/* Big numbers for Emacs.
Copyright 2018-2024 Free Software Foundation, Inc.
This file is part of GNU Emacs.
GNU Emacs is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or (at
your option) any later version.
GNU Emacs is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU Emacs. If not, see . */
#include
#include "bignum.h"
#include "lisp.h"
#include
#include
/* mpz global temporaries. Making them global saves the trouble of
properly using mpz_init and mpz_clear on temporaries even when
storage is exhausted. Admittedly this is not ideal. An mpz value
in a temporary is made permanent by mpz_swapping it with a bignum's
value. Although typically at most two temporaries are needed,
rounddiv_q and rounding_driver both need four and time_arith needs
five. */
mpz_t mpz[5];
static void *
xrealloc_for_gmp (void *ptr, size_t ignore, size_t size)
{
return xrealloc (ptr, size);
}
static void
xfree_for_gmp (void *ptr, size_t ignore)
{
xfree (ptr);
}
void
init_bignum (void)
{
eassert (mp_bits_per_limb == GMP_NUMB_BITS);
integer_width = 1 << 16;
/* FIXME: The Info node `(gmp) Custom Allocation' states: "No error
return is allowed from any of these functions, if they return
then they must have performed the specified operation. [...]
There's currently no defined way for the allocation functions to
recover from an error such as out of memory, they must terminate
program execution. A 'longjmp' or throwing a C++ exception will
have undefined results." But xmalloc and xrealloc do call
'longjmp'. */
mp_set_memory_functions (xmalloc, xrealloc_for_gmp, xfree_for_gmp);
for (int i = 0; i < ARRAYELTS (mpz); i++)
mpz_init (mpz[i]);
}
/* Return the value of the Lisp bignum N, as a double. */
double
bignum_to_double (Lisp_Object n)
{
return mpz_get_d_rounded (*xbignum_val (n));
}
/* Return D, converted to a Lisp integer. Discard any fraction.
Signal an error if D cannot be converted. */
Lisp_Object
double_to_integer (double d)
{
if (!isfinite (d))
overflow_error ();
mpz_set_d (mpz[0], d);
return make_integer_mpz ();
}
/* Return a Lisp integer equal to mpz[0], which has BITS bits and which
must not be in fixnum range. Set mpz[0] to a junk value. */
static Lisp_Object
make_bignum_bits (size_t bits)
{
/* The documentation says integer-width should be nonnegative, so
comparing it to BITS works even though BITS is unsigned. Treat
integer-width as if it were at least twice the machine integer width,
so that timefns.c can safely use bignums for double-precision
timestamps. */
if (integer_width < bits && 2 * max (INTMAX_WIDTH, UINTMAX_WIDTH) < bits)
overflow_error ();
struct Lisp_Bignum *b = ALLOCATE_PLAIN_PSEUDOVECTOR (struct Lisp_Bignum,
PVEC_BIGNUM);
mpz_init (b->value);
mpz_swap (b->value, mpz[0]);
return make_lisp_ptr (b, Lisp_Vectorlike);
}
/* Return a Lisp integer equal to mpz[0], which must not be in fixnum range.
Set mpz[0] to a junk value. */
static Lisp_Object
make_bignum (void)
{
return make_bignum_bits (mpz_sizeinbase (mpz[0], 2));
}
/* Return a Lisp integer equal to N, which must not be in fixnum range. */
Lisp_Object
make_bigint (intmax_t n)
{
eassert (FIXNUM_OVERFLOW_P (n));
mpz_set_intmax (mpz[0], n);
return make_bignum ();
}
Lisp_Object
make_biguint (uintmax_t n)
{
eassert (FIXNUM_OVERFLOW_P (n));
mpz_set_uintmax (mpz[0], n);
return make_bignum ();
}
/* Return a Lisp integer equal to -N, which must not be in fixnum range. */
Lisp_Object
make_neg_biguint (uintmax_t n)
{
eassert (-MOST_NEGATIVE_FIXNUM < n);
mpz_set_uintmax (mpz[0], n);
mpz_neg (mpz[0], mpz[0]);
return make_bignum ();
}
/* Return a Lisp integer with value taken from mpz[0].
