/* Keyboard and mouse input; editor command loop.
Copyright (C) 1985-1989, 1993-1997, 1999-2016 Free Software Foundation,
Inc.
This file is part of GNU Emacs.
GNU Emacs is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or (at
your option) any later version.
GNU Emacs is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU Emacs. If not, see . */
#include
#include
#include "lisp.h"
#include "coding.h"
#include "termchar.h"
#include "termopts.h"
#include "frame.h"
#include "termhooks.h"
#include "macros.h"
#include "keyboard.h"
#include "window.h"
#include "commands.h"
#include "character.h"
#include "buffer.h"
#include "dispextern.h"
#include "syntax.h"
#include "intervals.h"
#include "keymap.h"
#include "blockinput.h"
#include "systime.h"
#include "atimer.h"
#include "process.h"
#include
#ifdef HAVE_PTHREAD
#include
#endif
#ifdef MSDOS
#include "msdos.h"
#include
#else /* not MSDOS */
#include
#endif /* not MSDOS */
#if defined USABLE_FIONREAD && defined USG5_4
# include
#endif
#include "syssignal.h"
#include
#include
#include
#include
#ifdef HAVE_WINDOW_SYSTEM
#include TERM_HEADER
#endif /* HAVE_WINDOW_SYSTEM */
/* Work around GCC bug 54561. */
#if GNUC_PREREQ (4, 3, 0)
# pragma GCC diagnostic ignored "-Wclobbered"
#endif
#ifdef WINDOWSNT
char const DEV_TTY[] = "CONOUT$";
#else
char const DEV_TTY[] = "/dev/tty";
#endif
/* Variables for blockinput.h: */
/* Positive if interrupt input is blocked right now. */
volatile int interrupt_input_blocked;
/* True means an input interrupt or alarm signal has arrived.
The QUIT macro checks this. */
volatile bool pending_signals;
#define KBD_BUFFER_SIZE 4096
KBOARD *initial_kboard;
KBOARD *current_kboard;
static KBOARD *all_kboards;
/* True in the single-kboard state, false in the any-kboard state. */
static bool single_kboard;
#define NUM_RECENT_KEYS (300)
/* Index for storing next element into recent_keys. */
static int recent_keys_index;
/* Total number of elements stored into recent_keys. */
static int total_keys;
/* This vector holds the last NUM_RECENT_KEYS keystrokes. */
static Lisp_Object recent_keys;
/* Vector holding the key sequence that invoked the current command.
It is reused for each command, and it may be longer than the current
sequence; this_command_key_count indicates how many elements
actually mean something.
It's easier to staticpro a single Lisp_Object than an array. */
Lisp_Object this_command_keys;
ptrdiff_t this_command_key_count;
/* This vector is used as a buffer to record the events that were actually read
by read_key_sequence. */
static Lisp_Object raw_keybuf;
static int raw_keybuf_count;
#define GROW_RAW_KEYBUF \
if (raw_keybuf_count == ASIZE (raw_keybuf)) \
raw_keybuf = larger_vector (raw_keybuf, 1, -1)
/* Number of elements of this_command_keys
that precede this key sequence. */
static ptrdiff_t this_single_command_key_start;
#ifdef HAVE_STACK_OVERFLOW_HANDLING
/* For longjmp to recover from C stack overflow. */
sigjmp_buf return_to_command_loop;
/* Message displayed by Vtop_level when recovering from C stack overflow. */
static Lisp_Object recover_top_level_message;
#endif /* HAVE_STACK_OVERFLOW_HANDLING */
/* Message normally displayed by Vtop_level. */
static Lisp_Object regular_top_level_message;
/* For longjmp to where kbd input is being done. */
static sys_jmp_buf getcjmp;
/* True while doing kbd input. */
bool waiting_for_input;
/* True while displaying for echoing. Delays C-g throwing. */
static bool echoing;
/* Non-null means we can start echoing at the next input pause even
though there is something in the echo area. */
static struct kboard *ok_to_echo_at_next_pause;
/* The kboard last echoing, or null for none. Reset to 0 in
cancel_echoing. If non-null, and a current echo area message
exists, and echo_message_buffer is eq to the current message
buffer, we know that the message comes from echo_kboard. */
struct kboard *echo_kboard;
/* The buffer used for echoing. Set in echo_now, reset in
cancel_echoing. */
Lisp_Object echo_message_buffer;
/* True means C-g should cause immediate error-signal. */
bool immediate_quit;
/* Character that causes a quit. Normally C-g.
If we are running on an ordinary terminal, this must be an ordinary
ASCII char, since we want to make it our interrupt character.
If we are not running on an ordinary terminal, it still needs to be
an ordinary ASCII char. This character needs to be recognized in
the input interrupt handler. At this point, the keystroke is
represented as a struct input_event, while the desired quit
character is specified as a lispy event. The mapping from struct
input_events to lispy events cannot run in an interrupt handler,
and the reverse mapping is difficult for anything but ASCII
keystrokes.
FOR THESE ELABORATE AND UNSATISFYING REASONS, quit_char must be an
ASCII character. */
int quit_char;
/* Current depth in recursive edits. */
EMACS_INT command_loop_level;
/* If not Qnil, this is a switch-frame event which we decided to put
off until the end of a key sequence. This should be read as the
next command input, after any unread_command_events.
read_key_sequence uses this to delay switch-frame events until the
end of the key sequence; Fread_char uses it to put off switch-frame
events until a non-ASCII event is acceptable as input. */
Lisp_Object unread_switch_frame;
/* Last size recorded for a current buffer which is not a minibuffer. */
static ptrdiff_t last_non_minibuf_size;
uintmax_t num_input_events;
ptrdiff_t point_before_last_command_or_undo;
struct buffer *buffer_before_last_command_or_undo;
/* Value of num_nonmacro_input_events as of last auto save. */
static EMACS_INT last_auto_save;
/* The value of point when the last command was started. */
static ptrdiff_t last_point_position;
/* The frame in which the last input event occurred, or Qmacro if the
last event came from a macro. We use this to determine when to
generate switch-frame events. This may be cleared by functions
like Fselect_frame, to make sure that a switch-frame event is
generated by the next character.
FIXME: This is modified by a signal handler so it should be volatile.
It's exported to Lisp, though, so it can't simply be marked
'volatile' here. */
Lisp_Object internal_last_event_frame;
/* `read_key_sequence' stores here the command definition of the
key sequence that it reads. */
static Lisp_Object read_key_sequence_cmd;
static Lisp_Object read_key_sequence_remapped;
/* File in which we write all commands we read. */
static FILE *dribble;
/* True if input is available. */
bool input_pending;
/* True if more input was available last time we read an event.
Since redisplay can take a significant amount of time and is not
indispensable to perform the user's commands, when input arrives
"too fast", Emacs skips redisplay. More specifically, if the next
command has already been input when we finish the previous command,
we skip the intermediate redisplay.
This is useful to try and make sure Emacs keeps up with fast input
rates, such as auto-repeating keys. But in some cases, this proves
too conservative: we may end up disabling redisplay for the whole
duration of a key repetition, even though we could afford to
redisplay every once in a while.
So we "sample" the input_pending flag before running a command and
use *that* value after running the command to decide whether to
skip redisplay or not. This way, we only skip redisplay if we
really can't keep up with the repeat rate.
This only makes a difference if the next input arrives while running the
command, which is very unlikely if the command is executed quickly.
IOW this tends to avoid skipping redisplay after a long running command
(which is a case where skipping redisplay is not very useful since the
redisplay time is small compared to the time it took to run the command).
A typical use case is when scrolling. Scrolling time can be split into:
- Time to do jit-lock on the newly displayed portion of buffer.
- Time to run the actual scroll command.
- Time to perform the redisplay.
Jit-lock can happen either during the command or during the redisplay.
In the most painful cases, the jit-lock time is the one that dominates.
Also jit-lock can be tweaked (via jit-lock-defer) to delay its job, at the
cost of temporary inaccuracy in display and scrolling.
So without input_was_pending, what typically happens is the following:
- when the command starts, there's no pending input (yet).
- the scroll command triggers jit-lock.
- during the long jit-lock time the next input arrives.
- at the end of the command, we check input_pending and hence decide to
skip redisplay.
- we read the next input and start over.
End result: all the hard work of jit-locking is "wasted" since redisplay
doesn't actually happens (at least not before the input rate slows down).
With input_was_pending redisplay is still skipped if Emacs can't keep up
with the input rate, but if it can keep up just enough that there's no
input_pending when we begin the command, then redisplay is not skipped
which results in better feedback to the user. */
static bool input_was_pending;
/* Circular buffer for pre-read keyboard input. */
static union buffered_input_event kbd_buffer[KBD_BUFFER_SIZE];
/* Pointer to next available character in kbd_buffer.
If kbd_fetch_ptr == kbd_store_ptr, the buffer is empty.
This may be kbd_buffer + KBD_BUFFER_SIZE, meaning that the
next available char is in kbd_buffer[0]. */
static union buffered_input_event *kbd_fetch_ptr;
/* Pointer to next place to store character in kbd_buffer. This
may be kbd_buffer + KBD_BUFFER_SIZE, meaning that the next
character should go in kbd_buffer[0]. */
static union buffered_input_event *volatile kbd_store_ptr;
/* The above pair of variables forms a "queue empty" flag. When we
enqueue a non-hook event, we increment kbd_store_ptr. When we
dequeue a non-hook event, we increment kbd_fetch_ptr. We say that
there is input available if the two pointers are not equal.
Why not just have a flag set and cleared by the enqueuing and
dequeuing functions? Such a flag could be screwed up by interrupts
at inopportune times. */
static void recursive_edit_unwind (Lisp_Object buffer);
static Lisp_Object command_loop (void);
static void echo_now (void);
static ptrdiff_t echo_length (void);
/* Incremented whenever a timer is run. */
unsigned timers_run;
/* Address (if not 0) of struct timespec to zero out if a SIGIO interrupt
happens. */
struct timespec *input_available_clear_time;
/* True means use SIGIO interrupts; false means use CBREAK mode.
Default is true if INTERRUPT_INPUT is defined. */
bool interrupt_input;
/* Nonzero while interrupts are temporarily deferred during redisplay. */
bool interrupts_deferred;
/* The time when Emacs started being idle. */
static struct timespec timer_idleness_start_time;
/* After Emacs stops being idle, this saves the last value
of timer_idleness_start_time from when it was idle. */
static struct timespec timer_last_idleness_start_time;
/* Global variable declarations. */
/* Flags for readable_events. */
#define READABLE_EVENTS_DO_TIMERS_NOW (1 << 0)
#define READABLE_EVENTS_FILTER_EVENTS (1 << 1)
#define READABLE_EVENTS_IGNORE_SQUEEZABLES (1 << 2)
/* Function for init_keyboard to call with no args (if nonzero). */
static void (*keyboard_init_hook) (void);
static bool get_input_pending (int);
static bool readable_events (int);
static Lisp_Object read_char_x_menu_prompt (Lisp_Object,
Lisp_Object, bool *);
static Lisp_Object read_char_minibuf_menu_prompt (int, Lisp_Object);
static Lisp_Object make_lispy_event (struct input_event *);
static Lisp_Object make_lispy_movement (struct frame *, Lisp_Object,
enum scroll_bar_part,
Lisp_Object, Lisp_Object,
Time);
static Lisp_Object modify_event_symbol (ptrdiff_t, int, Lisp_Object,
Lisp_Object, const char *const *,
Lisp_Object *, ptrdiff_t);
static Lisp_Object make_lispy_switch_frame (Lisp_Object);
static Lisp_Object make_lispy_focus_in (Lisp_Object);
#ifdef HAVE_WINDOW_SYSTEM
static Lisp_Object make_lispy_focus_out (Lisp_Object);
#endif /* HAVE_WINDOW_SYSTEM */
static bool help_char_p (Lisp_Object);
static void save_getcjmp (sys_jmp_buf);
static void restore_getcjmp (sys_jmp_buf);
static Lisp_Object apply_modifiers (int, Lisp_Object);
static void restore_kboard_configuration (int);
static void handle_interrupt (bool);
static _Noreturn void quit_throw_to_read_char (bool);
static void timer_start_idle (void);
static void timer_stop_idle (void);
static void timer_resume_idle (void);
static void deliver_user_signal (int);
static char *find_user_signal_name (int);
static void store_user_signal_events (void);
/* These setters are used only in this file, so they can be private. */
static void
kset_echo_string (struct kboard *kb, Lisp_Object val)
{
kb->echo_string_ = val;
}
static void
kset_echo_prompt (struct kboard *kb, Lisp_Object val)
{
kb->echo_prompt_ = val;
}
static void
kset_kbd_queue (struct kboard *kb, Lisp_Object val)
{
kb->kbd_queue_ = val;
}
static void
kset_keyboard_translate_table (struct kboard *kb, Lisp_Object val)
{
kb->Vkeyboard_translate_table_ = val;
}
static void
kset_last_prefix_arg (struct kboard *kb, Lisp_Object val)
{
kb->Vlast_prefix_arg_ = val;
}
static void
kset_last_repeatable_command (struct kboard *kb, Lisp_Object val)
{
kb->Vlast_repeatable_command_ = val;
}
static void
kset_local_function_key_map (struct kboard *kb, Lisp_Object val)
{
kb->Vlocal_function_key_map_ = val;
}
static void
kset_overriding_terminal_local_map (struct kboard *kb, Lisp_Object val)
{
kb->Voverriding_terminal_local_map_ = val;
}
static void
kset_real_last_command (struct kboard *kb, Lisp_Object val)
{
kb->Vreal_last_command_ = val;
}
static void
kset_system_key_syms (struct kboard *kb, Lisp_Object val)
{
kb->system_key_syms_ = val;
}
static bool
echo_keystrokes_p (void)
{
return (FLOATP (Vecho_keystrokes) ? XFLOAT_DATA (Vecho_keystrokes) > 0.0
: INTEGERP (Vecho_keystrokes) ? XINT (Vecho_keystrokes) > 0
: false);
}
/* Add C to the echo string, without echoing it immediately. C can be
a character, which is pretty-printed, or a symbol, whose name is
printed. */
static void
echo_add_key (Lisp_Object c)
{
char initbuf[KEY_DESCRIPTION_SIZE + 100];
ptrdiff_t size = sizeof initbuf;
char *buffer = initbuf;
char *ptr = buffer;
Lisp_Object echo_string = KVAR (current_kboard, echo_string);
USE_SAFE_ALLOCA;
if (STRINGP (echo_string) && SCHARS (echo_string) > 0)
/* Add a space at the end as a separator between keys. */
ptr++[0] = ' ';
/* If someone has passed us a composite event, use its head symbol. */
c = EVENT_HEAD (c);
if (INTEGERP (c))
ptr = push_key_description (XINT (c), ptr);
else if (SYMBOLP (c))
{
Lisp_Object name = SYMBOL_NAME (c);
ptrdiff_t nbytes = SBYTES (name);
if (size - (ptr - buffer) < nbytes)
{
ptrdiff_t offset = ptr - buffer;
size = max (2 * size, size + nbytes);
buffer = SAFE_ALLOCA (size);
ptr = buffer + offset;
}
ptr += copy_text (SDATA (name), (unsigned char *) ptr, nbytes,
STRING_MULTIBYTE (name), 1);
}
if ((NILP (echo_string) || SCHARS (echo_string) == 0)
&& help_char_p (c))
{
static const char text[] = " (Type ? for further options)";
int len = sizeof text - 1;
if (size - (ptr - buffer) < len)
{
ptrdiff_t offset = ptr - buffer;
size += len;
buffer = SAFE_ALLOCA (size);
ptr = buffer + offset;
}
memcpy (ptr, text, len);
ptr += len;
}
kset_echo_string
(current_kboard,
concat2 (echo_string, make_string (buffer, ptr - buffer)));
SAFE_FREE ();
}
/* Temporarily add a dash to the end of the echo string if it's not
empty, so that it serves as a mini-prompt for the very next
character. */
static void
echo_dash (void)
{
/* Do nothing if not echoing at all. */
if (NILP (KVAR (current_kboard, echo_string)))
return;
if (!current_kboard->immediate_echo
&& SCHARS (KVAR (current_kboard, echo_string)) == 0)
return;
/* Do nothing if we just printed a prompt. */
if (STRINGP (KVAR (current_kboard, echo_prompt))
&& (SCHARS (KVAR (current_kboard, echo_prompt))
== SCHARS (KVAR (current_kboard, echo_string))))
return;
/* Do nothing if we have already put a dash at the end. */
if (SCHARS (KVAR (current_kboard, echo_string)) > 1)
{
Lisp_Object last_char, prev_char, idx;
idx = make_number (SCHARS (KVAR (current_kboard, echo_string)) - 2);
prev_char = Faref (KVAR (current_kboard, echo_string), idx);
idx = make_number (SCHARS (KVAR (current_kboard, echo_string)) - 1);
last_char = Faref (KVAR (current_kboard, echo_string), idx);
if (XINT (last_char) == '-' && XINT (prev_char) != ' ')
return;
}
/* Put a dash at the end of the buffer temporarily,
but make it go away when the next character is added. */
AUTO_STRING (dash, "-");
kset_echo_string (current_kboard,
concat2 (KVAR (current_kboard, echo_string), dash));
echo_now ();
}
static void
echo_update (void)
{
if (current_kboard->immediate_echo)
{
ptrdiff_t i;
Lisp_Object prompt = KVAR (current_kboard, echo_prompt);
Lisp_Object prefix = call0 (Qinternal_echo_keystrokes_prefix);
kset_echo_string (current_kboard,
NILP (prompt) ? prefix
: NILP (prefix) ? prompt
: concat2 (prompt, prefix));
for (i = 0; i < this_command_key_count; i++)
{
Lisp_Object c;
c = AREF (this_command_keys, i);
if (! (EVENT_HAS_PARAMETERS (c)
&& EQ (EVENT_HEAD_KIND (EVENT_HEAD (c)), Qmouse_movement)))
echo_add_key (c);
}
echo_now ();
}
}
/* Display the current echo string, and begin echoing if not already
doing so. */
static void
echo_now (void)
{
if (!current_kboard->immediate_echo
/* This test breaks calls that use `echo_now' to display the echo_prompt.
&& echo_keystrokes_p () */)
{
current_kboard->immediate_echo = true;
echo_update ();
/* Put a dash at the end to invite the user to type more. */
echo_dash ();
}
echoing = true;
/* FIXME: Use call (Qmessage) so it can be advised (e.g. emacspeak). */
message3_nolog (KVAR (current_kboard, echo_string));
echoing = false;
/* Record in what buffer we echoed, and from which kboard. */
echo_message_buffer = echo_area_buffer[0];
echo_kboard = current_kboard;
if (waiting_for_input && !NILP (Vquit_flag))
quit_throw_to_read_char (0);
}
/* Turn off echoing, for the start of a new command. */
void
cancel_echoing (void)
{
current_kboard->immediate_echo = false;
kset_echo_prompt (current_kboard, Qnil);
kset_echo_string (current_kboard, Qnil);
ok_to_echo_at_next_pause = NULL;
echo_kboard = NULL;
echo_message_buffer = Qnil;
}
/* Return the length of the current echo string. */
static ptrdiff_t
echo_length (void)
{
return (STRINGP (KVAR (current_kboard, echo_string))
? SCHARS (KVAR (current_kboard, echo_string))
: 0);
}
/* Truncate the current echo message to its first LEN chars.
This and echo_char get used by read_key_sequence when the user
switches frames while entering a key sequence. */
static void
echo_truncate (ptrdiff_t nchars)
{
if (STRINGP (KVAR (current_kboard, echo_string)))
kset_echo_string (current_kboard,
Fsubstring (KVAR (current_kboard, echo_string),
make_number (0), make_number (nchars)));
truncate_echo_area (nchars);
}
/* Functions for manipulating this_command_keys. */
static void
add_command_key (Lisp_Object key)
{
if (this_command_key_count >= ASIZE (this_command_keys))
this_command_keys = larger_vector (this_command_keys, 1, -1);
ASET (this_command_keys, this_command_key_count, key);
++this_command_key_count;
}
Lisp_Object
recursive_edit_1 (void)
{
ptrdiff_t count = SPECPDL_INDEX ();
Lisp_Object val;
if (command_loop_level > 0)
{
specbind (Qstandard_output, Qt);
specbind (Qstandard_input, Qt);
}
#ifdef HAVE_WINDOW_SYSTEM
/* The command loop has started an hourglass timer, so we have to
cancel it here, otherwise it will fire because the recursive edit
can take some time. Do not check for display_hourglass_p here,
because it could already be nil. */
cancel_hourglass ();
#endif
/* This function may have been called from a debugger called from
within redisplay, for instance by Edebugging a function called
from fontification-functions. We want to allow redisplay in
the debugging session.
The recursive edit is left with a `(throw exit ...)'. The `exit'
tag is not caught anywhere in redisplay, i.e. when we leave the
recursive edit, the original redisplay leading to the recursive
edit will be unwound. The outcome should therefore be safe. */
specbind (Qinhibit_redisplay, Qnil);
redisplaying_p = 0;
/* This variable stores buffers that have changed so that an undo
boundary can be added. specbind this so that changes in the
recursive edit will not result in undo boundaries in buffers
changed before we entered there recursive edit.
See Bug #23632.
*/
specbind (Qundo_auto__undoably_changed_buffers, Qnil);
val = command_loop ();
if (EQ (val, Qt))
quit ();
/* Handle throw from read_minibuf when using minibuffer
while it's active but we're in another window. */
if (STRINGP (val))
xsignal1 (Qerror, val);
return unbind_to (count, Qnil);
}
/* When an auto-save happens, record the "time", and don't do again soon. */
void
record_auto_save (void)
{
last_auto_save = num_nonmacro_input_events;
}
/* Make an auto save happen as soon as possible at command level. */
#ifdef SIGDANGER
void
force_auto_save_soon (void)
{
last_auto_save = - auto_save_interval - 1;
record_asynch_buffer_change ();
}
#endif
DEFUN ("recursive-edit", Frecursive_edit, Srecursive_edit, 0, 0, "",
doc: /* Invoke the editor command loop recursively.
To get out of the recursive edit, a command can throw to `exit' -- for
instance (throw \\='exit nil).
If you throw a value other than t, `recursive-edit' returns normally
to the function that called it. Throwing a t value causes
`recursive-edit' to quit, so that control returns to the command loop
one level up.
This function is called by the editor initialization to begin editing. */)
(void)
{
ptrdiff_t count = SPECPDL_INDEX ();
Lisp_Object buffer;
/* If we enter while input is blocked, don't lock up here.
This may happen through the debugger during redisplay. */
if (input_blocked_p ())
return Qnil;
if (command_loop_level >= 0
&& current_buffer != XBUFFER (XWINDOW (selected_window)->contents))
buffer = Fcurrent_buffer ();
else
buffer = Qnil;
/* Don't do anything interesting between the increment and the
record_unwind_protect! Otherwise, we could get distracted and
never decrement the counter again. */
command_loop_level++;
update_mode_lines = 17;
record_unwind_protect (recursive_edit_unwind, buffer);
/* If we leave recursive_edit_1 below with a `throw' for instance,
like it is done in the splash screen display, we have to
make sure that we restore single_kboard as command_loop_1
would have done if it were left normally. */
if (command_loop_level > 0)
temporarily_switch_to_single_kboard (SELECTED_FRAME ());
recursive_edit_1 ();
return unbind_to (count, Qnil);
}
void
recursive_edit_unwind (Lisp_Object buffer)
{
if (BUFFERP (buffer))
Fset_buffer (buffer);
command_loop_level--;
update_mode_lines = 18;
}
#if 0 /* These two functions are now replaced with
temporarily_switch_to_single_kboard. */
static void
any_kboard_state ()
{
#if 0 /* Theory: if there's anything in Vunread_command_events,
it will right away be read by read_key_sequence,
and then if we do switch KBOARDS, it will go into the side
queue then. So we don't need to do anything special here -- rms. */
if (CONSP (Vunread_command_events))
{
current_kboard->kbd_queue
= nconc2 (Vunread_command_events, current_kboard->kbd_queue);
current_kboard->kbd_queue_has_data = true;
}
Vunread_command_events = Qnil;
#endif
single_kboard = false;
}
/* Switch to the single-kboard state, making current_kboard
the only KBOARD from which further input is accepted. */
void
single_kboard_state ()
{
single_kboard = true;
}
#endif
/* If we're in single_kboard state for kboard KBOARD,
get out of it. */
void
not_single_kboard_state (KBOARD *kboard)
{
if (kboard == current_kboard)
single_kboard = false;
}
/* Maintain a stack of kboards, so other parts of Emacs
can switch temporarily to the kboard of a given frame
and then revert to the previous status. */
struct kboard_stack
{
KBOARD *kboard;
struct kboard_stack *next;
};
static struct kboard_stack *kboard_stack;
void
push_kboard (struct kboard *k)
{
struct kboard_stack *p = xmalloc (sizeof *p);
p->next = kboard_stack;
p->kboard = current_kboard;
kboard_stack = p;
current_kboard = k;
}
void
pop_kboard (void)
{
struct terminal *t;
struct kboard_stack *p = kboard_stack;
bool found = false;
for (t = terminal_list; t; t = t->next_terminal)
{
if (t->kboard == p->kboard)
{
current_kboard = p->kboard;
found = true;
break;
}
}
if (!found)
{
/* The terminal we remembered has been deleted. */
current_kboard = FRAME_KBOARD (SELECTED_FRAME ());
single_kboard = false;
}
kboard_stack = p->next;
xfree (p);
}
/* Switch to single_kboard mode, making current_kboard the only KBOARD
from which further input is accepted. If F is non-nil, set its
KBOARD as the current keyboard.
This function uses record_unwind_protect_int to return to the previous
state later.
If Emacs is already in single_kboard mode, and F's keyboard is
locked, then this function will throw an error. */
void
temporarily_switch_to_single_kboard (struct frame *f)
{
bool was_locked = single_kboard;
if (was_locked)
{
if (f != NULL && FRAME_KBOARD (f) != current_kboard)
/* We can not switch keyboards while in single_kboard mode.
In rare cases, Lisp code may call `recursive-edit' (or
`read-minibuffer' or `y-or-n-p') after it switched to a
locked frame. For example, this is likely to happen
when server.el connects to a new terminal while Emacs is in
single_kboard mode. It is best to throw an error instead
of presenting the user with a frozen screen. */
error ("Terminal %d is locked, cannot read from it",
FRAME_TERMINAL (f)->id);
else
/* This call is unnecessary, but helps
`restore_kboard_configuration' discover if somebody changed
`current_kboard' behind our back. */
push_kboard (current_kboard);
}
else if (f != NULL)
current_kboard = FRAME_KBOARD (f);
single_kboard = true;
record_unwind_protect_int (restore_kboard_configuration, was_locked);
}
#if 0 /* This function is not needed anymore. */
void
record_single_kboard_state ()
{
if (single_kboard)
push_kboard (current_kboard);
record_unwind_protect_int (restore_kboard_configuration, single_kboard);
}
#endif
static void
restore_kboard_configuration (int was_locked)
{
single_kboard = was_locked;
if (was_locked)
{
struct kboard *prev = current_kboard;
pop_kboard ();
/* The pop should not change the kboard. */
if (single_kboard && current_kboard != prev)
emacs_abort ();
}
}
/* Handle errors that are not handled at inner levels
by printing an error message and returning to the editor command loop. */
static Lisp_Object
cmd_error (Lisp_Object data)
{
Lisp_Object old_level, old_length;
char macroerror[sizeof "After..kbd macro iterations: "
+ INT_STRLEN_BOUND (EMACS_INT)];
#ifdef HAVE_WINDOW_SYSTEM
if (display_hourglass_p)
cancel_hourglass ();
#endif
if (!NILP (executing_kbd_macro))
{
if (executing_kbd_macro_iterations == 1)
sprintf (macroerror, "After 1 kbd macro iteration: ");
else
sprintf (macroerror, "After %"pI"d kbd macro iterations: ",
executing_kbd_macro_iterations);
}
else
*macroerror = 0;
Vstandard_output = Qt;
Vstandard_input = Qt;
Vexecuting_kbd_macro = Qnil;
executing_kbd_macro = Qnil;
kset_prefix_arg (current_kboard, Qnil);
kset_last_prefix_arg (current_kboard, Qnil);
cancel_echoing ();
/* Avoid unquittable loop if data contains a circular list. */
old_level = Vprint_level;
old_length = Vprint_length;
XSETFASTINT (Vprint_level, 10);
XSETFASTINT (Vprint_length, 10);
cmd_error_internal (data, macroerror);
Vprint_level = old_level;
Vprint_length = old_length;
Vquit_flag = Qnil;
Vinhibit_quit = Qnil;
return make_number (0);
}
/* Take actions on handling an error. DATA is the data that describes
the error.
CONTEXT is a C-string containing ASCII characters only which
describes the context in which the error happened. If we need to
generalize CONTEXT to allow multibyte characters, make it a Lisp
string. */
void
cmd_error_internal (Lisp_Object data, const char *context)
{
/* The immediate context is not interesting for Quits,
since they are asynchronous. */
if (EQ (XCAR (data), Qquit))
Vsignaling_function = Qnil;
Vquit_flag = Qnil;
Vinhibit_quit = Qt;
/* Use user's specified output function if any. */
if (!NILP (Vcommand_error_function))
call3 (Vcommand_error_function, data,
context ? build_string (context) : empty_unibyte_string,
Vsignaling_function);
Vsignaling_function = Qnil;
}
DEFUN ("command-error-default-function", Fcommand_error_default_function,
Scommand_error_default_function, 3, 3, 0,
doc: /* Produce default output for unhandled error message.
Default value of `command-error-function'. */)
(Lisp_Object data, Lisp_Object context, Lisp_Object signal)
{
struct frame *sf = SELECTED_FRAME ();
CHECK_STRING (context);
/* If the window system or terminal frame hasn't been initialized
yet, or we're not interactive, write the message to stderr and exit. */
if (!sf->glyphs_initialized_p
/* The initial frame is a special non-displaying frame. It
will be current in daemon mode when there are no frames
to display, and in non-daemon mode before the real frame
has finished initializing. If an error is thrown in the
latter case while creating the frame, then the frame
will never be displayed, so the safest thing to do is
write to stderr and quit. In daemon mode, there are
many other potential errors that do not prevent frames
from being created, so continuing as normal is better in
that case. */
|| (!IS_DAEMON && FRAME_INITIAL_P (sf))
|| noninteractive)
{
print_error_message (data, Qexternal_debugging_output,
SSDATA (context), signal);
Fterpri (Qexternal_debugging_output, Qnil);
Fkill_emacs (make_number (-1));
}
else
{
clear_message (1, 0);
Fdiscard_input ();
message_log_maybe_newline ();
bitch_at_user ();
print_error_message (data, Qt, SSDATA (context), signal);
}
return Qnil;
}
static Lisp_Object command_loop_2 (Lisp_Object);
static Lisp_Object top_level_1 (Lisp_Object);
/* Entry to editor-command-loop.
This level has the catches for exiting/returning to editor command loop.
It returns nil to exit recursive edit, t to abort it. */
Lisp_Object
command_loop (void)
{
#ifdef HAVE_STACK_OVERFLOW_HANDLING
/* At least on GNU/Linux, saving signal mask is important here. */
if (sigsetjmp (return_to_command_loop, 1) != 0)
{
/* Comes here from handle_sigsegv (see sysdep.c) and
stack_overflow_handler (see w32fns.c). */
#ifdef WINDOWSNT
w32_reset_stack_overflow_guard ();
#endif
init_eval ();
Vinternal__top_level_message = recover_top_level_message;
}
else
Vinternal__top_level_message = regular_top_level_message;
#endif /* HAVE_STACK_OVERFLOW_HANDLING */
if (command_loop_level > 0 || minibuf_level > 0)
{
Lisp_Object val;
val = internal_catch (Qexit, command_loop_2, Qnil);
executing_kbd_macro = Qnil;
return val;
}
else
while (1)
{
internal_catch (Qtop_level, top_level_1, Qnil);
internal_catch (Qtop_level, command_loop_2, Qnil);
executing_kbd_macro = Qnil;
/* End of file in -batch run causes exit here. */
if (noninteractive)
Fkill_emacs (Qt);
}
}
/* Here we catch errors in execution of commands within the
editing loop, and reenter the editing loop.
When there is an error, cmd_error runs and returns a non-nil
value to us. A value of nil means that command_loop_1 itself
returned due to end of file (or end of kbd macro). */
static Lisp_Object
command_loop_2 (Lisp_Object ignore)
{
register Lisp_Object val;
do
val = internal_condition_case (command_loop_1, Qerror, cmd_error);
while (!NILP (val));
return Qnil;
}
static Lisp_Object
top_level_2 (void)
{
return Feval (Vtop_level, Qnil);
}
static Lisp_Object
top_level_1 (Lisp_Object ignore)
{
/* On entry to the outer level, run the startup file. */
if (!NILP (Vtop_level))
internal_condition_case (top_level_2, Qerror, cmd_error);
else if (!NILP (Vpurify_flag))
message1 ("Bare impure Emacs (standard Lisp code not loaded)");
else
message1 ("Bare Emacs (standard Lisp code not loaded)");
return Qnil;
}
DEFUN ("top-level", Ftop_level, Stop_level, 0, 0, "",
doc: /* Exit all recursive editing levels.
This also exits all active minibuffers. */
attributes: noreturn)
(void)
{
#ifdef HAVE_WINDOW_SYSTEM
if (display_hourglass_p)
cancel_hourglass ();
#endif
/* Unblock input if we enter with input blocked. This may happen if
redisplay traps e.g. during tool-bar update with input blocked. */
totally_unblock_input ();
Fthrow (Qtop_level, Qnil);
}
static _Noreturn void
user_error (const char *msg)
{
xsignal1 (Quser_error, build_string (msg));
}
/* _Noreturn will be added to prototype by make-docfile. */
DEFUN ("exit-recursive-edit", Fexit_recursive_edit, Sexit_recursive_edit, 0, 0, "",
doc: /* Exit from the innermost recursive edit or minibuffer. */
attributes: noreturn)
(void)
{
if (command_loop_level > 0 || minibuf_level > 0)
Fthrow (Qexit, Qnil);
user_error ("No recursive edit is in progress");
}
/* _Noreturn will be added to prototype by make-docfile. */
DEFUN ("abort-recursive-edit", Fabort_recursive_edit, Sabort_recursive_edit, 0, 0, "",
doc: /* Abort the command that requested this recursive edit or minibuffer input. */
attributes: noreturn)
(void)
{
if (command_loop_level > 0 || minibuf_level > 0)
Fthrow (Qexit, Qt);
user_error ("No recursive edit is in progress");
}
/* Restore mouse tracking enablement. See Ftrack_mouse for the only use
of this function. */
static void
tracking_off (Lisp_Object old_value)
{
do_mouse_tracking = old_value;
if (NILP (old_value))
{
/* Redisplay may have been preempted because there was input
available, and it assumes it will be called again after the
input has been processed. If the only input available was
the sort that we have just disabled, then we need to call
redisplay. */
if (!readable_events (READABLE_EVENTS_DO_TIMERS_NOW))
{
redisplay_preserve_echo_area (6);
get_input_pending (READABLE_EVENTS_DO_TIMERS_NOW);
}
}
}
DEFUN ("internal--track-mouse", Ftrack_mouse, Strack_mouse, 1, 1, 0,
doc: /* Call BODYFUN with mouse movement events enabled. */)
(Lisp_Object bodyfun)
{
ptrdiff_t count = SPECPDL_INDEX ();
Lisp_Object val;
record_unwind_protect (tracking_off, do_mouse_tracking);
do_mouse_tracking = Qt;
val = call0 (bodyfun);
return unbind_to (count, val);
}
/* If mouse has moved on some frame, return one of those frames.
Return 0 otherwise.
If ignore_mouse_drag_p is non-zero, ignore (implicit) mouse movement
after resizing the tool-bar window. */
bool ignore_mouse_drag_p;
static struct frame *
some_mouse_moved (void)
{
Lisp_Object tail, frame;
if (ignore_mouse_drag_p)
{
/* ignore_mouse_drag_p = 0; */
return 0;
}
FOR_EACH_FRAME (tail, frame)
{
if (XFRAME (frame)->mouse_moved)
return XFRAME (frame);
}
return 0;
}
/* This is the actual command reading loop,
sans error-handling encapsulation. */
static int read_key_sequence (Lisp_Object *, int, Lisp_Object,
bool, bool, bool, bool);
static void adjust_point_for_property (ptrdiff_t, bool);
Lisp_Object
command_loop_1 (void)
{
EMACS_INT prev_modiff = 0;
struct buffer *prev_buffer = NULL;
bool already_adjusted = 0;
kset_prefix_arg (current_kboard, Qnil);
kset_last_prefix_arg (current_kboard, Qnil);
Vdeactivate_mark = Qnil;
waiting_for_input = false;
cancel_echoing ();
this_command_key_count = 0;
this_single_command_key_start = 0;
if (NILP (Vmemory_full))
{
/* Make sure this hook runs after commands that get errors and
throw to top level. */
/* Note that the value cell will never directly contain nil
if the symbol is a local variable. */
if (!NILP (Vpost_command_hook) && !NILP (Vrun_hooks))
safe_run_hooks (Qpost_command_hook);
/* If displaying a message, resize the echo area window to fit
that message's size exactly. */
if (!NILP (echo_area_buffer[0]))
resize_echo_area_exactly ();
/* If there are warnings waiting, process them. */
if (!NILP (Vdelayed_warnings_list))
safe_run_hooks (Qdelayed_warnings_hook);
if (!NILP (Vdeferred_action_list))
safe_run_hooks (Qdeferred_action_function);
}
/* Do this after running Vpost_command_hook, for consistency. */
kset_last_command (current_kboard, Vthis_command);
kset_real_last_command (current_kboard, Vreal_this_command);
if (!CONSP (last_command_event))
kset_last_repeatable_command (current_kboard, Vreal_this_command);
while (1)
{
Lisp_Object cmd;
Lisp_Object keybuf[30];
int i;
if (! FRAME_LIVE_P (XFRAME (selected_frame)))
Fkill_emacs (Qnil);
/* Make sure the current window's buffer is selected. */
set_buffer_internal (XBUFFER (XWINDOW (selected_window)->contents));
/* Display any malloc warning that just came out. Use while because
displaying one warning can cause another. */
while (pending_malloc_warning)
display_malloc_warning ();
Vdeactivate_mark = Qnil;
/* Don't ignore mouse movements for more than a single command
loop. (This flag is set in xdisp.c whenever the tool bar is
resized, because the resize moves text up or down, and would
generate false mouse drag events if we don't ignore them.) */
ignore_mouse_drag_p = 0;
/* If minibuffer on and echo area in use,
wait a short time and redraw minibuffer. */
if (minibuf_level
&& !NILP (echo_area_buffer[0])
&& EQ (minibuf_window, echo_area_window)
&& NUMBERP (Vminibuffer_message_timeout))
{
/* Bind inhibit-quit to t so that C-g gets read in
rather than quitting back to the minibuffer. */
ptrdiff_t count = SPECPDL_INDEX ();
specbind (Qinhibit_quit, Qt);
sit_for (Vminibuffer_message_timeout, 0, 2);
/* Clear the echo area. */
message1 (0);
safe_run_hooks (Qecho_area_clear_hook);
unbind_to (count, Qnil);
/* If a C-g came in before, treat it as input now. */
if (!NILP (Vquit_flag))
{
Vquit_flag = Qnil;
Vunread_command_events = list1 (make_number (quit_char));
}
}
/* If it has changed current-menubar from previous value,
really recompute the menubar from the value. */
if (! NILP (Vlucid_menu_bar_dirty_flag)
&& !NILP (Ffboundp (Qrecompute_lucid_menubar)))
call0 (Qrecompute_lucid_menubar);
Vthis_command = Qnil;
Vreal_this_command = Qnil;
Vthis_original_command = Qnil;
Vthis_command_keys_shift_translated = Qnil;
/* Read next key sequence; i gets its length. */
i = read_key_sequence (keybuf, ARRAYELTS (keybuf),
Qnil, 0, 1, 1, 0);
/* A filter may have run while we were reading the input. */
if (! FRAME_LIVE_P (XFRAME (selected_frame)))
Fkill_emacs (Qnil);
set_buffer_internal (XBUFFER (XWINDOW (selected_window)->contents));
++num_input_keys;
/* Now we have read a key sequence of length I,
or else I is 0 and we found end of file. */
if (i == 0) /* End of file -- happens only in */
return Qnil; /* a kbd macro, at the end. */
/* -1 means read_key_sequence got a menu that was rejected.
Just loop around and read another command. */
if (i == -1)
{
cancel_echoing ();
this_command_key_count = 0;
this_single_command_key_start = 0;
goto finalize;
}
last_command_event = keybuf[i - 1];
/* If the previous command tried to force a specific window-start,
forget about that, in case this command moves point far away
from that position. But also throw away beg_unchanged and
end_unchanged information in that case, so that redisplay will
update the whole window properly. */
if (XWINDOW (selected_window)->force_start)
{
struct buffer *b;
XWINDOW (selected_window)->force_start = 0;
b = XBUFFER (XWINDOW (selected_window)->contents);
BUF_BEG_UNCHANGED (b) = BUF_END_UNCHANGED (b) = 0;
}
cmd = read_key_sequence_cmd;
if (!NILP (Vexecuting_kbd_macro))
{
if (!NILP (Vquit_flag))
{
Vexecuting_kbd_macro = Qt;
QUIT; /* Make some noise. */
/* Will return since macro now empty. */
}
}
/* Do redisplay processing after this command except in special
cases identified below. */
prev_buffer = current_buffer;
prev_modiff = MODIFF;
last_point_position = PT;
/* By default, we adjust point to a boundary of a region that
has such a property that should be treated intangible
(e.g. composition, display). But, some commands will set
this variable differently. */
Vdisable_point_adjustment = Qnil;
/* Process filters and timers may have messed with deactivate-mark.
reset it before we execute the command. */
Vdeactivate_mark = Qnil;
/* Remap command through active keymaps. */
Vthis_original_command = cmd;
if (!NILP (read_key_sequence_remapped))
cmd = read_key_sequence_remapped;
/* Execute the command. */
{
total_keys += total_keys < NUM_RECENT_KEYS;
ASET (recent_keys, recent_keys_index,
Fcons (Qnil, cmd));
if (++recent_keys_index >= NUM_RECENT_KEYS)
recent_keys_index = 0;
}
Vthis_command = cmd;
Vreal_this_command = cmd;
safe_run_hooks (Qpre_command_hook);
already_adjusted = 0;
if (NILP (Vthis_command))
/* nil means key is undefined. */
call0 (Qundefined);
else
{
/* Here for a command that isn't executed directly. */
#ifdef HAVE_WINDOW_SYSTEM
ptrdiff_t scount = SPECPDL_INDEX ();
if (display_hourglass_p
&& NILP (Vexecuting_kbd_macro))
{
record_unwind_protect_void (cancel_hourglass);
start_hourglass ();
}
#endif
/* Ensure that we have added appropriate undo-boundaries as a
result of changes from the last command. */
call0 (Qundo_auto__add_boundary);
/* Record point and buffer, so we can put point into the undo
information if necessary. */
point_before_last_command_or_undo = PT;
buffer_before_last_command_or_undo = current_buffer;
call1 (Qcommand_execute, Vthis_command);
#ifdef HAVE_WINDOW_SYSTEM
/* Do not check display_hourglass_p here, because
`command-execute' could change it, but we should cancel
hourglass cursor anyway.
