology (AIST)
# Registration Number H13PRO009
# This file is part of GNU Emacs.
# GNU Emacs is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# GNU Emacs is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
# You should have received a copy of the GNU General Public License
# along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>.
# Commentary:
# Add a sort key 0, 1, 2, or 3 at the tail of each line as a comment
# to realize the round trip mapping to Unicode works as described in
# this page:
# http://support.microsoft.com/default.aspx?scid=kb;EN-US;170559
# Each sort key means as below:
# 0: JISX0208 characters.
# 1: NEC special characters.
# 2: IBM extension characters.
# 3: NEC selection of IBM extension characters.
# 4: user defined area
BEGIN {
tohex["A"] = 10;
tohex["B"] = 11;
tohex["C"] = 12;
tohex["D"] = 13;
tohex["E"] = 14;
tohex["F"] = 15;
}
function decode_hex(str) {
n = 0;
len = length(str);
for (i = 1; i <= len; i++)
{
c = substr(str, i, 1);
if (c >= "0" && c <= "9")
n = n * 16 + (c - "0");
else
n = n * 16 + tohex[c];
}
return n;
}
function sjis_to_jis_ku(code)
{
s1 = int(code / 256);
s2 = code % 256;
if (s2 >= 159) # s2 >= 0x9F
{
if (s1 >= 224) # s1 >= 0xE0
j1 = s1 * 2 - 352; # j1 = s1 * 2 - 0x160
else
j1 = s1 * 2 - 224; # j1 = s1 * 2 - 0xE0
j2 = s2 - 126 # j2 = s2 - #x7E
}
else
{
if (s1 >= 224)
j1 = s1 * 2 - 353; # j1 = s1 * 2 - 0x161
else
j1 = s1 * 2 - 225; # j1 = s1 * 2 - 0xE1
if (s2 >= 127) # s2 >= #x7F
j2 = s2 - 32;
else
j2 = s2 - 31;
}
return j1 - 32;
}
/^0x[89E]/ {
sjis=decode_hex(substr($1, 3, 4))
ku=sjis_to_jis_ku(sjis);
if (ku == 13)
printf "%s # 1 %02X%02X\n", $0, j1, j2;
else if (ku >= 89 && ku <= 92)
printf "%s # 3 %02X%02X\n", $0, j1, j2;
else
printf "%s # 0 %02X%02X\n", $0, j1, j2;
next;
}
/^0xF/ {
printf "%s # 2\n", $0;
next;
}
{
print;
}
END {
code = 57344; # 0xE000
for (i = 240; i < 250; i++)
{
for (j = 64; j <= 126; j++)
printf "0x%02X%02X 0x%04X # 4\n", i, j, code++;
for (j = 128; j <= 158; j++)
printf "0x%02X%02X 0x%04X # 4\n", i, j, code++;
for (; j <= 252; j++)
printf "0x%02X%02X 0x%04X # 4\n", i, j, code++;
}
}
|