Set mpz[0] to a junk value. */
Lisp_Object
make_integer_mpz (void)
{
if (FASTER_BIGNUM && mpz_fits_slong_p (mpz[0]))
{
long int v = mpz_get_si (mpz[0]);
if (!FIXNUM_OVERFLOW_P (v))
return make_fixnum (v);
}
size_t bits = mpz_sizeinbase (mpz[0], 2);
if (! (FASTER_BIGNUM
&& FIXNUM_OVERFLOW_P (LONG_MIN)
&& FIXNUM_OVERFLOW_P (LONG_MAX))
&& bits <= FIXNUM_BITS)
{
EMACS_INT v = 0;
int i = 0, shift = 0;
do
{
EMACS_INT limb = mpz_getlimbn (mpz[0], i++);
v += limb << shift;
shift += GMP_NUMB_BITS;
}
while (shift < bits);
if (mpz_sgn (mpz[0]) < 0)
v = -v;
if (!FIXNUM_OVERFLOW_P (v))
return make_fixnum (v);
}
return make_bignum_bits (bits);
}
/* Set RESULT to V. This code is for when intmax_t is wider than long. */
void
mpz_set_intmax_slow (mpz_t result, intmax_t v)
{
int maxlimbs = (INTMAX_WIDTH + GMP_NUMB_BITS - 1) / GMP_NUMB_BITS;
mp_limb_t *limb = mpz_limbs_write (result, maxlimbs);
int n = 0;
uintmax_t u = v;
bool negative = v < 0;
if (negative)
{
uintmax_t two = 2;
u = -u & ((two << (UINTMAX_WIDTH - 1)) - 1);
}
do
{
limb[n++] = u;
u = GMP_NUMB_BITS < UINTMAX_WIDTH ? u >> GMP_NUMB_BITS : 0;
}
while (u != 0);
mpz_limbs_finish (result, negative ? -n : n);
}
void
mpz_set_uintmax_slow (mpz_t result, uintmax_t v)
{
int maxlimbs = (UINTMAX_WIDTH + GMP_NUMB_BITS - 1) / GMP_NUMB_BITS;
mp_limb_t *limb = mpz_limbs_write (result, maxlimbs);
int n = 0;
do
{
limb[n++] = v;
v = GMP_NUMB_BITS < INTMAX_WIDTH ? v >> GMP_NUMB_BITS : 0;
}
while (v != 0);
mpz_limbs_finish (result, n);
}
/* If Z fits into *PI, store its value there and return true.
Return false otherwise. */
bool
mpz_to_intmax (mpz_t const z, intmax_t *pi)
{
if (FASTER_BIGNUM)
{
if (mpz_fits_slong_p (z))
{
*pi = mpz_get_si (z);
return true;
}
if (LONG_MIN <= INTMAX_MIN && INTMAX_MAX <= LONG_MAX)
return false;
}
ptrdiff_t bits = mpz_sizeinbase (z, 2);
bool negative = mpz_sgn (z) < 0;
if (bits < INTMAX_WIDTH)
{
intmax_t v = 0;
int i = 0, shift = 0;
do
{
intmax_t limb = mpz_getlimbn (z, i++);
v += limb << shift;
shift += GMP_NUMB_BITS;
}
while (shift < bits);
*pi = negative ? -v : v;
return true;
}
if (bits == INTMAX_WIDTH && INTMAX_MIN < -INTMAX_MAX && negative
&& mpz_scan1 (z, 0) == INTMAX_WIDTH - 1)
{
*pi = INTMAX_MIN;
return true;
}
return false;
}
bool
mpz_to_uintmax (mpz_t const z, uintmax_t *pi)
{
if (FASTER_BIGNUM)
{
if (mpz_fits_ulong_p (z))
{
*pi = mpz_get_ui (z);
return true;
}
if (UINTMAX_MAX <= ULONG_MAX)
return false;
}
if (mpz_sgn (z) < 0)
return false;
ptrdiff_t bits = mpz_sizeinbase (z, 2);
if (UINTMAX_WIDTH < bits)
return false;
uintmax_t v = 0;
int i = 0, shift = 0;
do
{
uintmax_t limb = mpz_getlimbn (z, i++);
v += limb << shift;
shift += GMP_NUMB_BITS;
}
while (shift < bits);
*pi = v;
return true;
}
/* Return the value of the bignum X if it fits, 0 otherwise.