But don't cancel the hourglass within a macro
just because a command in the macro finishes. */
if (NILP (Vexecuting_kbd_macro))
unbind_to (scount, Qnil);
#endif
}
kset_last_prefix_arg (current_kboard, Vcurrent_prefix_arg);
safe_run_hooks (Qpost_command_hook);
/* If displaying a message, resize the echo area window to fit
that message's size exactly. */
if (!NILP (echo_area_buffer[0]))
resize_echo_area_exactly ();
/* If there are warnings waiting, process them. */
if (!NILP (Vdelayed_warnings_list))
safe_run_hooks (Qdelayed_warnings_hook);
safe_run_hooks (Qdeferred_action_function);
kset_last_command (current_kboard, Vthis_command);
kset_real_last_command (current_kboard, Vreal_this_command);
if (!CONSP (last_command_event))
kset_last_repeatable_command (current_kboard, Vreal_this_command);
this_command_key_count = 0;
this_single_command_key_start = 0;
if (current_kboard->immediate_echo
&& !NILP (call0 (Qinternal_echo_keystrokes_prefix)))
{
current_kboard->immediate_echo = false;
/* Refresh the echo message. */
echo_now ();
}
else
cancel_echoing ();
if (!NILP (BVAR (current_buffer, mark_active))
&& !NILP (Vrun_hooks))
{
/* In Emacs 22, setting transient-mark-mode to `only' was a
way of turning it on for just one command. This usage is
obsolete, but support it anyway. */
if (EQ (Vtransient_mark_mode, Qidentity))
Vtransient_mark_mode = Qnil;
else if (EQ (Vtransient_mark_mode, Qonly))
Vtransient_mark_mode = Qidentity;
if (!NILP (Vdeactivate_mark))
/* If `select-active-regions' is non-nil, this call to
`deactivate-mark' also sets the PRIMARY selection. */
call0 (Qdeactivate_mark);
else
{
/* Even if not deactivating the mark, set PRIMARY if
`select-active-regions' is non-nil. */
if (!NILP (Fwindow_system (Qnil))
/* Even if mark_active is non-nil, the actual buffer
marker may not have been set yet (Bug#7044). */
&& XMARKER (BVAR (current_buffer, mark))->buffer
&& (EQ (Vselect_active_regions, Qonly)
? EQ (CAR_SAFE (Vtransient_mark_mode), Qonly)
: (!NILP (Vselect_active_regions)
&& !NILP (Vtransient_mark_mode)))
&& NILP (Fmemq (Vthis_command,
Vselection_inhibit_update_commands)))
{
Lisp_Object txt
= call1 (Fsymbol_value (Qregion_extract_function), Qnil);
if (XINT (Flength (txt)) > 0)
/* Don't set empty selections. */
call2 (Qgui_set_selection, QPRIMARY, txt);
}
if (current_buffer != prev_buffer || MODIFF != prev_modiff)
run_hook (intern ("activate-mark-hook"));
}
Vsaved_region_selection = Qnil;
}
finalize:
if (current_buffer == prev_buffer
&& XBUFFER (XWINDOW (selected_window)->contents) == current_buffer
&& last_point_position != PT
&& NILP (Vdisable_point_adjustment)
&& NILP (Vglobal_disable_point_adjustment))
{
if (last_point_position > BEGV
&& last_point_position < ZV
&& (composition_adjust_point (last_point_position,
last_point_position)
!= last_point_position))
/* The last point was temporarily set within a grapheme
cluster to prevent automatic composition. To recover
the automatic composition, we must update the
display. */
windows_or_buffers_changed = 21;
if (!already_adjusted)
adjust_point_for_property (last_point_position,
MODIFF != prev_modiff);
}
/* Install chars successfully executed in kbd macro. */
if (!NILP (KVAR (current_kboard, defining_kbd_macro))
&& NILP (KVAR (current_kboard, Vprefix_arg)))
finalize_kbd_macro_chars ();
}
}
Lisp_Object
read_menu_command (void)
{
Lisp_Object keybuf[30];
ptrdiff_t count = SPECPDL_INDEX ();
int i;
/* We don't want to echo the keystrokes while navigating the
menus. */
specbind (Qecho_keystrokes, make_number (0));
i = read_key_sequence (keybuf, ARRAYELTS (keybuf),
Qnil, 0, 1, 1, 1);
unbind_to (count, Qnil);
if (! FRAME_LIVE_P (XFRAME (selected_frame)))
Fkill_emacs (Qnil);
if (i == 0 || i == -1)
return Qt;
return read_key_sequence_cmd;
}
/* Adjust point to a boundary of a region that has such a property
that should be treated intangible. For the moment, we check
`composition', `display' and `invisible' properties.
LAST_PT is the last position of point. */
static void
adjust_point_for_property (ptrdiff_t last_pt, bool modified)
{
ptrdiff_t beg, end;
Lisp_Object val, overlay, tmp;
/* When called after buffer modification, we should temporarily
suppress the point adjustment for automatic composition so that a
user can keep inserting another character at point or keep
deleting characters around point. */
bool check_composition = ! modified;
bool check_display = true, check_invisible = true;
ptrdiff_t orig_pt = PT;
eassert (XBUFFER (XWINDOW (selected_window)->contents) == current_buffer);
/* FIXME: cycling is probably not necessary because these properties
can't be usefully combined anyway. */
while (check_composition || check_display || check_invisible)
{
/* FIXME: check `intangible'. */
if (check_composition
&& PT > BEGV && PT < ZV
&& (beg = composition_adjust_point (last_pt, PT)) != PT)
{
SET_PT (beg);
check_display = check_invisible = true;
}
check_composition = false;
if (check_display
&& PT > BEGV && PT < ZV
&& !NILP (val = get_char_property_and_overlay
(make_number (PT), Qdisplay, selected_window,
&overlay))
&& display_prop_intangible_p (val, overlay, PT, PT_BYTE)
&& (!OVERLAYP (overlay)
? get_property_and_range (PT, Qdisplay, &val, &beg, &end, Qnil)
: (beg = OVERLAY_POSITION (OVERLAY_START (overlay)),
end = OVERLAY_POSITION (OVERLAY_END (overlay))))
&& (beg < PT /* && end > PT <- It's always the case. */
|| (beg <= PT && STRINGP (val) && SCHARS (val) == 0)))
{
eassert (end > PT);
SET_PT (PT < last_pt
? (STRINGP (val) && SCHARS (val) == 0
? max (beg - 1, BEGV)
: beg)
: end);
check_composition = check_invisible = true;
}
check_display = false;
if (check_invisible && PT > BEGV && PT < ZV)
{
int inv;
bool ellipsis = false;
beg = end = PT;
/* Find boundaries `beg' and `end' of the invisible area, if any. */
while (end < ZV
#if 0
/* FIXME: We should stop if we find a spot between
two runs of `invisible' where inserted text would
be visible. This is important when we have two
invisible boundaries that enclose an area: if the
area is empty, we need this test in order to make
it possible to place point in the middle rather
than skip both boundaries. However, this code
also stops anywhere in a non-sticky text-property,
which breaks (e.g.) Org mode. */
&& (val = Fget_pos_property (make_number (end),
Qinvisible, Qnil),
TEXT_PROP_MEANS_INVISIBLE (val))
#endif
&& !NILP (val = get_char_property_and_overlay
(make_number (end), Qinvisible, Qnil, &overlay))
&& (inv = TEXT_PROP_MEANS_INVISIBLE (val)))
{
ellipsis = ellipsis || inv > 1
|| (OVERLAYP (overlay)
&& (!NILP (Foverlay_get (overlay, Qafter_string))
|| !NILP (Foverlay_get (overlay, Qbefore_string))));
tmp = Fnext_single_char_property_change
(make_number (end), Qinvisible, Qnil, Qnil);
end = NATNUMP (tmp) ? XFASTINT (tmp) : ZV;
}
while (beg > BEGV
#if 0
&& (val = Fget_pos_property (make_number (beg),
Qinvisible, Qnil),
TEXT_PROP_MEANS_INVISIBLE (val))
#endif
&& !NILP (val = get_char_property_and_overlay
(make_number (beg - 1), Qinvisible, Qnil, &overlay))
&& (inv = TEXT_PROP_MEANS_INVISIBLE (val)))
{
ellipsis = ellipsis || inv > 1
|| (OVERLAYP (overlay)
&& (!NILP (Foverlay_get (overlay, Qafter_string))
|| !NILP (Foverlay_get (overlay, Qbefore_string))));
tmp = Fprevious_single_char_property_change
(make_number (beg), Qinvisible, Qnil, Qnil);
beg = NATNUMP (tmp) ? XFASTINT (tmp) : BEGV;
}
/* Move away from the inside area. */
if (beg < PT && end > PT)
{
SET_PT ((orig_pt == PT && (last_pt < beg || last_pt > end))
/* We haven't moved yet (so we don't need to fear
infinite-looping) and we were outside the range
before (so either end of the range still corresponds
to a move in the right direction): pretend we moved
less than we actually did, so that we still have
more freedom below in choosing which end of the range
to go to. */
? (orig_pt = -1, PT < last_pt ? end : beg)
/* We either have moved already or the last point
was already in the range: we don't get to choose
which end of the range we have to go to. */
: (PT < last_pt ? beg : end));
check_composition = check_display = true;
}
#if 0 /* This assertion isn't correct, because SET_PT may end up setting
the point to something other than its argument, due to
point-motion hooks, intangibility, etc. */
eassert (PT == beg || PT == end);
#endif
/* Pretend the area doesn't exist if the buffer is not
modified. */
if (!modified && !ellipsis && beg < end)
{
if (last_pt == beg && PT == end && end < ZV)
(check_composition = check_display = true, SET_PT (end + 1));
else if (last_pt == end && PT == beg && beg > BEGV)
(check_composition = check_display = true, SET_PT (beg - 1));
else if (PT == ((PT < last_pt) ? beg : end))
/* We've already moved as far as we can. Trying to go
to the other end would mean moving backwards and thus
could lead to an infinite loop. */
;
else if (val = Fget_pos_property (make_number (PT),
Qinvisible, Qnil),
TEXT_PROP_MEANS_INVISIBLE (val)
&& (val = (Fget_pos_property
(make_number (PT == beg ? end : beg),
Qinvisible, Qnil)),
!TEXT_PROP_MEANS_INVISIBLE (val)))
(check_composition = check_display = true,
SET_PT (PT == beg ? end : beg));
}
}
check_invisible = false;
}
}
/* Subroutine for safe_run_hooks: run the hook, which is ARGS[1]. */
static Lisp_Object
safe_run_hooks_1 (ptrdiff_t nargs, Lisp_Object *args)
{
eassert (nargs == 2);
return call0 (args[1]);
}
/* Subroutine for safe_run_hooks: handle an error by clearing out the function
from the hook. */
static Lisp_Object
safe_run_hooks_error (Lisp_Object error, ptrdiff_t nargs, Lisp_Object *args)
{
eassert (nargs == 2);
AUTO_STRING (format, "Error in %s (%S): %S");
Lisp_Object hook = args[0];
Lisp_Object fun = args[1];
CALLN (Fmessage, format, hook, fun, error);
if (SYMBOLP (hook))
{
Lisp_Object val;
bool found = false;
Lisp_Object newval = Qnil;
for (val = find_symbol_value (hook); CONSP (val); val = XCDR (val))
if (EQ (fun, XCAR (val)))
found = true;
else
newval = Fcons (XCAR (val), newval);
if (found)
return Fset (hook, Fnreverse (newval));
/* Not found in the local part of the hook. Let's look at the global
part. */
newval = Qnil;
for (val = (NILP (Fdefault_boundp (hook)) ? Qnil
: Fdefault_value (hook));
CONSP (val); val = XCDR (val))
if (EQ (fun, XCAR (val)))
found = true;
else
newval = Fcons (XCAR (val), newval);
if (found)
return Fset_default (hook, Fnreverse (newval));
}
return Qnil;
}
static Lisp_Object
safe_run_hook_funcall (ptrdiff_t nargs, Lisp_Object *args)
{
eassert (nargs == 2);
/* Yes, run_hook_with_args works with args in the other order. */
internal_condition_case_n (safe_run_hooks_1,
2, ((Lisp_Object []) {args[1], args[0]}),
Qt, safe_run_hooks_error);
return Qnil;
}
/* If we get an error while running the hook, cause the hook variable
to be nil. Also inhibit quits, so that C-g won't cause the hook
to mysteriously evaporate. */
void
safe_run_hooks (Lisp_Object hook)
{
ptrdiff_t count = SPECPDL_INDEX ();
specbind (Qinhibit_quit, Qt);
run_hook_with_args (2, ((Lisp_Object []) {hook, hook}), safe_run_hook_funcall);
unbind_to (count, Qnil);
}
/* Nonzero means polling for input is temporarily suppressed. */
int poll_suppress_count;
#ifdef POLL_FOR_INPUT
/* Asynchronous timer for polling. */
static struct atimer *poll_timer;
/* Poll for input, so that we catch a C-g if it comes in. */
void
poll_for_input_1 (void)
{
if (! input_blocked_p ()
&& !waiting_for_input)
gobble_input ();
}
/* Timer callback function for poll_timer. TIMER is equal to
poll_timer. */
static void
poll_for_input (struct atimer *timer)
{
if (poll_suppress_count == 0)
pending_signals = true;
}
#endif /* POLL_FOR_INPUT */
/* Begin signals to poll for input, if they are appropriate.
This function is called unconditionally from various places. */
void
start_polling (void)
{
#ifdef POLL_FOR_INPUT
/* XXX This condition was (read_socket_hook && !interrupt_input),
but read_socket_hook is not global anymore. Let's pretend that
it's always set. */
if (!interrupt_input)
{
/* Turn alarm handling on unconditionally. It might have
been turned off in process.c. */
turn_on_atimers (1);
/* If poll timer doesn't exist, or we need one with
a different interval, start a new one. */
if (poll_timer == NULL
|| poll_timer->interval.tv_sec != polling_period)
{
time_t period = max (1, min (polling_period, TYPE_MAXIMUM (time_t)));
struct timespec interval = make_timespec (period, 0);
if (poll_timer)
cancel_atimer (poll_timer);
poll_timer = start_atimer (ATIMER_CONTINUOUS, interval,
poll_for_input, NULL);
}
/* Let the timer's callback function poll for input
if this becomes zero. */
--poll_suppress_count;
}
#endif
}
/* True if we are using polling to handle input asynchronously. */
bool
input_polling_used (void)
{
#ifdef POLL_FOR_INPUT
/* XXX This condition was (read_socket_hook && !interrupt_input),
but read_socket_hook is not global anymore. Let's pretend that
it's always set. */
return !interrupt_input;
#else
return 0;
#endif
}
/* Turn off polling. */
void
stop_polling (void)
{
#ifdef POLL_FOR_INPUT
/* XXX This condition was (read_socket_hook && !interrupt_input),
but read_socket_hook is not global anymore. Let's pretend that
it's always set. */
if (!interrupt_input)
++poll_suppress_count;
#endif
}
/* Set the value of poll_suppress_count to COUNT
and start or stop polling accordingly. */
void
set_poll_suppress_count (int count)
{
#ifdef POLL_FOR_INPUT
if (count == 0 && poll_suppress_count != 0)
{
poll_suppress_count = 1;
start_polling ();
}
else if (count != 0 && poll_suppress_count == 0)
{
stop_polling ();
}
poll_suppress_count = count;
#endif
}
/* Bind polling_period to a value at least N.
But don't decrease it. */
void
bind_polling_period (int n)
{
#ifdef POLL_FOR_INPUT
EMACS_INT new = polling_period;
if (n > new)
new = n;
stop_other_atimers (poll_timer);
stop_polling ();
specbind (Qpolling_period, make_number (new));
/* Start a new alarm with the new period. */
start_polling ();
#endif
}
/* Apply the control modifier to CHARACTER. */
int
make_ctrl_char (int c)
{
/* Save the upper bits here. */
int upper = c & ~0177;
if (! ASCII_CHAR_P (c))
return c |= ctrl_modifier;
c &= 0177;
/* Everything in the columns containing the upper-case letters
denotes a control character. */
if (c >= 0100 && c < 0140)
{
int oc = c;
c &= ~0140;
/* Set the shift modifier for a control char
made from a shifted letter. But only for letters! */
if (oc >= 'A' && oc <= 'Z')
c |= shift_modifier;
}
/* The lower-case letters denote control characters too. */
else if (c >= 'a' && c <= 'z')
c &= ~0140;
/* Include the bits for control and shift
only if the basic ASCII code can't indicate them. */
else if (c >= ' ')
c |= ctrl_modifier;
/* Replace the high bits. */
c |= (upper & ~ctrl_modifier);
return c;
}
/* Display the help-echo property of the character after the mouse pointer.
Either show it in the echo area, or call show-help-function to display
it by other means (maybe in a tooltip).
If HELP is nil, that means clear the previous help echo.
If HELP is a string, display that string. If HELP is a function,
call it with OBJECT and POS as arguments; the function should
return a help string or nil for none. For all other types of HELP,
evaluate it to obtain a string.
WINDOW is the window in which the help was generated, if any.
It is nil if not in a window.
If OBJECT is a buffer, POS is the position in the buffer where the
`help-echo' text property was found.
If OBJECT is an overlay, that overlay has a `help-echo' property,
and POS is the position in the overlay's buffer under the mouse.
If OBJECT is a string (an overlay string or a string displayed with
the `display' property). POS is the position in that string under
the mouse.
Note: this function may only be called with HELP nil or a string
from X code running asynchronously. */
void
show_help_echo (Lisp_Object help, Lisp_Object window, Lisp_Object object,
Lisp_Object pos)
{
if (!NILP (help) && !STRINGP (help))
{
if (FUNCTIONP (help))
help = safe_call (4, help, window, object, pos);
else
help = safe_eval (help);
if (!STRINGP (help))
return;
}
if (!noninteractive && STRINGP (help))
{
/* The mouse-fixup-help-message Lisp function can call
mouse_position_hook, which resets the mouse_moved flags.
This causes trouble if we are trying to read a mouse motion
event (i.e., if we are inside a `track-mouse' form), so we
restore the mouse_moved flag. */
struct frame *f = NILP (do_mouse_tracking) ? NULL : some_mouse_moved ();
help = call1 (Qmouse_fixup_help_message, help);
if (f)
f->mouse_moved = true;
}
if (STRINGP (help) || NILP (help))
{
if (!NILP (Vshow_help_function))
call1 (Vshow_help_function, Fsubstitute_command_keys (help));
help_echo_showing_p = STRINGP (help);
}
}
/* Input of single characters from keyboard. */
static Lisp_Object kbd_buffer_get_event (KBOARD **kbp, bool *used_mouse_menu,
struct timespec *end_time);
static void record_char (Lisp_Object c);
static Lisp_Object help_form_saved_window_configs;
static void
read_char_help_form_unwind (void)
{
Lisp_Object window_config = XCAR (help_form_saved_window_configs);
help_form_saved_window_configs = XCDR (help_form_saved_window_configs);
if (!NILP (window_config))
Fset_window_configuration (window_config);
}
#define STOP_POLLING \
do { if (! polling_stopped_here) stop_polling (); \
polling_stopped_here = true; } while (0)
#define RESUME_POLLING \
do { if (polling_stopped_here) start_polling (); \
polling_stopped_here = false; } while (0)
static Lisp_Object
read_event_from_main_queue (struct timespec *end_time,
sys_jmp_buf local_getcjmp,
bool *used_mouse_menu)
{
Lisp_Object c = Qnil;
sys_jmp_buf save_jump;
KBOARD *kb;
start:
/* Read from the main queue, and if that gives us something we can't use yet,
we put it on the appropriate side queue and try again. */
if (end_time && timespec_cmp (*end_time, current_timespec ()) <= 0)
return c;
/* Actually read a character, waiting if necessary. */
save_getcjmp (save_jump);
restore_getcjmp (local_getcjmp);
if (!end_time)
timer_start_idle ();
c = kbd_buffer_get_event (&kb, used_mouse_menu, end_time);
restore_getcjmp (save_jump);
if (! NILP (c) && (kb != current_kboard))
{
Lisp_Object last = KVAR (kb, kbd_queue);
if (CONSP (last))
{
while (CONSP (XCDR (last)))
last = XCDR (last);
if (!NILP (XCDR (last)))
emacs_abort ();
}
if (!CONSP (last))
kset_kbd_queue (kb, list1 (c));
else
XSETCDR (last, list1 (c));
kb->kbd_queue_has_data = true;
c = Qnil;
if (single_kboard)
goto start;
current_kboard = kb;
return make_number (-2);
}
/* Terminate Emacs in batch mode if at eof. */
if (noninteractive && INTEGERP (c) && XINT (c) < 0)
Fkill_emacs (make_number (1));
if (INTEGERP (c))
{
/* Add in any extra modifiers, where appropriate. */
if ((extra_keyboard_modifiers & CHAR_CTL)
|| ((extra_keyboard_modifiers & 0177) < ' '
&& (extra_keyboard_modifiers & 0177) != 0))
XSETINT (c, make_ctrl_char (XINT (c)));
/* Transfer any other modifier bits directly from
extra_keyboard_modifiers to c. Ignore the actual character code
in the low 16 bits of extra_keyboard_modifiers. */
XSETINT (c, XINT (c) | (extra_keyboard_modifiers & ~0xff7f & ~CHAR_CTL));
}
return c;
}
/* Like `read_event_from_main_queue' but applies keyboard-coding-system
to tty input. */
static Lisp_Object
read_decoded_event_from_main_queue (struct timespec *end_time,
sys_jmp_buf local_getcjmp,
Lisp_Object prev_event,
bool *used_mouse_menu)
{
#ifndef WINDOWSNT
#define MAX_ENCODED_BYTES 16
Lisp_Object events[MAX_ENCODED_BYTES];
int n = 0;
#endif
while (true)
{
Lisp_Object nextevt
= read_event_from_main_queue (end_time, local_getcjmp,
used_mouse_menu);
#ifdef WINDOWSNT
/* w32_console already returns decoded events. It either reads
Unicode characters from the Windows keyboard input, or
converts characters encoded in the current codepage into
Unicode. See w32inevt.c:key_event, near its end. */
return nextevt;
#else
struct frame *frame = XFRAME (selected_frame);
struct terminal *terminal = frame->terminal;
if (!((FRAME_TERMCAP_P (frame) || FRAME_MSDOS_P (frame))
/* Don't apply decoding if we're just reading a raw event
(e.g. reading bytes sent by the xterm to specify the position
of a mouse click). */
&& (!EQ (prev_event, Qt))
&& (TERMINAL_KEYBOARD_CODING (terminal)->common_flags
& CODING_REQUIRE_DECODING_MASK)))
return nextevt; /* No decoding needed. */
else
{
int meta_key = terminal->display_info.tty->meta_key;
eassert (n < MAX_ENCODED_BYTES);
events[n++] = nextevt;
if (NATNUMP (nextevt)
&& XINT (nextevt) < (meta_key == 1 ? 0x80 : 0x100))
{ /* An encoded byte sequence, let's try to decode it. */
struct coding_system *coding
= TERMINAL_KEYBOARD_CODING (terminal);
if (raw_text_coding_system_p (coding))
{
int i;
if (meta_key != 2)
for (i = 0; i < n; i++)
events[i] = make_number (XINT (events[i]) & ~0x80);
}
else
{
unsigned char src[MAX_ENCODED_BYTES];
unsigned char dest[MAX_ENCODED_BYTES * MAX_MULTIBYTE_LENGTH];
int i;
for (i = 0; i < n; i++)
src[i] = XINT (events[i]);
if (meta_key != 2)
for (i = 0; i < n; i++)
src[i] &= ~0x80;
coding->destination = dest;
coding->dst_bytes = sizeof dest;
decode_coding_c_string (coding, src, n, Qnil);
eassert (coding->produced_char <= n);
if (coding->produced_char == 0)
{ /* The encoded sequence is incomplete. */
if (n < MAX_ENCODED_BYTES) /* Avoid buffer overflow. */
continue; /* Read on! */
}
else
{
const unsigned char *p = coding->destination;
eassert (coding->carryover_bytes == 0);
n = 0;
while (n < coding->produced_char)
events[n++] = make_number (STRING_CHAR_ADVANCE (p));
}
}
}
/* Now `events' should hold decoded events.
Normally, n should be equal to 1, but better not rely on it.
We can only return one event here, so return the first we
had and keep the others (if any) for later. */
while (n > 1)
Vunread_command_events
= Fcons (events[--n], Vunread_command_events);
return events[0];
}
#endif
}
}
/* Read a character from the keyboard; call the redisplay if needed. */
/* commandflag 0 means do not autosave, but do redisplay.
-1 means do not redisplay, but do autosave.
-2 means do neither.
1 means do both.
The argument MAP is a keymap for menu prompting.
PREV_EVENT is the previous input event, or nil if we are reading
the first event of a key sequence (or not reading a key sequence).
If PREV_EVENT is t, that is a "magic" value that says
not to run input methods, but in other respects to act as if
not reading a key sequence.
If USED_MOUSE_MENU is non-null, then set *USED_MOUSE_MENU to true
if we used a mouse menu to read the input, or false otherwise. If
USED_MOUSE_MENU is null, don't dereference it.
Value is -2 when we find input on another keyboard. A second call
to read_char will read it.
If END_TIME is non-null, it is a pointer to a struct timespec
specifying the maximum time to wait until. If no input arrives by
that time, stop waiting and return nil.
Value is t if we showed a menu and the user rejected it. */
Lisp_Object
read_char (int commandflag, Lisp_Object map,
Lisp_Object prev_event,
bool *used_mouse_menu, struct timespec *end_time)
{
Lisp_Object c;
ptrdiff_t jmpcount;
sys_jmp_buf local_getcjmp;
sys_jmp_buf save_jump;
Lisp_Object tem, save;
volatile Lisp_Object previous_echo_area_message;
volatile Lisp_Object also_record;
volatile bool reread, recorded;
bool volatile polling_stopped_here = false;
struct kboard *orig_kboard = current_kboard;
also_record = Qnil;
c = Qnil;
previous_echo_area_message = Qnil;
retry:
recorded = false;
if (CONSP (Vunread_post_input_method_events))
{
c = XCAR (Vunread_post_input_method_events);
Vunread_post_input_method_events
= XCDR (Vunread_post_input_method_events);
/* Undo what read_char_x_menu_prompt did when it unread
additional keys returned by Fx_popup_menu. */
if (CONSP (c)
&& (SYMBOLP (XCAR (c)) || INTEGERP (XCAR (c)))
&& NILP (XCDR (c)))
c = XCAR (c);
reread = true;
goto reread_first;
}
else
reread = false;
if (CONSP (Vunread_command_events))
{
bool was_disabled = false;
c = XCAR (Vunread_command_events);
Vunread_command_events = XCDR (Vunread_command_events);
/* Undo what sit-for did when it unread additional keys
inside universal-argument. */
if (CONSP (c) && EQ (XCAR (c), Qt))
c = XCDR (c);
else
reread = true;
/* Undo what read_char_x_menu_prompt did when it unread
additional keys returned by Fx_popup_menu. */
if (CONSP (c)
&& EQ (XCDR (c), Qdisabled)
&& (SYMBOLP (XCAR (c)) || INTEGERP (XCAR (c))))
{
was_disabled = true;
c = XCAR (c);
}
/* If the queued event is something that used the mouse,
set used_mouse_menu accordingly. */
if (used_mouse_menu
/* Also check was_disabled so last-nonmenu-event won't return
a bad value when submenus are involved. (Bug#447) */
&& (EQ (c, Qtool_bar) || EQ (c, Qmenu_bar) || was_disabled))
*used_mouse_menu = true;
goto reread_for_input_method;
}
if (CONSP (Vunread_input_method_events))
{
c = XCAR (Vunread_input_method_events);
Vunread_input_method_events = XCDR (Vunread_input_method_events);
/* Undo what read_char_x_menu_prompt did when it unread
additional keys returned by Fx_popup_menu. */
if (CONSP (c)
&& (SYMBOLP (XCAR (c)) || INTEGERP (XCAR (c)))
&& NILP (XCDR (c)))
c = XCAR (c);
reread = true;
goto reread_for_input_method;
}
if (!NILP (Vexecuting_kbd_macro))
{
/* We set this to Qmacro; since that's not a frame, nobody will
try to switch frames on us, and the selected window will
remain unchanged.
Since this event came from a macro, it would be misleading to
leave internal_last_event_frame set to wherever the last
real event came from. Normally, a switch-frame event selects
internal_last_event_frame after each command is read, but
events read from a macro should never cause a new frame to be
selected. */
Vlast_event_frame = internal_last_event_frame = Qmacro;
/* Exit the macro if we are at the end.
Also, some things replace the macro with t
to force an early exit. */
if (EQ (Vexecuting_kbd_macro, Qt)
|| executing_kbd_macro_index >= XFASTINT (Flength (Vexecuting_kbd_macro)))
{
XSETINT (c, -1);
goto exit;
}
c = Faref (Vexecuting_kbd_macro, make_number (executing_kbd_macro_index));
if (STRINGP (Vexecuting_kbd_macro)
&& (XFASTINT (c) & 0x80) && (XFASTINT (c) <= 0xff))
XSETFASTINT (c, CHAR_META | (XFASTINT (c) & ~0x80));
executing_kbd_macro_index++;
goto from_macro;
}
if (!NILP (unread_switch_frame))
{
c = unread_switch_frame;
unread_switch_frame = Qnil;
/* This event should make it into this_command_keys, and get echoed
again, so we do not set `reread'. */
goto reread_first;
}
/* If redisplay was requested. */
if (commandflag >= 0)
{
bool echo_current = EQ (echo_message_buffer, echo_area_buffer[0]);
/* If there is pending input, process any events which are not
user-visible, such as X selection_request events. */
if (input_pending
|| detect_input_pending_run_timers (0))
swallow_events (false); /* May clear input_pending. */
/* Redisplay if no pending input. */
while (!(input_pending
&& (input_was_pending || !redisplay_dont_pause)))
{
input_was_pending = input_pending;
if (help_echo_showing_p && !EQ (selected_window, minibuf_window))
redisplay_preserve_echo_area (5);
else
redisplay ();
if (!input_pending)
/* Normal case: no input arrived during redisplay. */
break;
/* Input arrived and pre-empted redisplay.
Process any events which are not user-visible. */
swallow_events (false);
/* If that cleared input_pending, try again to redisplay. */
}
/* Prevent the redisplay we just did
from messing up echoing of the input after the prompt. */
if (commandflag == 0 && echo_current)
echo_message_buffer = echo_area_buffer[0];
}
/* Message turns off echoing unless more keystrokes turn it on again.
The code in 20.x for the condition was
1. echo_area_glyphs && *echo_area_glyphs
2. && echo_area_glyphs != current_kboard->echobuf
3. && ok_to_echo_at_next_pause != echo_area_glyphs
(1) means there's a current message displayed
(2) means it's not the message from echoing from the current
kboard.
(3) There's only one place in 20.x where ok_to_echo_at_next_pause
is set to a non-null value. This is done in read_char and it is
set to echo_area_glyphs. That means
ok_to_echo_at_next_pause is either null or
current_kboard->echobuf with the appropriate current_kboard at
that time.
So, condition (3) means in clear text ok_to_echo_at_next_pause
must be either null, or the current message isn't from echoing at
all, or it's from echoing from a different kboard than the
current one. */
if (/* There currently is something in the echo area. */
!NILP (echo_area_buffer[0])
&& (/* It's an echo from a different kboard. */
echo_kboard != current_kboard
/* Or we explicitly allow overwriting whatever there is. */
|| ok_to_echo_at_next_pause == NULL))
cancel_echoing ();
else
echo_dash ();
/* Try reading a character via menu prompting in the minibuf.
Try this before the sit-for, because the sit-for
would do the wrong thing if we are supposed to do
menu prompting. If EVENT_HAS_PARAMETERS then we are reading
after a mouse event so don't try a minibuf menu. */
c = Qnil;
if (KEYMAPP (map) && INTERACTIVE
&& !NILP (prev_event) && ! EVENT_HAS_PARAMETERS (prev_event)
/* Don't bring up a menu if we already have another event. */
&& !CONSP (Vunread_command_events)
&& !detect_input_pending_run_timers (0))
{
c = read_char_minibuf_menu_prompt (commandflag, map);
if (INTEGERP (c) && XINT (c) == -2)
return c; /* wrong_kboard_jmpbuf */
if (! NILP (c))
goto exit;
}
/* Make a longjmp point for quits to use, but don't alter getcjmp just yet.
We will do that below, temporarily for short sections of code,
when appropriate. local_getcjmp must be in effect
around any call to sit_for or kbd_buffer_get_event;
it *must not* be in effect when we call redisplay. */
jmpcount = SPECPDL_INDEX ();
if (sys_setjmp (local_getcjmp))
{
/* Handle quits while reading the keyboard. */
/* We must have saved the outer value of getcjmp here,
so restore it now. */
restore_getcjmp (save_jump);
pthread_sigmask (SIG_SETMASK, &empty_mask, 0);
unbind_to (jmpcount, Qnil);
XSETINT (c, quit_char);
internal_last_event_frame = selected_frame;
Vlast_event_frame = internal_last_event_frame;
/* If we report the quit char as an event,
don't do so more than once. */
if (!NILP (Vinhibit_quit))
Vquit_flag = Qnil;
{
KBOARD *kb = FRAME_KBOARD (XFRAME (selected_frame));
if (kb != current_kboard)
{
Lisp_Object last = KVAR (kb, kbd_queue);
/* We shouldn't get here if we were in single-kboard mode! */
if (single_kboard)
emacs_abort ();
if (CONSP (last))
{
while (CONSP (XCDR (last)))
last = XCDR (last);
if (!NILP (XCDR (last)))
emacs_abort ();
}
if (!CONSP (last))
kset_kbd_queue (kb, list1 (c));
else
XSETCDR (last, list1 (c));
kb->kbd_queue_has_data = true;
current_kboard = kb;
return make_number (-2); /* wrong_kboard_jmpbuf */
}
}
goto non_reread;
}
/* Start idle timers if no time limit is supplied. We don't do it
if a time limit is supplied to avoid an infinite recursion in the
situation where an idle timer calls `sit-for'. */
if (!end_time)
timer_start_idle ();
/* If in middle of key sequence and minibuffer not active,
start echoing if enough time elapses. */
if (minibuf_level == 0
&& !end_time
&& !current_kboard->immediate_echo
&& (this_command_key_count > 0
|| !NILP (call0 (Qinternal_echo_keystrokes_prefix)))
&& ! noninteractive
&& echo_keystrokes_p ()
&& (/* No message. */
NILP (echo_area_buffer[0])
/* Or empty message. */
|| (BUF_BEG (XBUFFER (echo_area_buffer[0]))
== BUF_Z (XBUFFER (echo_area_buffer[0])))
/* Or already echoing from same kboard. */
|| (echo_kboard && ok_to_echo_at_next_pause == echo_kboard)
/* Or not echoing before and echoing allowed. */
|| (!echo_kboard && ok_to_echo_at_next_pause)))
{
/* After a mouse event, start echoing right away.
This is because we are probably about to display a menu,
and we don't want to delay before doing so. */
if (EVENT_HAS_PARAMETERS (prev_event))
echo_now ();
else
{
Lisp_Object tem0;
save_getcjmp (save_jump);
restore_getcjmp (local_getcjmp);
tem0 = sit_for (Vecho_keystrokes, 1, 1);
restore_getcjmp (save_jump);
if (EQ (tem0, Qt)
&& ! CONSP (Vunread_command_events))
echo_now ();
}
}
/* Maybe auto save due to number of keystrokes. */
if (commandflag != 0 && commandflag != -2
&& auto_save_interval > 0
&& num_nonmacro_input_events - last_auto_save > max (auto_save_interval, 20)
&& !detect_input_pending_run_timers (0))
{
Fdo_auto_save (Qnil, Qnil);
/* Hooks can actually change some buffers in auto save. */
redisplay ();
}
/* Try reading using an X menu.
This is never confused with reading using the minibuf
because the recursive call of read_char in read_char_minibuf_menu_prompt
does not pass on any keymaps. */
if (KEYMAPP (map) && INTERACTIVE
&& !NILP (prev_event)
&& EVENT_HAS_PARAMETERS (prev_event)
&& !EQ (XCAR (prev_event), Qmenu_bar)
&& !EQ (XCAR (prev_event), Qtool_bar)
/* Don't bring up a menu if we already have another event. */
&& !CONSP (Vunread_command_events))
{
c = read_char_x_menu_prompt (map, prev_event, used_mouse_menu);
/* Now that we have read an event, Emacs is not idle. */
if (!end_time)
timer_stop_idle ();
goto exit;
}
/* Maybe autosave and/or garbage collect due to idleness. */
if (INTERACTIVE && NILP (c))
{
int delay_level;
ptrdiff_t buffer_size;
/* Slow down auto saves logarithmically in size of current buffer,
and garbage collect while we're at it. */
if (! MINI_WINDOW_P (XWINDOW (selected_window)))
last_non_minibuf_size = Z - BEG;
buffer_size = (last_non_minibuf_size >> 8) + 1;
delay_level = 0;
while (buffer_size > 64)
delay_level++, buffer_size -= buffer_size >> 2;
if (delay_level < 4) delay_level = 4;
/* delay_level is 4 for files under around 50k, 7 at 100k,
9 at 200k, 11 at 300k, and 12 at 500k. It is 15 at 1 meg. */
/* Auto save if enough time goes by without input. */
if (commandflag != 0 && commandflag != -2
&& num_nonmacro_input_events > last_auto_save
&& INTEGERP (Vauto_save_timeout)
&& XINT (Vauto_save_timeout) > 0)
{
Lisp_Object tem0;
EMACS_INT timeout = XFASTINT (Vauto_save_timeout);
timeout = min (timeout, MOST_POSITIVE_FIXNUM / delay_level * 4);
timeout = delay_level * timeout / 4;
save_getcjmp (save_jump);
restore_getcjmp (local_getcjmp);
tem0 = sit_for (make_number (timeout), 1, 1);
restore_getcjmp (save_jump);
if (EQ (tem0, Qt)
&& ! CONSP (Vunread_command_events))
{
Fdo_auto_save (Qnil, Qnil);
redisplay ();
}
}
/* If there is still no input available, ask for GC. */
if (!detect_input_pending_run_timers (0))
maybe_gc ();
}
/* Notify the caller if an autosave hook, or a timer, sentinel or
filter in the sit_for calls above have changed the current
kboard. This could happen if they use the minibuffer or start a
recursive edit, like the fancy splash screen in server.el's
filter. If this longjmp wasn't here, read_key_sequence would
interpret the next key sequence using the wrong translation
tables and function keymaps. */
if (NILP (c) && current_kboard != orig_kboard)
return make_number (-2); /* wrong_kboard_jmpbuf */
/* If this has become non-nil here, it has been set by a timer
or sentinel or filter. */
if (CONSP (Vunread_command_events))
{
c = XCAR (Vunread_command_events);
Vunread_command_events = XCDR (Vunread_command_events);
if (CONSP (c) && EQ (XCAR (c), Qt))
c = XCDR (c);
else
reread = true;
}
/* Read something from current KBOARD's side queue, if possible. */
if (NILP (c))
{
if (current_kboard->kbd_queue_has_data)
{
if (!CONSP (KVAR (current_kboard, kbd_queue)))
emacs_abort ();
c = XCAR (KVAR (current_kboard, kbd_queue));
kset_kbd_queue (current_kboard,
XCDR (KVAR (current_kboard, kbd_queue)));
if (NILP (KVAR (current_kboard, kbd_queue)))
current_kboard->kbd_queue_has_data = false;
input_pending = readable_events (0);
if (EVENT_HAS_PARAMETERS (c)
&& EQ (EVENT_HEAD_KIND (EVENT_HEAD (c)), Qswitch_frame))
internal_last_event_frame = XCAR (XCDR (c));
Vlast_event_frame = internal_last_event_frame;
}
}
/* If current_kboard's side queue is empty check the other kboards.
If one of them has data that we have not yet seen here,
switch to it and process the data waiting for it.
Note: if the events queued up for another kboard
have already been seen here, and therefore are not a complete command,
the kbd_queue_has_data field is 0, so we skip that kboard here.
That's to avoid an infinite loop switching between kboards here. */
if (NILP (c) && !single_kboard)
{
KBOARD *kb;
for (kb = all_kboards; kb; kb = kb->next_kboard)
if (kb->kbd_queue_has_data)
{
current_kboard = kb;
return make_number (-2); /* wrong_kboard_jmpbuf */
}
}
wrong_kboard:
STOP_POLLING;
if (NILP (c))
{
c = read_decoded_event_from_main_queue (end_time, local_getcjmp,
prev_event, used_mouse_menu);
if (NILP (c) && end_time
&& timespec_cmp (*end_time, current_timespec ()) <= 0)
{
goto exit;
}
if (EQ (c, make_number (-2)))
return c;
}
non_reread:
if (!end_time)
timer_stop_idle ();
RESUME_POLLING;
if (NILP (c))
{
if (commandflag >= 0
&& !input_pending && !detect_input_pending_run_timers (0))
redisplay ();
goto wrong_kboard;
}
/* Buffer switch events are only for internal wakeups
so don't show them to the user.
