1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
| | ;;; org-learn.el --- Implements SuperMemo's incremental learning algorithm
;; Copyright (C) 2009-2021 Free Software Foundation, Inc.
;; Author: John Wiegley <johnw at gnu dot org>
;; Keywords: outlines, hypermedia, calendar, wp
;; Homepage: https://orgmode.org
;; Version: 6.32trans
;;
;; This file is not part of GNU Emacs.
;;
;; This program is free software: you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation, either version 3 of the License, or
;; (at your option) any later version.
;; This program is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;; You should have received a copy of the GNU General Public License
;; along with GNU Emacs. If not, see <https://www.gnu.org/licenses/>.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;
;;; Commentary:
;; The file implements the learning algorithm described at
;; https://supermemo.com/english/ol/sm5.htm, which is a system for reading
;; material according to "spaced repetition". See
;; https://en.wikipedia.org/wiki/Spaced_repetition for more details.
;;
;; To use, turn on state logging and schedule some piece of information you
;; want to read. Then in the agenda buffer type
(require 'org)
(eval-when-compile
(require 'cl))
(defgroup org-learn nil
"Options concerning the learning code in Org-mode."
:tag "Org Learn"
:group 'org-progress)
(defcustom org-learn-always-reschedule nil
"If non-nil, always reschedule items, even if retention was \"perfect\"."
:type 'boolean
:group 'org-learn)
(defcustom org-learn-fraction 0.5
"Controls the rate at which EF is increased or decreased.
Must be a number between 0 and 1 (the greater it is the faster
the changes of the OF matrix)."
:type 'float
:group 'org-learn)
(defun initial-optimal-factor (n ef)
(if (= 1 n)
4
ef))
(defun get-optimal-factor (n ef of-matrix)
(let ((factors (assoc n of-matrix)))
(or (and factors
(let ((ef-of (assoc ef (cdr factors))))
(and ef-of (cdr ef-of))))
(initial-optimal-factor n ef))))
(defun set-optimal-factor (n ef of-matrix of)
(let ((factors (assoc n of-matrix)))
(if factors
(let ((ef-of (assoc ef (cdr factors))))
(if ef-of
(setcdr ef-of of)
(push (cons ef of) (cdr factors))))
(push (cons n (list (cons ef of))) of-matrix)))
of-matrix)
(defun inter-repetition-interval (n ef &optional of-matrix)
(let ((of (get-optimal-factor n ef of-matrix)))
(if (= 1 n)
of
(* of (inter-repetition-interval (1- n) ef of-matrix)))))
(defun modify-e-factor (ef quality)
(if (< ef 1.3)
1.3
(+ ef (- 0.1 (* (- 5 quality) (+ 0.08 (* (- 5 quality) 0.02)))))))
(defun modify-of (of q fraction)
(let ((temp (* of (+ 0.72 (* q 0.07)))))
(+ (* (- 1 fraction) of) (* fraction temp))))
(defun calculate-new-optimal-factor (interval-used quality used-of
old-of fraction)
"This implements the SM-5 learning algorithm in Lisp.
INTERVAL-USED is the last interval used for the item in question.
QUALITY is the quality of the repetition response.
USED-OF is the optimal factor used in calculation of the last
interval used for the item in question.
OLD-OF is the previous value of the OF entry corresponding to the
relevant repetition number and the E-Factor of the item.
FRACTION is a number belonging to the range (0,1) determining the
rate of modifications (the greater it is the faster the changes
of the OF matrix).
Returns the newly calculated value of the considered entry of the
OF matrix."
(let (;; the value proposed for the modifier in case of q=5
(mod5 (/ (1+ interval-used) interval-used))
;; the value proposed for the modifier in case of q=2
(mod2 (/ (1- interval-used) interval-used))
;; the number determining how many times the OF value will
;; increase or decrease
modifier)
(if (< mod5 1.05)
(setq mod5 1.05))
(if (< mod2 0.75)
(setq mod5 0.75))
(if (> quality 4)
(setq modifier (1+ (* (- mod5 1) (- quality 4))))
(setq modifier (- 1 (* (/ (- 1 mod2) 2) (- 4 quality)))))
(if (< modifier 0.05)
(setq modifier 0.05))
(setq new-of (* used-of modifier))
(if (> quality 4)
(if (< new-of old-of)
(setq new-of old-of)))
(if (< quality 4)
(if (> new-of old-of)
(setq new-of old-of)))
(setq new-of (+ (* new-of fraction) (* old-of (- 1 fraction))))
(if (< new-of 1.2)
(setq new-of 1.2)
new-of)))
(defvar initial-repetition-state '(-1 1 2.5 nil))
(defun determine-next-interval (n ef quality of-matrix)
(assert (> n 0))
(assert (and (>= quality 0) (<= quality 5)))
(if (< quality 3)
(list (inter-repetition-interval n ef) (1+ n) ef nil)
(let ((next-ef (modify-e-factor ef quality)))
(setq of-matrix
(set-optimal-factor n next-ef of-matrix
(modify-of (get-optimal-factor n ef of-matrix)
quality org-learn-fraction))
ef next-ef)
;; For a zero-based quality of 4 or 5, don't repeat
(if (and (>= quality 4)
(not org-learn-always-reschedule))
(list 0 (1+ n) ef of-matrix)
(list (inter-repetition-interval n ef of-matrix) (1+ n)
ef of-matrix)))))
(defun org-smart-reschedule (quality)
(interactive "nHow well did you remember the information (on a scale of 0-5)? ")
(let* ((learn-str (org-entry-get (point) "LEARN_DATA"))
(learn-data (or (and learn-str
(read learn-str))
(copy-list initial-repetition-state)))
closed-dates)
(setq learn-data
(determine-next-interval (nth 1 learn-data)
(nth 2 learn-data)
quality
(nth 3 learn-data)))
(org-entry-put (point) "LEARN_DATA" (prin1-to-string learn-data))
(if (= 0 (nth 0 learn-data))
(org-schedule t)
(org-schedule nil (time-add (current-time)
(days-to-time (nth 0 learn-data)))))))
(provide 'org-learn)
;;; org-learn.el ends here
|