A bignum cannot be zero, so 0 indicates failure reliably. */
intmax_t
bignum_to_intmax (Lisp_Object x)
{
intmax_t i;
return mpz_to_intmax (*xbignum_val (x), &i) ? i : 0;
}
uintmax_t
bignum_to_uintmax (Lisp_Object x)
{
uintmax_t i;
return mpz_to_uintmax (*xbignum_val (x), &i) ? i : 0;
}
/* Multiply and exponentiate mpz_t values without aborting due to size
limits. */
/* GMP tests for this value and aborts (!) if it is exceeded.
This is as of GMP 6.1.2 (2016); perhaps future versions will differ. */
enum { GMP_NLIMBS_MAX = min (INT_MAX, ULONG_MAX / GMP_NUMB_BITS) };
/* An upper bound on limb counts, needed to prevent libgmp and/or
Emacs from aborting or otherwise misbehaving. This bound applies
to estimates of mpz_t sizes before the mpz_t objects are created,
as opposed to integer-width which operates on mpz_t values after
creation and before conversion to Lisp bignums. */
enum
{
NLIMBS_LIMIT = min (min (/* libgmp needs to store limb counts. */
GMP_NLIMBS_MAX,
/* Size calculations need to work. */
min (PTRDIFF_MAX, SIZE_MAX) / sizeof (mp_limb_t)),
/* Emacs puts bit counts into fixnums. */
MOST_POSITIVE_FIXNUM / GMP_NUMB_BITS)
};
/* Like mpz_size, but tell the compiler the result is a nonnegative int. */
static int
emacs_mpz_size (mpz_t const op)
{
mp_size_t size = mpz_size (op);
eassume (0 <= size && size <= INT_MAX);
return size;
}
/* Wrappers to work around GMP limitations. As of GMP 6.1.2 (2016),
the library code aborts when a number is too large. These wrappers
avoid the problem for functions that can return numbers much larger
than their arguments. For slowly-growing numbers, the integer
width checks in bignum.c should suffice. */
void
emacs_mpz_mul (mpz_t rop, mpz_t const op1, mpz_t const op2)
{
if (NLIMBS_LIMIT - emacs_mpz_size (op1) < emacs_mpz_size (op2))
overflow_error ();
mpz_mul (rop, op1, op2);
}
void
emacs_mpz_mul_2exp (mpz_t rop, mpz_t const op1, EMACS_INT op2)
{
/* Fudge factor derived from GMP 6.1.2, to avoid an abort in
mpz_mul_2exp (look for the '+ 1' in its source code). */
enum { mul_2exp_extra_limbs = 1 };
enum { lim = min (NLIMBS_LIMIT, GMP_NLIMBS_MAX - mul_2exp_extra_limbs) };
EMACS_INT op2limbs = op2 / GMP_NUMB_BITS;
if (lim - emacs_mpz_size (op1) < op2limbs)
overflow_error ();
mpz_mul_2exp (rop, op1, op2);
}
void
emacs_mpz_pow_ui (mpz_t rop, mpz_t const base, unsigned long exp)
{
/* This fudge factor is derived from GMP 6.1.2, to avoid an abort in
mpz_n_pow_ui (look for the '5' in its source code). */
enum { pow_ui_extra_limbs = 5 };
enum { lim = min (NLIMBS_LIMIT, GMP_NLIMBS_MAX - pow_ui_extra_limbs) };
int nbase = emacs_mpz_size (base), n;
if (ckd_mul (&n, nbase, exp) || lim < n)
overflow_error ();
mpz_pow_ui (rop, base, exp);
}
/* Yield an upper bound on the buffer size needed to contain a C