Also, don't record a key if we already did. */
if (BUFFERP (c))
goto exit;
/* Process special events within read_char
and loop around to read another event. */
save = Vquit_flag;
Vquit_flag = Qnil;
tem = access_keymap (get_keymap (Vspecial_event_map, 0, 1), c, 0, 0, 1);
Vquit_flag = save;
if (!NILP (tem))
{
struct buffer *prev_buffer = current_buffer;
last_input_event = c;
call4 (Qcommand_execute, tem, Qnil, Fvector (1, &last_input_event), Qt);
if (CONSP (c)
&& (EQ (XCAR (c), Qselect_window)
#ifdef HAVE_DBUS
|| EQ (XCAR (c), Qdbus_event)
#endif
#ifdef USE_FILE_NOTIFY
|| EQ (XCAR (c), Qfile_notify)
#endif
|| EQ (XCAR (c), Qconfig_changed_event))
&& !end_time)
/* We stopped being idle for this event; undo that. This
prevents automatic window selection (under
mouse-autoselect-window) from acting as a real input event, for
example banishing the mouse under mouse-avoidance-mode. */
timer_resume_idle ();
if (current_buffer != prev_buffer)
{
/* The command may have changed the keymaps. Pretend there
is input in another keyboard and return. This will
recalculate keymaps. */
c = make_number (-2);
goto exit;
}
else
goto retry;
}
/* Handle things that only apply to characters. */
if (INTEGERP (c))
{
/* If kbd_buffer_get_event gave us an EOF, return that. */
if (XINT (c) == -1)
goto exit;
if ((STRINGP (KVAR (current_kboard, Vkeyboard_translate_table))
&& UNSIGNED_CMP (XFASTINT (c), <,
SCHARS (KVAR (current_kboard,
Vkeyboard_translate_table))))
|| (VECTORP (KVAR (current_kboard, Vkeyboard_translate_table))
&& UNSIGNED_CMP (XFASTINT (c), <,
ASIZE (KVAR (current_kboard,
Vkeyboard_translate_table))))
|| (CHAR_TABLE_P (KVAR (current_kboard, Vkeyboard_translate_table))
&& CHARACTERP (c)))
{
Lisp_Object d;
d = Faref (KVAR (current_kboard, Vkeyboard_translate_table), c);
/* nil in keyboard-translate-table means no translation. */
if (!NILP (d))
c = d;
}
}
/* If this event is a mouse click in the menu bar,
return just menu-bar for now. Modify the mouse click event
so we won't do this twice, then queue it up. */
if (EVENT_HAS_PARAMETERS (c)
&& CONSP (XCDR (c))
&& CONSP (EVENT_START (c))
&& CONSP (XCDR (EVENT_START (c))))
{
Lisp_Object posn;
posn = POSN_POSN (EVENT_START (c));
/* Handle menu-bar events:
insert the dummy prefix event `menu-bar'. */
if (EQ (posn, Qmenu_bar) || EQ (posn, Qtool_bar))
{
/* Change menu-bar to (menu-bar) as the event "position". */
POSN_SET_POSN (EVENT_START (c), list1 (posn));
also_record = c;
Vunread_command_events = Fcons (c, Vunread_command_events);
c = posn;
}
}
/* Store these characters into recent_keys, the dribble file if any,
and the keyboard macro being defined, if any. */
record_char (c);
recorded = true;
if (! NILP (also_record))
record_char (also_record);
/* Wipe the echo area.
But first, if we are about to use an input method,
save the echo area contents for it to refer to. */
if (INTEGERP (c)
&& ! NILP (Vinput_method_function)
&& ' ' <= XINT (c) && XINT (c) < 256 && XINT (c) != 127)
{
previous_echo_area_message = Fcurrent_message ();
Vinput_method_previous_message = previous_echo_area_message;
}
/* Now wipe the echo area, except for help events which do their
own stuff with the echo area. */
if (!CONSP (c)
|| (!(EQ (Qhelp_echo, XCAR (c)))
&& !(EQ (Qswitch_frame, XCAR (c)))
/* Don't wipe echo area for select window events: These might
get delayed via `mouse-autoselect-window' (Bug#11304). */
&& !(EQ (Qselect_window, XCAR (c)))))
{
if (!NILP (echo_area_buffer[0]))
{
safe_run_hooks (Qecho_area_clear_hook);
clear_message (1, 0);
}
}
reread_for_input_method:
from_macro:
/* Pass this to the input method, if appropriate. */
if (INTEGERP (c)
&& ! NILP (Vinput_method_function)
/* Don't run the input method within a key sequence,
after the first event of the key sequence. */
&& NILP (prev_event)
&& ' ' <= XINT (c) && XINT (c) < 256 && XINT (c) != 127)
{
Lisp_Object keys;
ptrdiff_t key_count;
ptrdiff_t command_key_start;
ptrdiff_t count = SPECPDL_INDEX ();
/* Save the echo status. */
bool saved_immediate_echo = current_kboard->immediate_echo;
struct kboard *saved_ok_to_echo = ok_to_echo_at_next_pause;
Lisp_Object saved_echo_string = KVAR (current_kboard, echo_string);
Lisp_Object saved_echo_prompt = KVAR (current_kboard, echo_prompt);
/* Save the this_command_keys status. */
key_count = this_command_key_count;
command_key_start = this_single_command_key_start;
if (key_count > 0)
keys = Fcopy_sequence (this_command_keys);
else
keys = Qnil;
/* Clear out this_command_keys. */
this_command_key_count = 0;
this_single_command_key_start = 0;
/* Now wipe the echo area. */
if (!NILP (echo_area_buffer[0]))
safe_run_hooks (Qecho_area_clear_hook);
clear_message (1, 0);
echo_truncate (0);
/* If we are not reading a key sequence,
never use the echo area. */
if (!KEYMAPP (map))
{
specbind (Qinput_method_use_echo_area, Qt);
}
/* Call the input method. */
tem = call1 (Vinput_method_function, c);
tem = unbind_to (count, tem);
/* Restore the saved echoing state
and this_command_keys state. */
this_command_key_count = key_count;
this_single_command_key_start = command_key_start;
if (key_count > 0)
this_command_keys = keys;
cancel_echoing ();
ok_to_echo_at_next_pause = saved_ok_to_echo;
kset_echo_string (current_kboard, saved_echo_string);
kset_echo_prompt (current_kboard, saved_echo_prompt);
if (saved_immediate_echo)
echo_now ();
/* The input method can return no events. */
if (! CONSP (tem))
{
/* Bring back the previous message, if any. */
if (! NILP (previous_echo_area_message))
message_with_string ("%s", previous_echo_area_message, 0);
goto retry;
}
/* It returned one event or more. */
c = XCAR (tem);
Vunread_post_input_method_events
= nconc2 (XCDR (tem), Vunread_post_input_method_events);
}
/* When we consume events from the various unread-*-events lists, we
bypass the code that records input, so record these events now if
they were not recorded already. */
if (!recorded)
{
record_char (c);
recorded = true;
}
reread_first:
/* Display help if not echoing. */
if (CONSP (c) && EQ (XCAR (c), Qhelp_echo))
{
/* (help-echo FRAME HELP WINDOW OBJECT POS). */
Lisp_Object help, object, position, window, htem;
htem = Fcdr (XCDR (c));
help = Fcar (htem);
htem = Fcdr (htem);
window = Fcar (htem);
htem = Fcdr (htem);
object = Fcar (htem);
htem = Fcdr (htem);
position = Fcar (htem);
show_help_echo (help, window, object, position);
/* We stopped being idle for this event; undo that. */
if (!end_time)
timer_resume_idle ();
goto retry;
}
if ((! reread || this_command_key_count == 0)
&& !end_time)
{
/* Don't echo mouse motion events. */
if (! (EVENT_HAS_PARAMETERS (c)
&& EQ (EVENT_HEAD_KIND (EVENT_HEAD (c)), Qmouse_movement)))
/* Once we reread a character, echoing can happen
the next time we pause to read a new one. */
ok_to_echo_at_next_pause = current_kboard;
/* Record this character as part of the current key. */
add_command_key (c);
if (! NILP (also_record))
add_command_key (also_record);
echo_update ();
}
last_input_event = c;
num_input_events++;
/* Process the help character specially if enabled. */
if (!NILP (Vhelp_form) && help_char_p (c))
{
ptrdiff_t count = SPECPDL_INDEX ();
help_form_saved_window_configs
= Fcons (Fcurrent_window_configuration (Qnil),
help_form_saved_window_configs);
record_unwind_protect_void (read_char_help_form_unwind);
call0 (Qhelp_form_show);
cancel_echoing ();
do
{
c = read_char (0, Qnil, Qnil, 0, NULL);
if (EVENT_HAS_PARAMETERS (c)
&& EQ (EVENT_HEAD_KIND (EVENT_HEAD (c)), Qmouse_click))
XSETCAR (help_form_saved_window_configs, Qnil);
}
while (BUFFERP (c));
/* Remove the help from the frame. */
unbind_to (count, Qnil);
redisplay ();
if (EQ (c, make_number (040)))
{
cancel_echoing ();
do
c = read_char (0, Qnil, Qnil, 0, NULL);
while (BUFFERP (c));
}
}
exit:
RESUME_POLLING;
input_was_pending = input_pending;
return c;
}
/* Record a key that came from a mouse menu.
Record it for echoing, for this-command-keys, and so on. */
static void
record_menu_key (Lisp_Object c)
{
/* Wipe the echo area. */
clear_message (1, 0);
record_char (c);
/* Once we reread a character, echoing can happen
the next time we pause to read a new one. */
ok_to_echo_at_next_pause = NULL;
/* Record this character as part of the current key. */
add_command_key (c);
echo_update ();
/* Re-reading in the middle of a command. */
last_input_event = c;
num_input_events++;
}
/* Return true if should recognize C as "the help character". */
static bool
help_char_p (Lisp_Object c)
{
Lisp_Object tail;
if (EQ (c, Vhelp_char))
return 1;
for (tail = Vhelp_event_list; CONSP (tail); tail = XCDR (tail))
if (EQ (c, XCAR (tail)))
return 1;
return 0;
}
/* Record the input event C in various ways. */
static void
record_char (Lisp_Object c)
{
int recorded = 0;
if (CONSP (c) && (EQ (XCAR (c), Qhelp_echo) || EQ (XCAR (c), Qmouse_movement)))
{
/* To avoid filling recent_keys with help-echo and mouse-movement
events, we filter out repeated help-echo events, only store the
first and last in a series of mouse-movement events, and don't
store repeated help-echo events which are only separated by
mouse-movement events. */
Lisp_Object ev1, ev2, ev3;
int ix1, ix2, ix3;
if ((ix1 = recent_keys_index - 1) < 0)
ix1 = NUM_RECENT_KEYS - 1;
ev1 = AREF (recent_keys, ix1);
if ((ix2 = ix1 - 1) < 0)
ix2 = NUM_RECENT_KEYS - 1;
ev2 = AREF (recent_keys, ix2);
if ((ix3 = ix2 - 1) < 0)
ix3 = NUM_RECENT_KEYS - 1;
ev3 = AREF (recent_keys, ix3);
if (EQ (XCAR (c), Qhelp_echo))
{
/* Don't record `help-echo' in recent_keys unless it shows some help
message, and a different help than the previously recorded
event. */
Lisp_Object help, last_help;
help = Fcar_safe (Fcdr_safe (XCDR (c)));
if (!STRINGP (help))
recorded = 1;
else if (CONSP (ev1) && EQ (XCAR (ev1), Qhelp_echo)
&& (last_help = Fcar_safe (Fcdr_safe (XCDR (ev1))), EQ (last_help, help)))
recorded = 1;
else if (CONSP (ev1) && EQ (XCAR (ev1), Qmouse_movement)
&& CONSP (ev2) && EQ (XCAR (ev2), Qhelp_echo)
&& (last_help = Fcar_safe (Fcdr_safe (XCDR (ev2))), EQ (last_help, help)))
recorded = -1;
else if (CONSP (ev1) && EQ (XCAR (ev1), Qmouse_movement)
&& CONSP (ev2) && EQ (XCAR (ev2), Qmouse_movement)
&& CONSP (ev3) && EQ (XCAR (ev3), Qhelp_echo)
&& (last_help = Fcar_safe (Fcdr_safe (XCDR (ev3))), EQ (last_help, help)))
recorded = -2;
}
else if (EQ (XCAR (c), Qmouse_movement))
{
/* Only record one pair of `mouse-movement' on a window in recent_keys.
So additional mouse movement events replace the last element. */
Lisp_Object last_window, window;
window = Fcar_safe (Fcar_safe (XCDR (c)));
if (CONSP (ev1) && EQ (XCAR (ev1), Qmouse_movement)
&& (last_window = Fcar_safe (Fcar_safe (XCDR (ev1))), EQ (last_window, window))
&& CONSP (ev2) && EQ (XCAR (ev2), Qmouse_movement)
&& (last_window = Fcar_safe (Fcar_safe (XCDR (ev2))), EQ (last_window, window)))
{
ASET (recent_keys, ix1, c);
recorded = 1;
}
}
}
else
store_kbd_macro_char (c);
/* recent_keys should not include events from keyboard macros. */
if (NILP (Vexecuting_kbd_macro))
{
if (!recorded)
{
total_keys += total_keys < NUM_RECENT_KEYS;
ASET (recent_keys, recent_keys_index, c);
if (++recent_keys_index >= NUM_RECENT_KEYS)
recent_keys_index = 0;
}
else if (recorded < 0)
{
/* We need to remove one or two events from recent_keys.
To do this, we simply put nil at those events and move the
recent_keys_index backwards over those events. Usually,
users will never see those nil events, as they will be
overwritten by the command keys entered to see recent_keys
(e.g. C-h l). */
while (recorded++ < 0 && total_keys > 0)
{
if (total_keys < NUM_RECENT_KEYS)
total_keys--;
if (--recent_keys_index < 0)
recent_keys_index = NUM_RECENT_KEYS - 1;
ASET (recent_keys, recent_keys_index, Qnil);
}
}
num_nonmacro_input_events++;
}
/* Write c to the dribble file. If c is a lispy event, write
the event's symbol to the dribble file, in . Bleaugh.
If you, dear reader, have a better idea, you've got the source. :-) */
if (dribble)
{
block_input ();
if (INTEGERP (c))
{
if (XUINT (c) < 0x100)
putc (XUINT (c), dribble);
else
fprintf (dribble, " 0x%"pI"x", XUINT (c));
}
else
{
Lisp_Object dribblee;
/* If it's a structured event, take the event header. */
dribblee = EVENT_HEAD (c);
if (SYMBOLP (dribblee))
{
putc ('<', dribble);
fwrite (SDATA (SYMBOL_NAME (dribblee)), sizeof (char),
SBYTES (SYMBOL_NAME (dribblee)),
dribble);
putc ('>', dribble);
}
}
fflush (dribble);
unblock_input ();
}
}
/* Copy out or in the info on where C-g should throw to.
This is used when running Lisp code from within get_char,
in case get_char is called recursively.
See read_process_output. */
static void
save_getcjmp (sys_jmp_buf temp)
{
memcpy (temp, getcjmp, sizeof getcjmp);
}
static void
restore_getcjmp (sys_jmp_buf temp)
{
memcpy (getcjmp, temp, sizeof getcjmp);
}
/* Low level keyboard/mouse input.
kbd_buffer_store_event places events in kbd_buffer, and
kbd_buffer_get_event retrieves them. */
/* Return true if there are any events in the queue that read-char
would return. If this returns false, a read-char would block. */
static bool
readable_events (int flags)
{
if (flags & READABLE_EVENTS_DO_TIMERS_NOW)
timer_check ();
/* If the buffer contains only FOCUS_IN_EVENT events, and
READABLE_EVENTS_FILTER_EVENTS is set, report it as empty. */
if (kbd_fetch_ptr != kbd_store_ptr)
{
if (flags & (READABLE_EVENTS_FILTER_EVENTS
#ifdef USE_TOOLKIT_SCROLL_BARS
| READABLE_EVENTS_IGNORE_SQUEEZABLES
#endif
))
{
union buffered_input_event *event = kbd_fetch_ptr;
do
{
if (event == kbd_buffer + KBD_BUFFER_SIZE)
event = kbd_buffer;
if (!(
#ifdef USE_TOOLKIT_SCROLL_BARS
(flags & READABLE_EVENTS_FILTER_EVENTS) &&
#endif
event->kind == FOCUS_IN_EVENT)
#ifdef USE_TOOLKIT_SCROLL_BARS
&& !((flags & READABLE_EVENTS_IGNORE_SQUEEZABLES)
&& (event->kind == SCROLL_BAR_CLICK_EVENT
|| event->kind == HORIZONTAL_SCROLL_BAR_CLICK_EVENT)
&& event->ie.part == scroll_bar_handle
&& event->ie.modifiers == 0)
#endif
&& !((flags & READABLE_EVENTS_FILTER_EVENTS)
&& event->kind == BUFFER_SWITCH_EVENT))
return 1;
event++;
}
while (event != kbd_store_ptr);
}
else
return 1;
}
if (!(flags & READABLE_EVENTS_IGNORE_SQUEEZABLES)
&& !NILP (do_mouse_tracking) && some_mouse_moved ())
return 1;
if (single_kboard)
{
if (current_kboard->kbd_queue_has_data)
return 1;
}
else
{
KBOARD *kb;
for (kb = all_kboards; kb; kb = kb->next_kboard)
if (kb->kbd_queue_has_data)
return 1;
}
return 0;
}
/* Set this for debugging, to have a way to get out */
int stop_character EXTERNALLY_VISIBLE;
static KBOARD *
event_to_kboard (struct input_event *event)
{
/* Not applicable for these special events. */
if (event->kind == SELECTION_REQUEST_EVENT
|| event->kind == SELECTION_CLEAR_EVENT)
return NULL;
else
{
Lisp_Object obj = event->frame_or_window;
/* There are some events that set this field to nil or string. */
if (WINDOWP (obj))
obj = WINDOW_FRAME (XWINDOW (obj));
/* Also ignore dead frames here. */
return ((FRAMEP (obj) && FRAME_LIVE_P (XFRAME (obj)))
? FRAME_KBOARD (XFRAME (obj)) : NULL);
}
}
#ifdef subprocesses
/* Return the number of slots occupied in kbd_buffer. */
static int
kbd_buffer_nr_stored (void)
{
return kbd_fetch_ptr == kbd_store_ptr
? 0
: (kbd_fetch_ptr < kbd_store_ptr
? kbd_store_ptr - kbd_fetch_ptr
: ((kbd_buffer + KBD_BUFFER_SIZE) - kbd_fetch_ptr
+ (kbd_store_ptr - kbd_buffer)));
}
#endif /* Store an event obtained at interrupt level into kbd_buffer, fifo */
void
kbd_buffer_store_event (register struct input_event *event)
{
kbd_buffer_store_event_hold (event, 0);
}
/* Store EVENT obtained at interrupt level into kbd_buffer, fifo.
If HOLD_QUIT is 0, just stuff EVENT into the fifo.
Else, if HOLD_QUIT.kind != NO_EVENT, discard EVENT.
Else, if EVENT is a quit event, store the quit event
in HOLD_QUIT, and return (thus ignoring further events).
This is used to postpone the processing of the quit event until all
subsequent input events have been parsed (and discarded). */
void
kbd_buffer_store_buffered_event (union buffered_input_event *event,
struct input_event *hold_quit)
{
if (event->kind == NO_EVENT)
emacs_abort ();
if (hold_quit && hold_quit->kind != NO_EVENT)
return;
if (event->kind == ASCII_KEYSTROKE_EVENT)
{
int c = event->ie.code & 0377;
if (event->ie.modifiers & ctrl_modifier)
c = make_ctrl_char (c);
c |= (event->ie.modifiers
& (meta_modifier | alt_modifier
| hyper_modifier | super_modifier));
if (c == quit_char)
{
KBOARD *kb = FRAME_KBOARD (XFRAME (event->ie.frame_or_window));
if (single_kboard && kb != current_kboard)
{
kset_kbd_queue
(kb, list2 (make_lispy_switch_frame (event->ie.frame_or_window),
make_number (c)));
kb->kbd_queue_has_data = true;
union buffered_input_event *sp;
for (sp = kbd_fetch_ptr; sp != kbd_store_ptr; sp++)
{
if (sp == kbd_buffer + KBD_BUFFER_SIZE)
sp = kbd_buffer;
if (event_to_kboard (&sp->ie) == kb)
{
sp->ie.kind = NO_EVENT;
sp->ie.frame_or_window = Qnil;
sp->ie.arg = Qnil;
}
}
return;
}
if (hold_quit)
{
*hold_quit = event->ie;
return;
}
/* If this results in a quit_char being returned to Emacs as
input, set Vlast_event_frame properly. If this doesn't
get returned to Emacs as an event, the next event read
will set Vlast_event_frame again, so this is safe to do. */
{
Lisp_Object focus;
focus = FRAME_FOCUS_FRAME (XFRAME (event->ie.frame_or_window));
if (NILP (focus))
focus = event->ie.frame_or_window;
internal_last_event_frame = focus;
Vlast_event_frame = focus;
}
handle_interrupt (0);
return;
}
if (c && c == stop_character)
{
sys_suspend ();
return;
}
}
/* Don't insert two BUFFER_SWITCH_EVENT's in a row.
Just ignore the second one. */
else if (event->kind == BUFFER_SWITCH_EVENT
&& kbd_fetch_ptr != kbd_store_ptr
&& ((kbd_store_ptr == kbd_buffer
? kbd_buffer + KBD_BUFFER_SIZE - 1
: kbd_store_ptr - 1)->kind) == BUFFER_SWITCH_EVENT)
return;
if (kbd_store_ptr - kbd_buffer == KBD_BUFFER_SIZE)
kbd_store_ptr = kbd_buffer;
/* Don't let the very last slot in the buffer become full,
since that would make the two pointers equal,
and that is indistinguishable from an empty buffer.
Discard the event if it would fill the last slot. */
if (kbd_fetch_ptr - 1 != kbd_store_ptr)
{
*kbd_store_ptr = *event;
++kbd_store_ptr;
#ifdef subprocesses
if (kbd_buffer_nr_stored () > KBD_BUFFER_SIZE / 2
&& ! kbd_on_hold_p ())
{
/* Don't read keyboard input until we have processed kbd_buffer.
This happens when pasting text longer than KBD_BUFFER_SIZE/2. */
hold_keyboard_input ();
unrequest_sigio ();
stop_polling ();
}
#endif /* subprocesses */
}
/* If we're inside while-no-input, and this event qualifies
as input, set quit-flag to cause an interrupt. */
if (!NILP (Vthrow_on_input)
&& event->kind != FOCUS_IN_EVENT
&& event->kind != FOCUS_OUT_EVENT
&& event->kind != HELP_EVENT
&& event->kind != ICONIFY_EVENT
&& event->kind != DEICONIFY_EVENT)
{
Vquit_flag = Vthrow_on_input;
/* If we're inside a function that wants immediate quits,
do it now. */
if (immediate_quit && NILP (Vinhibit_quit))
{
immediate_quit = false;
QUIT;
}
}
}
#ifdef HAVE_X11
/* Put a selection input event back in the head of the event queue. */
void
kbd_buffer_unget_event (struct selection_input_event *event)
{
if (kbd_fetch_ptr == kbd_buffer)
kbd_fetch_ptr = kbd_buffer + KBD_BUFFER_SIZE;
/* Don't let the very last slot in the buffer become full, */
union buffered_input_event *kp = kbd_fetch_ptr - 1;
if (kp != kbd_store_ptr)
{
kp->sie = *event;
kbd_fetch_ptr = kp;
}
}
#endif
/* Limit help event positions to this range, to avoid overflow problems. */
#define INPUT_EVENT_POS_MAX \
((ptrdiff_t) min (PTRDIFF_MAX, min (TYPE_MAXIMUM (Time) / 2, \
MOST_POSITIVE_FIXNUM)))
#define INPUT_EVENT_POS_MIN (-1 - INPUT_EVENT_POS_MAX)
/* Return a Time that encodes position POS. POS must be in range. */
static Time
position_to_Time (ptrdiff_t pos)
{
eassert (INPUT_EVENT_POS_MIN <= pos && pos <= INPUT_EVENT_POS_MAX);
return pos;
}
/* Return the position that ENCODED_POS encodes.
Avoid signed integer overflow. */
static ptrdiff_t
Time_to_position (Time encoded_pos)
{
if (encoded_pos <= INPUT_EVENT_POS_MAX)
return encoded_pos;
Time encoded_pos_min = INPUT_EVENT_POS_MIN;
eassert (encoded_pos_min <= encoded_pos);
ptrdiff_t notpos = -1 - encoded_pos;
return -1 - notpos;
}
/* Generate a HELP_EVENT input_event and store it in the keyboard
buffer.
HELP is the help form.
FRAME and WINDOW are the frame and window where the help is
generated. OBJECT is the Lisp object where the help was found (a
buffer, a string, an overlay, or nil if neither from a string nor
from a buffer). POS is the position within OBJECT where the help
was found. */
void
gen_help_event (Lisp_Object help, Lisp_Object frame, Lisp_Object window,
Lisp_Object object, ptrdiff_t pos)
{
struct input_event event;
event.kind = HELP_EVENT;
event.frame_or_window = frame;
event.arg = object;
event.x = WINDOWP (window) ? window : frame;
event.y = help;
event.timestamp = position_to_Time (pos);
kbd_buffer_store_event (&event);
}
/* Store HELP_EVENTs for HELP on FRAME in the input queue. */
void
kbd_buffer_store_help_event (Lisp_Object frame, Lisp_Object help)
{
struct input_event event;
event.kind = HELP_EVENT;
event.frame_or_window = frame;
event.arg = Qnil;
event.x = Qnil;
event.y = help;
event.timestamp = 0;
kbd_buffer_store_event (&event);
}
/* Discard any mouse events in the event buffer by setting them to
NO_EVENT. */
void
discard_mouse_events (void)
{
union buffered_input_event *sp;
for (sp = kbd_fetch_ptr; sp != kbd_store_ptr; sp++)
{
if (sp == kbd_buffer + KBD_BUFFER_SIZE)
sp = kbd_buffer;
if (sp->kind == MOUSE_CLICK_EVENT
|| sp->kind == WHEEL_EVENT
|| sp->kind == HORIZ_WHEEL_EVENT
#ifdef HAVE_GPM
|| sp->kind == GPM_CLICK_EVENT
#endif
|| sp->kind == SCROLL_BAR_CLICK_EVENT
|| sp->kind == HORIZONTAL_SCROLL_BAR_CLICK_EVENT)
{
sp->kind = NO_EVENT;
}
}
}
/* Return true if there are any real events waiting in the event
buffer, not counting `NO_EVENT's.
Discard NO_EVENT events at the front of the input queue, possibly
leaving the input queue empty if there are no real input events. */
bool
kbd_buffer_events_waiting (void)
{
union buffered_input_event *sp;
for (sp = kbd_fetch_ptr;
sp != kbd_store_ptr && sp->kind == NO_EVENT;
++sp)
{
if (sp == kbd_buffer + KBD_BUFFER_SIZE)
sp = kbd_buffer;
}
kbd_fetch_ptr = sp;
return sp != kbd_store_ptr && sp->kind != NO_EVENT;
}
/* Clear input event EVENT. */
static void
clear_event (union buffered_input_event *event)
{
event->kind = NO_EVENT;
}
/* Read one event from the event buffer, waiting if necessary.
The value is a Lisp object representing the event.
The value is nil for an event that should be ignored,
or that was handled here.
We always read and discard one event. */
static Lisp_Object
kbd_buffer_get_event (KBOARD **kbp,
bool *used_mouse_menu,
struct timespec *end_time)
{
Lisp_Object obj;
#ifdef subprocesses
if (kbd_on_hold_p () && kbd_buffer_nr_stored () < KBD_BUFFER_SIZE / 4)
{
/* Start reading input again because we have processed enough to
be able to accept new events again. */
unhold_keyboard_input ();
request_sigio ();
start_polling ();
}
#endif /* subprocesses */
#if !defined HAVE_DBUS && !defined USE_FILE_NOTIFY
if (noninteractive
/* In case we are running as a daemon, only do this before
detaching from the terminal. */
|| (IS_DAEMON && DAEMON_RUNNING))
{
int c = getchar ();
XSETINT (obj, c);
*kbp = current_kboard;
return obj;
}
#endif /* !defined HAVE_DBUS && !defined USE_FILE_NOTIFY */
/* Wait until there is input available. */
for (;;)
{
/* Break loop if there's an unread command event. Needed in
moused window autoselection which uses a timer to insert such
events. */
if (CONSP (Vunread_command_events))
break;
if (kbd_fetch_ptr != kbd_store_ptr)
break;
if (!NILP (do_mouse_tracking) && some_mouse_moved ())
break;
/* If the quit flag is set, then read_char will return
quit_char, so that counts as "available input." */
if (!NILP (Vquit_flag))
quit_throw_to_read_char (0);
/* One way or another, wait until input is available; then, if
interrupt handlers have not read it, read it now. */
#ifdef USABLE_SIGIO
gobble_input ();
#endif
if (kbd_fetch_ptr != kbd_store_ptr)
break;
if (!NILP (do_mouse_tracking) && some_mouse_moved ())
break;
if (end_time)
{
struct timespec now = current_timespec ();
if (timespec_cmp (*end_time, now) <= 0)
return Qnil; /* Finished waiting. */
else
{
struct timespec duration = timespec_sub (*end_time, now);
wait_reading_process_output (min (duration.tv_sec,
WAIT_READING_MAX),
duration.tv_nsec,
-1, 1, Qnil, NULL, 0);
}
}
else
{
bool do_display = true;
if (FRAME_TERMCAP_P (SELECTED_FRAME ()))
{
struct tty_display_info *tty = CURTTY ();
/* When this TTY is displaying a menu, we must prevent
any redisplay, because we modify the frame's glyph
matrix behind the back of the display engine. */
if (tty->showing_menu)
do_display = false;
}
wait_reading_process_output (0, 0, -1, do_display, Qnil, NULL, 0);
}
if (!interrupt_input && kbd_fetch_ptr == kbd_store_ptr)
gobble_input ();
}
if (CONSP (Vunread_command_events))
{
Lisp_Object first;
first = XCAR (Vunread_command_events);
Vunread_command_events = XCDR (Vunread_command_events);
*kbp = current_kboard;
return first;
}
/* At this point, we know that there is a readable event available
somewhere. If the event queue is empty, then there must be a
mouse movement enabled and available. */
if (kbd_fetch_ptr != kbd_store_ptr)
{
union buffered_input_event *event;
event = ((kbd_fetch_ptr < kbd_buffer + KBD_BUFFER_SIZE)
? kbd_fetch_ptr
: kbd_buffer);
*kbp = event_to_kboard (&event->ie);
if (*kbp == 0)
*kbp = current_kboard; /* Better than returning null ptr? */
obj = Qnil;
/* These two kinds of events get special handling
and don't actually appear to the command loop.
We return nil for them. */
if (event->kind == SELECTION_REQUEST_EVENT
|| event->kind == SELECTION_CLEAR_EVENT)
{
#ifdef HAVE_X11
/* Remove it from the buffer before processing it,
since otherwise swallow_events will see it
and process it again. */
struct selection_input_event copy = event->sie;
kbd_fetch_ptr = event + 1;
input_pending = readable_events (0);
x_handle_selection_event (©);
#else
/* We're getting selection request events, but we don't have
a window system. */
emacs_abort ();
#endif
}
#if defined (HAVE_NS)
else if (event->kind == NS_TEXT_EVENT)
{
if (event->ie.code == KEY_NS_PUT_WORKING_TEXT)
obj = list1 (intern ("ns-put-working-text"));
else
obj = list1 (intern ("ns-unput-working-text"));
kbd_fetch_ptr = event + 1;
if (used_mouse_menu)
*used_mouse_menu = true;
}
#endif
#if defined (HAVE_X11) || defined (HAVE_NTGUI) \
|| defined (HAVE_NS)
else if (event->kind == DELETE_WINDOW_EVENT)
{
/* Make an event (delete-frame (FRAME)). */
obj = list2 (Qdelete_frame, list1 (event->ie.frame_or_window));
kbd_fetch_ptr = event + 1;
}
#endif
#ifdef HAVE_NTGUI
else if (event->kind == END_SESSION_EVENT)
{
/* Make an event (end-session). */
obj = list1 (Qend_session);
kbd_fetch_ptr = event + 1;
}
#endif
#if defined (HAVE_X11) || defined (HAVE_NTGUI) \
|| defined (HAVE_NS)
else if (event->kind == ICONIFY_EVENT)
{
/* Make an event (iconify-frame (FRAME)). */
obj = list2 (Qiconify_frame, list1 (event->ie.frame_or_window));
kbd_fetch_ptr = event + 1;
}
else if (event->kind == DEICONIFY_EVENT)
{
/* Make an event (make-frame-visible (FRAME)). */
obj = list2 (Qmake_frame_visible, list1 (event->ie.frame_or_window));
kbd_fetch_ptr = event + 1;
}
#endif
else if (event->kind == BUFFER_SWITCH_EVENT)
{
/* The value doesn't matter here; only the type is tested. */
XSETBUFFER (obj, current_buffer);
kbd_fetch_ptr = event + 1;
}
#if defined (USE_X_TOOLKIT) || defined (HAVE_NTGUI) \
|| defined (HAVE_NS) || defined (USE_GTK)
else if (event->kind == MENU_BAR_ACTIVATE_EVENT)
{
kbd_fetch_ptr = event + 1;
input_pending = readable_events (0);
if (FRAME_LIVE_P (XFRAME (event->ie.frame_or_window)))
x_activate_menubar (XFRAME (event->ie.frame_or_window));
}
#endif
#ifdef HAVE_NTGUI
else if (event->kind == LANGUAGE_CHANGE_EVENT)
{
/* Make an event (language-change FRAME CODEPAGE LANGUAGE-ID). */
obj = list4 (Qlanguage_change,
event->ie.frame_or_window,
make_number (event->ie.code),
make_number (event->ie.modifiers));
kbd_fetch_ptr = event + 1;
}
#endif
#ifdef USE_FILE_NOTIFY
else if (event->kind == FILE_NOTIFY_EVENT)
{
#ifdef HAVE_W32NOTIFY
/* Make an event (file-notify (DESCRIPTOR ACTION FILE) CALLBACK). */
obj = list3 (Qfile_notify, event->ie.arg, event->ie.frame_or_window);
#else
obj = make_lispy_event (&event->ie);
#endif
kbd_fetch_ptr = event + 1;
}
#endif /* USE_FILE_NOTIFY */
else if (event->kind == SAVE_SESSION_EVENT)
{
obj = list2 (Qsave_session, event->ie.arg);
kbd_fetch_ptr = event + 1;
}
/* Just discard these, by returning nil.
With MULTI_KBOARD, these events are used as placeholders
when we need to randomly delete events from the queue.
(They shouldn't otherwise be found in the buffer,
but on some machines it appears they do show up
even without MULTI_KBOARD.) */
/* On Windows NT/9X, NO_EVENT is used to delete extraneous
mouse events during a popup-menu call. */
else if (event->kind == NO_EVENT)
kbd_fetch_ptr = event + 1;
else if (event->kind == HELP_EVENT)
{
Lisp_Object object, position, help, frame, window;
frame = event->ie.frame_or_window;
object = event->ie.arg;
position = make_number (Time_to_position (event->ie.timestamp));
window = event->ie.x;
help = event->ie.y;
clear_event (event);
kbd_fetch_ptr = event + 1;
if (!WINDOWP (window))
window = Qnil;
obj = Fcons (Qhelp_echo,
list5 (frame, help, window, object, position));
}
else if (event->kind == FOCUS_IN_EVENT)
{
/* Notification of a FocusIn event. The frame receiving the
focus is in event->frame_or_window. Generate a
switch-frame event if necessary. */
Lisp_Object frame, focus;
frame = event->ie.frame_or_window;
focus = FRAME_FOCUS_FRAME (XFRAME (frame));
if (FRAMEP (focus))
frame = focus;
if (
#ifdef HAVE_X11
! NILP (event->ie.arg)
&&
#endif
!EQ (frame, internal_last_event_frame)
&& !EQ (frame, selected_frame))
obj = make_lispy_switch_frame (frame);
else
obj = make_lispy_focus_in (frame);
internal_last_event_frame = frame;
kbd_fetch_ptr = event + 1;
}
else if (event->kind == FOCUS_OUT_EVENT)
{
#ifdef HAVE_WINDOW_SYSTEM
Display_Info *di;
Lisp_Object frame = event->ie.frame_or_window;
bool focused = false;
for (di = x_display_list; di && ! focused; di = di->next)
focused = di->x_highlight_frame != 0;
if (!focused)
obj = make_lispy_focus_out (frame);
#endif /* HAVE_WINDOW_SYSTEM */
kbd_fetch_ptr = event + 1;
}
#ifdef HAVE_DBUS
else if (event->kind == DBUS_EVENT)
{
obj = make_lispy_event (&event->ie);
kbd_fetch_ptr = event + 1;
}
#endif
#ifdef HAVE_XWIDGETS
else if (event->kind == XWIDGET_EVENT)
{
obj = make_lispy_event (&event->ie);
kbd_fetch_ptr = event + 1;
}
#endif
else if (event->kind == CONFIG_CHANGED_EVENT)
{
obj = make_lispy_event (&event->ie);
kbd_fetch_ptr = event + 1;
}
else
{
/* If this event is on a different frame, return a switch-frame this
time, and leave the event in the queue for next time. */
Lisp_Object frame;
Lisp_Object focus;
frame = event->ie.frame_or_window;
if (CONSP (frame))
frame = XCAR (frame);
else if (WINDOWP (frame))
frame = WINDOW_FRAME (XWINDOW (frame));
focus = FRAME_FOCUS_FRAME (XFRAME (frame));
if (! NILP (focus))
frame = focus;
if (! EQ (frame, internal_last_event_frame)
&& !EQ (frame, selected_frame))
obj = make_lispy_switch_frame (frame);
internal_last_event_frame = frame;
/* If we didn't decide to make a switch-frame event, go ahead
and build a real event from the queue entry. */
if (NILP (obj))
{
obj = make_lispy_event (&event->ie);
#if defined (USE_X_TOOLKIT) || defined (HAVE_NTGUI) \
|| defined (HAVE_NS) || defined (USE_GTK)
/* If this was a menu selection, then set the flag to inhibit
writing to last_nonmenu_event. Don't do this if the event
we're returning is (menu-bar), though; that indicates the
beginning of the menu sequence, and we might as well leave
that as the `event with parameters' for this selection. */
if (used_mouse_menu
&& !EQ (event->ie.frame_or_window, event->ie.arg)
&& (event->kind == MENU_BAR_EVENT
|| event->kind == TOOL_BAR_EVENT))
*used_mouse_menu = true;
#endif
#ifdef HAVE_NS
/* Certain system events are non-key events. */
if (used_mouse_menu
&& event->kind == NS_NONKEY_EVENT)
*used_mouse_menu = true;
#endif
/* Wipe out this event, to catch bugs. */
clear_event (event);
kbd_fetch_ptr = event + 1;
}
}
}
/* Try generating a mouse motion event. */
else if (!NILP (do_mouse_tracking) && some_mouse_moved ())
{
struct frame *f = some_mouse_moved ();
Lisp_Object bar_window;
enum scroll_bar_part part;
Lisp_Object x, y;
Time t;
*kbp = current_kboard;
/* Note that this uses F to determine which terminal to look at.
If there is no valid info, it does not store anything
so x remains nil. */
x = Qnil;
/* XXX Can f or mouse_position_hook be NULL here? */
if (f && FRAME_TERMINAL (f)->mouse_position_hook)
(*FRAME_TERMINAL (f)->mouse_position_hook) (&f, 0, &bar_window,
&part, &x, &y, &t);
obj = Qnil;
/* Decide if we should generate a switch-frame event. Don't
generate switch-frame events for motion outside of all Emacs
frames. */
if (!NILP (x) && f)
{
Lisp_Object frame;
frame = FRAME_FOCUS_FRAME (f);
if (NILP (frame))
XSETFRAME (frame, f);
if (! EQ (frame, internal_last_event_frame)
&& !EQ (frame, selected_frame))
obj = make_lispy_switch_frame (frame);
internal_last_event_frame = frame;
}
/* If we didn't decide to make a switch-frame event, go ahead and
return a mouse-motion event. */
if (!NILP (x) && NILP (obj))
obj = make_lispy_movement (f, bar_window, part, x, y, t);
}
else
/* We were promised by the above while loop that there was
something for us to read! */
emacs_abort ();
input_pending = readable_events (0);
Vlast_event_frame = internal_last_event_frame;
return (obj);
}
/* Process any non-user-visible events (currently X selection events),
without reading any user-visible events. */
static void
process_special_events (void)
{
union buffered_input_event *event;
for (event = kbd_fetch_ptr; event != kbd_store_ptr; ++event)
{
if (event == kbd_buffer + KBD_BUFFER_SIZE)
{
event = kbd_buffer;
if (event == kbd_store_ptr)
break;
}
/* If we find a stored X selection request, handle it now. */
if (event->kind == SELECTION_REQUEST_EVENT
|| event->kind == SELECTION_CLEAR_EVENT)
{
#ifdef HAVE_X11
/* Remove the event from the fifo buffer before processing;
otherwise swallow_events called recursively could see it
and process it again. To do this, we move the events
between kbd_fetch_ptr and EVENT one slot to the right,
cyclically. */
struct selection_input_event copy = event->sie;
union buffered_input_event *beg
= (kbd_fetch_ptr == kbd_buffer + KBD_BUFFER_SIZE)
? kbd_buffer : kbd_fetch_ptr;
if (event > beg)
memmove (beg + 1, beg, (event - beg) * sizeof *beg);
else if (event < beg)
{
if (event > kbd_buffer)
memmove (kbd_buffer + 1, kbd_buffer,
(event - kbd_buffer) * sizeof *kbd_buffer);
*kbd_buffer = *(kbd_buffer + KBD_BUFFER_SIZE - 1);
if (beg < kbd_buffer + KBD_BUFFER_SIZE - 1)
memmove (beg + 1, beg,
(kbd_buffer + KBD_BUFFER_SIZE - 1 - beg) * sizeof *beg);
}
if (kbd_fetch_ptr == kbd_buffer + KBD_BUFFER_SIZE)
kbd_fetch_ptr = kbd_buffer + 1;
else
kbd_fetch_ptr++;
input_pending = readable_events (0);
x_handle_selection_event (©);
#else
/* We're getting selection request events, but we don't have
a window system. */
emacs_abort ();
#endif
}
}
}
/* Process any events that are not user-visible, run timer events that
are ripe, and return, without reading any user-visible events. */
void
swallow_events (bool do_display)
{
unsigned old_timers_run;
process_special_events ();
old_timers_run = timers_run;
get_input_pending (READABLE_EVENTS_DO_TIMERS_NOW);
if (!input_pending && timers_run != old_timers_run && do_display)
redisplay_preserve_echo_area (7);
}
/* Record the start of when Emacs is idle,
for the sake of running idle-time timers. */
static void
timer_start_idle (void)
{
/* If we are already in the idle state, do nothing. */
if (timespec_valid_p (timer_idleness_start_time))
return;
timer_idleness_start_time = current_timespec ();
timer_last_idleness_start_time = timer_idleness_start_time;
/* Mark all idle-time timers as once again candidates for running. */
call0 (intern ("internal-timer-start-idle"));
}
/* Record that Emacs is no longer idle, so stop running idle-time timers. */
static void
timer_stop_idle (void)
{
timer_idleness_start_time = invalid_timespec ();
}
/* Resume idle timer from last idle start time. */
static void
timer_resume_idle (void)
{
if (timespec_valid_p (timer_idleness_start_time))
return;
timer_idleness_start_time = timer_last_idleness_start_time;
}
/* List of elisp functions to call, delayed because they were generated in
a context where Elisp could not be safely run (e.g. redisplay, signal,
...). Each element has the form (FUN . ARGS). */
Lisp_Object pending_funcalls;
/* Return true if TIMER is a valid timer, placing its value into *RESULT. */
static bool
decode_timer (Lisp_Object timer, struct timespec *result)
{
Lisp_Object *vec;
if (! (VECTORP (timer) && ASIZE (timer) == 9))
return 0;
vec = XVECTOR (timer)->contents;
if (! NILP (vec[0]))
return 0;
if (! INTEGERP (vec[2]))
return false;
struct lisp_time t;
if (decode_time_components (vec[1], vec[2], vec[3], vec[8], &t, 0) <= 0)
return false;
*result = lisp_to_timespec (t);
return timespec_valid_p (*result);
}
/* Check whether a timer has fired. To prevent larger problems we simply
disregard elements that are not proper timers. Do not make a circular
timer list for the time being.
