Tip for exporting Maxima results to KIEX

Leo Butler

February 14, 2023

Contents
I_Goal 1
1
2.1 maxima-init.lisp|. e e e e e 1
2.2 maxima-1nit.macl e e e 2
3 An example| 2
.. 2
3.2 Maxima codel s s 2
[3.3 Result of evaluation; IXIEX output| o 2
3.4 "I'wo annoyances|. L Lo 3
3
4.1 FEric Fraga’s suggestion|.o L L 3
4.2 Max Nikulin'sideal oL 4
M4.2.1 A bug // Feature request| 4
[> How to reproduce the pdf] 5

1 Goal

Generate INTEX code from Maxima code.

2 Setup

2.1 maxima-init.lisp

The command org-babel-execute:maxima in lisp/ob-maxima.el uses the Maxima command batchload
to execute Maxima code. This is a very tight-lipped loader, so we over-write batchload with batch. We
also load an init file:

#+name: maxima-init.lisp

#+begin_src maxima :tangle maxima-init.lisp :exports none
(defun $batchload (file) (mfuncall '$batch file))
($load "./maxima-init.mac")

#+end_src

On tangling, this produces the common-1isp output file maxima-init.lisp. It will be pre-loaded into
Maxima.

2.2 maxima-init.mac

Next, we need to create an init file for Maxima that will provide an output printer that produces KITEX
output. One option would be to use the imaxima printer. Here is another option that uses the alt-
display package. The code replaces the default printer with org_tex_display. It also sets the epilog
prompt, so that the final #+begin_example is terminated.

#+name: maxima-init.mac
#+begin_src maxima :tangle maxima-init.mac :exports none :eval none
load("alt-display.mac") $
set_prompt ('epilog,printf (false,"~)#+end_example")) $
define_alt_display(org_tex_display(x),
block([],
printf (true, "#+end_example~Y#+begin_export latex~%"),
printf (true,"\\textcolor{blue}{(\\~a~d)} ",outchar,linenum-1),
tex(second(x)),
printf (true,"~&#+end_export~Y#+begin_example~%(input) "))) $
set_alt_display(2,org_tex_display) $
display2d:true $
printf (true, "#+begin_example~%(input) ") $
linenum : 0 $
#+end_src

3 An example

Here is an example that computes the partial derivatives of a composite function.

3.1 Org code

#+name: chain-rule

#+begin_src maxima :exports both :cmdline -p ./maxima-init.lisp
(gradef (f(u,v) ,f_1(u,v),f_2(u,v)), 'done);
diff (£ (x72-y~2,x*y),x);
diff (f (x™2-y72,%x*y),y);

#+end_src

3.2 Maxima code

(gradef (f (u,v),f_1(u,v),f_2(u,v)), 'done);
diff (£ (x"2-y~2,x*y) ,x);
diff (£f(x"2-y72,x%y),7);

The first line defines the partial derivatives of f(u,v) with repect to u and v. The second and third
lines compute the partial derivatives of the composite f(x? — 32, xy).

3.3 Result of evaluation; IXTEX output

The batch printer echos each input line; it prints the output of each command line that ends in a semi-
colon (;). The result of a line ending in a dollar sign ($) is not printed. The org_tex_display printer
wraps each echoed input line in an example block and prints the output as it would appear in an imaxima
session.

(input)
read and interpret /tmp/babel-HzHnIr/maxima-GLLEO6.max
(gradef (f (u,v),f_1(u,v),f_2(u,v)), 'done)

(%o01)

done

(input)
diff (f(x72-y~2,x*y),x)

(%02)
yfo (2 =y zy) +2a f) (2 —y?, zy)

(input)
diff (f(x72-y~2,x*y),y)

(%03)
xfy (2?2 —y? xy) — 2y fi (2% —y* 2 y)

(input)
gnuplot_close()

3.4 'Two annoyances

The initial line read and interpret... and that final, dangling input line with gnuplot_close() are
nuisances. They can be easily suppressed, but that requires patching ob-maxima.el. That’s another
story.

4 Epilogue

After sending my initial draft to the Org mailing list, I received some feedback.

4.1 Eric Fraga’s suggestion
On the mailing list, Eric Fraga suggested adding the prologue/epilogue:

#+PROPERTY: header-args:maxima :prologue "fpprintprec: 2; linel: 50;"
#+PROPERTY: header-args:maxima :epilogue "for j: 1 thru length(solution) do (\
print (\"\"), print(\"Solution\", j), \
print (\"\"), for i: 1 thru length(solution[j]) do grind(solution[j][i]))$"

Let’s redo the example above with those settings and incorporating Eric’s design that the results need
to be collected in the solution list:

#+name: chain-rule-redo

#+header: :prologue "fpprintprec: 2; linel: 50;"

#+header: :epilogue "for j: 1 thru length(solution) do (print(\"\"), print(\"Solution\", j), prin
#+begin_src maxima :exports results :results table

(gradef (£ (u,v) ,f_1(u,v),f_2(u,v)), 'done);

fx:diff (£ (x"2-y72,x*y) ,x);

fy:diff (£ (x"2-y"2,x*y),¥);

solution: [fx,fy];

#+end_src

Here is the result:

Solution 1

(Y¥Ey (xZ-y 2y) +2%x4E (x%-y > *y)) [1]$
(y¥Ey (x%-y >y) +2%x4f) (x%-y>*Fy)) [2]$

Solution 2

(x*f (x2-y ¥y)- 2%y (x2-y 2 Fy)) [1]$
(xHfy (x2-y?*Hy)-2%y*f) (x2-y?**y)) [2]$

4.2 Max Nikulin’s idea
Max Nikulin remarked that the org code in this file contains redundancy. He suggested trying:

#+begin_src elisp :exports results :results silent
(require 'ob-org)
#+end_src

#+name: elisp-in-org
#+begin_src org :exports both :results replace
,#+name: elisp-block
,#+begin_src elisp :exports results
'((123) (456))
,#+end_src
#+end_src

The block named elisp-in-org is exported to:

#+name: elisp-block

#+begin_src elisp :exports results
'((123) (45 6))

#+end_src

The elisp code block exports to a named block of elisp code.
That exports to:

N
Tt
o W

4.2.1 A bug // Feature request

Org does a good job of recursively evaluating code blocks, as can be seen by the examples here (Thanks,
Max!). But, two things are not done quite correctly:

1. When editing org code blocks in an indirect buffer, it should be possible to recursively edit a code
block. That does not appear to work at the moment.

2. Noweb expansion does not work correctly in combination with recursive evaluation of code blocks.
In the org block named fraga-example.org, a noweb reference <<chain-rule>> to the Maxima
code block chain-rule is not expanded correctly (it leaves a blank line).

5 How to reproduce the pdf

1. In this org file, do C-c C-v t to tangle the two code blocks.

2. Then, do C-c C-e 1 p to export to pdf. Each time you are prompted about evaluating a code
block, answer y or yes.

	Goal
	Setup
	maxima-init.lisp
	maxima-init.mac

	An example
	Org code
	Maxima code
	Result of evaluation; LaTeX output
	Two annoyances

	Epilogue
	Eric Fraga's suggestion
	Max Nikulin's idea
	A bug // Feature request

	How to reproduce the pdf