string representing the NUM in base BASE. This includes any
preceding '-' and the terminating null. */
static ptrdiff_t
mpz_bufsize (mpz_t const num, int base)
{
return mpz_sizeinbase (num, base) + 2;
}
ptrdiff_t
bignum_bufsize (Lisp_Object num, int base)
{
return mpz_bufsize (*xbignum_val (num), base);
}
/* Convert NUM to a nearest double, as opposed to mpz_get_d which
truncates toward zero. */
double
mpz_get_d_rounded (mpz_t const num)
{
ptrdiff_t size = mpz_bufsize (num, 10);
/* Use mpz_get_d as a shortcut for a bignum so small that rounding
errors cannot occur, which is possible if EMACS_INT (not counting
sign) has fewer bits than a double significand. */
if (! ((FLT_RADIX == 2 && DBL_MANT_DIG <= FIXNUM_BITS - 1)
|| (FLT_RADIX == 16 && DBL_MANT_DIG * 4 <= FIXNUM_BITS - 1))
&& size <= DBL_DIG + 2)
return mpz_get_d (num);
USE_SAFE_ALLOCA;
char *buf = SAFE_ALLOCA (size);
mpz_get_str (buf, 10, num);
double result = strtod (buf, NULL);
SAFE_FREE ();
return result;
}
/* Store into BUF (of size SIZE) the value of NUM as a base-BASE string.
If BASE is negative, use upper-case digits in base -BASE.
Return the string's length.
SIZE must equal bignum_bufsize (NUM, abs (BASE)). */
ptrdiff_t
bignum_to_c_string (char *buf, ptrdiff_t size, Lisp_Object num, int base)
{
eassert (bignum_bufsize (num, abs (base)) == size);
mpz_get_str (buf, base, *xbignum_val (num));
ptrdiff_t n = size - 2;
return !buf[n - 1] ? n - 1 : n + !!buf[n];
}
/* Convert NUM to a base-BASE Lisp string.
If BASE is negative, use upper-case digits in base -BASE. */
Lisp_Object
bignum_to_string (Lisp_Object num, int base)
{
ptrdiff_t size = bignum_bufsize (num, abs (base));
USE_SAFE_ALLOCA;
char *str = SAFE_ALLOCA (size);
ptrdiff_t len = bignum_to_c_string (str, size, num, base);
Lisp_Object result = make_unibyte_string (str, len);
SAFE_FREE ();
return result;
}
/* Create a bignum by scanning NUM, with digits in BASE.
NUM must consist of an optional '-', a nonempty sequence
of base-BASE digits, and a terminating null byte, and
the represented number must not be in fixnum range. */
Lisp_Object
make_bignum_str (char const *num, int base)
{
struct Lisp_Bignum *b = ALLOCATE_PLAIN_PSEUDOVECTOR (struct Lisp_Bignum,
PVEC_BIGNUM);
mpz_init (b->value);
int check = mpz_set_str (b->value, num, base);
eassert (check == 0);
return make_lisp_ptr (b, Lisp_Vectorlike);
}
/* Check that X is a Lisp integer in the range LO..HI.
Return X's value as an intmax_t. */
intmax_t
check_integer_range (Lisp_Object x, intmax_t lo, intmax_t hi)
{
CHECK_INTEGER (x);
intmax_t i;
if (! (integer_to_intmax (x, &i) && lo <= i && i <= hi))
args_out_of_range_3 (x, make_int (lo), make_int (hi));
return i;
}
/* Check that X is a Lisp integer in the range 0..HI.