Returns the time to wait until the next timer fires. If a
timer is triggering now, return zero.
If no timer is active, return -1.
If a timer is ripe, we run it, with quitting turned off.
In that case we return 0 to indicate that a new timer_check_2 call
should be done. */
static struct timespec
timer_check_2 (Lisp_Object timers, Lisp_Object idle_timers)
{
struct timespec nexttime;
struct timespec now;
struct timespec idleness_now;
Lisp_Object chosen_timer;
nexttime = invalid_timespec ();
chosen_timer = Qnil;
/* First run the code that was delayed. */
while (CONSP (pending_funcalls))
{
Lisp_Object funcall = XCAR (pending_funcalls);
pending_funcalls = XCDR (pending_funcalls);
safe_call2 (Qapply, XCAR (funcall), XCDR (funcall));
}
if (CONSP (timers) || CONSP (idle_timers))
{
now = current_timespec ();
idleness_now = (timespec_valid_p (timer_idleness_start_time)
? timespec_sub (now, timer_idleness_start_time)
: make_timespec (0, 0));
}
while (CONSP (timers) || CONSP (idle_timers))
{
Lisp_Object timer = Qnil, idle_timer = Qnil;
struct timespec timer_time, idle_timer_time;
struct timespec difference;
struct timespec timer_difference = invalid_timespec ();
struct timespec idle_timer_difference = invalid_timespec ();
bool ripe, timer_ripe = 0, idle_timer_ripe = 0;
/* Set TIMER and TIMER_DIFFERENCE
based on the next ordinary timer.
TIMER_DIFFERENCE is the distance in time from NOW to when
this timer becomes ripe.
Skip past invalid timers and timers already handled. */
if (CONSP (timers))
{
timer = XCAR (timers);
if (! decode_timer (timer, &timer_time))
{
timers = XCDR (timers);
continue;
}
timer_ripe = timespec_cmp (timer_time, now) <= 0;
timer_difference = (timer_ripe
? timespec_sub (now, timer_time)
: timespec_sub (timer_time, now));
}
/* Likewise for IDLE_TIMER and IDLE_TIMER_DIFFERENCE
based on the next idle timer. */
if (CONSP (idle_timers))
{
idle_timer = XCAR (idle_timers);
if (! decode_timer (idle_timer, &idle_timer_time))
{
idle_timers = XCDR (idle_timers);
continue;
}
idle_timer_ripe = timespec_cmp (idle_timer_time, idleness_now) <= 0;
idle_timer_difference
= (idle_timer_ripe
? timespec_sub (idleness_now, idle_timer_time)
: timespec_sub (idle_timer_time, idleness_now));
}
/* Decide which timer is the next timer,
and set CHOSEN_TIMER, DIFFERENCE, and RIPE accordingly.
Also step down the list where we found that timer. */
if (timespec_valid_p (timer_difference)
&& (! timespec_valid_p (idle_timer_difference)
|| idle_timer_ripe < timer_ripe
|| (idle_timer_ripe == timer_ripe
&& ((timer_ripe
? timespec_cmp (idle_timer_difference,
timer_difference)
: timespec_cmp (timer_difference,
idle_timer_difference))
< 0))))
{
chosen_timer = timer;
timers = XCDR (timers);
difference = timer_difference;
ripe = timer_ripe;
}
else
{
chosen_timer = idle_timer;
idle_timers = XCDR (idle_timers);
difference = idle_timer_difference;
ripe = idle_timer_ripe;
}
/* If timer is ripe, run it if it hasn't been run. */
if (ripe)
{
if (NILP (AREF (chosen_timer, 0)))
{
ptrdiff_t count = SPECPDL_INDEX ();
Lisp_Object old_deactivate_mark = Vdeactivate_mark;
/* Mark the timer as triggered to prevent problems if the lisp
code fails to reschedule it right. */
ASET (chosen_timer, 0, Qt);
specbind (Qinhibit_quit, Qt);
call1 (Qtimer_event_handler, chosen_timer);
Vdeactivate_mark = old_deactivate_mark;
timers_run++;
unbind_to (count, Qnil);
/* Since we have handled the event,
we don't need to tell the caller to wake up and do it. */
/* But the caller must still wait for the next timer, so
return 0 to indicate that. */
}
nexttime = make_timespec (0, 0);
break;
}
else
/* When we encounter a timer that is still waiting,
return the amount of time to wait before it is ripe. */
{
return difference;
}
}
/* No timers are pending in the future. */
/* Return 0 if we generated an event, and -1 if not. */
return nexttime;
}
/* Check whether a timer has fired. To prevent larger problems we simply
disregard elements that are not proper timers. Do not make a circular
timer list for the time being.
Returns the time to wait until the next timer fires.
If no timer is active, return an invalid value.
As long as any timer is ripe, we run it. */
struct timespec
timer_check (void)
{
struct timespec nexttime;
Lisp_Object timers, idle_timers;
Lisp_Object tem = Vinhibit_quit;
Vinhibit_quit = Qt;
/* We use copies of the timers' lists to allow a timer to add itself
again, without locking up Emacs if the newly added timer is
already ripe when added. */
/* Always consider the ordinary timers. */
timers = Fcopy_sequence (Vtimer_list);
/* Consider the idle timers only if Emacs is idle. */
if (timespec_valid_p (timer_idleness_start_time))
idle_timers = Fcopy_sequence (Vtimer_idle_list);
else
idle_timers = Qnil;
Vinhibit_quit = tem;
do
{
nexttime = timer_check_2 (timers, idle_timers);
}
while (nexttime.tv_sec == 0 && nexttime.tv_nsec == 0);
return nexttime;
}
DEFUN ("current-idle-time", Fcurrent_idle_time, Scurrent_idle_time, 0, 0, 0,
doc: /* Return the current length of Emacs idleness, or nil.
The value when Emacs is idle is a list of four integers (HIGH LOW USEC PSEC)
in the same style as (current-time).
The value when Emacs is not idle is nil.
PSEC is a multiple of the system clock resolution. */)
(void)
{
if (timespec_valid_p (timer_idleness_start_time))
return make_lisp_time (timespec_sub (current_timespec (),
timer_idleness_start_time));
return Qnil;
}
/* Caches for modify_event_symbol. */
static Lisp_Object accent_key_syms;
static Lisp_Object func_key_syms;
static Lisp_Object mouse_syms;
static Lisp_Object wheel_syms;
static Lisp_Object drag_n_drop_syms;
/* This is a list of keysym codes for special "accent" characters.
It parallels lispy_accent_keys. */
static const int lispy_accent_codes[] =
{
#ifdef XK_dead_circumflex
XK_dead_circumflex,
#else
0,
#endif
#ifdef XK_dead_grave
XK_dead_grave,
#else
0,
#endif
#ifdef XK_dead_tilde
XK_dead_tilde,
#else
0,
#endif
#ifdef XK_dead_diaeresis
XK_dead_diaeresis,
#else
0,
#endif
#ifdef XK_dead_macron
XK_dead_macron,
#else
0,
#endif
#ifdef XK_dead_degree
XK_dead_degree,
#else
0,
#endif
#ifdef XK_dead_acute
XK_dead_acute,
#else
0,
#endif
#ifdef XK_dead_cedilla
XK_dead_cedilla,
#else
0,
#endif
#ifdef XK_dead_breve
XK_dead_breve,
#else
0,
#endif
#ifdef XK_dead_ogonek
XK_dead_ogonek,
#else
0,
#endif
#ifdef XK_dead_caron
XK_dead_caron,
#else
0,
#endif
#ifdef XK_dead_doubleacute
XK_dead_doubleacute,
#else
0,
#endif
#ifdef XK_dead_abovedot
XK_dead_abovedot,
#else
0,
#endif
#ifdef XK_dead_abovering
XK_dead_abovering,
#else
0,
#endif
#ifdef XK_dead_iota
XK_dead_iota,
#else
0,
#endif
#ifdef XK_dead_belowdot
XK_dead_belowdot,
#else
0,
#endif
#ifdef XK_dead_voiced_sound
XK_dead_voiced_sound,
#else
0,
#endif
#ifdef XK_dead_semivoiced_sound
XK_dead_semivoiced_sound,
#else
0,
#endif
#ifdef XK_dead_hook
XK_dead_hook,
#else
0,
#endif
#ifdef XK_dead_horn
XK_dead_horn,
#else
0,
#endif
};
/* This is a list of Lisp names for special "accent" characters.
It parallels lispy_accent_codes. */
static const char *const lispy_accent_keys[] =
{
"dead-circumflex",
"dead-grave",
"dead-tilde",
"dead-diaeresis",
"dead-macron",
"dead-degree",
"dead-acute",
"dead-cedilla",
"dead-breve",
"dead-ogonek",
"dead-caron",
"dead-doubleacute",
"dead-abovedot",
"dead-abovering",
"dead-iota",
"dead-belowdot",
"dead-voiced-sound",
"dead-semivoiced-sound",
"dead-hook",
"dead-horn",
};
#ifdef HAVE_NTGUI
#define FUNCTION_KEY_OFFSET 0x0
const char *const lispy_function_keys[] =
{
0, /* 0 */
0, /* VK_LBUTTON 0x01 */
0, /* VK_RBUTTON 0x02 */
"cancel", /* VK_CANCEL 0x03 */
0, /* VK_MBUTTON 0x04 */
0, 0, 0, /* 0x05 .. 0x07 */
"backspace", /* VK_BACK 0x08 */
"tab", /* VK_TAB 0x09 */
0, 0, /* 0x0A .. 0x0B */
"clear", /* VK_CLEAR 0x0C */
"return", /* VK_RETURN 0x0D */
0, 0, /* 0x0E .. 0x0F */
0, /* VK_SHIFT 0x10 */
0, /* VK_CONTROL 0x11 */
0, /* VK_MENU 0x12 */
"pause", /* VK_PAUSE 0x13 */
"capslock", /* VK_CAPITAL 0x14 */
"kana", /* VK_KANA/VK_HANGUL 0x15 */
0, /* 0x16 */
"junja", /* VK_JUNJA 0x17 */
"final", /* VK_FINAL 0x18 */
"kanji", /* VK_KANJI/VK_HANJA 0x19 */
0, /* 0x1A */
"escape", /* VK_ESCAPE 0x1B */
"convert", /* VK_CONVERT 0x1C */
"non-convert", /* VK_NONCONVERT 0x1D */
"accept", /* VK_ACCEPT 0x1E */
"mode-change", /* VK_MODECHANGE 0x1F */
0, /* VK_SPACE 0x20 */
"prior", /* VK_PRIOR 0x21 */
"next", /* VK_NEXT 0x22 */
"end", /* VK_END 0x23 */
"home", /* VK_HOME 0x24 */
"left", /* VK_LEFT 0x25 */
"up", /* VK_UP 0x26 */
"right", /* VK_RIGHT 0x27 */
"down", /* VK_DOWN 0x28 */
"select", /* VK_SELECT 0x29 */
"print", /* VK_PRINT 0x2A */
"execute", /* VK_EXECUTE 0x2B */
"snapshot", /* VK_SNAPSHOT 0x2C */
"insert", /* VK_INSERT 0x2D */
"delete", /* VK_DELETE 0x2E */
"help", /* VK_HELP 0x2F */
/* VK_0 thru VK_9 are the same as ASCII '0' thru '9' (0x30 - 0x39) */
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, /* 0x3A .. 0x40 */
/* VK_A thru VK_Z are the same as ASCII 'A' thru 'Z' (0x41 - 0x5A) */
0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
"lwindow", /* VK_LWIN 0x5B */
"rwindow", /* VK_RWIN 0x5C */
"apps", /* VK_APPS 0x5D */
0, /* 0x5E */
"sleep",
"kp-0", /* VK_NUMPAD0 0x60 */
"kp-1", /* VK_NUMPAD1 0x61 */
"kp-2", /* VK_NUMPAD2 0x62 */
"kp-3", /* VK_NUMPAD3 0x63 */
"kp-4", /* VK_NUMPAD4 0x64 */
"kp-5", /* VK_NUMPAD5 0x65 */
"kp-6", /* VK_NUMPAD6 0x66 */
"kp-7", /* VK_NUMPAD7 0x67 */
"kp-8", /* VK_NUMPAD8 0x68 */
"kp-9", /* VK_NUMPAD9 0x69 */
"kp-multiply", /* VK_MULTIPLY 0x6A */
"kp-add", /* VK_ADD 0x6B */
"kp-separator", /* VK_SEPARATOR 0x6C */
"kp-subtract", /* VK_SUBTRACT 0x6D */
"kp-decimal", /* VK_DECIMAL 0x6E */
"kp-divide", /* VK_DIVIDE 0x6F */
"f1", /* VK_F1 0x70 */
"f2", /* VK_F2 0x71 */
"f3", /* VK_F3 0x72 */
"f4", /* VK_F4 0x73 */
"f5", /* VK_F5 0x74 */
"f6", /* VK_F6 0x75 */
"f7", /* VK_F7 0x76 */
"f8", /* VK_F8 0x77 */
"f9", /* VK_F9 0x78 */
"f10", /* VK_F10 0x79 */
"f11", /* VK_F11 0x7A */
"f12", /* VK_F12 0x7B */
"f13", /* VK_F13 0x7C */
"f14", /* VK_F14 0x7D */
"f15", /* VK_F15 0x7E */
"f16", /* VK_F16 0x7F */
"f17", /* VK_F17 0x80 */
"f18", /* VK_F18 0x81 */
"f19", /* VK_F19 0x82 */
"f20", /* VK_F20 0x83 */
"f21", /* VK_F21 0x84 */
"f22", /* VK_F22 0x85 */
"f23", /* VK_F23 0x86 */
"f24", /* VK_F24 0x87 */
0, 0, 0, 0, /* 0x88 .. 0x8B */
0, 0, 0, 0, /* 0x8C .. 0x8F */
"kp-numlock", /* VK_NUMLOCK 0x90 */
"scroll", /* VK_SCROLL 0x91 */
/* Not sure where the following block comes from.
Windows headers have NEC and Fujitsu specific keys in
this block, but nothing generic. */
"kp-space", /* VK_NUMPAD_CLEAR 0x92 */
"kp-enter", /* VK_NUMPAD_ENTER 0x93 */
"kp-prior", /* VK_NUMPAD_PRIOR 0x94 */
"kp-next", /* VK_NUMPAD_NEXT 0x95 */
"kp-end", /* VK_NUMPAD_END 0x96 */
"kp-home", /* VK_NUMPAD_HOME 0x97 */
"kp-left", /* VK_NUMPAD_LEFT 0x98 */
"kp-up", /* VK_NUMPAD_UP 0x99 */
"kp-right", /* VK_NUMPAD_RIGHT 0x9A */
"kp-down", /* VK_NUMPAD_DOWN 0x9B */
"kp-insert", /* VK_NUMPAD_INSERT 0x9C */
"kp-delete", /* VK_NUMPAD_DELETE 0x9D */
0, 0, /* 0x9E .. 0x9F */
/*
* VK_L* & VK_R* - left and right Alt, Ctrl and Shift virtual keys.
* Used only as parameters to GetAsyncKeyState and GetKeyState.
* No other API or message will distinguish left and right keys this way.
* 0xA0 .. 0xA5
*/
0, 0, 0, 0, 0, 0,
/* Multimedia keys. These are handled as WM_APPCOMMAND, which allows us
to enable them selectively, and gives access to a few more functions.
See lispy_multimedia_keys below. */
0, 0, 0, 0, 0, 0, 0, /* 0xA6 .. 0xAC Browser */
0, 0, 0, /* 0xAD .. 0xAF Volume */
0, 0, 0, 0, /* 0xB0 .. 0xB3 Media */
0, 0, 0, 0, /* 0xB4 .. 0xB7 Apps */
/* 0xB8 .. 0xC0 "OEM" keys - all seem to be punctuation. */
0, 0, 0, 0, 0, 0, 0, 0, 0,
/* 0xC1 - 0xDA unallocated, 0xDB-0xDF more OEM keys */
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, /* 0xE0 */
"ax", /* VK_OEM_AX 0xE1 */
0, /* VK_OEM_102 0xE2 */
"ico-help", /* VK_ICO_HELP 0xE3 */
"ico-00", /* VK_ICO_00 0xE4 */
0, /* VK_PROCESSKEY 0xE5 - used by IME */
"ico-clear", /* VK_ICO_CLEAR 0xE6 */
0, /* VK_PACKET 0xE7 - used to pass Unicode chars */
0, /* 0xE8 */
"reset", /* VK_OEM_RESET 0xE9 */
"jump", /* VK_OEM_JUMP 0xEA */
"oem-pa1", /* VK_OEM_PA1 0xEB */
"oem-pa2", /* VK_OEM_PA2 0xEC */
"oem-pa3", /* VK_OEM_PA3 0xED */
"wsctrl", /* VK_OEM_WSCTRL 0xEE */
"cusel", /* VK_OEM_CUSEL 0xEF */
"oem-attn", /* VK_OEM_ATTN 0xF0 */
"finish", /* VK_OEM_FINISH 0xF1 */
"copy", /* VK_OEM_COPY 0xF2 */
"auto", /* VK_OEM_AUTO 0xF3 */
"enlw", /* VK_OEM_ENLW 0xF4 */
"backtab", /* VK_OEM_BACKTAB 0xF5 */
"attn", /* VK_ATTN 0xF6 */
"crsel", /* VK_CRSEL 0xF7 */
"exsel", /* VK_EXSEL 0xF8 */
"ereof", /* VK_EREOF 0xF9 */
"play", /* VK_PLAY 0xFA */
"zoom", /* VK_ZOOM 0xFB */
"noname", /* VK_NONAME 0xFC */
"pa1", /* VK_PA1 0xFD */
"oem_clear", /* VK_OEM_CLEAR 0xFE */
0 /* 0xFF */
};
/* Some of these duplicate the "Media keys" on newer keyboards,
but they are delivered to the application in a different way. */
static const char *const lispy_multimedia_keys[] =
{
0,
"browser-back",
"browser-forward",
"browser-refresh",
"browser-stop",
"browser-search",
"browser-favorites",
"browser-home",
"volume-mute",
"volume-down",
"volume-up",
"media-next",
"media-previous",
"media-stop",
"media-play-pause",
"mail",
"media-select",
"app-1",
"app-2",
"bass-down",
"bass-boost",
"bass-up",
"treble-down",
"treble-up",
"mic-volume-mute",
"mic-volume-down",
"mic-volume-up",
"help",
"find",
"new",
"open",
"close",
"save",
"print",
"undo",
"redo",
"copy",
"cut",
"paste",
"mail-reply",
"mail-forward",
"mail-send",
"spell-check",
"toggle-dictate-command",
"mic-toggle",
"correction-list",
"media-play",
"media-pause",
"media-record",
"media-fast-forward",
"media-rewind",
"media-channel-up",
"media-channel-down"
};
#else /* not HAVE_NTGUI */
/* This should be dealt with in XTread_socket now, and that doesn't
depend on the client system having the Kana syms defined. See also
the XK_kana_A case below. */
#if 0
#ifdef XK_kana_A
static const char *const lispy_kana_keys[] =
{
/* X Keysym value */
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 0x400 .. 0x40f */
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 0x410 .. 0x41f */
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 0x420 .. 0x42f */
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 0x430 .. 0x43f */
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 0x440 .. 0x44f */
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 0x450 .. 0x45f */
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 0x460 .. 0x46f */
0,0,0,0,0,0,0,0,0,0,0,0,0,0,"overline",0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 0x480 .. 0x48f */
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 0x490 .. 0x49f */
0, "kana-fullstop", "kana-openingbracket", "kana-closingbracket",
"kana-comma", "kana-conjunctive", "kana-WO", "kana-a",
"kana-i", "kana-u", "kana-e", "kana-o",
"kana-ya", "kana-yu", "kana-yo", "kana-tsu",
"prolongedsound", "kana-A", "kana-I", "kana-U",
"kana-E", "kana-O", "kana-KA", "kana-KI",
"kana-KU", "kana-KE", "kana-KO", "kana-SA",
"kana-SHI", "kana-SU", "kana-SE", "kana-SO",
"kana-TA", "kana-CHI", "kana-TSU", "kana-TE",
"kana-TO", "kana-NA", "kana-NI", "kana-NU",
"kana-NE", "kana-NO", "kana-HA", "kana-HI",
"kana-FU", "kana-HE", "kana-HO", "kana-MA",
"kana-MI", "kana-MU", "kana-ME", "kana-MO",
"kana-YA", "kana-YU", "kana-YO", "kana-RA",
"kana-RI", "kana-RU", "kana-RE", "kana-RO",
"kana-WA", "kana-N", "voicedsound", "semivoicedsound",
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 0x4e0 .. 0x4ef */
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 0x4f0 .. 0x4ff */
};
#endif /* XK_kana_A */
#endif /* 0 */
#define FUNCTION_KEY_OFFSET 0xff00
/* You'll notice that this table is arranged to be conveniently
indexed by X Windows keysym values. */
static const char *const lispy_function_keys[] =
{
/* X Keysym value */
0, 0, 0, 0, 0, 0, 0, 0, /* 0xff00...0f */
"backspace", "tab", "linefeed", "clear",
0, "return", 0, 0,
0, 0, 0, "pause", /* 0xff10...1f */
0, 0, 0, 0, 0, 0, 0, "escape",
0, 0, 0, 0,
0, "kanji", "muhenkan", "henkan", /* 0xff20...2f */
"romaji", "hiragana", "katakana", "hiragana-katakana",
"zenkaku", "hankaku", "zenkaku-hankaku", "touroku",
"massyo", "kana-lock", "kana-shift", "eisu-shift",
"eisu-toggle", /* 0xff30...3f */
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0xff40...4f */
"home", "left", "up", "right", /* 0xff50 */ /* IsCursorKey */
"down", "prior", "next", "end",
"begin", 0, 0, 0, 0, 0, 0, 0,
"select", /* 0xff60 */ /* IsMiscFunctionKey */
"print",
"execute",
"insert",
0, /* 0xff64 */
"undo",
"redo",
"menu",
"find",
"cancel",
"help",
"break", /* 0xff6b */
0, 0, 0, 0,
0, 0, 0, 0, "backtab", 0, 0, 0, /* 0xff70... */
0, 0, 0, 0, 0, 0, 0, "kp-numlock", /* 0xff78... */
"kp-space", /* 0xff80 */ /* IsKeypadKey */
0, 0, 0, 0, 0, 0, 0, 0,
"kp-tab", /* 0xff89 */
0, 0, 0,
"kp-enter", /* 0xff8d */
0, 0, 0,
"kp-f1", /* 0xff91 */
"kp-f2",
"kp-f3",
"kp-f4",
"kp-home", /* 0xff95 */
"kp-left",
"kp-up",
"kp-right",
"kp-down",
"kp-prior", /* kp-page-up */
"kp-next", /* kp-page-down */
"kp-end",
"kp-begin",
"kp-insert",
"kp-delete",
0, /* 0xffa0 */
0, 0, 0, 0, 0, 0, 0, 0, 0,
"kp-multiply", /* 0xffaa */
"kp-add",
"kp-separator",
"kp-subtract",
"kp-decimal",
"kp-divide", /* 0xffaf */
"kp-0", /* 0xffb0 */
"kp-1", "kp-2", "kp-3", "kp-4", "kp-5", "kp-6", "kp-7", "kp-8", "kp-9",
0, /* 0xffba */
0, 0,
"kp-equal", /* 0xffbd */
"f1", /* 0xffbe */ /* IsFunctionKey */
"f2",
"f3", "f4", "f5", "f6", "f7", "f8", "f9", "f10", /* 0xffc0 */
"f11", "f12", "f13", "f14", "f15", "f16", "f17", "f18",
"f19", "f20", "f21", "f22", "f23", "f24", "f25", "f26", /* 0xffd0 */
"f27", "f28", "f29", "f30", "f31", "f32", "f33", "f34",
"f35", 0, 0, 0, 0, 0, 0, 0, /* 0xffe0 */
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, /* 0xfff0 */
0, 0, 0, 0, 0, 0, 0, "delete"
};
/* ISO 9995 Function and Modifier Keys; the first byte is 0xFE. */
#define ISO_FUNCTION_KEY_OFFSET 0xfe00
static const char *const iso_lispy_function_keys[] =
{
0, 0, 0, 0, 0, 0, 0, 0, /* 0xfe00 */
0, 0, 0, 0, 0, 0, 0, 0, /* 0xfe08 */
0, 0, 0, 0, 0, 0, 0, 0, /* 0xfe10 */
0, 0, 0, 0, 0, 0, 0, 0, /* 0xfe18 */
"iso-lefttab", /* 0xfe20 */
"iso-move-line-up", "iso-move-line-down",
"iso-partial-line-up", "iso-partial-line-down",
"iso-partial-space-left", "iso-partial-space-right",
"iso-set-margin-left", "iso-set-margin-right", /* 0xffe27, 28 */
"iso-release-margin-left", "iso-release-margin-right",
"iso-release-both-margins",
"iso-fast-cursor-left", "iso-fast-cursor-right",
"iso-fast-cursor-up", "iso-fast-cursor-down",
"iso-continuous-underline", "iso-discontinuous-underline", /* 0xfe30, 31 */
"iso-emphasize", "iso-center-object", "iso-enter", /* ... 0xfe34 */
};
#endif /* not HAVE_NTGUI */
static Lisp_Object Vlispy_mouse_stem;
static const char *const lispy_wheel_names[] =
{
"wheel-up", "wheel-down", "wheel-left", "wheel-right"
};
/* drag-n-drop events are generated when a set of selected files are
dragged from another application and dropped onto an Emacs window. */
static const char *const lispy_drag_n_drop_names[] =
{
"drag-n-drop"
};
/* An array of symbol indexes of scroll bar parts, indexed by an enum
scroll_bar_part value. Note that Qnil corresponds to
scroll_bar_nowhere and should not appear in Lisp events. */
static short const scroll_bar_parts[] = {
SYMBOL_INDEX (Qnil), SYMBOL_INDEX (Qabove_handle), SYMBOL_INDEX (Qhandle),
SYMBOL_INDEX (Qbelow_handle), SYMBOL_INDEX (Qup), SYMBOL_INDEX (Qdown),
SYMBOL_INDEX (Qtop), SYMBOL_INDEX (Qbottom), SYMBOL_INDEX (Qend_scroll),
SYMBOL_INDEX (Qratio), SYMBOL_INDEX (Qbefore_handle),
SYMBOL_INDEX (Qhorizontal_handle), SYMBOL_INDEX (Qafter_handle),
SYMBOL_INDEX (Qleft), SYMBOL_INDEX (Qright), SYMBOL_INDEX (Qleftmost),
SYMBOL_INDEX (Qrightmost), SYMBOL_INDEX (Qend_scroll), SYMBOL_INDEX (Qratio)
};
/* A vector, indexed by button number, giving the down-going location
of currently depressed buttons, both scroll bar and non-scroll bar.
The elements have the form
(BUTTON-NUMBER MODIFIER-MASK . REST)
where REST is the cdr of a position as it would be reported in the event.
The make_lispy_event function stores positions here to tell the
difference between click and drag events, and to store the starting
location to be included in drag events. */
static Lisp_Object button_down_location;
/* Information about the most recent up-going button event: Which
button, what location, and what time. */
static int last_mouse_button;
static int last_mouse_x;
static int last_mouse_y;
static Time button_down_time;
/* The number of clicks in this multiple-click. */
static int double_click_count;
/* X and Y are frame-relative coordinates for a click or wheel event.
Return a Lisp-style event list. */
static Lisp_Object
make_lispy_position (struct frame *f, Lisp_Object x, Lisp_Object y,
Time t)
{
enum window_part part;
Lisp_Object posn = Qnil;
Lisp_Object extra_info = Qnil;
/* Coordinate pixel positions to return. */
int xret = 0, yret = 0;
/* The window under frame pixel coordinates (x,y) */
Lisp_Object window = f
? window_from_coordinates (f, XINT (x), XINT (y), &part, 0)
: Qnil;
if (WINDOWP (window))
{
/* It's a click in window WINDOW at frame coordinates (X,Y) */
struct window *w = XWINDOW (window);
Lisp_Object string_info = Qnil;
ptrdiff_t textpos = 0;
int col = -1, row = -1;
int dx = -1, dy = -1;
int width = -1, height = -1;
Lisp_Object object = Qnil;
/* Pixel coordinates relative to the window corner. */
int wx = XINT (x) - WINDOW_LEFT_EDGE_X (w);
int wy = XINT (y) - WINDOW_TOP_EDGE_Y (w);
/* For text area clicks, return X, Y relative to the corner of
this text area. Note that dX, dY etc are set below, by
buffer_posn_from_coords. */
if (part == ON_TEXT)
{
xret = XINT (x) - window_box_left (w, TEXT_AREA);
yret = wy - WINDOW_HEADER_LINE_HEIGHT (w);
}
/* For mode line and header line clicks, return X, Y relative to
the left window edge. Use mode_line_string to look for a
string on the click position. */
else if (part == ON_MODE_LINE || part == ON_HEADER_LINE)
{
Lisp_Object string;
ptrdiff_t charpos;
posn = (part == ON_MODE_LINE) ? Qmode_line : Qheader_line;
/* Note that mode_line_string takes COL, ROW as pixels and
converts them to characters. */
col = wx;
row = wy;
string = mode_line_string (w, part, &col, &row, &charpos,
&object, &dx, &dy, &width, &height);
if (STRINGP (string))
string_info = Fcons (string, make_number (charpos));
textpos = -1;
xret = wx;
yret = wy;
}
/* For fringes and margins, Y is relative to the area's (and the
window's) top edge, while X is meaningless. */
else if (part == ON_LEFT_MARGIN || part == ON_RIGHT_MARGIN)
{
Lisp_Object string;
ptrdiff_t charpos;
posn = (part == ON_LEFT_MARGIN) ? Qleft_margin : Qright_margin;
col = wx;
row = wy;
string = marginal_area_string (w, part, &col, &row, &charpos,
&object, &dx, &dy, &width, &height);
if (STRINGP (string))
string_info = Fcons (string, make_number (charpos));
xret = wx;
yret = wy - WINDOW_HEADER_LINE_HEIGHT (w);
}
else if (part == ON_LEFT_FRINGE)
{
posn = Qleft_fringe;
col = 0;
xret = wx;
dx = wx
- (WINDOW_HAS_FRINGES_OUTSIDE_MARGINS (w)
? 0 : window_box_width (w, LEFT_MARGIN_AREA));
dy = yret = wy - WINDOW_HEADER_LINE_HEIGHT (w);
}
else if (part == ON_RIGHT_FRINGE)
{
posn = Qright_fringe;
col = 0;
xret = wx;
dx = wx
- window_box_width (w, LEFT_MARGIN_AREA)
- window_box_width (w, TEXT_AREA)
- (WINDOW_HAS_FRINGES_OUTSIDE_MARGINS (w)
? window_box_width (w, RIGHT_MARGIN_AREA)
: 0);
dy = yret = wy - WINDOW_HEADER_LINE_HEIGHT (w);
}
else if (part == ON_VERTICAL_BORDER)
{
posn = Qvertical_line;
width = 1;
dx = 0;
xret = wx;
dy = yret = wy;
}
else if (part == ON_VERTICAL_SCROLL_BAR)
{
posn = Qvertical_scroll_bar;
width = WINDOW_SCROLL_BAR_AREA_WIDTH (w);
dx = xret = wx;
dy = yret = wy;
}
else if (part == ON_HORIZONTAL_SCROLL_BAR)
{
posn = Qhorizontal_scroll_bar;
width = WINDOW_SCROLL_BAR_AREA_HEIGHT (w);
dx = xret = wx;
dy = yret = wy;
}
else if (part == ON_RIGHT_DIVIDER)
{
posn = Qright_divider;
width = WINDOW_RIGHT_DIVIDER_WIDTH (w);
dx = xret = wx;
dy = yret = wy;
}
else if (part == ON_BOTTOM_DIVIDER)
{
posn = Qbottom_divider;
width = WINDOW_BOTTOM_DIVIDER_WIDTH (w);
dx = xret = wx;
dy = yret = wy;
}
/* For clicks in the text area, fringes, margins, or vertical
scroll bar, call buffer_posn_from_coords to extract TEXTPOS,
the buffer position nearest to the click. */
if (!textpos)
{
Lisp_Object string2, object2 = Qnil;
struct display_pos p;
int dx2, dy2;
int width2, height2;
/* The pixel X coordinate passed to buffer_posn_from_coords
is the X coordinate relative to the text area for clicks
in text-area, right-margin/fringe and right-side vertical
scroll bar, zero otherwise. */
int x2
= (part == ON_TEXT) ? xret
: (part == ON_RIGHT_FRINGE || part == ON_RIGHT_MARGIN
|| (part == ON_VERTICAL_SCROLL_BAR
&& WINDOW_HAS_VERTICAL_SCROLL_BAR_ON_RIGHT (w)))
? (XINT (x) - window_box_left (w, TEXT_AREA))
: 0;
int y2 = wy;
string2 = buffer_posn_from_coords (w, &x2, &y2, &p,
&object2, &dx2, &dy2,
&width2, &height2);
textpos = CHARPOS (p.pos);
if (col < 0) col = x2;
if (row < 0) row = y2;
if (dx < 0) dx = dx2;
if (dy < 0) dy = dy2;
if (width < 0) width = width2;
if (height < 0) height = height2;
if (NILP (posn))
{
posn = make_number (textpos);
if (STRINGP (string2))
string_info = Fcons (string2,
make_number (CHARPOS (p.string_pos)));
}
if (NILP (object))
object = object2;
}
#ifdef HAVE_WINDOW_SYSTEM
if (IMAGEP (object))
{
Lisp_Object image_map, hotspot;
if ((image_map = Fplist_get (XCDR (object), QCmap),
!NILP (image_map))
&& (hotspot = find_hot_spot (image_map, dx, dy),
CONSP (hotspot))
&& (hotspot = XCDR (hotspot), CONSP (hotspot)))
posn = XCAR (hotspot);
}
#endif
/* Object info. */
extra_info
= list3 (object,
Fcons (make_number (dx), make_number (dy)),
Fcons (make_number (width), make_number (height)));
/* String info. */
extra_info = Fcons (string_info,
Fcons (textpos < 0 ? Qnil : make_number (textpos),
Fcons (Fcons (make_number (col),
make_number (row)),
extra_info)));
}
else if (f != 0)
{
/* Return mouse pixel coordinates here. */
XSETFRAME (window, f);
xret = XINT (x);
yret = XINT (y);
}
else
window = Qnil;
return Fcons (window,
Fcons (posn,
Fcons (Fcons (make_number (xret),
make_number (yret)),
Fcons (make_number (t),
extra_info))));
}
/* Return non-zero if F is a GUI frame that uses some toolkit-managed
menu bar. This really means that Emacs draws and manages the menu
bar as part of its normal display, and therefore can compute its
geometry. */
static bool
toolkit_menubar_in_use (struct frame *f)
{
#if defined (USE_X_TOOLKIT) || defined (USE_GTK) || defined (HAVE_NS) || defined (HAVE_NTGUI)
return !(!FRAME_WINDOW_P (f));
#else
return false;
#endif
}
/* Build the part of Lisp event which represents scroll bar state from
EV. TYPE is one of Qvertical_scroll_bar or Qhorizontal_scroll_bar. */
static Lisp_Object
make_scroll_bar_position (struct input_event *ev, Lisp_Object type)
{
return list5 (ev->frame_or_window, type, Fcons (ev->x, ev->y),
make_number (ev->timestamp),
builtin_lisp_symbol (scroll_bar_parts[ev->part]));
}
/* Given a struct input_event, build the lisp event which represents
it. If EVENT is 0, build a mouse movement event from the mouse
movement buffer, which should have a movement event in it.
Note that events must be passed to this function in the order they
are received; this function stores the location of button presses
in order to build drag events when the button is released. */
static Lisp_Object
make_lispy_event (struct input_event *event)
{
int i;
switch (event->kind)
{
/* A simple keystroke. */
case ASCII_KEYSTROKE_EVENT:
case MULTIBYTE_CHAR_KEYSTROKE_EVENT:
{
Lisp_Object lispy_c;
EMACS_INT c = event->code;
if (event->kind == ASCII_KEYSTROKE_EVENT)
{
c &= 0377;
eassert (c == event->code);
}
/* Caps-lock shouldn't affect interpretation of key chords:
Control+s should produce C-s whether caps-lock is on or
not. And Control+Shift+s should produce C-S-s whether
caps-lock is on or not. */
if (event->modifiers & ~shift_modifier)
{
/* This is a key chord: some non-shift modifier is
depressed. */
if (uppercasep (c) &&
!(event->modifiers & shift_modifier))
{
/* Got a capital letter without a shift. The caps
lock is on. Un-capitalize the letter. */
c = downcase (c);
}
else if (lowercasep (c) &&
(event->modifiers & shift_modifier))
{
/* Got a lower-case letter even though shift is
depressed. The caps lock is on. Capitalize the
letter. */
c = upcase (c);
}
}
if (event->kind == ASCII_KEYSTROKE_EVENT)
{
/* Turn ASCII characters into control characters
when proper. */
if (event->modifiers & ctrl_modifier)
{
c = make_ctrl_char (c);
event->modifiers &= ~ctrl_modifier;
}
}
/* Add in the other modifier bits. The shift key was taken care
of by the X code. */
c |= (event->modifiers
& (meta_modifier | alt_modifier
| hyper_modifier | super_modifier | ctrl_modifier));
/* Distinguish Shift-SPC from SPC. */
if ((event->code) == 040
&& event->modifiers & shift_modifier)
c |= shift_modifier;
button_down_time = 0;
XSETFASTINT (lispy_c, c);
return lispy_c;
}
#ifdef HAVE_NS
/* NS_NONKEY_EVENTs are just like NON_ASCII_KEYSTROKE_EVENTs,
except that they are non-key events (last-nonmenu-event is nil). */
case NS_NONKEY_EVENT:
#endif
/* A function key. The symbol may need to have modifier prefixes
tacked onto it. */
case NON_ASCII_KEYSTROKE_EVENT:
button_down_time = 0;
for (i = 0; i < ARRAYELTS (lispy_accent_codes); i++)
if (event->code == lispy_accent_codes[i])
return modify_event_symbol (i,
event->modifiers,
Qfunction_key, Qnil,
lispy_accent_keys, &accent_key_syms,
ARRAYELTS (lispy_accent_keys));
#if 0
#ifdef XK_kana_A
if (event->code >= 0x400 && event->code < 0x500)
return modify_event_symbol (event->code - 0x400,
event->modifiers & ~shift_modifier,
Qfunction_key, Qnil,
lispy_kana_keys, &func_key_syms,
ARRAYELTS (lispy_kana_keys));
#endif /* XK_kana_A */
#endif /* 0 */
#ifdef ISO_FUNCTION_KEY_OFFSET
if (event->code < FUNCTION_KEY_OFFSET
&& event->code >= ISO_FUNCTION_KEY_OFFSET)
return modify_event_symbol (event->code - ISO_FUNCTION_KEY_OFFSET,
event->modifiers,
Qfunction_key, Qnil,
iso_lispy_function_keys, &func_key_syms,
ARRAYELTS (iso_lispy_function_keys));
#endif
if ((FUNCTION_KEY_OFFSET <= event->code
&& (event->code
< FUNCTION_KEY_OFFSET + ARRAYELTS (lispy_function_keys)))
&& lispy_function_keys[event->code - FUNCTION_KEY_OFFSET])
return modify_event_symbol (event->code - FUNCTION_KEY_OFFSET,
event->modifiers,
Qfunction_key, Qnil,
lispy_function_keys, &func_key_syms,
ARRAYELTS (lispy_function_keys));
/* Handle system-specific or unknown keysyms.
We need to use an alist rather than a vector as the cache
since we can't make a vector long enough. */
if (NILP (KVAR (current_kboard, system_key_syms)))
kset_system_key_syms (current_kboard, Fcons (Qnil, Qnil));
return modify_event_symbol (event->code,
event->modifiers,
Qfunction_key,
KVAR (current_kboard, Vsystem_key_alist),
0, &KVAR (current_kboard, system_key_syms),
PTRDIFF_MAX);
#ifdef HAVE_NTGUI
case MULTIMEDIA_KEY_EVENT:
if (event->code < ARRAYELTS (lispy_multimedia_keys)
&& event->code > 0 && lispy_multimedia_keys[event->code])
{
return modify_event_symbol (event->code, event->modifiers,
Qfunction_key, Qnil,
lispy_multimedia_keys, &func_key_syms,
ARRAYELTS (lispy_multimedia_keys));
}
return Qnil;
#endif
/* A mouse click. Figure out where it is, decide whether it's
a press, click or drag, and build the appropriate structure. */
case MOUSE_CLICK_EVENT:
#ifdef HAVE_GPM
case GPM_CLICK_EVENT:
#endif
#ifndef USE_TOOLKIT_SCROLL_BARS
case SCROLL_BAR_CLICK_EVENT:
case HORIZONTAL_SCROLL_BAR_CLICK_EVENT:
#endif
{
int button = event->code;
bool is_double;
Lisp_Object position;
Lisp_Object *start_pos_ptr;
Lisp_Object start_pos;
position = Qnil;
/* Build the position as appropriate for this mouse click. */
if (event->kind == MOUSE_CLICK_EVENT
#ifdef HAVE_GPM
|| event->kind == GPM_CLICK_EVENT
#endif
)
{
struct frame *f = XFRAME (event->frame_or_window);
int row, column;
/* Ignore mouse events that were made on frame that
have been deleted. */
if (! FRAME_LIVE_P (f))
return Qnil;
/* EVENT->x and EVENT->y are frame-relative pixel
coordinates at this place. Under old redisplay, COLUMN
and ROW are set to frame relative glyph coordinates
which are then used to determine whether this click is
in a menu (non-toolkit version). */
if (!toolkit_menubar_in_use (f))
{
pixel_to_glyph_coords (f, XINT (event->x), XINT (event->y),
&column, &row, NULL, 1);
/* In the non-toolkit version, clicks on the menu bar
are ordinary button events in the event buffer.
Distinguish them, and invoke the menu.
(In the toolkit version, the toolkit handles the
menu bar and Emacs doesn't know about it until
after the user makes a selection.) */
if (row >= 0 && row < FRAME_MENU_BAR_LINES (f)
&& (event->modifiers & down_modifier))
{
Lisp_Object items, item;
/* Find the menu bar item under `column'. */
item = Qnil;
items = FRAME_MENU_BAR_ITEMS (f);
for (i = 0; i < ASIZE (items); i += 4)
{
Lisp_Object pos, string;
string = AREF (items, i + 1);
pos = AREF (items, i + 3);
if (NILP (string))
break;
if (column >= XINT (pos)
&& column < XINT (pos) + SCHARS (string))
{
item = AREF (items, i);
break;
}
}
/* ELisp manual 2.4b says (x y) are window
relative but code says they are
frame-relative. */
position = list4 (event->frame_or_window,
Qmenu_bar,
Fcons (event->x, event->y),
make_number (event->timestamp));
return list2 (item, position);
}
}
position = make_lispy_position (f, event->x, event->y,
event->timestamp);
}
#ifndef USE_TOOLKIT_SCROLL_BARS
else
/* It's a scrollbar click. */
position = make_scroll_bar_position (event, Qvertical_scroll_bar);
#endif /* not USE_TOOLKIT_SCROLL_BARS */
if (button >= ASIZE (button_down_location))
{
ptrdiff_t incr = button - ASIZE (button_down_location) + 1;
button_down_location = larger_vector (button_down_location,
incr, -1);
mouse_syms = larger_vector (mouse_syms, incr, -1);
}
start_pos_ptr = aref_addr (button_down_location, button);
start_pos = *start_pos_ptr;
*start_pos_ptr = Qnil;
{
/* On window-system frames, use the value of
double-click-fuzz as is. On other frames, interpret it
as a multiple of 1/8 characters. */
struct frame *f;
int fuzz;
if (WINDOWP (event->frame_or_window))
f = XFRAME (XWINDOW (event->frame_or_window)->frame);
else if (FRAMEP (event->frame_or_window))
f = XFRAME (event->frame_or_window);
else
emacs_abort ();
if (FRAME_WINDOW_P (f))
fuzz = double_click_fuzz;
else
fuzz = double_click_fuzz / 8;
is_double = (button == last_mouse_button
&& (eabs (XINT (event->x) - last_mouse_x) <= fuzz)
&& (eabs (XINT (event->y) - last_mouse_y) <= fuzz)
&& button_down_time != 0
&& (EQ (Vdouble_click_time, Qt)
|| (NATNUMP (Vdouble_click_time)
&& (event->timestamp - button_down_time
< XFASTINT (Vdouble_click_time)))));
}
last_mouse_button = button;
last_mouse_x = XINT (event->x);
last_mouse_y = XINT (event->y);
/* If this is a button press, squirrel away the location, so
we can decide later whether it was a click or a drag. */
if (event->modifiers & down_modifier)
{
if (is_double)
{
double_click_count++;
event->modifiers |= ((double_click_count > 2)
? triple_modifier
: double_modifier);
}
else
double_click_count = 1;
button_down_time = event->timestamp;
*start_pos_ptr = Fcopy_alist (position);
ignore_mouse_drag_p = 0;
}
/* Now we're releasing a button - check the co-ordinates to
see if this was a click or a drag. */
else if (event->modifiers & up_modifier)
{
/* If we did not see a down before this up, ignore the up.
Probably this happened because the down event chose a
menu item. It would be an annoyance to treat the
release of the button that chose the menu item as a
separate event. */
if (!CONSP (start_pos))
return Qnil;
event->modifiers &= ~up_modifier;
{
Lisp_Object new_down, down;
EMACS_INT xdiff = double_click_fuzz, ydiff = double_click_fuzz;
/* The third element of every position
should be the (x,y) pair. */
down = Fcar (Fcdr (Fcdr (start_pos)));
new_down = Fcar (Fcdr (Fcdr (position)));
if (CONSP (down)
&& INTEGERP (XCAR (down)) && INTEGERP (XCDR (down)))
{
xdiff = XINT (XCAR (new_down)) - XINT (XCAR (down));
ydiff = XINT (XCDR (new_down)) - XINT (XCDR (down));
}
if (ignore_mouse_drag_p)
{
event->modifiers |= click_modifier;
ignore_mouse_drag_p = 0;
}
else if (xdiff < double_click_fuzz && xdiff > - double_click_fuzz
&& ydiff < double_click_fuzz && ydiff > - double_click_fuzz
/* Maybe the mouse has moved a lot, caused scrolling, and
eventually ended up at the same screen position (but
not buffer position) in which case it is a drag, not
a click. */
/* FIXME: OTOH if the buffer position has changed
because of a timer or process filter rather than
because of mouse movement, it should be considered as
a click. But mouse-drag-region completely ignores
this case and it hasn't caused any real problem, so
it's probably OK to ignore it as well. */
&& EQ (Fcar (Fcdr (start_pos)), Fcar (Fcdr (position))))
/* Mouse hasn't moved (much). */
event->modifiers |= click_modifier;
else
{
button_down_time = 0;
event->modifiers |= drag_modifier;
}
/* Don't check is_double; treat this as multiple
if the down-event was multiple. */
if (double_click_count > 1)
event->modifiers |= ((double_click_count > 2)
? triple_modifier
: double_modifier);
}
}
else
/* Every mouse event should either have the down_modifier or
the up_modifier set. */
emacs_abort ();
{
/* Get the symbol we should use for the mouse click. */
Lisp_Object head;
head = modify_event_symbol (button,
event->modifiers,
Qmouse_click, Vlispy_mouse_stem,
NULL,
&mouse_syms,
ASIZE (mouse_syms));
if (event->modifiers & drag_modifier)
return list3 (head, start_pos, position);
else if (event->modifiers & (double_modifier | triple_modifier))
return list3 (head, position, make_number (double_click_count));
else
return list2 (head, position);
}
}
case WHEEL_EVENT:
case HORIZ_WHEEL_EVENT:
{
Lisp_Object position;
Lisp_Object head;
/* Build the position as appropriate for this mouse click. */
struct frame *f = XFRAME (event->frame_or_window);
/* Ignore wheel events that were made on frame that have been
deleted. */
if (! FRAME_LIVE_P (f))
return Qnil;
position = make_lispy_position (f, event->x, event->y,
event->timestamp);
/* Set double or triple modifiers to indicate the wheel speed. */
{
/* On window-system frames, use the value of
double-click-fuzz as is. On other frames, interpret it
as a multiple of 1/8 characters. */
struct frame *fr;
int fuzz;
int symbol_num;
bool is_double;
if (WINDOWP (event->frame_or_window))
fr = XFRAME (XWINDOW (event->frame_or_window)->frame);
else if (FRAMEP (event->frame_or_window))
fr = XFRAME (event->frame_or_window);
else
emacs_abort ();
fuzz = FRAME_WINDOW_P (fr)
? double_click_fuzz : double_click_fuzz / 8;
if (event->modifiers & up_modifier)
{
/* Emit a wheel-up event. */
event->modifiers &= ~up_modifier;
symbol_num = 0;
}
else if (event->modifiers & down_modifier)
{
/* Emit a wheel-down event. */
event->modifiers &= ~down_modifier;
symbol_num = 1;
}
else
/* Every wheel event should either have the down_modifier or
the up_modifier set. */
emacs_abort ();
if (event->kind == HORIZ_WHEEL_EVENT)
symbol_num += 2;
is_double = (last_mouse_button == - (1 + symbol_num)
&& (eabs (XINT (event->x) - last_mouse_x) <= fuzz)
&& (eabs (XINT (event->y) - last_mouse_y) <= fuzz)
&& button_down_time != 0
&& (EQ (Vdouble_click_time, Qt)
|| (NATNUMP (Vdouble_click_time)
&& (event->timestamp - button_down_time
< XFASTINT (Vdouble_click_time)))));
if (is_double)
{
double_click_count++;
event->modifiers |= ((double_click_count > 2)
? triple_modifier
: double_modifier);
}
else
{
double_click_count = 1;
event->modifiers |= click_modifier;
}
button_down_time = event->timestamp;
/* Use a negative value to distinguish wheel from mouse button. */
last_mouse_button = - (1 + symbol_num);
last_mouse_x = XINT (event->x);
last_mouse_y = XINT (event->y);
/* Get the symbol we should use for the wheel event. */
head = modify_event_symbol (symbol_num,
event->modifiers,
Qmouse_click,
Qnil,
lispy_wheel_names,
&wheel_syms,
ASIZE (wheel_syms));
}
if (event->modifiers & (double_modifier | triple_modifier))
return list3 (head, position, make_number (double_click_count));
else
return list2 (head, position);
}
#ifdef USE_TOOLKIT_SCROLL_BARS
/* We don't have down and up events if using toolkit scroll bars,
so make this always a click event. Store in the `part' of
the Lisp event a symbol which maps to the following actions:
`above_handle' page up
`below_handle' page down
`up' line up
`down' line down
`top' top of buffer
`bottom' bottom of buffer
`handle' thumb has been dragged.
`end-scroll' end of interaction with scroll bar
The incoming input_event contains in its `part' member an
index of type `enum scroll_bar_part' which we can use as an
index in scroll_bar_parts to get the appropriate symbol. */
case SCROLL_BAR_CLICK_EVENT:
{
Lisp_Object position, head;
position = make_scroll_bar_position (event, Qvertical_scroll_bar);
/* Always treat scroll bar events as clicks. */
event->modifiers |= click_modifier;
event->modifiers &= ~up_modifier;
if (event->code >= ASIZE (mouse_syms))
mouse_syms = larger_vector (mouse_syms,
event->code - ASIZE (mouse_syms) + 1,
-1);
/* Get the symbol we should use for the mouse click. */
head = modify_event_symbol (event->code,
event->modifiers,
Qmouse_click,
Vlispy_mouse_stem,
NULL, &mouse_syms,
ASIZE (mouse_syms));
return list2 (head, position);
}
case HORIZONTAL_SCROLL_BAR_CLICK_EVENT:
{
Lisp_Object position, head;
position = make_scroll_bar_position (event, Qhorizontal_scroll_bar);
/* Always treat scroll bar events as clicks. */
event->modifiers |= click_modifier;
event->modifiers &= ~up_modifier;
if (event->code >= ASIZE (mouse_syms))
mouse_syms = larger_vector (mouse_syms,
event->code - ASIZE (mouse_syms) + 1,
-1);
/* Get the symbol we should use for the mouse click. */
head = modify_event_symbol (event->code,
event->modifiers,
Qmouse_click,
Vlispy_mouse_stem,
NULL, &mouse_syms,
ASIZE (mouse_syms));
return list2 (head, position);
}
#endif /* USE_TOOLKIT_SCROLL_BARS */
case DRAG_N_DROP_EVENT:
{
struct frame *f;
Lisp_Object head, position;
Lisp_Object files;
f = XFRAME (event->frame_or_window);
files = event->arg;
/* Ignore mouse events that were made on frames that
have been deleted. */
if (! FRAME_LIVE_P (f))
return Qnil;
position = make_lispy_position (f, event->x, event->y,
event->timestamp);
head = modify_event_symbol (0, event->modifiers,
Qdrag_n_drop, Qnil,
lispy_drag_n_drop_names,
&drag_n_drop_syms, 1);
return list3 (head, position, files);
}
#if defined (USE_X_TOOLKIT) || defined (HAVE_NTGUI) \
|| defined (HAVE_NS) || defined (USE_GTK)
case MENU_BAR_EVENT:
if (EQ (event->arg, event->frame_or_window))
/* This is the prefix key. We translate this to
`(menu_bar)' because the code in keyboard.c for menu
events, which we use, relies on this. */
return list1 (Qmenu_bar);
return event->arg;
#endif
case SELECT_WINDOW_EVENT:
/* Make an event (select-window (WINDOW)). */
return list2 (Qselect_window, list1 (event->frame_or_window));
case TOOL_BAR_EVENT:
if (EQ (event->arg, event->frame_or_window))
/* This is the prefix key. We translate this to
`(tool_bar)' because the code in keyboard.c for tool bar
events, which we use, relies on this. */
return list1 (Qtool_bar);
else if (SYMBOLP (event->arg))
return apply_modifiers (event->modifiers, event->arg);
return event->arg;
case USER_SIGNAL_EVENT:
/* A user signal. */
{
char *name = find_user_signal_name (event->code);
if (!name)
emacs_abort ();
return intern (name);
}
case SAVE_SESSION_EVENT:
return Qsave_session;
#ifdef HAVE_DBUS
case DBUS_EVENT:
{
return Fcons (Qdbus_event, event->arg);
}
#endif /* HAVE_DBUS */
#ifdef HAVE_XWIDGETS
case XWIDGET_EVENT:
{
return Fcons (Qxwidget_event, event->arg);
}
#endif
#if defined HAVE_INOTIFY || defined HAVE_KQUEUE || defined HAVE_GFILENOTIFY
case FILE_NOTIFY_EVENT:
{
return Fcons (Qfile_notify, event->arg);
}
#endif /* HAVE_INOTIFY || HAVE_KQUEUE || HAVE_GFILENOTIFY */
case CONFIG_CHANGED_EVENT:
return list3 (Qconfig_changed_event,
event->arg, event->frame_or_window);
/* The 'kind' field of the event is something we don't recognize. */
default:
emacs_abort ();
}
}
static Lisp_Object
make_lispy_movement (struct frame *frame, Lisp_Object bar_window, enum scroll_bar_part part,
Lisp_Object x, Lisp_Object y, Time t)
{
/* Is it a scroll bar movement? */
if (frame && ! NILP (bar_window))
{
Lisp_Object part_sym;
part_sym = builtin_lisp_symbol (scroll_bar_parts[part]);
return list2 (Qscroll_bar_movement,
list5 (bar_window,
Qvertical_scroll_bar,
Fcons (x, y),
make_number (t),
part_sym));
}
/* Or is it an ordinary mouse movement? */
else
{
Lisp_Object position;
position = make_lispy_position (frame, x, y, t);
return list2 (Qmouse_movement, position);
}
}
/* Construct a switch frame event. */
static Lisp_Object
make_lispy_switch_frame (Lisp_Object frame)
{
return list2 (Qswitch_frame, frame);
}
static Lisp_Object
make_lispy_focus_in (Lisp_Object frame)
{
return list2 (Qfocus_in, frame);
}
#ifdef HAVE_WINDOW_SYSTEM
static Lisp_Object
make_lispy_focus_out (Lisp_Object frame)
{
return list2 (Qfocus_out, frame);
}
#endif /* HAVE_WINDOW_SYSTEM */
/* Manipulating modifiers. */
/* Parse the name of SYMBOL, and return the set of modifiers it contains.
If MODIFIER_END is non-zero, set *MODIFIER_END to the position in
SYMBOL's name of the end of the modifiers; the string from this
position is the unmodified symbol name.
This doesn't use any caches. */
static int
parse_modifiers_uncached (Lisp_Object symbol, ptrdiff_t *modifier_end)
{
Lisp_Object name;
ptrdiff_t i;
int modifiers;
CHECK_SYMBOL (symbol);
modifiers = 0;
name = SYMBOL_NAME (symbol);
for (i = 0; i < SBYTES (name) - 1; )
{
ptrdiff_t this_mod_end = 0;
int this_mod = 0;
/* See if the name continues with a modifier word.
Check that the word appears, but don't check what follows it.
Set this_mod and this_mod_end to record what we find. */
switch (SREF (name, i))
{
#define SINGLE_LETTER_MOD(BIT) \
(this_mod_end = i + 1, this_mod = BIT)
case 'A':
SINGLE_LETTER_MOD (alt_modifier);
break;
case 'C':
SINGLE_LETTER_MOD (ctrl_modifier);
break;
case 'H':
SINGLE_LETTER_MOD (hyper_modifier);
break;
case 'M':
SINGLE_LETTER_MOD (meta_modifier);
break;
case 'S':
SINGLE_LETTER_MOD (shift_modifier);
break;
case 's':
SINGLE_LETTER_MOD (super_modifier);
break;
#undef SINGLE_LETTER_MOD
#define MULTI_LETTER_MOD(BIT, NAME, LEN) \
if (i + LEN + 1 <= SBYTES (name) \
&& ! memcmp (SDATA (name) + i, NAME, LEN)) \
{ \
this_mod_end = i + LEN; \
this_mod = BIT; \
}
case 'd':
MULTI_LETTER_MOD (drag_modifier, "drag", 4);
MULTI_LETTER_MOD (down_modifier, "down", 4);
MULTI_LETTER_MOD (double_modifier, "double", 6);
break;
case 't':
MULTI_LETTER_MOD (triple_modifier, "triple", 6);
break;
case 'u':
MULTI_LETTER_MOD (up_modifier, "up", 2);
break;
#undef MULTI_LETTER_MOD
}
/* If we found no modifier, stop looking for them. */
if (this_mod_end == 0)
break;
/* Check there is a dash after the modifier, so that it
really is a modifier. */
if (this_mod_end >= SBYTES (name)
|| SREF (name, this_mod_end) != '-')
break;
/* This modifier is real; look for another. */
modifiers |= this_mod;
i = this_mod_end + 1;
}
/* Should we include the `click' modifier? */
if (! (modifiers & (down_modifier | drag_modifier
| double_modifier | triple_modifier))
&& i + 7 == SBYTES (name)
&& memcmp (SDATA (name) + i, "mouse-", 6) == 0
&& ('0' <= SREF (name, i + 6) && SREF (name, i + 6) <= '9'))
modifiers |= click_modifier;
if (! (modifiers & (double_modifier | triple_modifier))
&& i + 6 < SBYTES (name)
&& memcmp (SDATA (name) + i, "wheel-", 6) == 0)
modifiers |= click_modifier;
if (modifier_end)
*modifier_end = i;
return modifiers;
}
/* Return a symbol whose name is the modifier prefixes for MODIFIERS
prepended to the string BASE[0..BASE_LEN-1].
This doesn't use any caches. */
static Lisp_Object
apply_modifiers_uncached (int modifiers, char *base, int base_len, int base_len_byte)
{
/* Since BASE could contain nulls, we can't use intern here; we have
to use Fintern, which expects a genuine Lisp_String, and keeps a
reference to it. */
char new_mods[sizeof "A-C-H-M-S-s-up-down-drag-double-triple-"];
int mod_len;
{
char *p = new_mods;
/* Mouse events should not exhibit the `up' modifier once they
leave the event queue only accessible to C code; `up' will
always be turned into a click or drag event before being
presented to lisp code. But since lisp events can be
synthesized bypassing the event queue and pushed into
`unread-command-events' or its companions, it's better to just
deal with unexpected modifier combinations. */
if (modifiers & alt_modifier) { *p++ = 'A'; *p++ = '-'; }
if (modifiers & ctrl_modifier) { *p++ = 'C'; *p++ = '-'; }
if (modifiers & hyper_modifier) { *p++ = 'H'; *p++ = '-'; }
if (modifiers & meta_modifier) { *p++ = 'M'; *p++ = '-'; }
if (modifiers & shift_modifier) { *p++ = 'S'; *p++ = '-'; }
if (modifiers & super_modifier) { *p++ = 's'; *p++ = '-'; }
if (modifiers & double_modifier) p = stpcpy (p, "double-");
if (modifiers & triple_modifier) p = stpcpy (p, "triple-");
if (modifiers & up_modifier) p = stpcpy (p, "up-");
if (modifiers & down_modifier) p = stpcpy (p, "down-");
if (modifiers & drag_modifier) p = stpcpy (p, "drag-");
/* The click modifier is denoted by the absence of other modifiers. */
*p = '\0';
mod_len = p - new_mods;
}
{
Lisp_Object new_name;
new_name = make_uninit_multibyte_string (mod_len + base_len,
mod_len + base_len_byte);
memcpy (SDATA (new_name), new_mods, mod_len);
memcpy (SDATA (new_name) + mod_len, base, base_len_byte);
return Fintern (new_name, Qnil);
}
}
static const char *const modifier_names[] =
{
"up", "down", "drag", "click", "double", "triple", 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, "alt", "super", "hyper", "shift", "control", "meta"
};
#define NUM_MOD_NAMES ARRAYELTS (modifier_names)
static Lisp_Object modifier_symbols;
/* Return the list of modifier symbols corresponding to the mask MODIFIERS. */
static Lisp_Object
lispy_modifier_list (int modifiers)
{
Lisp_Object modifier_list;
int i;
modifier_list = Qnil;
for (i = 0; (1<= table_size)
return Qnil;
if (CONSP (*symbol_table))
value = Fcdr (assq_no_quit (symbol_int, *symbol_table));
/* If *symbol_table doesn't seem to be initialized properly, fix that.
*symbol_table should be a lisp vector TABLE_SIZE elements long,
where the Nth element is the symbol for NAME_TABLE[N], or nil if
we've never used that symbol before. */
else
{
if (! VECTORP (*symbol_table)
|| ASIZE (*symbol_table) != table_size)
{
Lisp_Object size;
XSETFASTINT (size, table_size);
*symbol_table = Fmake_vector (size, Qnil);
}
value = AREF (*symbol_table, symbol_num);
}
/* Have we already used this symbol before? */
if (NILP (value))
{
/* No; let's create it. */
if (CONSP (name_alist_or_stem))
value = Fcdr_safe (Fassq (symbol_int, name_alist_or_stem));
else if (STRINGP (name_alist_or_stem))
{
char *buf;
ptrdiff_t len = (SBYTES (name_alist_or_stem)
+ sizeof "-" + INT_STRLEN_BOUND (EMACS_INT));
USE_SAFE_ALLOCA;
buf = SAFE_ALLOCA (len);
esprintf (buf, "%s-%"pI"d", SDATA (name_alist_or_stem),
XINT (symbol_int) + 1);
value = intern (buf);
SAFE_FREE ();
}
else if (name_table != 0 && name_table[symbol_num])
value = intern (name_table[symbol_num]);
#ifdef HAVE_WINDOW_SYSTEM
if (NILP (value))
{
char *name = x_get_keysym_name (symbol_num);
if (name)
value = intern (name);
}
#endif
if (NILP (value))
{
char buf[sizeof "key-" + INT_STRLEN_BOUND (EMACS_INT)];
sprintf (buf, "key-%"pD"d", symbol_num);
value = intern (buf);
}
if (CONSP (*symbol_table))
*symbol_table = Fcons (Fcons (symbol_int, value), *symbol_table);
else
ASET (*symbol_table, symbol_num, value);
/* Fill in the cache entries for this symbol; this also
builds the Qevent_symbol_elements property, which the user
cares about. */
apply_modifiers (modifiers & click_modifier, value);
Fput (value, Qevent_kind, symbol_kind);
}
/* Apply modifiers to that symbol. */
return apply_modifiers (modifiers, value);
}
/* Convert a list that represents an event type,
such as (ctrl meta backspace), into the usual representation of that
event type as a number or a symbol. */
DEFUN ("event-convert-list", Fevent_convert_list, Sevent_convert_list, 1, 1, 0,
doc: /* Convert the event description list EVENT-DESC to an event type.
EVENT-DESC should contain one base event type (a character or symbol)
and zero or more modifier names (control, meta, hyper, super, shift, alt,
drag, down, double or triple). The base must be last.
The return value is an event type (a character or symbol) which
has the same base event type and all the specified modifiers. */)
(Lisp_Object event_desc)
{
Lisp_Object base;
int modifiers = 0;
Lisp_Object rest;
base = Qnil;
rest = event_desc;
while (CONSP (rest))
{
Lisp_Object elt;
int this = 0;
elt = XCAR (rest);
rest = XCDR (rest);
/* Given a symbol, see if it is a modifier name. */
if (SYMBOLP (elt) && CONSP (rest))
this = parse_solitary_modifier (elt);
if (this != 0)
modifiers |= this;
else if (!NILP (base))
error ("Two bases given in one event");
else
base = elt;
}
/* Let the symbol A refer to the character A. */
if (SYMBOLP (base) && SCHARS (SYMBOL_NAME (base)) == 1)
XSETINT (base, SREF (SYMBOL_NAME (base), 0));
if (INTEGERP (base))
{
/* Turn (shift a) into A. */
if ((modifiers & shift_modifier) != 0
&& (XINT (base) >= 'a' && XINT (base) <= 'z'))
{
XSETINT (base, XINT (base) - ('a' - 'A'));
modifiers &= ~shift_modifier;
}
/* Turn (control a) into C-a. */
if (modifiers & ctrl_modifier)
return make_number ((modifiers & ~ctrl_modifier)
| make_ctrl_char (XINT (base)));
else
return make_number (modifiers | XINT (base));
}
else if (SYMBOLP (base))
return apply_modifiers (modifiers, base);
else
error ("Invalid base event");
}
/* Try to recognize SYMBOL as a modifier name.
Return the modifier flag bit, or 0 if not recognized. */
int
parse_solitary_modifier (Lisp_Object symbol)
{
Lisp_Object name;
if (!SYMBOLP (symbol))
return 0;
name = SYMBOL_NAME (symbol);
switch (SREF (name, 0))
{
#define SINGLE_LETTER_MOD(BIT) \
if (SBYTES (name) == 1) \
return BIT;
#define MULTI_LETTER_MOD(BIT, NAME, LEN) \
if (LEN == SBYTES (name) \
&& ! memcmp (SDATA (name), NAME, LEN)) \
return BIT;
case 'A':
SINGLE_LETTER_MOD (alt_modifier);
break;
case 'a':
MULTI_LETTER_MOD (alt_modifier, "alt", 3);
break;
case 'C':
SINGLE_LETTER_MOD (ctrl_modifier);
break;
case 'c':
MULTI_LETTER_MOD (ctrl_modifier, "ctrl", 4);
MULTI_LETTER_MOD (ctrl_modifier, "control", 7);
break;
case 'H':
SINGLE_LETTER_MOD (hyper_modifier);
break;
case 'h':
MULTI_LETTER_MOD (hyper_modifier, "hyper", 5);
break;
case 'M':
SINGLE_LETTER_MOD (meta_modifier);
break;
case 'm':
MULTI_LETTER_MOD (meta_modifier, "meta", 4);
break;
case 'S':
SINGLE_LETTER_MOD (shift_modifier);
break;
case 's':
MULTI_LETTER_MOD (shift_modifier, "shift", 5);
MULTI_LETTER_MOD (super_modifier, "super", 5);
SINGLE_LETTER_MOD (super_modifier);
break;
case 'd':
MULTI_LETTER_MOD (drag_modifier, "drag", 4);
MULTI_LETTER_MOD (down_modifier, "down", 4);
MULTI_LETTER_MOD (double_modifier, "double", 6);
break;
case 't':
MULTI_LETTER_MOD (triple_modifier, "triple", 6);
break;
case 'u':
MULTI_LETTER_MOD (up_modifier, "up", 2);
break;
#undef SINGLE_LETTER_MOD
#undef MULTI_LETTER_MOD
}
return 0;
}
/* Return true if EVENT is a list whose elements are all integers or symbols.
Such a list is not valid as an event,
but it can be a Lucid-style event type list. */
bool
lucid_event_type_list_p (Lisp_Object object)
{
Lisp_Object tail;
if (! CONSP (object))
return 0;
if (EQ (XCAR (object), Qhelp_echo)
|| EQ (XCAR (object), Qvertical_line)
|| EQ (XCAR (object), Qmode_line)
|| EQ (XCAR (object), Qheader_line))
return 0;
for (tail = object; CONSP (tail); tail = XCDR (tail))
{
Lisp_Object elt;
elt = XCAR (tail);
if (! (INTEGERP (elt) || SYMBOLP (elt)))
return 0;
}
return NILP (tail);
}
/* Return true if terminal input chars are available.
Also, store the return value into INPUT_PENDING.
Serves the purpose of ioctl (0, FIONREAD, ...)
but works even if FIONREAD does not exist.
(In fact, this may actually read some input.)
If READABLE_EVENTS_DO_TIMERS_NOW is set in FLAGS, actually run
timer events that are ripe.
If READABLE_EVENTS_FILTER_EVENTS is set in FLAGS, ignore internal
events (FOCUS_IN_EVENT).
If READABLE_EVENTS_IGNORE_SQUEEZABLES is set in FLAGS, ignore mouse
movements and toolkit scroll bar thumb drags. */
static bool
get_input_pending (int flags)
{
/* First of all, have we already counted some input? */
input_pending = (!NILP (Vquit_flag) || readable_events (flags));
/* If input is being read as it arrives, and we have none, there is none. */
if (!input_pending && (!interrupt_input || interrupts_deferred))
{
/* Try to read some input and see how much we get. */
gobble_input ();
input_pending = (!NILP (Vquit_flag) || readable_events (flags));
}
return input_pending;
}
/* Put a BUFFER_SWITCH_EVENT in the buffer
so that read_key_sequence will notice the new current buffer. */
void
record_asynch_buffer_change (void)
{
/* We don't need a buffer-switch event unless Emacs is waiting for input.
The purpose of the event is to make read_key_sequence look up the
keymaps again. If we aren't in read_key_sequence, we don't need one,
and the event could cause trouble by messing up (input-pending-p).
Note: Fwaiting_for_user_input_p always returns nil when async
subprocesses aren't supported. */
if (!NILP (Fwaiting_for_user_input_p ()))
{
struct input_event event;
EVENT_INIT (event);
event.kind = BUFFER_SWITCH_EVENT;
event.frame_or_window = Qnil;
event.arg = Qnil;
/* Make sure no interrupt happens while storing the event. */
#ifdef USABLE_SIGIO
if (interrupt_input)
kbd_buffer_store_event (&event);
else
#endif
{
stop_polling ();
kbd_buffer_store_event (&event);
start_polling ();
}
}
}
/* Read any terminal input already buffered up by the system
into the kbd_buffer, but do not wait.
Return the number of keyboard chars read, or -1 meaning
this is a bad time to try to read input. */
int
gobble_input (void)
{
int nread = 0;
bool err = false;
struct terminal *t;
/* Store pending user signal events, if any. */
store_user_signal_events ();
/* Loop through the available terminals, and call their input hooks. */
t = terminal_list;
while (t)
{
struct terminal *next = t->next_terminal;
if (t->read_socket_hook)
{
int nr;
struct input_event hold_quit;
if (input_blocked_p ())
{
pending_signals = true;
break;
}
EVENT_INIT (hold_quit);
hold_quit.kind = NO_EVENT;
/* No need for FIONREAD or fcntl; just say don't wait. */
while ((nr = (*t->read_socket_hook) (t, &hold_quit)) > 0)
nread += nr;
if (nr == -1) /* Not OK to read input now. */
{
err = true;
}
else if (nr == -2) /* Non-transient error. */
{
/* The terminal device terminated; it should be closed. */
/* Kill Emacs if this was our last terminal. */
if (!terminal_list->next_terminal)
/* Formerly simply reported no input, but that
sometimes led to a failure of Emacs to terminate.
SIGHUP seems appropriate if we can't reach the
terminal. */
/* ??? Is it really right to send the signal just to
this process rather than to the whole process
group? Perhaps on systems with FIONREAD Emacs is
alone in its group. */
terminate_due_to_signal (SIGHUP, 10);
/* XXX Is calling delete_terminal safe here? It calls delete_frame. */
{
Lisp_Object tmp;
XSETTERMINAL (tmp, t);
Fdelete_terminal (tmp, Qnoelisp);
}
}
/* If there was no error, make sure the pointer
is visible for all frames on this terminal. */
if (nr >= 0)
{
Lisp_Object tail, frame;
FOR_EACH_FRAME (tail, frame)
{
struct frame *f = XFRAME (frame);
if (FRAME_TERMINAL (f) == t)
frame_make_pointer_visible (f);
}
}
if (hold_quit.kind != NO_EVENT)
kbd_buffer_store_event (&hold_quit);
}
t = next;
}
if (err && !nread)
nread = -1;
return nread;
}
/* This is the tty way of reading available input.
Note that each terminal device has its own `struct terminal' object,
and so this function is called once for each individual termcap
terminal. The first parameter indicates which terminal to read from. */
int
tty_read_avail_input (struct terminal *terminal,
struct input_event *hold_quit)
{
/* Using KBD_BUFFER_SIZE - 1 here avoids reading more than
the kbd_buffer can really hold. That may prevent loss
of characters on some systems when input is stuffed at us. */
unsigned char cbuf[KBD_BUFFER_SIZE - 1];
#ifndef WINDOWSNT
int n_to_read;
#endif
int i;
struct tty_display_info *tty = terminal->display_info.tty;
int nread = 0;
#ifdef subprocesses
int buffer_free = KBD_BUFFER_SIZE - kbd_buffer_nr_stored () - 1;
if (kbd_on_hold_p () || buffer_free <= 0)
return 0;
#endif /* subprocesses */
if (!terminal->name) /* Don't read from a dead terminal. */
return 0;
if (terminal->type != output_termcap
&& terminal->type != output_msdos_raw)
emacs_abort ();
/* XXX I think the following code should be moved to separate hook
functions in system-dependent files. */
#ifdef WINDOWSNT
/* FIXME: AFAIK, tty_read_avail_input is not used under w32 since the non-GUI
code sets read_socket_hook to w32_console_read_socket instead! */
return 0;
#else /* not WINDOWSNT */
if (! tty->term_initted) /* In case we get called during bootstrap. */
return 0;
if (! tty->input)
return 0; /* The terminal is suspended. */
#ifdef MSDOS
n_to_read = dos_keysns ();
if (n_to_read == 0)
return 0;
cbuf[0] = dos_keyread ();
nread = 1;
#else /* not MSDOS */
#ifdef HAVE_GPM
if (gpm_tty == tty)
{
Gpm_Event event;
struct input_event gpm_hold_quit;
int gpm, fd = gpm_fd;
EVENT_INIT (gpm_hold_quit);
gpm_hold_quit.kind = NO_EVENT;
/* gpm==1 if event received.
gpm==0 if the GPM daemon has closed the connection, in which case
Gpm_GetEvent closes gpm_fd and clears it to -1, which is why
we save it in `fd' so close_gpm can remove it from the
select masks.
gpm==-1 if a protocol error or EWOULDBLOCK; the latter is normal. */
while (gpm = Gpm_GetEvent (&event), gpm == 1) {
nread += handle_one_term_event (tty, &event, &gpm_hold_quit);
}
if (gpm == 0)
/* Presumably the GPM daemon has closed the connection. */
close_gpm (fd);
if (gpm_hold_quit.kind != NO_EVENT)
kbd_buffer_store_event (&gpm_hold_quit);
if (nread)
return nread;
}
#endif /* HAVE_GPM */
/* Determine how many characters we should *try* to read. */
#ifdef USABLE_FIONREAD
/* Find out how much input is available. */
if (ioctl (fileno (tty->input), FIONREAD, &n_to_read) < 0)
{
if (! noninteractive)
return -2; /* Close this terminal. */
else
n_to_read = 0;
}
if (n_to_read == 0)
return 0;
if (n_to_read > sizeof cbuf)
n_to_read = sizeof cbuf;
#elif defined USG || defined CYGWIN
/* Read some input if available, but don't wait. */
n_to_read = sizeof cbuf;
fcntl (fileno (tty->input), F_SETFL, O_NONBLOCK);
#else
# error "Cannot read without possibly delaying"
#endif
#ifdef subprocesses
/* Don't read more than we can store. */
if (n_to_read > buffer_free)
n_to_read = buffer_free;
#endif /* subprocesses */
/* Now read; for one reason or another, this will not block.
NREAD is set to the number of chars read. */
do
{
nread = emacs_read (fileno (tty->input), (char *) cbuf, n_to_read);
/* POSIX infers that processes which are not in the session leader's
process group won't get SIGHUPs at logout time. BSDI adheres to
this part standard and returns -1 from read (0) with errno==EIO
when the control tty is taken away.
Jeffrey Honig says this is generally safe. */
if (nread == -1 && errno == EIO)
return -2; /* Close this terminal. */
#if defined (AIX) && defined (_BSD)
/* The kernel sometimes fails to deliver SIGHUP for ptys.
This looks incorrect, but it isn't, because _BSD causes
O_NDELAY to be defined in fcntl.h as O_NONBLOCK,
and that causes a value other than 0 when there is no input. */
if (nread == 0)
return -2; /* Close this terminal. */
#endif
}
while (
/* We used to retry the read if it was interrupted.
But this does the wrong thing when O_NONBLOCK causes
an EAGAIN error. Does anybody know of a situation
where a retry is actually needed? */
#if 0
nread < 0 && (errno == EAGAIN || errno == EFAULT
#ifdef EBADSLT
|| errno == EBADSLT
#endif
)
#else
0
#endif
);
#ifndef USABLE_FIONREAD
#if defined (USG) || defined (CYGWIN)
fcntl (fileno (tty->input), F_SETFL, 0);
#endif /* USG or CYGWIN */
#endif /* no FIONREAD */
if (nread <= 0)
return nread;
#endif /* not MSDOS */
#endif /* not WINDOWSNT */
for (i = 0; i < nread; i++)
{
struct input_event buf;
EVENT_INIT (buf);
buf.kind = ASCII_KEYSTROKE_EVENT;
buf.modifiers = 0;
if (tty->meta_key == 1 && (cbuf[i] & 0x80))
buf.modifiers = meta_modifier;
if (tty->meta_key != 2)
cbuf[i] &= ~0x80;
buf.code = cbuf[i];
/* Set the frame corresponding to the active tty. Note that the
value of selected_frame is not reliable here, redisplay tends
to temporarily change it. */
buf.frame_or_window = tty->top_frame;
buf.arg = Qnil;
kbd_buffer_store_event (&buf);
/* Don't look at input that follows a C-g too closely.
This reduces lossage due to autorepeat on C-g. */
if (buf.kind == ASCII_KEYSTROKE_EVENT
&& buf.code == quit_char)
break;
}
return nread;
}
static void
handle_async_input (void)
{
#ifdef USABLE_SIGIO
while (1)
{
int nread = gobble_input ();
/* -1 means it's not ok to read the input now.
UNBLOCK_INPUT will read it later; now, avoid infinite loop.
0 means there was no keyboard input available. */
if (nread <= 0)
break;
}
#endif
}
void
process_pending_signals (void)
{
pending_signals = false;
handle_async_input ();
do_pending_atimers ();
}
/* Undo any number of BLOCK_INPUT calls down to level LEVEL,
and reinvoke any pending signal if the level is now 0 and
a fatal error is not already in progress. */
void
unblock_input_to (int level)
{
interrupt_input_blocked = level;
if (level == 0)
{
if (pending_signals && !fatal_error_in_progress)
process_pending_signals ();
}
else if (level < 0)
emacs_abort ();
}
/* End critical section.
If doing signal-driven input, and a signal came in when input was
blocked, reinvoke the signal handler now to deal with it.
It will also process queued input, if it was not read before.
When a longer code sequence does not use block/unblock input
at all, the whole input gathered up to the next call to
unblock_input will be processed inside that call. */
void
unblock_input (void)
{
unblock_input_to (interrupt_input_blocked - 1);
}
/* Undo any number of BLOCK_INPUT calls,
and also reinvoke any pending signal. */
void
totally_unblock_input (void)
{
unblock_input_to (0);
}
#ifdef USABLE_SIGIO
void
handle_input_available_signal (int sig)
{
pending_signals = true;
if (input_available_clear_time)
*input_available_clear_time = make_timespec (0, 0);
}
static void
deliver_input_available_signal (int sig)
{
deliver_process_signal (sig, handle_input_available_signal);
}
#endif /* USABLE_SIGIO */
/* User signal events. */
struct user_signal_info
{
/* Signal number. */
int sig;
/* Name of the signal. */
char *name;
/* Number of pending signals. */
int npending;
struct user_signal_info *next;
};
/* List of user signals. */
static struct user_signal_info *user_signals = NULL;
void
add_user_signal (int sig, const char *name)
{
struct sigaction action;
struct user_signal_info *p;
for (p = user_signals; p; p = p->next)
if (p->sig == sig)
/* Already added. */
return;
p = xmalloc (sizeof *p);
p->sig = sig;
p->name = xstrdup (name);
p->npending = 0;
p->next = user_signals;
user_signals = p;
emacs_sigaction_init (&action, deliver_user_signal);
sigaction (sig, &action, 0);
}
static void
handle_user_signal (int sig)
{
struct user_signal_info *p;
const char *special_event_name = NULL;
if (SYMBOLP (Vdebug_on_event))
special_event_name = SSDATA (SYMBOL_NAME (Vdebug_on_event));
for (p = user_signals; p; p = p->next)
if (p->sig == sig)
{
if (special_event_name
&& strcmp (special_event_name, p->name) == 0)
{
/* Enter the debugger in many ways. */
debug_on_next_call = true;
debug_on_quit = true;
Vquit_flag = Qt;
Vinhibit_quit = Qnil;
/* Eat the event. */
break;
}
p->npending++;
#ifdef USABLE_SIGIO
if (interrupt_input)
handle_input_available_signal (sig);
else
#endif
{
/* Tell wait_reading_process_output that it needs to wake
up and look around. */
if (input_available_clear_time)
*input_available_clear_time = make_timespec (0, 0);
}
break;
}
}
static void
deliver_user_signal (int sig)
{
deliver_process_signal (sig, handle_user_signal);
}
static char *
find_user_signal_name (int sig)
{
struct user_signal_info *p;
for (p = user_signals; p; p = p->next)
if (p->sig == sig)
return p->name;
return NULL;
}
static void
store_user_signal_events (void)
{
struct user_signal_info *p;
struct input_event buf;
bool buf_initialized = false;
for (p = user_signals; p; p = p->next)
if (p->npending > 0)
{
if (! buf_initialized)
{
memset (&buf, 0, sizeof buf);
buf.kind = USER_SIGNAL_EVENT;
buf.frame_or_window = selected_frame;
buf_initialized = true;
}
do
{
buf.code = p->sig;
kbd_buffer_store_event (&buf);
p->npending--;
}
while (p->npending > 0);
}
}
static void menu_bar_item (Lisp_Object, Lisp_Object, Lisp_Object, void *);
static Lisp_Object menu_bar_one_keymap_changed_items;
/* These variables hold the vector under construction within
menu_bar_items and its subroutines, and the current index
for storing into that vector. */
static Lisp_Object menu_bar_items_vector;
static int menu_bar_items_index;
static const char *separator_names[] = {
"space",
"no-line",
"single-line",
"double-line",
"single-dashed-line",
"double-dashed-line",
"shadow-etched-in",
"shadow-etched-out",
"shadow-etched-in-dash",
"shadow-etched-out-dash",
"shadow-double-etched-in",
"shadow-double-etched-out",
"shadow-double-etched-in-dash",
"shadow-double-etched-out-dash",
0,
};
/* Return true if LABEL specifies a separator. */
bool
menu_separator_name_p (const char *label)
{
if (!label)
return 0;
else if (strlen (label) > 3
&& memcmp (label, "--", 2) == 0
&& label[2] != '-')
{
int i;
label += 2;
for (i = 0; separator_names[i]; ++i)
if (strcmp (label, separator_names[i]) == 0)
return 1;
}
else
{
/* It's a separator if it contains only dashes. */
while (*label == '-')
++label;
return (*label == 0);
}
return 0;
}
/* Return a vector of menu items for a menu bar, appropriate
to the current buffer. Each item has three elements in the vector:
KEY STRING MAPLIST.