Return X's value as an uintmax_t. */
uintmax_t
check_uinteger_max (Lisp_Object x, uintmax_t hi)
{
CHECK_INTEGER (x);
uintmax_t i;
if (! (integer_to_uintmax (x, &i) && i <= hi))
args_out_of_range_3 (x, make_fixnum (0), make_uint (hi));
return i;
}
/* Check that X is a Lisp integer no greater than INT_MAX,
and return its value or zero, whichever is greater. */
int
check_int_nonnegative (Lisp_Object x)
{
CHECK_INTEGER (x);
return NILP (Fnatnump (x)) ? 0 : check_integer_range (x, 0, INT_MAX);
}
/* Return a random mp_limb_t. */
static mp_limb_t
get_random_limb (void)
{
if (GMP_NUMB_BITS <= ULONG_WIDTH)
return get_random_ulong ();
/* Work around GCC -Wshift-count-overflow false alarm. */
int shift = GMP_NUMB_BITS <= ULONG_WIDTH ? 0 : ULONG_WIDTH;
/* This is in case someone builds GMP with unusual definitions for
MINI_GMP_LIMB_TYPE or _LONG_LONG_LIMB. */
mp_limb_t r = 0;
for (int i = 0; i < GMP_NUMB_BITS; i += ULONG_WIDTH)
r = (r << shift) | get_random_ulong ();
return r;
}
/* Return a random mp_limb_t I in the range 0 <= I < LIM.
If LIM is zero, simply return a random mp_limb_t. */
static mp_limb_t
get_random_limb_lim (mp_limb_t lim)
{
/* Return the remainder of a random mp_limb_t R divided by LIM,
except reject the rare case where R is so close to the maximum
mp_limb_t that the remainder isn't random. */
mp_limb_t difflim = - lim, diff, remainder;
do
{
mp_limb_t r = get_random_limb ();
if (lim == 0)
return r;
remainder = r % lim;
diff = r - remainder;
}
while (difflim < diff);
return remainder;
}
/* Return a random Lisp integer I in the range 0 <= I < LIMIT,
where LIMIT is a positive bignum. */
Lisp_Object
get_random_bignum (struct Lisp_Bignum const *limit)
{
mpz_t const *lim = bignum_val (limit);
mp_size_t nlimbs = mpz_size (*lim);
eassume (0 < nlimbs);
mp_limb_t *r_limb = mpz_limbs_write (mpz[0], nlimbs);
mp_limb_t const *lim_limb = mpz_limbs_read (*lim);
mp_limb_t limhi = lim_limb[nlimbs - 1];
eassert (limhi);
bool edgy;
do
{
/* Generate the result one limb at a time, most significant first.
Choose the most significant limb RHI randomly from 0..LIMHI,
where LIMHI is the LIM's first limb, except choose from
0..(LIMHI-1) if there is just one limb. RHI == LIMHI is an
unlucky edge case as later limbs might cause the result to be
exceed or equal LIM; if this happens, it causes another
iteration in the outer loop. */
mp_limb_t rhi = get_random_limb_lim (limhi + (1 < nlimbs));
edgy = rhi == limhi;
r_limb[nlimbs - 1] = rhi;
for (mp_size_t i = nlimbs - 1; 0 < i--; )
{
/* get_random_limb_lim (edgy ? limb_lim[i] + 1 : 0)
would be wrong here, as the full mp_limb_t range is
needed in later limbs for the edge case to have the
proper weighting. */
mp_limb_t ri = get_random_limb ();
if (edgy)
{
if (lim_limb[i] < ri)
break;
edgy = lim_limb[i] == ri;
}
r_limb[i] = ri;
}
}
while (edgy);
mpz_limbs_finish (mpz[0], nlimbs);
return make_integer_mpz ();
}