OLD is an old vector we can optionally reuse, or nil. */
Lisp_Object
menu_bar_items (Lisp_Object old)
{
/* The number of keymaps we're scanning right now, and the number of
keymaps we have allocated space for. */
ptrdiff_t nmaps;
/* maps[0..nmaps-1] are the prefix definitions of KEYBUF[0..t-1]
in the current keymaps, or nil where it is not a prefix. */
Lisp_Object *maps;
Lisp_Object mapsbuf[3];
Lisp_Object def, tail;
ptrdiff_t mapno;
Lisp_Object oquit;
USE_SAFE_ALLOCA;
/* In order to build the menus, we need to call the keymap
accessors. They all call QUIT. But this function is called
during redisplay, during which a quit is fatal. So inhibit
quitting while building the menus.
We do this instead of specbind because (1) errors will clear it anyway
and (2) this avoids risk of specpdl overflow. */
oquit = Vinhibit_quit;
Vinhibit_quit = Qt;
if (!NILP (old))
menu_bar_items_vector = old;
else
menu_bar_items_vector = Fmake_vector (make_number (24), Qnil);
menu_bar_items_index = 0;
/* Build our list of keymaps.
If we recognize a function key and replace its escape sequence in
keybuf with its symbol, or if the sequence starts with a mouse
click and we need to switch buffers, we jump back here to rebuild
the initial keymaps from the current buffer. */
{
Lisp_Object *tmaps;
/* Should overriding-terminal-local-map and overriding-local-map apply? */
if (!NILP (Voverriding_local_map_menu_flag)
&& !NILP (Voverriding_local_map))
{
/* Yes, use them (if non-nil) as well as the global map. */
maps = mapsbuf;
nmaps = 0;
if (!NILP (KVAR (current_kboard, Voverriding_terminal_local_map)))
maps[nmaps++] = KVAR (current_kboard, Voverriding_terminal_local_map);
if (!NILP (Voverriding_local_map))
maps[nmaps++] = Voverriding_local_map;
}
else
{
/* No, so use major and minor mode keymaps and keymap property.
Note that menu-bar bindings in the local-map and keymap
properties may not work reliable, as they are only
recognized when the menu-bar (or mode-line) is updated,
which does not normally happen after every command. */
ptrdiff_t nminor = current_minor_maps (NULL, &tmaps);
SAFE_NALLOCA (maps, 1, nminor + 4);
nmaps = 0;
Lisp_Object tem = KVAR (current_kboard, Voverriding_terminal_local_map);
if (!NILP (tem) && !NILP (Voverriding_local_map_menu_flag))
maps[nmaps++] = tem;
if (tem = get_local_map (PT, current_buffer, Qkeymap), !NILP (tem))
maps[nmaps++] = tem;
if (nminor != 0)
{
memcpy (maps + nmaps, tmaps, nminor * sizeof (maps[0]));
nmaps += nminor;
}
maps[nmaps++] = get_local_map (PT, current_buffer, Qlocal_map);
}
maps[nmaps++] = current_global_map;
}
/* Look up in each map the dummy prefix key `menu-bar'. */
for (mapno = nmaps - 1; mapno >= 0; mapno--)
if (!NILP (maps[mapno]))
{
def = get_keymap (access_keymap (maps[mapno], Qmenu_bar, 1, 0, 1),
0, 1);
if (CONSP (def))
{
menu_bar_one_keymap_changed_items = Qnil;
map_keymap_canonical (def, menu_bar_item, Qnil, NULL);
}
}
/* Move to the end those items that should be at the end. */
for (tail = Vmenu_bar_final_items; CONSP (tail); tail = XCDR (tail))
{
int i;
int end = menu_bar_items_index;
for (i = 0; i < end; i += 4)
if (EQ (XCAR (tail), AREF (menu_bar_items_vector, i)))
{
Lisp_Object tem0, tem1, tem2, tem3;
/* Move the item at index I to the end,
shifting all the others forward. */
tem0 = AREF (menu_bar_items_vector, i + 0);
tem1 = AREF (menu_bar_items_vector, i + 1);
tem2 = AREF (menu_bar_items_vector, i + 2);
tem3 = AREF (menu_bar_items_vector, i + 3);
if (end > i + 4)
memmove (aref_addr (menu_bar_items_vector, i),
aref_addr (menu_bar_items_vector, i + 4),
(end - i - 4) * word_size);
ASET (menu_bar_items_vector, end - 4, tem0);
ASET (menu_bar_items_vector, end - 3, tem1);
ASET (menu_bar_items_vector, end - 2, tem2);
ASET (menu_bar_items_vector, end - 1, tem3);
break;
}
}
/* Add nil, nil, nil, nil at the end. */
{
int i = menu_bar_items_index;
if (i + 4 > ASIZE (menu_bar_items_vector))
menu_bar_items_vector
= larger_vector (menu_bar_items_vector, 4, -1);
/* Add this item. */
ASET (menu_bar_items_vector, i, Qnil); i++;
ASET (menu_bar_items_vector, i, Qnil); i++;
ASET (menu_bar_items_vector, i, Qnil); i++;
ASET (menu_bar_items_vector, i, Qnil); i++;
menu_bar_items_index = i;
}
Vinhibit_quit = oquit;
SAFE_FREE ();
return menu_bar_items_vector;
}
/* Add one item to menu_bar_items_vector, for KEY, ITEM_STRING and DEF.
If there's already an item for KEY, add this DEF to it. */
Lisp_Object item_properties;
static void
menu_bar_item (Lisp_Object key, Lisp_Object item, Lisp_Object dummy1, void *dummy2)
{
int i;
bool parsed;
Lisp_Object tem;
if (EQ (item, Qundefined))
{
/* If a map has an explicit `undefined' as definition,
discard any previously made menu bar item. */
for (i = 0; i < menu_bar_items_index; i += 4)
if (EQ (key, AREF (menu_bar_items_vector, i)))
{
if (menu_bar_items_index > i + 4)
memmove (aref_addr (menu_bar_items_vector, i),
aref_addr (menu_bar_items_vector, i + 4),
(menu_bar_items_index - i - 4) * word_size);
menu_bar_items_index -= 4;
}
}
/* If this keymap has already contributed to this KEY,
don't contribute to it a second time. */
tem = Fmemq (key, menu_bar_one_keymap_changed_items);
if (!NILP (tem) || NILP (item))
return;
menu_bar_one_keymap_changed_items
= Fcons (key, menu_bar_one_keymap_changed_items);
/* We add to menu_bar_one_keymap_changed_items before doing the
parse_menu_item, so that if it turns out it wasn't a menu item,
it still correctly hides any further menu item. */
parsed = parse_menu_item (item, 1);
if (!parsed)
return;
item = AREF (item_properties, ITEM_PROPERTY_DEF);
/* Find any existing item for this KEY. */
for (i = 0; i < menu_bar_items_index; i += 4)
if (EQ (key, AREF (menu_bar_items_vector, i)))
break;
/* If we did not find this KEY, add it at the end. */
if (i == menu_bar_items_index)
{
/* If vector is too small, get a bigger one. */
if (i + 4 > ASIZE (menu_bar_items_vector))
menu_bar_items_vector = larger_vector (menu_bar_items_vector, 4, -1);
/* Add this item. */
ASET (menu_bar_items_vector, i, key); i++;
ASET (menu_bar_items_vector, i,
AREF (item_properties, ITEM_PROPERTY_NAME)); i++;
ASET (menu_bar_items_vector, i, list1 (item)); i++;
ASET (menu_bar_items_vector, i, make_number (0)); i++;
menu_bar_items_index = i;
}
/* We did find an item for this KEY. Add ITEM to its list of maps. */
else
{
Lisp_Object old;
old = AREF (menu_bar_items_vector, i + 2);
/* If the new and the old items are not both keymaps,
the lookup will only find `item'. */
item = Fcons (item, KEYMAPP (item) && KEYMAPP (XCAR (old)) ? old : Qnil);
ASET (menu_bar_items_vector, i + 2, item);
}
}
/* This is used as the handler when calling menu_item_eval_property. */
static Lisp_Object
menu_item_eval_property_1 (Lisp_Object arg)
{
/* If we got a quit from within the menu computation,
quit all the way out of it. This takes care of C-] in the debugger. */
if (CONSP (arg) && EQ (XCAR (arg), Qquit))
quit ();
return Qnil;
}
static Lisp_Object
eval_dyn (Lisp_Object form)
{
return Feval (form, Qnil);
}
/* Evaluate an expression and return the result (or nil if something
went wrong). Used to evaluate dynamic parts of menu items. */
Lisp_Object
menu_item_eval_property (Lisp_Object sexpr)
{
ptrdiff_t count = SPECPDL_INDEX ();
Lisp_Object val;
specbind (Qinhibit_redisplay, Qt);
val = internal_condition_case_1 (eval_dyn, sexpr, Qerror,
menu_item_eval_property_1);
return unbind_to (count, val);
}
/* This function parses a menu item and leaves the result in the
vector item_properties.
ITEM is a key binding, a possible menu item.
INMENUBAR is > 0 when this is considered for an entry in a menu bar
top level.
INMENUBAR is < 0 when this is considered for an entry in a keyboard menu.
parse_menu_item returns true if the item is a menu item and false
otherwise. */
bool
parse_menu_item (Lisp_Object item, int inmenubar)
{
Lisp_Object def, tem, item_string, start;
Lisp_Object filter;
Lisp_Object keyhint;
int i;
filter = Qnil;
keyhint = Qnil;
if (!CONSP (item))
return 0;
/* Create item_properties vector if necessary. */
if (NILP (item_properties))
item_properties
= Fmake_vector (make_number (ITEM_PROPERTY_ENABLE + 1), Qnil);
/* Initialize optional entries. */
for (i = ITEM_PROPERTY_DEF; i < ITEM_PROPERTY_ENABLE; i++)
ASET (item_properties, i, Qnil);
ASET (item_properties, ITEM_PROPERTY_ENABLE, Qt);
/* Save the item here to protect it from GC. */
ASET (item_properties, ITEM_PROPERTY_ITEM, item);
item_string = XCAR (item);
start = item;
item = XCDR (item);
if (STRINGP (item_string))
{
/* Old format menu item. */
ASET (item_properties, ITEM_PROPERTY_NAME, item_string);
/* Maybe help string. */
if (CONSP (item) && STRINGP (XCAR (item)))
{
ASET (item_properties, ITEM_PROPERTY_HELP,
Fsubstitute_command_keys (XCAR (item)));
start = item;
item = XCDR (item);
}
/* Maybe an obsolete key binding cache. */
if (CONSP (item) && CONSP (XCAR (item))
&& (NILP (XCAR (XCAR (item)))
|| VECTORP (XCAR (XCAR (item)))))
item = XCDR (item);
/* This is the real definition--the function to run. */
ASET (item_properties, ITEM_PROPERTY_DEF, item);
/* Get enable property, if any. */
if (SYMBOLP (item))
{
tem = Fget (item, Qmenu_enable);
if (!NILP (Venable_disabled_menus_and_buttons))
ASET (item_properties, ITEM_PROPERTY_ENABLE, Qt);
else if (!NILP (tem))
ASET (item_properties, ITEM_PROPERTY_ENABLE, tem);
}
}
else if (EQ (item_string, Qmenu_item) && CONSP (item))
{
/* New format menu item. */
ASET (item_properties, ITEM_PROPERTY_NAME, XCAR (item));
start = XCDR (item);
if (CONSP (start))
{
/* We have a real binding. */
ASET (item_properties, ITEM_PROPERTY_DEF, XCAR (start));
item = XCDR (start);
/* Is there an obsolete cache list with key equivalences. */
if (CONSP (item) && CONSP (XCAR (item)))
item = XCDR (item);
/* Parse properties. */
while (CONSP (item) && CONSP (XCDR (item)))
{
tem = XCAR (item);
item = XCDR (item);
if (EQ (tem, QCenable))
{
if (!NILP (Venable_disabled_menus_and_buttons))
ASET (item_properties, ITEM_PROPERTY_ENABLE, Qt);
else
ASET (item_properties, ITEM_PROPERTY_ENABLE, XCAR (item));
}
else if (EQ (tem, QCvisible))
{
/* If got a visible property and that evaluates to nil
then ignore this item. */
tem = menu_item_eval_property (XCAR (item));
if (NILP (tem))
return 0;
}
else if (EQ (tem, QChelp))
{
Lisp_Object help = XCAR (item);
if (STRINGP (help))
help = Fsubstitute_command_keys (help);
ASET (item_properties, ITEM_PROPERTY_HELP, help);
}
else if (EQ (tem, QCfilter))
filter = item;
else if (EQ (tem, QCkey_sequence))
{
tem = XCAR (item);
if (SYMBOLP (tem) || STRINGP (tem) || VECTORP (tem))
/* Be GC protected. Set keyhint to item instead of tem. */
keyhint = item;
}
else if (EQ (tem, QCkeys))
{
tem = XCAR (item);
if (CONSP (tem) || STRINGP (tem))
ASET (item_properties, ITEM_PROPERTY_KEYEQ, tem);
}
else if (EQ (tem, QCbutton) && CONSP (XCAR (item)))
{
Lisp_Object type;
tem = XCAR (item);
type = XCAR (tem);
if (EQ (type, QCtoggle) || EQ (type, QCradio))
{
ASET (item_properties, ITEM_PROPERTY_SELECTED,
XCDR (tem));
ASET (item_properties, ITEM_PROPERTY_TYPE, type);
}
}
item = XCDR (item);
}
}
else if (inmenubar || !NILP (start))
return 0;
}
else
return 0; /* not a menu item */
/* If item string is not a string, evaluate it to get string.
If we don't get a string, skip this item. */
item_string = AREF (item_properties, ITEM_PROPERTY_NAME);
if (!(STRINGP (item_string)))
{
item_string = menu_item_eval_property (item_string);
if (!STRINGP (item_string))
return 0;
ASET (item_properties, ITEM_PROPERTY_NAME, item_string);
}
/* If got a filter apply it on definition. */
def = AREF (item_properties, ITEM_PROPERTY_DEF);
if (!NILP (filter))
{
def = menu_item_eval_property (list2 (XCAR (filter),
list2 (Qquote, def)));
ASET (item_properties, ITEM_PROPERTY_DEF, def);
}
/* Enable or disable selection of item. */
tem = AREF (item_properties, ITEM_PROPERTY_ENABLE);
if (!EQ (tem, Qt))
{
tem = menu_item_eval_property (tem);
if (inmenubar && NILP (tem))
return 0; /* Ignore disabled items in menu bar. */
ASET (item_properties, ITEM_PROPERTY_ENABLE, tem);
}
/* If we got no definition, this item is just unselectable text which
is OK in a submenu but not in the menubar. */
if (NILP (def))
return (!inmenubar);
/* See if this is a separate pane or a submenu. */
def = AREF (item_properties, ITEM_PROPERTY_DEF);
tem = get_keymap (def, 0, 1);
/* For a subkeymap, just record its details and exit. */
if (CONSP (tem))
{
ASET (item_properties, ITEM_PROPERTY_MAP, tem);
ASET (item_properties, ITEM_PROPERTY_DEF, tem);
return 1;
}
/* At the top level in the menu bar, do likewise for commands also.
The menu bar does not display equivalent key bindings anyway.
ITEM_PROPERTY_DEF is already set up properly. */
if (inmenubar > 0)
return 1;
{ /* This is a command. See if there is an equivalent key binding. */
Lisp_Object keyeq = AREF (item_properties, ITEM_PROPERTY_KEYEQ);
AUTO_STRING (space_space, " ");
/* The previous code preferred :key-sequence to :keys, so we
preserve this behavior. */
if (STRINGP (keyeq) && !CONSP (keyhint))
keyeq = concat2 (space_space, Fsubstitute_command_keys (keyeq));
else
{
Lisp_Object prefix = keyeq;
Lisp_Object keys = Qnil;
if (CONSP (prefix))
{
def = XCAR (prefix);
prefix = XCDR (prefix);
}
else
def = AREF (item_properties, ITEM_PROPERTY_DEF);
if (CONSP (keyhint) && !NILP (XCAR (keyhint)))
{
keys = XCAR (keyhint);
tem = Fkey_binding (keys, Qnil, Qnil, Qnil);
/* We have a suggested key. Is it bound to the command? */
if (NILP (tem)
|| (!EQ (tem, def)
/* If the command is an alias for another
(such as lmenu.el set it up), check if the
original command matches the cached command. */
&& !(SYMBOLP (def)
&& EQ (tem, XSYMBOL (def)->function))))
keys = Qnil;
}
if (NILP (keys))
keys = Fwhere_is_internal (def, Qnil, Qt, Qnil, Qnil);
if (!NILP (keys))
{
tem = Fkey_description (keys, Qnil);
if (CONSP (prefix))
{
if (STRINGP (XCAR (prefix)))
tem = concat2 (XCAR (prefix), tem);
if (STRINGP (XCDR (prefix)))
tem = concat2 (tem, XCDR (prefix));
}
keyeq = concat2 (space_space, tem);
}
else
keyeq = Qnil;
}
/* If we have an equivalent key binding, use that. */
ASET (item_properties, ITEM_PROPERTY_KEYEQ, keyeq);
}
/* Include this when menu help is implemented.
tem = XVECTOR (item_properties)->contents[ITEM_PROPERTY_HELP];
if (!(NILP (tem) || STRINGP (tem)))
{
tem = menu_item_eval_property (tem);
if (!STRINGP (tem))
tem = Qnil;
XVECTOR (item_properties)->contents[ITEM_PROPERTY_HELP] = tem;
}
*/
/* Handle radio buttons or toggle boxes. */
tem = AREF (item_properties, ITEM_PROPERTY_SELECTED);
if (!NILP (tem))
ASET (item_properties, ITEM_PROPERTY_SELECTED,
menu_item_eval_property (tem));
return 1;
}
/***********************************************************************
Tool-bars
***********************************************************************/
/* A vector holding tool bar items while they are parsed in function
tool_bar_items. Each item occupies TOOL_BAR_ITEM_NSCLOTS elements
in the vector. */
static Lisp_Object tool_bar_items_vector;
/* A vector holding the result of parse_tool_bar_item. Layout is like
the one for a single item in tool_bar_items_vector. */
static Lisp_Object tool_bar_item_properties;
/* Next free index in tool_bar_items_vector. */
static int ntool_bar_items;
/* Function prototypes. */
static void init_tool_bar_items (Lisp_Object);
static void process_tool_bar_item (Lisp_Object, Lisp_Object, Lisp_Object,
void *);
static bool parse_tool_bar_item (Lisp_Object, Lisp_Object);
static void append_tool_bar_item (void);
/* Return a vector of tool bar items for keymaps currently in effect.
Reuse vector REUSE if non-nil. Return in *NITEMS the number of
tool bar items found. */
Lisp_Object
tool_bar_items (Lisp_Object reuse, int *nitems)
{
Lisp_Object *maps;
Lisp_Object mapsbuf[3];
ptrdiff_t nmaps, i;
Lisp_Object oquit;
Lisp_Object *tmaps;
USE_SAFE_ALLOCA;
*nitems = 0;
/* In order to build the menus, we need to call the keymap
accessors. They all call QUIT. But this function is called
during redisplay, during which a quit is fatal. So inhibit
quitting while building the menus. We do this instead of
specbind because (1) errors will clear it anyway and (2) this
avoids risk of specpdl overflow. */
oquit = Vinhibit_quit;
Vinhibit_quit = Qt;
/* Initialize tool_bar_items_vector and protect it from GC. */
init_tool_bar_items (reuse);
/* Build list of keymaps in maps. Set nmaps to the number of maps
to process. */
/* Should overriding-terminal-local-map and overriding-local-map apply? */
if (!NILP (Voverriding_local_map_menu_flag)
&& !NILP (Voverriding_local_map))
{
/* Yes, use them (if non-nil) as well as the global map. */
maps = mapsbuf;
nmaps = 0;
if (!NILP (KVAR (current_kboard, Voverriding_terminal_local_map)))
maps[nmaps++] = KVAR (current_kboard, Voverriding_terminal_local_map);
if (!NILP (Voverriding_local_map))
maps[nmaps++] = Voverriding_local_map;
}
else
{
/* No, so use major and minor mode keymaps and keymap property.
Note that tool-bar bindings in the local-map and keymap
properties may not work reliable, as they are only
recognized when the tool-bar (or mode-line) is updated,
which does not normally happen after every command. */
ptrdiff_t nminor = current_minor_maps (NULL, &tmaps);
SAFE_NALLOCA (maps, 1, nminor + 4);
nmaps = 0;
Lisp_Object tem = KVAR (current_kboard, Voverriding_terminal_local_map);
if (!NILP (tem) && !NILP (Voverriding_local_map_menu_flag))
maps[nmaps++] = tem;
if (tem = get_local_map (PT, current_buffer, Qkeymap), !NILP (tem))
maps[nmaps++] = tem;
if (nminor != 0)
{
memcpy (maps + nmaps, tmaps, nminor * sizeof (maps[0]));
nmaps += nminor;
}
maps[nmaps++] = get_local_map (PT, current_buffer, Qlocal_map);
}
/* Add global keymap at the end. */
maps[nmaps++] = current_global_map;
/* Process maps in reverse order and look up in each map the prefix
key `tool-bar'. */
for (i = nmaps - 1; i >= 0; --i)
if (!NILP (maps[i]))
{
Lisp_Object keymap;
keymap = get_keymap (access_keymap (maps[i], Qtool_bar, 1, 0, 1), 0, 1);
if (CONSP (keymap))
map_keymap (keymap, process_tool_bar_item, Qnil, NULL, 1);
}
Vinhibit_quit = oquit;
*nitems = ntool_bar_items / TOOL_BAR_ITEM_NSLOTS;
SAFE_FREE ();
return tool_bar_items_vector;
}
/* Process the definition of KEY which is DEF. */
static void
process_tool_bar_item (Lisp_Object key, Lisp_Object def, Lisp_Object data, void *args)
{
int i;
if (EQ (def, Qundefined))
{
/* If a map has an explicit `undefined' as definition,
discard any previously made item. */
for (i = 0; i < ntool_bar_items; i += TOOL_BAR_ITEM_NSLOTS)
{
Lisp_Object *v = XVECTOR (tool_bar_items_vector)->contents + i;
if (EQ (key, v[TOOL_BAR_ITEM_KEY]))
{
if (ntool_bar_items > i + TOOL_BAR_ITEM_NSLOTS)
memmove (v, v + TOOL_BAR_ITEM_NSLOTS,
((ntool_bar_items - i - TOOL_BAR_ITEM_NSLOTS)
* word_size));
ntool_bar_items -= TOOL_BAR_ITEM_NSLOTS;
break;
}
}
}
else if (parse_tool_bar_item (key, def))
/* Append a new tool bar item to tool_bar_items_vector. Accept
more than one definition for the same key. */
append_tool_bar_item ();
}
/* Access slot with index IDX of vector tool_bar_item_properties. */
#define PROP(IDX) AREF (tool_bar_item_properties, (IDX))
static void
set_prop (ptrdiff_t idx, Lisp_Object val)
{
ASET (tool_bar_item_properties, idx, val);
}
/* Parse a tool bar item specification ITEM for key KEY and return the
result in tool_bar_item_properties. Value is false if ITEM is
invalid.
ITEM is a list `(menu-item CAPTION BINDING PROPS...)'.
CAPTION is the caption of the item, If it's not a string, it is
evaluated to get a string.
BINDING is the tool bar item's binding. Tool-bar items with keymaps
as binding are currently ignored.
The following properties are recognized:
- `:enable FORM'.
FORM is evaluated and specifies whether the tool bar item is
enabled or disabled.
- `:visible FORM'
FORM is evaluated and specifies whether the tool bar item is visible.
- `:filter FUNCTION'
FUNCTION is invoked with one parameter `(quote BINDING)'. Its
result is stored as the new binding.
- `:button (TYPE SELECTED)'
TYPE must be one of `:radio' or `:toggle'. SELECTED is evaluated
and specifies whether the button is selected (pressed) or not.
- `:image IMAGES'
IMAGES is either a single image specification or a vector of four
image specifications. See enum tool_bar_item_images.
- `:help HELP-STRING'.
Gives a help string to display for the tool bar item.
- `:label LABEL-STRING'.
A text label to show with the tool bar button if labels are enabled. */
static bool
parse_tool_bar_item (Lisp_Object key, Lisp_Object item)
{
Lisp_Object filter = Qnil;
Lisp_Object caption;
int i;
bool have_label = false;
/* Definition looks like `(menu-item CAPTION BINDING PROPS...)'.
Rule out items that aren't lists, don't start with
`menu-item' or whose rest following `tool-bar-item' is not a
list. */
if (!CONSP (item))
return 0;
/* As an exception, allow old-style menu separators. */
if (STRINGP (XCAR (item)))
item = list1 (XCAR (item));
else if (!EQ (XCAR (item), Qmenu_item)
|| (item = XCDR (item), !CONSP (item)))
return 0;
/* Create tool_bar_item_properties vector if necessary. Reset it to
defaults. */
if (VECTORP (tool_bar_item_properties))
{
for (i = 0; i < TOOL_BAR_ITEM_NSLOTS; ++i)
set_prop (i, Qnil);
}
else
tool_bar_item_properties
= Fmake_vector (make_number (TOOL_BAR_ITEM_NSLOTS), Qnil);
/* Set defaults. */
set_prop (TOOL_BAR_ITEM_KEY, key);
set_prop (TOOL_BAR_ITEM_ENABLED_P, Qt);
/* Get the caption of the item. If the caption is not a string,
evaluate it to get a string. If we don't get a string, skip this
item. */
caption = XCAR (item);
if (!STRINGP (caption))
{
caption = menu_item_eval_property (caption);
if (!STRINGP (caption))
return 0;
}
set_prop (TOOL_BAR_ITEM_CAPTION, caption);
/* If the rest following the caption is not a list, the menu item is
either a separator, or invalid. */
item = XCDR (item);
if (!CONSP (item))
{
if (menu_separator_name_p (SSDATA (caption)))
{
set_prop (TOOL_BAR_ITEM_TYPE, Qt);
#if !defined (USE_GTK) && !defined (HAVE_NS)
/* If we use build_desired_tool_bar_string to render the
tool bar, the separator is rendered as an image. */
set_prop (TOOL_BAR_ITEM_IMAGES,
(menu_item_eval_property
(Vtool_bar_separator_image_expression)));
set_prop (TOOL_BAR_ITEM_ENABLED_P, Qnil);
set_prop (TOOL_BAR_ITEM_SELECTED_P, Qnil);
set_prop (TOOL_BAR_ITEM_CAPTION, Qnil);
#endif
return 1;
}
return 0;
}
/* Store the binding. */
set_prop (TOOL_BAR_ITEM_BINDING, XCAR (item));
item = XCDR (item);
/* Ignore cached key binding, if any. */
if (CONSP (item) && CONSP (XCAR (item)))
item = XCDR (item);
/* Process the rest of the properties. */
for (; CONSP (item) && CONSP (XCDR (item)); item = XCDR (XCDR (item)))
{
Lisp_Object ikey, value;
ikey = XCAR (item);
value = XCAR (XCDR (item));
if (EQ (ikey, QCenable))
{
/* `:enable FORM'. */
if (!NILP (Venable_disabled_menus_and_buttons))
set_prop (TOOL_BAR_ITEM_ENABLED_P, Qt);
else
set_prop (TOOL_BAR_ITEM_ENABLED_P, value);
}
else if (EQ (ikey, QCvisible))
{
/* `:visible FORM'. If got a visible property and that
evaluates to nil then ignore this item. */
if (NILP (menu_item_eval_property (value)))
return 0;
}
else if (EQ (ikey, QChelp))
/* `:help HELP-STRING'. */
set_prop (TOOL_BAR_ITEM_HELP, value);
else if (EQ (ikey, QCvert_only))
/* `:vert-only t/nil'. */
set_prop (TOOL_BAR_ITEM_VERT_ONLY, value);
else if (EQ (ikey, QClabel))
{
const char *bad_label = "!!?GARBLED ITEM?!!";
/* `:label LABEL-STRING'. */
set_prop (TOOL_BAR_ITEM_LABEL,
STRINGP (value) ? value : build_string (bad_label));
have_label = true;
}
else if (EQ (ikey, QCfilter))
/* ':filter FORM'. */
filter = value;
else if (EQ (ikey, QCbutton) && CONSP (value))
{
/* `:button (TYPE . SELECTED)'. */
Lisp_Object type, selected;
type = XCAR (value);
selected = XCDR (value);
if (EQ (type, QCtoggle) || EQ (type, QCradio))
{
set_prop (TOOL_BAR_ITEM_SELECTED_P, selected);
set_prop (TOOL_BAR_ITEM_TYPE, type);
}
}
else if (EQ (ikey, QCimage)
&& (CONSP (value)
|| (VECTORP (value) && ASIZE (value) == 4)))
/* Value is either a single image specification or a vector
of 4 such specifications for the different button states. */
set_prop (TOOL_BAR_ITEM_IMAGES, value);
else if (EQ (ikey, QCrtl))
/* ':rtl STRING' */
set_prop (TOOL_BAR_ITEM_RTL_IMAGE, value);
}
if (!have_label)
{
/* Try to make one from caption and key. */
Lisp_Object tkey = PROP (TOOL_BAR_ITEM_KEY);
Lisp_Object tcapt = PROP (TOOL_BAR_ITEM_CAPTION);
const char *label = SYMBOLP (tkey) ? SSDATA (SYMBOL_NAME (tkey)) : "";
const char *capt = STRINGP (tcapt) ? SSDATA (tcapt) : "";
ptrdiff_t max_lbl =
2 * max (0, min (tool_bar_max_label_size, STRING_BYTES_BOUND / 2));
char *buf = xmalloc (max_lbl + 1);
Lisp_Object new_lbl;
ptrdiff_t caption_len = strlen (capt);
if (caption_len <= max_lbl && capt[0] != '\0')
{
strcpy (buf, capt);
while (caption_len > 0 && buf[caption_len - 1] == '.')
caption_len--;
buf[caption_len] = '\0';
label = capt = buf;
}
if (strlen (label) <= max_lbl && label[0] != '\0')
{
ptrdiff_t j;
if (label != buf)
strcpy (buf, label);
for (j = 0; buf[j] != '\0'; ++j)
if (buf[j] == '-')
buf[j] = ' ';
label = buf;
}
else
label = "";
new_lbl = Fupcase_initials (build_string (label));
if (SCHARS (new_lbl) <= tool_bar_max_label_size)
set_prop (TOOL_BAR_ITEM_LABEL, new_lbl);
else
set_prop (TOOL_BAR_ITEM_LABEL, empty_unibyte_string);
xfree (buf);
}
/* If got a filter apply it on binding. */
if (!NILP (filter))
set_prop (TOOL_BAR_ITEM_BINDING,
(menu_item_eval_property
(list2 (filter,
list2 (Qquote,
PROP (TOOL_BAR_ITEM_BINDING))))));
/* See if the binding is a keymap. Give up if it is. */
if (CONSP (get_keymap (PROP (TOOL_BAR_ITEM_BINDING), 0, 1)))
return 0;
/* Enable or disable selection of item. */
if (!EQ (PROP (TOOL_BAR_ITEM_ENABLED_P), Qt))
set_prop (TOOL_BAR_ITEM_ENABLED_P,
menu_item_eval_property (PROP (TOOL_BAR_ITEM_ENABLED_P)));
/* Handle radio buttons or toggle boxes. */
if (!NILP (PROP (TOOL_BAR_ITEM_SELECTED_P)))
set_prop (TOOL_BAR_ITEM_SELECTED_P,
menu_item_eval_property (PROP (TOOL_BAR_ITEM_SELECTED_P)));
return 1;
#undef PROP
}
/* Initialize tool_bar_items_vector. REUSE, if non-nil, is a vector
that can be reused. */
static void
init_tool_bar_items (Lisp_Object reuse)
{
if (VECTORP (reuse))
tool_bar_items_vector = reuse;
else
tool_bar_items_vector = Fmake_vector (make_number (64), Qnil);
ntool_bar_items = 0;
}
/* Append parsed tool bar item properties from
tool_bar_item_properties */
static void
append_tool_bar_item (void)
{
ptrdiff_t incr
= (ntool_bar_items
- (ASIZE (tool_bar_items_vector) - TOOL_BAR_ITEM_NSLOTS));
/* Enlarge tool_bar_items_vector if necessary. */
if (incr > 0)
tool_bar_items_vector = larger_vector (tool_bar_items_vector, incr, -1);
/* Append entries from tool_bar_item_properties to the end of
tool_bar_items_vector. */
vcopy (tool_bar_items_vector, ntool_bar_items,
XVECTOR (tool_bar_item_properties)->contents, TOOL_BAR_ITEM_NSLOTS);
ntool_bar_items += TOOL_BAR_ITEM_NSLOTS;
}
/* Read a character using menus based on the keymap MAP.
Return nil if there are no menus in the maps.
Return t if we displayed a menu but the user rejected it.
PREV_EVENT is the previous input event, or nil if we are reading
the first event of a key sequence.
If USED_MOUSE_MENU is non-null, set *USED_MOUSE_MENU to true
if we used a mouse menu to read the input, or false otherwise. If
USED_MOUSE_MENU is null, don't dereference it.
The prompting is done based on the prompt-string of the map
and the strings associated with various map elements.
This can be done with X menus or with menus put in the minibuf.
These are done in different ways, depending on how the input will be read.
Menus using X are done after auto-saving in read-char, getting the input
event from Fx_popup_menu; menus using the minibuf use read_char recursively
and do auto-saving in the inner call of read_char. */
static Lisp_Object
read_char_x_menu_prompt (Lisp_Object map,
Lisp_Object prev_event, bool *used_mouse_menu)
{
if (used_mouse_menu)
*used_mouse_menu = false;
/* Use local over global Menu maps. */
if (! menu_prompting)
return Qnil;
/* If we got to this point via a mouse click,
use a real menu for mouse selection. */
if (EVENT_HAS_PARAMETERS (prev_event)
&& !EQ (XCAR (prev_event), Qmenu_bar)
&& !EQ (XCAR (prev_event), Qtool_bar))
{
/* Display the menu and get the selection. */
Lisp_Object value;
value = Fx_popup_menu (prev_event, get_keymap (map, 0, 1));
if (CONSP (value))
{
Lisp_Object tem;
record_menu_key (XCAR (value));
/* If we got multiple events, unread all but
the first.
There is no way to prevent those unread events
from showing up later in last_nonmenu_event.
So turn symbol and integer events into lists,
to indicate that they came from a mouse menu,
so that when present in last_nonmenu_event
they won't confuse things. */
for (tem = XCDR (value); CONSP (tem); tem = XCDR (tem))
{
record_menu_key (XCAR (tem));
if (SYMBOLP (XCAR (tem))
|| INTEGERP (XCAR (tem)))
XSETCAR (tem, Fcons (XCAR (tem), Qdisabled));
}
/* If we got more than one event, put all but the first
onto this list to be read later.
Return just the first event now. */
Vunread_command_events
= nconc2 (XCDR (value), Vunread_command_events);
value = XCAR (value);
}
else if (NILP (value))
value = Qt;
if (used_mouse_menu)
*used_mouse_menu = true;
return value;
}
return Qnil ;
}
static Lisp_Object
read_char_minibuf_menu_prompt (int commandflag,
Lisp_Object map)
{
Lisp_Object name;
ptrdiff_t nlength;
/* FIXME: Use the minibuffer's frame width. */
ptrdiff_t width = FRAME_COLS (SELECTED_FRAME ()) - 4;
ptrdiff_t idx = -1;
bool nobindings = true;
Lisp_Object rest, vector;
Lisp_Object prompt_strings = Qnil;
vector = Qnil;
if (! menu_prompting)
return Qnil;
map = get_keymap (map, 0, 1);
name = Fkeymap_prompt (map);
/* If we don't have any menus, just read a character normally. */
if (!STRINGP (name))
return Qnil;
#define PUSH_C_STR(str, listvar) \
listvar = Fcons (build_unibyte_string (str), listvar)
/* Prompt string always starts with map's prompt, and a space. */
prompt_strings = Fcons (name, prompt_strings);
PUSH_C_STR (": ", prompt_strings);
nlength = SCHARS (name) + 2;
rest = map;
/* Present the documented bindings, a line at a time. */
while (1)
{
bool notfirst = false;
Lisp_Object menu_strings = prompt_strings;
ptrdiff_t i = nlength;
Lisp_Object obj;
Lisp_Object orig_defn_macro;
/* Loop over elements of map. */
while (i < width)
{
Lisp_Object elt;
/* FIXME: Use map_keymap to handle new keymap formats. */
/* At end of map, wrap around if just starting,
or end this line if already have something on it. */
if (NILP (rest))
{
if (notfirst || nobindings)
break;
else
rest = map;
}
/* Look at the next element of the map. */
if (idx >= 0)
elt = AREF (vector, idx);
else
elt = Fcar_safe (rest);
if (idx < 0 && VECTORP (elt))
{
/* If we found a dense table in the keymap,
advanced past it, but start scanning its contents. */
rest = Fcdr_safe (rest);
vector = elt;
idx = 0;
}
else
{
/* An ordinary element. */
Lisp_Object event, tem;
if (idx < 0)
{
event = Fcar_safe (elt); /* alist */
elt = Fcdr_safe (elt);
}
else
{
XSETINT (event, idx); /* vector */
}
/* Ignore the element if it has no prompt string. */
if (INTEGERP (event) && parse_menu_item (elt, -1))
{
/* True if the char to type matches the string. */
bool char_matches;
Lisp_Object upcased_event, downcased_event;
Lisp_Object desc = Qnil;
Lisp_Object s
= AREF (item_properties, ITEM_PROPERTY_NAME);
upcased_event = Fupcase (event);
downcased_event = Fdowncase (event);
char_matches = (XINT (upcased_event) == SREF (s, 0)
|| XINT (downcased_event) == SREF (s, 0));
if (! char_matches)
desc = Fsingle_key_description (event, Qnil);
#if 0 /* It is redundant to list the equivalent key bindings because
the prefix is what the user has already typed. */
tem
= XVECTOR (item_properties)->contents[ITEM_PROPERTY_KEYEQ];
if (!NILP (tem))
/* Insert equivalent keybinding. */
s = concat2 (s, tem);
#endif
tem
= AREF (item_properties, ITEM_PROPERTY_TYPE);
if (EQ (tem, QCradio) || EQ (tem, QCtoggle))
{
/* Insert button prefix. */
Lisp_Object selected
= AREF (item_properties, ITEM_PROPERTY_SELECTED);
AUTO_STRING (radio_yes, "(*) ");
AUTO_STRING (radio_no , "( ) ");
AUTO_STRING (check_yes, "[X] ");
AUTO_STRING (check_no , "[ ] ");
if (EQ (tem, QCradio))
tem = NILP (selected) ? radio_yes : radio_no;
else
tem = NILP (selected) ? check_yes : check_no;
s = concat2 (tem, s);
}
/* If we have room for the prompt string, add it to this line.
If this is the first on the line, always add it. */
if ((SCHARS (s) + i + 2
+ (char_matches ? 0 : SCHARS (desc) + 3))
< width
|| !notfirst)
{
ptrdiff_t thiswidth;
/* Punctuate between strings. */
if (notfirst)
{
PUSH_C_STR (", ", menu_strings);
i += 2;
}
notfirst = true;
nobindings = false;
/* If the char to type doesn't match the string's
first char, explicitly show what char to type. */
if (! char_matches)
{
/* Add as much of string as fits. */
thiswidth = min (SCHARS (desc), width - i);
menu_strings
= Fcons (Fsubstring (desc, make_number (0),
make_number (thiswidth)),
menu_strings);
i += thiswidth;
PUSH_C_STR (" = ", menu_strings);
i += 3;
}
/* Add as much of string as fits. */
thiswidth = min (SCHARS (s), width - i);
menu_strings
= Fcons (Fsubstring (s, make_number (0),
make_number (thiswidth)),
menu_strings);
i += thiswidth;
}
else
{
/* If this element does not fit, end the line now,
and save the element for the next line. */
PUSH_C_STR ("...", menu_strings);
break;
}
}
/* Move past this element. */
if (idx >= 0 && idx + 1 >= ASIZE (vector))
/* Handle reaching end of dense table. */
idx = -1;
if (idx >= 0)
idx++;
else
rest = Fcdr_safe (rest);
}
}
/* Prompt with that and read response. */
message3_nolog (apply1 (intern ("concat"), Fnreverse (menu_strings)));
/* Make believe it's not a keyboard macro in case the help char
is pressed. Help characters are not recorded because menu prompting
is not used on replay. */
orig_defn_macro = KVAR (current_kboard, defining_kbd_macro);
kset_defining_kbd_macro (current_kboard, Qnil);
do
obj = read_char (commandflag, Qnil, Qt, 0, NULL);
while (BUFFERP (obj));
kset_defining_kbd_macro (current_kboard, orig_defn_macro);
if (!INTEGERP (obj) || XINT (obj) == -2
|| (! EQ (obj, menu_prompt_more_char)
&& (!INTEGERP (menu_prompt_more_char)
|| ! EQ (obj, make_number (Ctl (XINT (menu_prompt_more_char)))))))
{
if (!NILP (KVAR (current_kboard, defining_kbd_macro)))
store_kbd_macro_char (obj);
return obj;
}
/* Help char - go round again. */
}
}
/* Reading key sequences. */
static Lisp_Object
follow_key (Lisp_Object keymap, Lisp_Object key)
{
return access_keymap (get_keymap (keymap, 0, 1),
key, 1, 0, 1);
}
static Lisp_Object
active_maps (Lisp_Object first_event)
{
Lisp_Object position
= CONSP (first_event) ? CAR_SAFE (XCDR (first_event)) : Qnil;
return Fcons (Qkeymap, Fcurrent_active_maps (Qt, position));
}
/* Structure used to keep track of partial application of key remapping
such as Vfunction_key_map and Vkey_translation_map. */
typedef struct keyremap
{
/* This is the map originally specified for this use. */
Lisp_Object parent;
/* This is a submap reached by looking up, in PARENT,
the events from START to END. */
Lisp_Object map;
/* Positions [START, END) in the key sequence buffer
are the key that we have scanned so far.
Those events are the ones that we will replace
if PARENT maps them into a key sequence. */
int start, end;
} keyremap;
/* Lookup KEY in MAP.
MAP is a keymap mapping keys to key vectors or functions.
If the mapping is a function and DO_FUNCALL is true,
the function is called with PROMPT as parameter and its return
value is used as the return value of this function (after checking
that it is indeed a vector). */
static Lisp_Object
access_keymap_keyremap (Lisp_Object map, Lisp_Object key, Lisp_Object prompt,
bool do_funcall)
{
Lisp_Object next;
next = access_keymap (map, key, 1, 0, 1);
/* Handle a symbol whose function definition is a keymap
or an array. */
if (SYMBOLP (next) && !NILP (Ffboundp (next))
&& (ARRAYP (XSYMBOL (next)->function)
|| KEYMAPP (XSYMBOL (next)->function)))
next = Fautoload_do_load (XSYMBOL (next)->function, next, Qnil);
/* If the keymap gives a function, not an
array, then call the function with one arg and use
its value instead. */
if (do_funcall && FUNCTIONP (next))
{
Lisp_Object tem;
tem = next;
next = call1 (next, prompt);
/* If the function returned something invalid,
barf--don't ignore it. */
if (! (NILP (next) || VECTORP (next) || STRINGP (next)))
error ("Function %s returns invalid key sequence",
SSDATA (SYMBOL_NAME (tem)));
}
return next;
}
/* Do one step of the key remapping used for function-key-map and
key-translation-map:
KEYBUF is the buffer holding the input events.
BUFSIZE is its maximum size.
FKEY is a pointer to the keyremap structure to use.
INPUT is the index of the last element in KEYBUF.
DOIT if true says that the remapping can actually take place.
DIFF is used to return the number of keys added/removed by the remapping.
PARENT is the root of the keymap.
PROMPT is the prompt to use if the remapping happens through a function.
Return true if the remapping actually took place. */
static bool
keyremap_step (Lisp_Object *keybuf, int bufsize, volatile keyremap *fkey,
int input, bool doit, int *diff, Lisp_Object prompt)
{
Lisp_Object next, key;
key = keybuf[fkey->end++];
if (KEYMAPP (fkey->parent))
next = access_keymap_keyremap (fkey->map, key, prompt, doit);
else
next = Qnil;
/* If keybuf[fkey->start..fkey->end] is bound in the
map and we're in a position to do the key remapping, replace it with
the binding and restart with fkey->start at the end. */
if ((VECTORP (next) || STRINGP (next)) && doit)
{
int len = XFASTINT (Flength (next));
int i;
*diff = len - (fkey->end - fkey->start);
if (bufsize - input <= *diff)
error ("Key sequence too long");
/* Shift the keys that follow fkey->end. */
if (*diff < 0)
for (i = fkey->end; i < input; i++)
keybuf[i + *diff] = keybuf[i];
else if (*diff > 0)
for (i = input - 1; i >= fkey->end; i--)
keybuf[i + *diff] = keybuf[i];
/* Overwrite the old keys with the new ones. */
for (i = 0; i < len; i++)
keybuf[fkey->start + i]
= Faref (next, make_number (i));
fkey->start = fkey->end += *diff;
fkey->map = fkey->parent;
return 1;
}
fkey->map = get_keymap (next, 0, 1);
/* If we no longer have a bound suffix, try a new position for
fkey->start. */
if (!CONSP (fkey->map))
{
fkey->end = ++fkey->start;
fkey->map = fkey->parent;
}
return 0;
}
static bool
test_undefined (Lisp_Object binding)
{
return (NILP (binding)
|| EQ (binding, Qundefined)
|| (SYMBOLP (binding)
&& EQ (Fcommand_remapping (binding, Qnil, Qnil), Qundefined)));
}
/* Read a sequence of keys that ends with a non prefix character,
storing it in KEYBUF, a buffer of size BUFSIZE.
Prompt with PROMPT.
Return the length of the key sequence stored.
Return -1 if the user rejected a command menu.
Echo starting immediately unless `prompt' is 0.
If PREVENT_REDISPLAY is non-zero, avoid redisplay by calling
read_char with a suitable COMMANDFLAG argument.
Where a key sequence ends depends on the currently active keymaps.
These include any minor mode keymaps active in the current buffer,
the current buffer's local map, and the global map.
If a key sequence has no other bindings, we check Vfunction_key_map
to see if some trailing subsequence might be the beginning of a
function key's sequence. If so, we try to read the whole function
key, and substitute its symbolic name into the key sequence.
We ignore unbound `down-' mouse clicks. We turn unbound `drag-' and
`double-' events into similar click events, if that would make them
bound. We try to turn `triple-' events first into `double-' events,
then into clicks.
If we get a mouse click in a mode line, vertical divider, or other
non-text area, we treat the click as if it were prefixed by the
symbol denoting that area - `mode-line', `vertical-line', or
whatever.
If the sequence starts with a mouse click, we read the key sequence
with respect to the buffer clicked on, not the current buffer.
If the user switches frames in the midst of a key sequence, we put
off the switch-frame event until later; the next call to
read_char will return it.
If FIX_CURRENT_BUFFER, we restore current_buffer
from the selected window's buffer. */
static int
read_key_sequence (Lisp_Object *keybuf, int bufsize, Lisp_Object prompt,
bool dont_downcase_last, bool can_return_switch_frame,
bool fix_current_buffer, bool prevent_redisplay)
{
ptrdiff_t count = SPECPDL_INDEX ();
/* How many keys there are in the current key sequence. */
int t;
/* The length of the echo buffer when we started reading, and
the length of this_command_keys when we started reading. */
ptrdiff_t echo_start UNINIT;
ptrdiff_t keys_start;
Lisp_Object current_binding = Qnil;
Lisp_Object first_event = Qnil;
/* Index of the first key that has no binding.
It is useless to try fkey.start larger than that. */
int first_unbound;
/* If t < mock_input, then KEYBUF[t] should be read as the next
input key.
We use this to recover after recognizing a function key. Once we
realize that a suffix of the current key sequence is actually a
function key's escape sequence, we replace the suffix with the
function key's binding from Vfunction_key_map. Now keybuf
contains a new and different key sequence, so the echo area,
this_command_keys, and the submaps and defs arrays are wrong. In
this situation, we set mock_input to t, set t to 0, and jump to
restart_sequence; the loop will read keys from keybuf up until
mock_input, thus rebuilding the state; and then it will resume
reading characters from the keyboard. */
int mock_input = 0;
/* If the sequence is unbound in submaps[], then
keybuf[fkey.start..fkey.end-1] is a prefix in Vfunction_key_map,
and fkey.map is its binding.
These might be > t, indicating that all function key scanning
should hold off until t reaches them. We do this when we've just
recognized a function key, to avoid searching for the function
key's again in Vfunction_key_map. */
keyremap fkey;
/* Likewise, for key_translation_map and input-decode-map. */
keyremap keytran, indec;
/* True if we are trying to map a key by changing an upper-case
letter to lower case, or a shifted function key to an unshifted
one. */
bool shift_translated = false;
/* If we receive a `switch-frame' or `select-window' event in the middle of
a key sequence, we put it off for later.
While we're reading, we keep the event here. */
Lisp_Object delayed_switch_frame;
Lisp_Object original_uppercase UNINIT;
int original_uppercase_position = -1;
/* Gets around Microsoft compiler limitations. */
bool dummyflag = false;
struct buffer *starting_buffer;
/* List of events for which a fake prefix key has been generated. */
Lisp_Object fake_prefixed_keys = Qnil;
raw_keybuf_count = 0;
last_nonmenu_event = Qnil;
delayed_switch_frame = Qnil;
if (INTERACTIVE)
{
if (!NILP (prompt))
{
/* Install the string PROMPT as the beginning of the string
of echoing, so that it serves as a prompt for the next
character. */
kset_echo_prompt (current_kboard, prompt);
/* FIXME: This use of echo_now doesn't look quite right and is ugly
since it forces us to fiddle with current_kboard->immediate_echo
before and after. */
current_kboard->immediate_echo = false;
echo_now ();
if (!echo_keystrokes_p ())
current_kboard->immediate_echo = false;
}
else if (cursor_in_echo_area /* FIXME: Not sure why we test this here,
maybe we should just drop this test. */
&& echo_keystrokes_p ())
/* This doesn't put in a dash if the echo buffer is empty, so
you don't always see a dash hanging out in the minibuffer. */
echo_dash ();
}
/* Record the initial state of the echo area and this_command_keys;
we will need to restore them if we replay a key sequence. */
if (INTERACTIVE)
echo_start = echo_length ();
keys_start = this_command_key_count;
this_single_command_key_start = keys_start;
/* We jump here when we need to reinitialize fkey and keytran; this
happens if we switch keyboards between rescans. */
replay_entire_sequence:
indec.map = indec.parent = KVAR (current_kboard, Vinput_decode_map);
fkey.map = fkey.parent = KVAR (current_kboard, Vlocal_function_key_map);
keytran.map = keytran.parent = Vkey_translation_map;
indec.start = indec.end = 0;
fkey.start = fkey.end = 0;
keytran.start = keytran.end = 0;
/* We jump here when the key sequence has been thoroughly changed, and
we need to rescan it starting from the beginning. When we jump here,
keybuf[0..mock_input] holds the sequence we should reread. */
replay_sequence:
starting_buffer = current_buffer;
first_unbound = bufsize + 1;
/* Build our list of keymaps.
If we recognize a function key and replace its escape sequence in
keybuf with its symbol, or if the sequence starts with a mouse
click and we need to switch buffers, we jump back here to rebuild
the initial keymaps from the current buffer. */
current_binding = active_maps (first_event);
/* Start from the beginning in keybuf. */
t = 0;
/* These are no-ops the first time through, but if we restart, they
revert the echo area and this_command_keys to their original state. */
this_command_key_count = keys_start;
if (INTERACTIVE && t < mock_input)
echo_truncate (echo_start);
/* If the best binding for the current key sequence is a keymap, or
we may be looking at a function key's escape sequence, keep on
reading. */
while (!NILP (current_binding)
/* Keep reading as long as there's a prefix binding. */
? KEYMAPP (current_binding)
/* Don't return in the middle of a possible function key sequence,
if the only bindings we found were via case conversion.
Thus, if ESC O a has a function-key-map translation
and ESC o has a binding, don't return after ESC O,
so that we can translate ESC O plus the next character. */
: (/* indec.start < t || fkey.start < t || */ keytran.start < t))
{
Lisp_Object key;
bool used_mouse_menu = false;
/* Where the last real key started. If we need to throw away a
key that has expanded into more than one element of keybuf
(say, a mouse click on the mode line which is being treated
as [mode-line (mouse-...)], then we backtrack to this point
of keybuf. */
int last_real_key_start;
/* These variables are analogous to echo_start and keys_start;
while those allow us to restart the entire key sequence,
echo_local_start and keys_local_start allow us to throw away
just one key. */
ptrdiff_t echo_local_start UNINIT;
int keys_local_start;
Lisp_Object new_binding;
eassert (indec.end == t || (indec.end > t && indec.end <= mock_input));
eassert (indec.start <= indec.end);
eassert (fkey.start <= fkey.end);
eassert (keytran.start <= keytran.end);
/* key-translation-map is applied *after* function-key-map
which is itself applied *after* input-decode-map. */
eassert (fkey.end <= indec.start);
eassert (keytran.end <= fkey.start);
if (/* first_unbound < indec.start && first_unbound < fkey.start && */
first_unbound < keytran.start)
{ /* The prefix upto first_unbound has no binding and has
no translation left to do either, so we know it's unbound.
If we don't stop now, we risk staying here indefinitely
(if the user keeps entering fkey or keytran prefixes
like C-c ESC ESC ESC ESC ...) */
int i;
for (i = first_unbound + 1; i < t; i++)
keybuf[i - first_unbound - 1] = keybuf[i];
mock_input = t - first_unbound - 1;
indec.end = indec.start -= first_unbound + 1;
indec.map = indec.parent;
fkey.end = fkey.start -= first_unbound + 1;
fkey.map = fkey.parent;
keytran.end = keytran.start -= first_unbound + 1;
keytran.map = keytran.parent;
goto replay_sequence;
}
if (t >= bufsize)
error ("Key sequence too long");
if (INTERACTIVE)
echo_local_start = echo_length ();
keys_local_start = this_command_key_count;
replay_key:
/* These are no-ops, unless we throw away a keystroke below and
jumped back up to replay_key; in that case, these restore the
variables to their original state, allowing us to replay the
loop. */
if (INTERACTIVE && t < mock_input)
echo_truncate (echo_local_start);
this_command_key_count = keys_local_start;
/* By default, assume each event is "real". */
last_real_key_start = t;
/* Does mock_input indicate that we are re-reading a key sequence? */
if (t < mock_input)
{
key = keybuf[t];
add_command_key (key);
if (current_kboard->immediate_echo)
{
/* Set immediate_echo to false so as to force echo_now to
redisplay (it will set immediate_echo right back to true). */
current_kboard->immediate_echo = false;
echo_now ();
}
}
/* If not, we should actually read a character. */
else
{
{
KBOARD *interrupted_kboard = current_kboard;
struct frame *interrupted_frame = SELECTED_FRAME ();
/* Calling read_char with COMMANDFLAG = -2 avoids
redisplay in read_char and its subroutines. */
key = read_char (prevent_redisplay ? -2 : NILP (prompt),
current_binding, last_nonmenu_event,
&used_mouse_menu, NULL);
if ((INTEGERP (key) && XINT (key) == -2) /* wrong_kboard_jmpbuf */
/* When switching to a new tty (with a new keyboard),
read_char returns the new buffer, rather than -2
(Bug#5095). This is because `terminal-init-xterm'
calls read-char, which eats the wrong_kboard_jmpbuf
return. Any better way to fix this? -- cyd */
|| (interrupted_kboard != current_kboard))
{
bool found = false;
struct kboard *k;
for (k = all_kboards; k; k = k->next_kboard)
if (k == interrupted_kboard)
found = true;
if (!found)
{
/* Don't touch interrupted_kboard when it's been
deleted. */
delayed_switch_frame = Qnil;
goto replay_entire_sequence;
}
if (!NILP (delayed_switch_frame))
{
kset_kbd_queue
(interrupted_kboard,
Fcons (delayed_switch_frame,
KVAR (interrupted_kboard, kbd_queue)));
delayed_switch_frame = Qnil;
}
while (t > 0)
kset_kbd_queue
(interrupted_kboard,
Fcons (keybuf[--t], KVAR (interrupted_kboard, kbd_queue)));
/* If the side queue is non-empty, ensure it begins with a
switch-frame, so we'll replay it in the right context. */
if (CONSP (KVAR (interrupted_kboard, kbd_queue))
&& (key = XCAR (KVAR (interrupted_kboard, kbd_queue)),
!(EVENT_HAS_PARAMETERS (key)
&& EQ (EVENT_HEAD_KIND (EVENT_HEAD (key)),
Qswitch_frame))))
{
Lisp_Object frame;
XSETFRAME (frame, interrupted_frame);
kset_kbd_queue
(interrupted_kboard,
Fcons (make_lispy_switch_frame (frame),
KVAR (interrupted_kboard, kbd_queue)));
}
mock_input = 0;
goto replay_entire_sequence;
}
}
/* read_char returns t when it shows a menu and the user rejects it.
Just return -1. */
if (EQ (key, Qt))
{
unbind_to (count, Qnil);
return -1;
}
/* read_char returns -1 at the end of a macro.
Emacs 18 handles this by returning immediately with a
zero, so that's what we'll do. */
if (INTEGERP (key) && XINT (key) == -1)
{
t = 0;
/* The Microsoft C compiler can't handle the goto that
would go here. */
dummyflag = true;
break;
}
/* If the current buffer has been changed from under us, the
keymap may have changed, so replay the sequence. */
if (BUFFERP (key))
{
timer_resume_idle ();
mock_input = t;
/* Reset the current buffer from the selected window
in case something changed the former and not the latter.
This is to be more consistent with the behavior
of the command_loop_1. */
if (fix_current_buffer)
{
if (! FRAME_LIVE_P (XFRAME (selected_frame)))
Fkill_emacs (Qnil);
if (XBUFFER (XWINDOW (selected_window)->contents)
!= current_buffer)
Fset_buffer (XWINDOW (selected_window)->contents);
}
goto replay_sequence;
}
/* If we have a quit that was typed in another frame, and
quit_throw_to_read_char switched buffers,
replay to get the right keymap. */
if (INTEGERP (key)
&& XINT (key) == quit_char
&& current_buffer != starting_buffer)
{
GROW_RAW_KEYBUF;
ASET (raw_keybuf, raw_keybuf_count, key);
raw_keybuf_count++;
keybuf[t++] = key;
mock_input = t;
Vquit_flag = Qnil;
goto replay_sequence;
}
Vquit_flag = Qnil;
if (EVENT_HAS_PARAMETERS (key)
/* Either a `switch-frame' or a `select-window' event. */
&& EQ (EVENT_HEAD_KIND (EVENT_HEAD (key)), Qswitch_frame))
{
/* If we're at the beginning of a key sequence, and the caller
says it's okay, go ahead and return this event. If we're
in the midst of a key sequence, delay it until the end. */
if (t > 0 || !can_return_switch_frame)
{
delayed_switch_frame = key;
goto replay_key;
}
}
if (NILP (first_event))
{
first_event = key;
/* Even if first_event does not specify a particular
window/position, it's important to recompute the maps here
since a long time might have passed since we entered
read_key_sequence, and a timer (or process-filter or
special-event-map, ...) might have switched the current buffer
or the selected window from under us in the mean time. */
if (fix_current_buffer
&& (XBUFFER (XWINDOW (selected_window)->contents)
!= current_buffer))
Fset_buffer (XWINDOW (selected_window)->contents);
current_binding = active_maps (first_event);
}
GROW_RAW_KEYBUF;
ASET (raw_keybuf, raw_keybuf_count, key);
raw_keybuf_count++;
}
/* Clicks in non-text areas get prefixed by the symbol
in their CHAR-ADDRESS field. For example, a click on
the mode line is prefixed by the symbol `mode-line'.
Furthermore, key sequences beginning with mouse clicks
are read using the keymaps of the buffer clicked on, not
the current buffer. So we may have to switch the buffer
here.
When we turn one event into two events, we must make sure
that neither of the two looks like the original--so that,
if we replay the events, they won't be expanded again.
If not for this, such reexpansion could happen either here
or when user programs play with this-command-keys. */
if (EVENT_HAS_PARAMETERS (key))
{
Lisp_Object kind = EVENT_HEAD_KIND (EVENT_HEAD (key));
if (EQ (kind, Qmouse_click))
{
Lisp_Object window = POSN_WINDOW (EVENT_START (key));
Lisp_Object posn = POSN_POSN (EVENT_START (key));
if (CONSP (posn)
|| (!NILP (fake_prefixed_keys)
&& !NILP (Fmemq (key, fake_prefixed_keys))))
{
/* We're looking a second time at an event for which
we generated a fake prefix key. Set
last_real_key_start appropriately. */
if (t > 0)
last_real_key_start = t - 1;
}
if (last_real_key_start == 0)
{
/* Key sequences beginning with mouse clicks are
read using the keymaps in the buffer clicked on,
not the current buffer. If we're at the
beginning of a key sequence, switch buffers. */
if (WINDOWP (window)
&& BUFFERP (XWINDOW (window)->contents)
&& XBUFFER (XWINDOW (window)->contents) != current_buffer)
{
ASET (raw_keybuf, raw_keybuf_count, key);
raw_keybuf_count++;
keybuf[t] = key;
mock_input = t + 1;
/* Arrange to go back to the original buffer once we're
done reading the key sequence. Note that we can't
use save_excursion_{save,restore} here, because they
save point as well as the current buffer; we don't
want to save point, because redisplay may change it,
to accommodate a Fset_window_start or something. We
don't want to do this at the top of the function,
because we may get input from a subprocess which
wants to change the selected window and stuff (say,
emacsclient). */
record_unwind_current_buffer ();
if (! FRAME_LIVE_P (XFRAME (selected_frame)))
Fkill_emacs (Qnil);
set_buffer_internal (XBUFFER (XWINDOW (window)->contents));
goto replay_sequence;
}
}
/* Expand mode-line and scroll-bar events into two events:
use posn as a fake prefix key. */
if (SYMBOLP (posn)
&& (NILP (fake_prefixed_keys)
|| NILP (Fmemq (key, fake_prefixed_keys))))
{
if (bufsize - t <= 1)
error ("Key sequence too long");
keybuf[t] = posn;
keybuf[t + 1] = key;
mock_input = t + 2;
/* Record that a fake prefix key has been generated
for KEY. Don't modify the event; this would
prevent proper action when the event is pushed
back into unread-command-events. */
fake_prefixed_keys = Fcons (key, fake_prefixed_keys);
goto replay_key;
}
}
else if (CONSP (XCDR (key))
&& CONSP (EVENT_START (key))
&& CONSP (XCDR (EVENT_START (key))))
{
Lisp_Object posn;
posn = POSN_POSN (EVENT_START (key));
/* Handle menu-bar events:
insert the dummy prefix event `menu-bar'. */
if (EQ (posn, Qmenu_bar) || EQ (posn, Qtool_bar))
{
if (bufsize - t <= 1)
error ("Key sequence too long");
keybuf[t] = posn;
keybuf[t + 1] = key;
/* Zap the position in key, so we know that we've
expanded it, and don't try to do so again. */
POSN_SET_POSN (EVENT_START (key), list1 (posn));
mock_input = t + 2;
goto replay_sequence;
}
else if (CONSP (posn))
{
/* We're looking at the second event of a
sequence which we expanded before. Set
last_real_key_start appropriately. */
if (last_real_key_start == t && t > 0)
last_real_key_start = t - 1;
}
}
}
/* We have finally decided that KEY is something we might want
to look up. */
new_binding = follow_key (current_binding, key);
/* If KEY wasn't bound, we'll try some fallbacks. */
if (!NILP (new_binding))
/* This is needed for the following scenario:
event 0: a down-event that gets dropped by calling replay_key.
event 1: some normal prefix like C-h.
After event 0, first_unbound is 0, after event 1 indec.start,
fkey.start, and keytran.start are all 1, so when we see that
C-h is bound, we need to update first_unbound. */
first_unbound = max (t + 1, first_unbound);
else
{
Lisp_Object head;
/* Remember the position to put an upper bound on indec.start. */
first_unbound = min (t, first_unbound);
head = EVENT_HEAD (key);
if (SYMBOLP (head))
{
Lisp_Object breakdown;
int modifiers;
breakdown = parse_modifiers (head);
modifiers = XINT (XCAR (XCDR (breakdown)));
/* Attempt to reduce an unbound mouse event to a simpler
event that is bound:
Drags reduce to clicks.
Double-clicks reduce to clicks.
Triple-clicks reduce to double-clicks, then to clicks.
Up/Down-clicks are eliminated.
Double-downs reduce to downs, then are eliminated.
Triple-downs reduce to double-downs, then to downs,
then are eliminated. */
if (modifiers & (up_modifier | down_modifier
| drag_modifier
| double_modifier | triple_modifier))
{
while (modifiers & (up_modifier | down_modifier
| drag_modifier
| double_modifier | triple_modifier))
{
Lisp_Object new_head, new_click;
if (modifiers & triple_modifier)
modifiers ^= (double_modifier | triple_modifier);
else if (modifiers & double_modifier)
modifiers &= ~double_modifier;
else if (modifiers & drag_modifier)
modifiers &= ~drag_modifier;
else
{
/* Dispose of this `up/down' event by simply jumping
back to replay_key, to get another event.
Note that if this event came from mock input,
then just jumping back to replay_key will just
hand it to us again. So we have to wipe out any
mock input.
We could delete keybuf[t] and shift everything
after that to the left by one spot, but we'd also
have to fix up any variable that points into
keybuf, and shifting isn't really necessary
anyway.
Adding prefixes for non-textual mouse clicks
creates two characters of mock input, and both
must be thrown away. If we're only looking at
the prefix now, we can just jump back to
replay_key. On the other hand, if we've already
processed the prefix, and now the actual click
itself is giving us trouble, then we've lost the
state of the keymaps we want to backtrack to, and
we need to replay the whole sequence to rebuild
it.
Beyond that, only function key expansion could
create more than two keys, but that should never
generate mouse events, so it's okay to zero
mock_input in that case too.
FIXME: The above paragraph seems just plain
wrong, if you consider things like
xterm-mouse-mode. -stef
Isn't this just the most wonderful code ever? */
/* If mock_input > t + 1, the above simplification
will actually end up dropping keys on the floor.
This is probably OK for now, but even
if mock_input <= t + 1, we need to adjust indec,
fkey, and keytran.
Typical case [header-line down-mouse-N]:
mock_input = 2, t = 1, fkey.end = 1,
last_real_key_start = 0. */
if (indec.end > last_real_key_start)
{
indec.end = indec.start
= min (last_real_key_start, indec.start);
indec.map = indec.parent;
if (fkey.end > last_real_key_start)
{
fkey.end = fkey.start
= min (last_real_key_start, fkey.start);
fkey.map = fkey.parent;
if (keytran.end > last_real_key_start)
{
keytran.end = keytran.start
= min (last_real_key_start, keytran.start);
keytran.map = keytran.parent;
}
}
}
if (t == last_real_key_start)
{
mock_input = 0;
goto replay_key;
}
else
{
mock_input = last_real_key_start;
goto replay_sequence;
}
}
new_head
= apply_modifiers (modifiers, XCAR (breakdown));
new_click = list2 (new_head, EVENT_START (key));
/* Look for a binding for this new key. */
new_binding = follow_key (current_binding, new_click);
/* If that click is bound, go for it. */
if (!NILP (new_binding))
{
current_binding = new_binding;
key = new_click;
break;
}
/* Otherwise, we'll leave key set to the drag event. */
}
}
}
}
current_binding = new_binding;
keybuf[t++] = key;
/* Normally, last_nonmenu_event gets the previous key we read.
But when a mouse popup menu is being used,
we don't update last_nonmenu_event; it continues to hold the mouse
event that preceded the first level of menu. */
if (!used_mouse_menu)
last_nonmenu_event = key;
/* Record what part of this_command_keys is the current key sequence. */
this_single_command_key_start = this_command_key_count - t;
/* When 'input-method-function' called above causes events to be
put on 'unread-post-input-method-events', and as result
'reread' is set to 'true', the value of 't' can become larger
than 'this_command_key_count', because 'add_command_key' is
not called to update 'this_command_key_count'. If this
happens, 'this_single_command_key_start' will become negative
above, and any call to 'this-single-command-keys' will return
a garbled vector. See bug #20223 for one such situation.
Here we force 'this_single_command_key_start' to never become
negative, to avoid that. */
if (this_single_command_key_start < 0)
this_single_command_key_start = 0;
/* Look for this sequence in input-decode-map.
Scan from indec.end until we find a bound suffix. */
while (indec.end < t)
{
bool done;
int diff;
done = keyremap_step (keybuf, bufsize, &indec, max (t, mock_input),
1, &diff, prompt);
if (done)
{
mock_input = diff + max (t, mock_input);
goto replay_sequence;
}
}
if (!KEYMAPP (current_binding)
&& !test_undefined (current_binding)
&& indec.start >= t)
/* There is a binding and it's not a prefix.
(and it doesn't have any input-decode-map translation pending).
There is thus no function-key in this sequence.
Moving fkey.start is important in this case to allow keytran.start
to go over the sequence before we return (since we keep the
invariant that keytran.end <= fkey.start). */
{
if (fkey.start < t)
(fkey.start = fkey.end = t, fkey.map = fkey.parent);
}
else
/* If the sequence is unbound, see if we can hang a function key
off the end of it. */
/* Continue scan from fkey.end until we find a bound suffix. */
while (fkey.end < indec.start)
{
bool done;
int diff;
done = keyremap_step (keybuf, bufsize, &fkey,
max (t, mock_input),
/* If there's a binding (i.e.
first_binding >= nmaps) we don't want
to apply this function-key-mapping. */
fkey.end + 1 == t
&& (test_undefined (current_binding)),
&diff, prompt);
if (done)
{
mock_input = diff + max (t, mock_input);
/* Adjust the input-decode-map counters. */
indec.end += diff;
indec.start += diff;
goto replay_sequence;
}
}
/* Look for this sequence in key-translation-map.
Scan from keytran.end until we find a bound suffix. */
while (keytran.end < fkey.start)
{
bool done;
int diff;
done = keyremap_step (keybuf, bufsize, &keytran, max (t, mock_input),
1, &diff, prompt);
if (done)
{
mock_input = diff + max (t, mock_input);
/* Adjust the function-key-map and input-decode-map counters. */
indec.end += diff;
indec.start += diff;
fkey.end += diff;
fkey.start += diff;
goto replay_sequence;
}
}
/* If KEY is not defined in any of the keymaps,
and cannot be part of a function key or translation,
and is an upper case letter
use the corresponding lower-case letter instead. */
if (NILP (current_binding)
&& /* indec.start >= t && fkey.start >= t && */ keytran.start >= t
&& INTEGERP (key)
&& ((CHARACTERP (make_number (XINT (key) & ~CHAR_MODIFIER_MASK))
&& uppercasep (XINT (key) & ~CHAR_MODIFIER_MASK))
|| (XINT (key) & shift_modifier)))
{
Lisp_Object new_key;
original_uppercase = key;
original_uppercase_position = t - 1;
if (XINT (key) & shift_modifier)
XSETINT (new_key, XINT (key) & ~shift_modifier);
else
XSETINT (new_key, (downcase (XINT (key) & ~CHAR_MODIFIER_MASK)
| (XINT (key) & CHAR_MODIFIER_MASK)));
/* We have to do this unconditionally, regardless of whether
the lower-case char is defined in the keymaps, because they
might get translated through function-key-map. */
keybuf[t - 1] = new_key;
mock_input = max (t, mock_input);
shift_translated = true;
goto replay_sequence;
}
if (NILP (current_binding)
&& help_char_p (EVENT_HEAD (key)) && t > 1)
{
read_key_sequence_cmd = Vprefix_help_command;
/* The Microsoft C compiler can't handle the goto that
would go here. */
dummyflag = true;
break;
}
/* If KEY is not defined in any of the keymaps,
and cannot be part of a function key or translation,
and is a shifted function key,
use the corresponding unshifted function key instead. */
if (NILP (current_binding)
&& /* indec.start >= t && fkey.start >= t && */ keytran.start >= t)
{
Lisp_Object breakdown = parse_modifiers (key);
int modifiers
= CONSP (breakdown) ? (XINT (XCAR (XCDR (breakdown)))) : 0;
if (modifiers & shift_modifier
/* Treat uppercase keys as shifted. */
|| (INTEGERP (key)
&& (KEY_TO_CHAR (key)
< XCHAR_TABLE (BVAR (current_buffer, downcase_table))->header.size)
&& uppercasep (KEY_TO_CHAR (key))))
{
Lisp_Object new_key
= (modifiers & shift_modifier
? apply_modifiers (modifiers & ~shift_modifier,
XCAR (breakdown))
: make_number (downcase (KEY_TO_CHAR (key)) | modifiers));
original_uppercase = key;
original_uppercase_position = t - 1;
/* We have to do this unconditionally, regardless of whether
the lower-case char is defined in the keymaps, because they
might get translated through function-key-map. */
keybuf[t - 1] = new_key;
mock_input = max (t, mock_input);
/* Reset fkey (and consequently keytran) to apply
function-key-map on the result, so that S-backspace is
correctly mapped to DEL (via backspace). OTOH,
input-decode-map doesn't need to go through it again. */
fkey.start = fkey.end = 0;
keytran.start = keytran.end = 0;
shift_translated = true;
goto replay_sequence;
}
}
}
if (!dummyflag)
read_key_sequence_cmd = current_binding;
read_key_sequence_remapped
/* Remap command through active keymaps.
Do the remapping here, before the unbind_to so it uses the keymaps
of the appropriate buffer. */
= SYMBOLP (read_key_sequence_cmd)
? Fcommand_remapping (read_key_sequence_cmd, Qnil, Qnil)
: Qnil;
unread_switch_frame = delayed_switch_frame;
unbind_to (count, Qnil);
/* Don't downcase the last character if the caller says don't.
Don't downcase it if the result is undefined, either. */
if ((dont_downcase_last || NILP (current_binding))
&& t > 0
&& t - 1 == original_uppercase_position)
{
keybuf[t - 1] = original_uppercase;
shift_translated = false;
}
if (shift_translated)
Vthis_command_keys_shift_translated = Qt;
/* Occasionally we fabricate events, perhaps by expanding something
according to function-key-map, or by adding a prefix symbol to a
mouse click in the scroll bar or modeline. In this cases, return
the entire generated key sequence, even if we hit an unbound
prefix or a definition before the end. This means that you will
be able to push back the event properly, and also means that
read-key-sequence will always return a logical unit.
Better ideas? */
for (; t < mock_input; t++)
add_command_key (keybuf[t]);
echo_update ();
return t;
}
static Lisp_Object
read_key_sequence_vs (Lisp_Object prompt, Lisp_Object continue_echo,
Lisp_Object dont_downcase_last,
Lisp_Object can_return_switch_frame,
Lisp_Object cmd_loop, bool allow_string)
{
Lisp_Object keybuf[30];
int i;
ptrdiff_t count = SPECPDL_INDEX ();
if (!NILP (prompt))
CHECK_STRING (prompt);
QUIT;
specbind (Qinput_method_exit_on_first_char,
(NILP (cmd_loop) ? Qt : Qnil));
specbind (Qinput_method_use_echo_area,
(NILP (cmd_loop) ? Qt : Qnil));
if (NILP (continue_echo))
{
this_command_key_count = 0;
this_single_command_key_start = 0;
}
#ifdef HAVE_WINDOW_SYSTEM
if (display_hourglass_p)
cancel_hourglass ();
#endif
i = read_key_sequence (keybuf, ARRAYELTS (keybuf),
prompt, ! NILP (dont_downcase_last),
! NILP (can_return_switch_frame), 0, 0);
#if 0 /* The following is fine for code reading a key sequence and
then proceeding with a lengthy computation, but it's not good
for code reading keys in a loop, like an input method. */
#ifdef HAVE_WINDOW_SYSTEM
if (display_hourglass_p)
start_hourglass ();
#endif
#endif
if (i == -1)
{
Vquit_flag = Qt;
QUIT;
}
return unbind_to (count,
((allow_string ? make_event_array : Fvector)
(i, keybuf)));
}
DEFUN ("read-key-sequence", Fread_key_sequence, Sread_key_sequence, 1, 5, 0,
doc: /* Read a sequence of keystrokes and return as a string or vector.
The sequence is sufficient to specify a non-prefix command in the
current local and global maps.
First arg PROMPT is a prompt string. If nil, do not prompt specially.
Second (optional) arg CONTINUE-ECHO, if non-nil, means this key echos
as a continuation of the previous key.
The third (optional) arg DONT-DOWNCASE-LAST, if non-nil, means do not
convert the last event to lower case. (Normally any upper case event
is converted to lower case if the original event is undefined and the lower
case equivalent is defined.) A non-nil value is appropriate for reading
a key sequence to be defined.
A C-g typed while in this function is treated like any other character,
and `quit-flag' is not set.
If the key sequence starts with a mouse click, then the sequence is read
using the keymaps of the buffer of the window clicked in, not the buffer
of the selected window as normal.
`read-key-sequence' drops unbound button-down events, since you normally
only care about the click or drag events which follow them. If a drag
or multi-click event is unbound, but the corresponding click event would
be bound, `read-key-sequence' turns the event into a click event at the
drag's starting position. This means that you don't have to distinguish
between click and drag, double, or triple events unless you want to.
`read-key-sequence' prefixes mouse events on mode lines, the vertical
lines separating windows, and scroll bars with imaginary keys
`mode-line', `vertical-line', and `vertical-scroll-bar'.
Optional fourth argument CAN-RETURN-SWITCH-FRAME non-nil means that this
function will process a switch-frame event if the user switches frames
before typing anything. If the user switches frames in the middle of a
key sequence, or at the start of the sequence but CAN-RETURN-SWITCH-FRAME
is nil, then the event will be put off until after the current key sequence.
`read-key-sequence' checks `function-key-map' for function key
sequences, where they wouldn't conflict with ordinary bindings. See
`function-key-map' for more details.
The optional fifth argument CMD-LOOP, if non-nil, means
that this key sequence is being read by something that will
read commands one after another. It should be nil if the caller
will read just one key sequence. */)
(Lisp_Object prompt, Lisp_Object continue_echo, Lisp_Object dont_downcase_last, Lisp_Object can_return_switch_frame, Lisp_Object cmd_loop)
{
return read_key_sequence_vs (prompt, continue_echo, dont_downcase_last,
can_return_switch_frame, cmd_loop, true);
}
DEFUN ("read-key-sequence-vector", Fread_key_sequence_vector,
Sread_key_sequence_vector, 1, 5, 0,
doc: /* Like `read-key-sequence' but always return a vector. */)
(Lisp_Object prompt, Lisp_Object continue_echo, Lisp_Object dont_downcase_last, Lisp_Object can_return_switch_frame, Lisp_Object cmd_loop)
{
return read_key_sequence_vs (prompt, continue_echo, dont_downcase_last,
can_return_switch_frame, cmd_loop, false);
}
/* Return true if input events are pending. */
bool
detect_input_pending (void)
{
return input_pending || get_input_pending (0);
}
/* Return true if input events other than mouse movements are
pending. */
bool
detect_input_pending_ignore_squeezables (void)
{
return input_pending || get_input_pending (READABLE_EVENTS_IGNORE_SQUEEZABLES);
}
/* Return true if input events are pending, and run any pending timers. */
bool
detect_input_pending_run_timers (bool do_display)
{
unsigned old_timers_run = timers_run;
if (!input_pending)
get_input_pending (READABLE_EVENTS_DO_TIMERS_NOW);
if (old_timers_run != timers_run && do_display)
redisplay_preserve_echo_area (8);
return input_pending;
}
/* This is called in some cases before a possible quit.
It cases the next call to detect_input_pending to recompute input_pending.
So calling this function unnecessarily can't do any harm. */
void
clear_input_pending (void)
{
input_pending = false;
}
/* Return true if there are pending requeued events.
This isn't used yet. The hope is to make wait_reading_process_output
call it, and return if it runs Lisp code that unreads something.
The problem is, kbd_buffer_get_event needs to be fixed to know what
to do in that case. It isn't trivial. */
bool
requeued_events_pending_p (void)
{
return (CONSP (Vunread_command_events));
}
DEFUN ("input-pending-p", Finput_pending_p, Sinput_pending_p, 0, 1, 0,
doc: /* Return t if command input is currently available with no wait.
Actually, the value is nil only if we can be sure that no input is available;
if there is a doubt, the value is t.
If CHECK-TIMERS is non-nil, timers that are ready to run will do so. */)
(Lisp_Object check_timers)
{
if (CONSP (Vunread_command_events)
|| !NILP (Vunread_post_input_method_events)
|| !NILP (Vunread_input_method_events))
return (Qt);
/* Process non-user-visible events (Bug#10195). */
process_special_events ();
return (get_input_pending ((NILP (check_timers)
? 0 : READABLE_EVENTS_DO_TIMERS_NOW)
| READABLE_EVENTS_FILTER_EVENTS)
? Qt : Qnil);
}
DEFUN ("recent-keys", Frecent_keys, Srecent_keys, 0, 1, 0,
doc: /* Return vector of last few events, not counting those from keyboard macros.
If INCLUDE-CMDS is non-nil, include the commands that were run,
represented as events of the form (nil . COMMAND). */)
(Lisp_Object include_cmds)
{
bool cmds = !NILP (include_cmds);
if (!total_keys
|| (cmds && total_keys < NUM_RECENT_KEYS))
return Fvector (total_keys,
XVECTOR (recent_keys)->contents);
else
{
Lisp_Object es = Qnil;
int i = (total_keys < NUM_RECENT_KEYS
? 0 : recent_keys_index);
eassert (recent_keys_index < NUM_RECENT_KEYS);
do
{
Lisp_Object e = AREF (recent_keys, i);
if (cmds || !CONSP (e) || !NILP (XCAR (e)))
es = Fcons (e, es);
if (++i >= NUM_RECENT_KEYS)
i = 0;
} while (i != recent_keys_index);
es = Fnreverse (es);
return Fvconcat (1, &es);
}
}
DEFUN ("this-command-keys", Fthis_command_keys, Sthis_command_keys, 0, 0, 0,
doc: /* Return the key sequence that invoked this command.
However, if the command has called `read-key-sequence', it returns
the last key sequence that has been read.
The value is a string or a vector.
See also `this-command-keys-vector'. */)
(void)
{
return make_event_array (this_command_key_count,
XVECTOR (this_command_keys)->contents);
}
DEFUN ("this-command-keys-vector", Fthis_command_keys_vector, Sthis_command_keys_vector, 0, 0, 0,
doc: /* Return the key sequence that invoked this command, as a vector.
However, if the command has called `read-key-sequence', it returns
the last key sequence that has been read.
See also `this-command-keys'. */)
(void)
{
return Fvector (this_command_key_count,
XVECTOR (this_command_keys)->contents);
}
DEFUN ("this-single-command-keys", Fthis_single_command_keys,
Sthis_single_command_keys, 0, 0, 0,
doc: /* Return the key sequence that invoked this command.
More generally, it returns the last key sequence read, either by
the command loop or by `read-key-sequence'.
Unlike `this-command-keys', this function's value
does not include prefix arguments.
The value is always a vector. */)
(void)
{
return Fvector (this_command_key_count
- this_single_command_key_start,
(XVECTOR (this_command_keys)->contents
+ this_single_command_key_start));
}
DEFUN ("this-single-command-raw-keys", Fthis_single_command_raw_keys,
Sthis_single_command_raw_keys, 0, 0, 0,
doc: /* Return the raw events that were read for this command.
More generally, it returns the last key sequence read, either by
the command loop or by `read-key-sequence'.
Unlike `this-single-command-keys', this function's value
shows the events before all translations (except for input methods).
The value is always a vector. */)
(void)
{
return Fvector (raw_keybuf_count, XVECTOR (raw_keybuf)->contents);
}
DEFUN ("clear-this-command-keys", Fclear_this_command_keys,
Sclear_this_command_keys, 0, 1, 0,
doc: /* Clear out the vector that `this-command-keys' returns.
Also clear the record of the last 100 events, unless optional arg
KEEP-RECORD is non-nil. */)
(Lisp_Object keep_record)
{
int i;
this_command_key_count = 0;
if (NILP (keep_record))
{
for (i = 0; i < ASIZE (recent_keys); ++i)
ASET (recent_keys, i, Qnil);
total_keys = 0;
recent_keys_index = 0;
}
return Qnil;
}
DEFUN ("recursion-depth", Frecursion_depth, Srecursion_depth, 0, 0, 0,
doc: /* Return the current depth in recursive edits. */)
(void)
{
EMACS_INT sum;
INT_ADD_WRAPV (command_loop_level, minibuf_level, &sum);
return make_number (sum);
}
DEFUN ("open-dribble-file", Fopen_dribble_file, Sopen_dribble_file, 1, 1,
"FOpen dribble file: ",
doc: /* Start writing all keyboard characters to a dribble file called FILE.
If FILE is nil, close any open dribble file.
The file will be closed when Emacs exits.
Be aware that this records ALL characters you type!
This may include sensitive information such as passwords. */)
(Lisp_Object file)
{
if (dribble)
{
block_input ();
fclose (dribble);
unblock_input ();
dribble = 0;
}
if (!NILP (file))
{
int fd;
Lisp_Object encfile;
file = Fexpand_file_name (file, Qnil);
encfile = ENCODE_FILE (file);
fd = emacs_open (SSDATA (encfile), O_WRONLY | O_CREAT | O_EXCL, 0600);
if (fd < 0 && errno == EEXIST && unlink (SSDATA (encfile)) == 0)
fd = emacs_open (SSDATA (encfile), O_WRONLY | O_CREAT | O_EXCL, 0600);
dribble = fd < 0 ? 0 : fdopen (fd, "w");
if (dribble == 0)
report_file_error ("Opening dribble", file);
}
return Qnil;
}
DEFUN ("discard-input", Fdiscard_input, Sdiscard_input, 0, 0, 0,
doc: /* Discard the contents of the terminal input buffer.
Also end any kbd macro being defined. */)
(void)
{
if (!NILP (KVAR (current_kboard, defining_kbd_macro)))
{
/* Discard the last command from the macro. */
Fcancel_kbd_macro_events ();
end_kbd_macro ();
}
Vunread_command_events = Qnil;
discard_tty_input ();
kbd_fetch_ptr = kbd_store_ptr;
input_pending = false;
return Qnil;
}
DEFUN ("suspend-emacs", Fsuspend_emacs, Ssuspend_emacs, 0, 1, "",
doc: /* Stop Emacs and return to superior process. You can resume later.
If `cannot-suspend' is non-nil, or if the system doesn't support job
control, run a subshell instead.
If optional arg STUFFSTRING is non-nil, its characters are stuffed
to be read as terminal input by Emacs's parent, after suspension.
Before suspending, run the normal hook `suspend-hook'.
After resumption run the normal hook `suspend-resume-hook'.
Some operating systems cannot stop the Emacs process and resume it later.
On such systems, Emacs starts a subshell instead of suspending. */)
(Lisp_Object stuffstring)
{
ptrdiff_t count = SPECPDL_INDEX ();
int old_height, old_width;
int width, height;
if (tty_list && tty_list->next)
error ("There are other tty frames open; close them before suspending Emacs");
if (!NILP (stuffstring))
CHECK_STRING (stuffstring);
run_hook (intern ("suspend-hook"));
get_tty_size (fileno (CURTTY ()->input), &old_width, &old_height);
reset_all_sys_modes ();
/* sys_suspend can get an error if it tries to fork a subshell
and the system resources aren't available for that. */
record_unwind_protect_void (init_all_sys_modes);
stuff_buffered_input (stuffstring);
if (cannot_suspend)
sys_subshell ();
else
sys_suspend ();
unbind_to (count, Qnil);
/* Check if terminal/window size has changed.
Note that this is not useful when we are running directly
with a window system; but suspend should be disabled in that case. */
get_tty_size (fileno (CURTTY ()->input), &width, &height);
if (width != old_width || height != old_height)
change_frame_size (SELECTED_FRAME (), width,
height - FRAME_MENU_BAR_LINES (SELECTED_FRAME ()),
0, 0, 0, 0);
run_hook (intern ("suspend-resume-hook"));
return Qnil;
}
/* If STUFFSTRING is a string, stuff its contents as pending terminal input.
Then in any case stuff anything Emacs has read ahead and not used. */
void
stuff_buffered_input (Lisp_Object stuffstring)
{
#ifdef SIGTSTP /* stuff_char is defined if SIGTSTP. */
register unsigned char *p;
if (STRINGP (stuffstring))
{
register ptrdiff_t count;
p = SDATA (stuffstring);
count = SBYTES (stuffstring);
while (count-- > 0)
stuff_char (*p++);
stuff_char ('\n');
}
/* Anything we have read ahead, put back for the shell to read. */
/* ?? What should this do when we have multiple keyboards??
Should we ignore anything that was typed in at the "wrong" kboard?
rms: we should stuff everything back into the kboard
it came from. */
for (; kbd_fetch_ptr != kbd_store_ptr; kbd_fetch_ptr++)
{
if (kbd_fetch_ptr == kbd_buffer + KBD_BUFFER_SIZE)
kbd_fetch_ptr = kbd_buffer;
if (kbd_fetch_ptr->kind == ASCII_KEYSTROKE_EVENT)
stuff_char (kbd_fetch_ptr->ie.code);
clear_event (kbd_fetch_ptr);
}
input_pending = false;
#endif /* SIGTSTP */
}
void
set_waiting_for_input (struct timespec *time_to_clear)
{
input_available_clear_time = time_to_clear;
/* Tell handle_interrupt to throw back to read_char, */
waiting_for_input = true;
/* If handle_interrupt was called before and buffered a C-g,
make it run again now, to avoid timing error. */
if (!NILP (Vquit_flag))
quit_throw_to_read_char (0);
}
void
clear_waiting_for_input (void)
{
/* Tell handle_interrupt not to throw back to read_char, */
waiting_for_input = false;
input_available_clear_time = 0;
}
/* The SIGINT handler.
If we have a frame on the controlling tty, we assume that the
SIGINT was generated by C-g, so we call handle_interrupt.
Otherwise, tell QUIT to kill Emacs. */
static void
handle_interrupt_signal (int sig)
{
/* See if we have an active terminal on our controlling tty. */
struct terminal *terminal = get_named_terminal (DEV_TTY);
if (!terminal)
{
/* If there are no frames there, let's pretend that we are a
well-behaving UN*X program and quit. We must not call Lisp
in a signal handler, so tell QUIT to exit when it is
safe. */
Vquit_flag = Qkill_emacs;
}
else
{
/* Otherwise, the SIGINT was probably generated by C-g. */
/* Set internal_last_event_frame to the top frame of the
controlling tty, if we have a frame there. We disable the
interrupt key on secondary ttys, so the SIGINT must have come
from the controlling tty. */
internal_last_event_frame = terminal->display_info.tty->top_frame;
handle_interrupt (1);
}
}
static void
deliver_interrupt_signal (int sig)
{
deliver_process_signal (sig, handle_interrupt_signal);
}
/* Output MSG directly to standard output, without buffering. Ignore
failures. This is safe in a signal handler. */
static void
write_stdout (char const *msg)
{
ignore_value (write (STDOUT_FILENO, msg, strlen (msg)));
}
/* Read a byte from stdin, without buffering. Safe in signal handlers. */
static int
read_stdin (void)
{
char c;
return read (STDIN_FILENO, &c, 1) == 1 ? c : EOF;
}
/* If Emacs is stuck because `inhibit-quit' is true, then keep track
of the number of times C-g has been requested. If C-g is pressed
enough times, then quit anyway. See bug#6585. */
static int volatile force_quit_count;
/* This routine is called at interrupt level in response to C-g.
It is called from the SIGINT handler or kbd_buffer_store_event.
If `waiting_for_input' is non zero, then unless `echoing' is
nonzero, immediately throw back to read_char.
Otherwise it sets the Lisp variable quit-flag not-nil. This causes
eval to throw, when it gets a chance. If quit-flag is already
non-nil, it stops the job right away. */
static void
handle_interrupt (bool in_signal_handler)
{
char c;
cancel_echoing ();
/* XXX This code needs to be revised for multi-tty support. */
if (!NILP (Vquit_flag) && get_named_terminal (DEV_TTY))
{
if (! in_signal_handler)
{
/* If SIGINT isn't blocked, don't let us be interrupted by
a SIGINT. It might be harmful due to non-reentrancy
in I/O functions. */
sigset_t blocked;
sigemptyset (&blocked);
sigaddset (&blocked, SIGINT);
pthread_sigmask (SIG_BLOCK, &blocked, 0);
fflush (stdout);
}
reset_all_sys_modes ();
#ifdef SIGTSTP
/*
* On systems which can suspend the current process and return to the original
* shell, this command causes the user to end up back at the shell.
* The "Auto-save" and "Abort" questions are not asked until
* the user elects to return to emacs, at which point he can save the current
* job and either dump core or continue.
*/
sys_suspend ();
#else
/* Perhaps should really fork an inferior shell?
But that would not provide any way to get back
to the original shell, ever. */
write_stdout ("No support for stopping a process"
" on this operating system;\n"
"you can continue or abort.\n");
#endif /* not SIGTSTP */
#ifdef MSDOS
/* We must remain inside the screen area when the internal terminal
is used. Note that [Enter] is not echoed by dos. */
cursor_to (SELECTED_FRAME (), 0, 0);
#endif
write_stdout ("Emacs is resuming after an emergency escape.\n");
/* It doesn't work to autosave while GC is in progress;
the code used for auto-saving doesn't cope with the mark bit. */
if (!gc_in_progress)
{
write_stdout ("Auto-save? (y or n) ");
c = read_stdin ();
if (c == 'y' || c == 'Y')
{
Fdo_auto_save (Qt, Qnil);
#ifdef MSDOS
write_stdout ("\r\nAuto-save done");
#else
write_stdout ("Auto-save done\n");
#endif
}
while (c != '\n')
c = read_stdin ();
}
else
{
/* During GC, it must be safe to reenable quitting again. */
Vinhibit_quit = Qnil;
write_stdout
(
#ifdef MSDOS
"\r\n"
#endif
"Garbage collection in progress; cannot auto-save now\r\n"
"but will instead do a real quit"
" after garbage collection ends\r\n");
}
#ifdef MSDOS
write_stdout ("\r\nAbort? (y or n) ");
#else
write_stdout ("Abort (and dump core)? (y or n) ");
#endif
c = read_stdin ();
if (c == 'y' || c == 'Y')
emacs_abort ();
while (c != '\n')
c = read_stdin ();
#ifdef MSDOS
write_stdout ("\r\nContinuing...\r\n");
#else /* not MSDOS */
write_stdout ("Continuing...\n");
#endif /* not MSDOS */
init_all_sys_modes ();
}
else
{
/* If executing a function that wants to be interrupted out of
and the user has not deferred quitting by binding `inhibit-quit'
then quit right away. */
if (immediate_quit && NILP (Vinhibit_quit))
{
struct gl_state_s saved;
immediate_quit = false;
pthread_sigmask (SIG_SETMASK, &empty_mask, 0);
saved = gl_state;
quit ();
gl_state = saved;
}
else
{ /* Else request quit when it's safe. */
int count = NILP (Vquit_flag) ? 1 : force_quit_count + 1;
force_quit_count = count;
if (count == 3)
{
immediate_quit = true;
Vinhibit_quit = Qnil;
}
Vquit_flag = Qt;
}
}
pthread_sigmask (SIG_SETMASK, &empty_mask, 0);
/* TODO: The longjmp in this call throws the NS event loop integration off,
and it seems to do fine without this. Probably some attention
needs to be paid to the setting of waiting_for_input in
wait_reading_process_output() under HAVE_NS because of the call
to ns_select there (needed because otherwise events aren't picked up
outside of polling since we don't get SIGIO like X and we don't have a
separate event loop thread like W32. */
#ifndef HAVE_NS
if (waiting_for_input && !echoing)
quit_throw_to_read_char (in_signal_handler);
#endif
}
/* Handle a C-g by making read_char return C-g. */
static void
quit_throw_to_read_char (bool from_signal)
{
/* When not called from a signal handler it is safe to call
Lisp. */
if (!from_signal && EQ (Vquit_flag, Qkill_emacs))
Fkill_emacs (Qnil);
/* Prevent another signal from doing this before we finish. */
clear_waiting_for_input ();
input_pending = false;
Vunread_command_events = Qnil;
if (FRAMEP (internal_last_event_frame)
&& !EQ (internal_last_event_frame, selected_frame))
do_switch_frame (make_lispy_switch_frame (internal_last_event_frame),
0, 0, Qnil);
sys_longjmp (getcjmp, 1);
}
DEFUN ("set-input-interrupt-mode", Fset_input_interrupt_mode,
Sset_input_interrupt_mode, 1, 1, 0,
doc: /* Set interrupt mode of reading keyboard input.
If INTERRUPT is non-nil, Emacs will use input interrupts;
otherwise Emacs uses CBREAK mode.
See also `current-input-mode'. */)
(Lisp_Object interrupt)
{
bool new_interrupt_input;
#ifdef USABLE_SIGIO
#ifdef HAVE_X_WINDOWS
if (x_display_list != NULL)
{
/* When using X, don't give the user a real choice,
because we haven't implemented the mechanisms to support it. */
new_interrupt_input = true;
}
else
#endif /* HAVE_X_WINDOWS */
new_interrupt_input = !NILP (interrupt);
#else /* not USABLE_SIGIO */
new_interrupt_input = false;
#endif /* not USABLE_SIGIO */
if (new_interrupt_input != interrupt_input)
{
#ifdef POLL_FOR_INPUT
stop_polling ();
#endif
#ifndef DOS_NT
/* this causes startup screen to be restored and messes with the mouse */
reset_all_sys_modes ();
interrupt_input = new_interrupt_input;
init_all_sys_modes ();
#else
interrupt_input = new_interrupt_input;
#endif
#ifdef POLL_FOR_INPUT
poll_suppress_count = 1;
start_polling ();
#endif
}
return Qnil;
}
DEFUN ("set-output-flow-control", Fset_output_flow_control, Sset_output_flow_control, 1, 2, 0,
doc: /* Enable or disable ^S/^Q flow control for output to TERMINAL.
If FLOW is non-nil, flow control is enabled and you cannot use C-s or
C-q in key sequences.
This setting only has an effect on tty terminals and only when
Emacs reads input in CBREAK mode; see `set-input-interrupt-mode'.
See also `current-input-mode'. */)
(Lisp_Object flow, Lisp_Object terminal)
{
struct terminal *t = decode_tty_terminal (terminal);
struct tty_display_info *tty;
if (!t)
return Qnil;
tty = t->display_info.tty;
if (tty->flow_control != !NILP (flow))
{
#ifndef DOS_NT
/* This causes startup screen to be restored and messes with the mouse. */
reset_sys_modes (tty);
#endif
tty->flow_control = !NILP (flow);
#ifndef DOS_NT
init_sys_modes (tty);
#endif
}
return Qnil;
}
DEFUN ("set-input-meta-mode", Fset_input_meta_mode, Sset_input_meta_mode, 1, 2, 0,
doc: /* Enable or disable 8-bit input on TERMINAL.
If META is t, Emacs will accept 8-bit input, and interpret the 8th
bit as the Meta modifier.
If META is nil, Emacs will ignore the top bit, on the assumption it is
parity.
Otherwise, Emacs will accept and pass through 8-bit input without
specially interpreting the top bit.
This setting only has an effect on tty terminal devices.
Optional parameter TERMINAL specifies the tty terminal device to use.
It may be a terminal object, a frame, or nil for the terminal used by
the currently selected frame.
See also `current-input-mode'. */)
(Lisp_Object meta, Lisp_Object terminal)
{
struct terminal *t = decode_tty_terminal (terminal);
struct tty_display_info *tty;
int new_meta;
if (!t)
return Qnil;
tty = t->display_info.tty;
if (NILP (meta))
new_meta = 0;
else if (EQ (meta, Qt))
new_meta = 1;
else
new_meta = 2;
if (tty->meta_key != new_meta)
{
#ifndef DOS_NT
/* this causes startup screen to be restored and messes with the mouse */
reset_sys_modes (tty);
#endif
tty->meta_key = new_meta;
#ifndef DOS_NT
init_sys_modes (tty);
#endif
}
return Qnil;
}
DEFUN ("set-quit-char", Fset_quit_char, Sset_quit_char, 1, 1, 0,
doc: /* Specify character used for quitting.
QUIT must be an ASCII character.
This function only has an effect on the controlling tty of the Emacs
process.
See also `current-input-mode'. */)
(Lisp_Object quit)
{
struct terminal *t = get_named_terminal (DEV_TTY);
struct tty_display_info *tty;
if (!t)
return Qnil;
tty = t->display_info.tty;
if (NILP (quit) || !INTEGERP (quit) || XINT (quit) < 0 || XINT (quit) > 0400)
error ("QUIT must be an ASCII character");
#ifndef DOS_NT
/* this causes startup screen to be restored and messes with the mouse */
reset_sys_modes (tty);
#endif
/* Don't let this value be out of range. */
quit_char = XINT (quit) & (tty->meta_key == 0 ? 0177 : 0377);
#ifndef DOS_NT
init_sys_modes (tty);
#endif
return Qnil;
}
DEFUN ("set-input-mode", Fset_input_mode, Sset_input_mode, 3, 4, 0,
doc: /* Set mode of reading keyboard input.
First arg INTERRUPT non-nil means use input interrupts;
nil means use CBREAK mode.
Second arg FLOW non-nil means use ^S/^Q flow control for output to terminal
(no effect except in CBREAK mode).
Third arg META t means accept 8-bit input (for a Meta key).
META nil means ignore the top bit, on the assumption it is parity.
Otherwise, accept 8-bit input and don't use the top bit for Meta.
Optional fourth arg QUIT if non-nil specifies character to use for quitting.
See also `current-input-mode'. */)
(Lisp_Object interrupt, Lisp_Object flow, Lisp_Object meta, Lisp_Object quit)
{
Fset_input_interrupt_mode (interrupt);
Fset_output_flow_control (flow, Qnil);
Fset_input_meta_mode (meta, Qnil);
if (!NILP (quit))
Fset_quit_char (quit);
return Qnil;
}
DEFUN ("current-input-mode", Fcurrent_input_mode, Scurrent_input_mode, 0, 0, 0,
doc: /* Return information about the way Emacs currently reads keyboard input.
The value is a list of the form (INTERRUPT FLOW META QUIT), where
INTERRUPT is non-nil if Emacs is using interrupt-driven input; if
nil, Emacs is using CBREAK mode.
FLOW is non-nil if Emacs uses ^S/^Q flow control for output to the
terminal; this does not apply if Emacs uses interrupt-driven input.
META is t if accepting 8-bit input with 8th bit as Meta flag.
META nil means ignoring the top bit, on the assumption it is parity.
META is neither t nor nil if accepting 8-bit input and using
all 8 bits as the character code.
QUIT is the character Emacs currently uses to quit.
The elements of this list correspond to the arguments of
`set-input-mode'. */)
(void)
{
struct frame *sf = XFRAME (selected_frame);
Lisp_Object interrupt = interrupt_input ? Qt : Qnil;
Lisp_Object flow, meta;
if (FRAME_TERMCAP_P (sf) || FRAME_MSDOS_P (sf))
{
flow = FRAME_TTY (sf)->flow_control ? Qt : Qnil;
meta = (FRAME_TTY (sf)->meta_key == 2
? make_number (0)
: (CURTTY ()->meta_key == 1 ? Qt : Qnil));
}
else
{
flow = Qnil;
meta = Qt;
}
Lisp_Object quit = make_number (quit_char);
return list4 (interrupt, flow, meta, quit);
}
DEFUN ("posn-at-x-y", Fposn_at_x_y, Sposn_at_x_y, 2, 4, 0,
doc: /* Return position information for pixel coordinates X and Y.
By default, X and Y are relative to text area of the selected window.
Optional third arg FRAME-OR-WINDOW non-nil specifies frame or window.
If optional fourth arg WHOLE is non-nil, X is relative to the left
edge of the window.
The return value is similar to a mouse click position:
(WINDOW AREA-OR-POS (X . Y) TIMESTAMP OBJECT POS (COL . ROW)
IMAGE (DX . DY) (WIDTH . HEIGHT))
The `posn-' functions access elements of such lists. */)
(Lisp_Object x, Lisp_Object y, Lisp_Object frame_or_window, Lisp_Object whole)
{
CHECK_NUMBER (x);
/* We allow X of -1, for the newline in a R2L line that overflowed
into the left fringe. */
if (XINT (x) != -1)
CHECK_NATNUM (x);
CHECK_NATNUM (y);
if (NILP (frame_or_window))
frame_or_window = selected_window;
if (WINDOWP (frame_or_window))
{
struct window *w = decode_live_window (frame_or_window);
XSETINT (x, (XINT (x)
+ WINDOW_LEFT_EDGE_X (w)
+ (NILP (whole)
? window_box_left_offset (w, TEXT_AREA)
: 0)));
XSETINT (y, WINDOW_TO_FRAME_PIXEL_Y (w, XINT (y)));
frame_or_window = w->frame;
}
CHECK_LIVE_FRAME (frame_or_window);
return make_lispy_position (XFRAME (frame_or_window), x, y, 0);
}
DEFUN ("posn-at-point", Fposn_at_point, Sposn_at_point, 0, 2, 0,
doc: /* Return position information for buffer POS in WINDOW.
POS defaults to point in WINDOW; WINDOW defaults to the selected window.
Return nil if position is not visible in window. Otherwise,
the return value is similar to that returned by `event-start' for
a mouse click at the upper left corner of the glyph corresponding
to the given buffer position:
(WINDOW AREA-OR-POS (X . Y) TIMESTAMP OBJECT POS (COL . ROW)
IMAGE (DX . DY) (WIDTH . HEIGHT))
The `posn-' functions access elements of such lists. */)
(Lisp_Object pos, Lisp_Object window)
{
Lisp_Object tem;
if (NILP (window))
window = selected_window;
tem = Fpos_visible_in_window_p (pos, window, Qt);
if (!NILP (tem))
{
Lisp_Object x = XCAR (tem);
Lisp_Object y = XCAR (XCDR (tem));
Lisp_Object aux_info = XCDR (XCDR (tem));
int y_coord = XINT (y);
/* Point invisible due to hscrolling? X can be -1 when a
newline in a R2L line overflows into the left fringe. */
if (XINT (x) < -1)
return Qnil;
if (!NILP (aux_info) && y_coord < 0)
{
int rtop = XINT (XCAR (aux_info));
y = make_number (y_coord + rtop);
}
tem = Fposn_at_x_y (x, y, window, Qnil);
}
return tem;
}
/* Set up a new kboard object with reasonable initial values.
TYPE is a window system for which this keyboard is used. */
static void
init_kboard (KBOARD *kb, Lisp_Object type)
{
kset_overriding_terminal_local_map (kb, Qnil);
kset_last_command (kb, Qnil);
kset_real_last_command (kb, Qnil);
kset_keyboard_translate_table (kb, Qnil);
kset_last_repeatable_command (kb, Qnil);
kset_prefix_arg (kb, Qnil);
kset_last_prefix_arg (kb, Qnil);
kset_kbd_queue (kb, Qnil);
kb->kbd_queue_has_data = false;
kb->immediate_echo = false;
kset_echo_string (kb, Qnil);
kset_echo_prompt (kb, Qnil);
kb->kbd_macro_buffer = 0;
kb->kbd_macro_bufsize = 0;
kset_defining_kbd_macro (kb, Qnil);
kset_last_kbd_macro (kb, Qnil);
kb->reference_count = 0;
kset_system_key_alist (kb, Qnil);
kset_system_key_syms (kb, Qnil);
kset_window_system (kb, type);
kset_input_decode_map (kb, Fmake_sparse_keymap (Qnil));
kset_local_function_key_map (kb, Fmake_sparse_keymap (Qnil));
Fset_keymap_parent (KVAR (kb, Vlocal_function_key_map), Vfunction_key_map);
kset_default_minibuffer_frame (kb, Qnil);
}
/* Allocate and basically initialize keyboard
object to use with window system TYPE. */
KBOARD *
allocate_kboard (Lisp_Object type)
{
KBOARD *kb = xmalloc (sizeof *kb);
init_kboard (kb, type);
kb->next_kboard = all_kboards;
all_kboards = kb;
return kb;
}
/*
* Destroy the contents of a kboard object, but not the object itself.
* We use this just before deleting it, or if we're going to initialize
* it a second time.
*/
static void
wipe_kboard (KBOARD *kb)
{
xfree (kb->kbd_macro_buffer);
}
/* Free KB and memory referenced from it. */
void
delete_kboard (KBOARD *kb)
{
KBOARD **kbp;
for (kbp = &all_kboards; *kbp != kb; kbp = &(*kbp)->next_kboard)
if (*kbp == NULL)
emacs_abort ();
*kbp = kb->next_kboard;
/* Prevent a dangling reference to KB. */
if (kb == current_kboard
&& FRAMEP (selected_frame)
&& FRAME_LIVE_P (XFRAME (selected_frame)))
{
current_kboard = FRAME_KBOARD (XFRAME (selected_frame));
single_kboard = false;
if (current_kboard == kb)
emacs_abort ();
}
wipe_kboard (kb);
xfree (kb);
}
void
init_keyboard (void)
{
/* This is correct before outermost invocation of the editor loop. */
command_loop_level = -1;
immediate_quit = false;
quit_char = Ctl ('g');
Vunread_command_events = Qnil;
timer_idleness_start_time = invalid_timespec ();
total_keys = 0;
recent_keys_index = 0;
kbd_fetch_ptr = kbd_buffer;
kbd_store_ptr = kbd_buffer;
do_mouse_tracking = Qnil;
input_pending = false;
interrupt_input_blocked = 0;
pending_signals = false;
/* This means that command_loop_1 won't try to select anything the first
time through. */
internal_last_event_frame = Qnil;
Vlast_event_frame = internal_last_event_frame;
current_kboard = initial_kboard;
/* Re-initialize the keyboard again. */
wipe_kboard (current_kboard);
/* A value of nil for Vwindow_system normally means a tty, but we also use
it for the initial terminal since there is no window system there. */
init_kboard (current_kboard, Qnil);
if (!noninteractive)
{
/* Before multi-tty support, these handlers used to be installed
only if the current session was a tty session. Now an Emacs
session may have multiple display types, so we always handle
SIGINT. There is special code in handle_interrupt_signal to exit
Emacs on SIGINT when there are no termcap frames on the
controlling terminal. */
struct sigaction action;
emacs_sigaction_init (&action, deliver_interrupt_signal);
sigaction (SIGINT, &action, 0);
#ifndef DOS_NT
/* For systems with SysV TERMIO, C-g is set up for both SIGINT and
SIGQUIT and we can't tell which one it will give us. */
sigaction (SIGQUIT, &action, 0);
#endif /* not DOS_NT */
}
#ifdef USABLE_SIGIO
if (!noninteractive)
{
struct sigaction action;
emacs_sigaction_init (&action, deliver_input_available_signal);
sigaction (SIGIO, &action, 0);
}
#endif
/* Use interrupt input by default, if it works and noninterrupt input
has deficiencies. */
#ifdef INTERRUPT_INPUT
interrupt_input = 1;
#else
interrupt_input = 0;
#endif
pthread_sigmask (SIG_SETMASK, &empty_mask, 0);
dribble = 0;
if (keyboard_init_hook)
(*keyboard_init_hook) ();
#ifdef POLL_FOR_INPUT
poll_timer = NULL;
poll_suppress_count = 1;
start_polling ();
#endif
}
/* This type's only use is in syms_of_keyboard, to put properties on the
event header symbols. */
struct event_head
{
short var;
short kind;
};
static const struct event_head head_table[] = {
{SYMBOL_INDEX (Qmouse_movement), SYMBOL_INDEX (Qmouse_movement)},
{SYMBOL_INDEX (Qscroll_bar_movement), SYMBOL_INDEX (Qmouse_movement)},
/* Some of the event heads. */
{SYMBOL_INDEX (Qswitch_frame), SYMBOL_INDEX (Qswitch_frame)},
{SYMBOL_INDEX (Qfocus_in), SYMBOL_INDEX (Qfocus_in)},
{SYMBOL_INDEX (Qfocus_out), SYMBOL_INDEX (Qfocus_out)},
{SYMBOL_INDEX (Qdelete_frame), SYMBOL_INDEX (Qdelete_frame)},
{SYMBOL_INDEX (Qiconify_frame), SYMBOL_INDEX (Qiconify_frame)},
{SYMBOL_INDEX (Qmake_frame_visible), SYMBOL_INDEX (Qmake_frame_visible)},
/* `select-window' should be handled just like `switch-frame'
in read_key_sequence. */
{SYMBOL_INDEX (Qselect_window), SYMBOL_INDEX (Qswitch_frame)}
};
void
syms_of_keyboard (void)
{
pending_funcalls = Qnil;
staticpro (&pending_funcalls);
Vlispy_mouse_stem = build_pure_c_string ("mouse");
staticpro (&Vlispy_mouse_stem);
regular_top_level_message = build_pure_c_string ("Back to top level");
#ifdef HAVE_STACK_OVERFLOW_HANDLING
recover_top_level_message
= build_pure_c_string ("Re-entering top level after C stack overflow");
#endif
DEFVAR_LISP ("internal--top-level-message", Vinternal__top_level_message,
doc: /* Message displayed by `normal-top-level'. */);
Vinternal__top_level_message = regular_top_level_message;
/* Tool-bars. */
DEFSYM (QCimage, ":image");
DEFSYM (Qhelp_echo, "help-echo");
DEFSYM (QCrtl, ":rtl");
staticpro (&item_properties);
item_properties = Qnil;
staticpro (&tool_bar_item_properties);
tool_bar_item_properties = Qnil;
staticpro (&tool_bar_items_vector);
tool_bar_items_vector = Qnil;
DEFSYM (Qtimer_event_handler, "timer-event-handler");
/* Non-nil disable property on a command means do not execute it;
call disabled-command-function's value instead. */
DEFSYM (Qdisabled, "disabled");
DEFSYM (Qundefined, "undefined");
/* Hooks to run before and after each command. */
DEFSYM (Qpre_command_hook, "pre-command-hook");
DEFSYM (Qpost_command_hook, "post-command-hook");
DEFSYM (Qundo_auto__add_boundary, "undo-auto--add-boundary");
DEFSYM (Qundo_auto__undoably_changed_buffers,
"undo-auto--undoably-changed-buffers");
DEFSYM (Qdeferred_action_function, "deferred-action-function");
DEFSYM (Qdelayed_warnings_hook, "delayed-warnings-hook");
DEFSYM (Qfunction_key, "function-key");
/* The values of Qevent_kind properties. */
DEFSYM (Qmouse_click, "mouse-click");
DEFSYM (Qdrag_n_drop, "drag-n-drop");
DEFSYM (Qsave_session, "save-session");
DEFSYM (Qconfig_changed_event, "config-changed-event");
/* Menu and tool bar item parts. */
DEFSYM (Qmenu_enable, "menu-enable");
#ifdef HAVE_NTGUI
DEFSYM (Qlanguage_change, "language-change");
DEFSYM (Qend_session, "end-session");
#endif
#ifdef HAVE_DBUS
DEFSYM (Qdbus_event, "dbus-event");
#endif
#ifdef HAVE_XWIDGETS
DEFSYM (Qxwidget_event, "xwidget-event");
#endif
#ifdef USE_FILE_NOTIFY
DEFSYM (Qfile_notify, "file-notify");
#endif /* USE_FILE_NOTIFY */
/* Menu and tool bar item parts. */
DEFSYM (QCenable, ":enable");
DEFSYM (QCvisible, ":visible");
DEFSYM (QChelp, ":help");
DEFSYM (QCfilter, ":filter");
DEFSYM (QCbutton, ":button");
DEFSYM (QCkeys, ":keys");
DEFSYM (QCkey_sequence, ":key-sequence");
/* Non-nil disable property on a command means
do not execute it; call disabled-command-function's value instead. */
DEFSYM (QCtoggle, ":toggle");
DEFSYM (QCradio, ":radio");
DEFSYM (QClabel, ":label");
DEFSYM (QCvert_only, ":vert-only");
/* Symbols to use for parts of windows. */
DEFSYM (Qvertical_line, "vertical-line");
DEFSYM (Qright_divider, "right-divider");
DEFSYM (Qbottom_divider, "bottom-divider");
DEFSYM (Qmouse_fixup_help_message, "mouse-fixup-help-message");
DEFSYM (Qabove_handle, "above-handle");
DEFSYM (Qhandle, "handle");
DEFSYM (Qbelow_handle, "below-handle");
DEFSYM (Qup, "up");
DEFSYM (Qdown, "down");
DEFSYM (Qtop, "top");
DEFSYM (Qbottom, "bottom");
DEFSYM (Qend_scroll, "end-scroll");
DEFSYM (Qratio, "ratio");
DEFSYM (Qbefore_handle, "before-handle");
DEFSYM (Qhorizontal_handle, "horizontal-handle");
DEFSYM (Qafter_handle, "after-handle");
DEFSYM (Qleft, "left");
DEFSYM (Qright, "right");
DEFSYM (Qleftmost, "leftmost");
DEFSYM (Qrightmost, "rightmost");
/* Properties of event headers. */
DEFSYM (Qevent_kind, "event-kind");
DEFSYM (Qevent_symbol_elements, "event-symbol-elements");
/* An event header symbol HEAD may have a property named
Qevent_symbol_element_mask, which is of the form (BASE MODIFIERS);
BASE is the base, unmodified version of HEAD, and MODIFIERS is the
mask of modifiers applied to it. If present, this is used to help
speed up parse_modifiers. */
DEFSYM (Qevent_symbol_element_mask, "event-symbol-element-mask");
/* An unmodified event header BASE may have a property named
Qmodifier_cache, which is an alist mapping modifier masks onto
modified versions of BASE. If present, this helps speed up
apply_modifiers. */
DEFSYM (Qmodifier_cache, "modifier-cache");
DEFSYM (Qrecompute_lucid_menubar, "recompute-lucid-menubar");
DEFSYM (Qactivate_menubar_hook, "activate-menubar-hook");
DEFSYM (Qpolling_period, "polling-period");
DEFSYM (Qgui_set_selection, "gui-set-selection");
/* The primary selection. */
DEFSYM (QPRIMARY, "PRIMARY");
DEFSYM (Qhandle_switch_frame, "handle-switch-frame");
DEFSYM (Qhandle_select_window, "handle-select-window");
DEFSYM (Qinput_method_exit_on_first_char, "input-method-exit-on-first-char");
DEFSYM (Qinput_method_use_echo_area, "input-method-use-echo-area");
DEFSYM (Qhelp_form_show, "help-form-show");
DEFSYM (Qecho_keystrokes, "echo-keystrokes");
Fset (Qinput_method_exit_on_first_char, Qnil);
Fset (Qinput_method_use_echo_area, Qnil);
/* Symbols to head events. */
DEFSYM (Qmouse_movement, "mouse-movement");
DEFSYM (Qscroll_bar_movement, "scroll-bar-movement");
DEFSYM (Qswitch_frame, "switch-frame");
DEFSYM (Qfocus_in, "focus-in");
DEFSYM (Qfocus_out, "focus-out");
DEFSYM (Qdelete_frame, "delete-frame");
DEFSYM (Qiconify_frame, "iconify-frame");
DEFSYM (Qmake_frame_visible, "make-frame-visible");
DEFSYM (Qselect_window, "select-window");
{
int i;
for (i = 0; i < ARRAYELTS (head_table); i++)
{
const struct event_head *p = &head_table[i];
Lisp_Object var = builtin_lisp_symbol (p->var);
Lisp_Object kind = builtin_lisp_symbol (p->kind);
Fput (var, Qevent_kind, kind);
Fput (var, Qevent_symbol_elements, list1 (var));
}
}
button_down_location = Fmake_vector (make_number (5), Qnil);
staticpro (&button_down_location);
mouse_syms = Fmake_vector (make_number (5), Qnil);
staticpro (&mouse_syms);
wheel_syms = Fmake_vector (make_number (ARRAYELTS (lispy_wheel_names)),
Qnil);
staticpro (&wheel_syms);
{
int i;
int len = ARRAYELTS (modifier_names);
modifier_symbols = Fmake_vector (make_number (len), Qnil);
for (i = 0; i < len; i++)
if (modifier_names[i])
ASET (modifier_symbols, i, intern_c_string (modifier_names[i]));
staticpro (&modifier_symbols);
}
recent_keys = Fmake_vector (make_number (NUM_RECENT_KEYS), Qnil);
staticpro (&recent_keys);
this_command_keys = Fmake_vector (make_number (40), Qnil);
staticpro (&this_command_keys);
raw_keybuf = Fmake_vector (make_number (30), Qnil);
staticpro (&raw_keybuf);
DEFSYM (Qcommand_execute, "command-execute");
DEFSYM (Qinternal_echo_keystrokes_prefix, "internal-echo-keystrokes-prefix");
accent_key_syms = Qnil;
staticpro (&accent_key_syms);
func_key_syms = Qnil;
staticpro (&func_key_syms);
drag_n_drop_syms = Qnil;
staticpro (&drag_n_drop_syms);
unread_switch_frame = Qnil;
staticpro (&unread_switch_frame);
internal_last_event_frame = Qnil;
staticpro (&internal_last_event_frame);
read_key_sequence_cmd = Qnil;
staticpro (&read_key_sequence_cmd);
read_key_sequence_remapped = Qnil;
staticpro (&read_key_sequence_remapped);
menu_bar_one_keymap_changed_items = Qnil;
staticpro (&menu_bar_one_keymap_changed_items);
menu_bar_items_vector = Qnil;
staticpro (&menu_bar_items_vector);
help_form_saved_window_configs = Qnil;
staticpro (&help_form_saved_window_configs);
defsubr (&Scurrent_idle_time);
defsubr (&Sevent_symbol_parse_modifiers);
defsubr (&Sevent_convert_list);
defsubr (&Sread_key_sequence);
defsubr (&Sread_key_sequence_vector);
defsubr (&Srecursive_edit);
defsubr (&Strack_mouse);
defsubr (&Sinput_pending_p);
defsubr (&Srecent_keys);
defsubr (&Sthis_command_keys);
defsubr (&Sthis_command_keys_vector);
defsubr (&Sthis_single_command_keys);
defsubr (&Sthis_single_command_raw_keys);
defsubr (&Sclear_this_command_keys);
defsubr (&Ssuspend_emacs);
defsubr (&Sabort_recursive_edit);
defsubr (&Sexit_recursive_edit);
defsubr (&Srecursion_depth);
defsubr (&Scommand_error_default_function);
defsubr (&Stop_level);
defsubr (&Sdiscard_input);
defsubr (&Sopen_dribble_file);
defsubr (&Sset_input_interrupt_mode);
defsubr (&Sset_output_flow_control);
defsubr (&Sset_input_meta_mode);
defsubr (&Sset_quit_char);
defsubr (&Sset_input_mode);
defsubr (&Scurrent_input_mode);
defsubr (&Sposn_at_point);
defsubr (&Sposn_at_x_y);
DEFVAR_LISP ("last-command-event", last_command_event,
doc: /* Last input event that was part of a command. */);
DEFVAR_LISP ("last-nonmenu-event", last_nonmenu_event,
doc: /* Last input event in a command, except for mouse menu events.
Mouse menus give back keys that don't look like mouse events;
this variable holds the actual mouse event that led to the menu,
so that you can determine whether the command was run by mouse or not. */);
DEFVAR_LISP ("last-input-event", last_input_event,
doc: /* Last input event. */);
DEFVAR_LISP ("unread-command-events", Vunread_command_events,
doc: /* List of events to be read as the command input.
These events are processed first, before actual keyboard input.
Events read from this list are not normally added to `this-command-keys',
as they will already have been added once as they were read for the first time.
An element of the form (t . EVENT) forces EVENT to be added to that list. */);
Vunread_command_events = Qnil;
DEFVAR_LISP ("unread-post-input-method-events", Vunread_post_input_method_events,
doc: /* List of events to be processed as input by input methods.
These events are processed before `unread-command-events'
and actual keyboard input, but are not given to `input-method-function'. */);
Vunread_post_input_method_events = Qnil;
DEFVAR_LISP ("unread-input-method-events", Vunread_input_method_events,
doc: /* List of events to be processed as input by input methods.
These events are processed after `unread-command-events', but
before actual keyboard input.
If there's an active input method, the events are given to
`input-method-function'. */);
Vunread_input_method_events = Qnil;
DEFVAR_LISP ("meta-prefix-char", meta_prefix_char,
doc: /* Meta-prefix character code.
Meta-foo as command input turns into this character followed by foo. */);
XSETINT (meta_prefix_char, 033);
DEFVAR_KBOARD ("last-command", Vlast_command,
doc: /* The last command executed.
Normally a symbol with a function definition, but can be whatever was found
in the keymap, or whatever the variable `this-command' was set to by that
command.
The value `mode-exit' is special; it means that the previous command
read an event that told it to exit, and it did so and unread that event.
In other words, the present command is the event that made the previous
command exit.
The value `kill-region' is special; it means that the previous command
was a kill command.
`last-command' has a separate binding for each terminal device.
See Info node `(elisp)Multiple Terminals'. */);
DEFVAR_KBOARD ("real-last-command", Vreal_last_command,
doc: /* Same as `last-command', but never altered by Lisp code.
Taken from the previous value of `real-this-command'. */);
DEFVAR_KBOARD ("last-repeatable-command", Vlast_repeatable_command,
doc: /* Last command that may be repeated.
The last command executed that was not bound to an input event.
This is the command `repeat' will try to repeat.
Taken from a previous value of `real-this-command'. */);
DEFVAR_LISP ("this-command", Vthis_command,
doc: /* The command now being executed.
The command can set this variable; whatever is put here
will be in `last-command' during the following command. */);
Vthis_command = Qnil;
DEFVAR_LISP ("real-this-command", Vreal_this_command,
doc: /* This is like `this-command', except that commands should never modify it. */);
Vreal_this_command = Qnil;
DEFVAR_LISP ("this-command-keys-shift-translated",
Vthis_command_keys_shift_translated,
doc: /* Non-nil if the key sequence activating this command was shift-translated.
Shift-translation occurs when there is no binding for the key sequence
as entered, but a binding was found by changing an upper-case letter
to lower-case, or a shifted function key to an unshifted one. */);
Vthis_command_keys_shift_translated = Qnil;
DEFVAR_LISP ("this-original-command", Vthis_original_command,
doc: /* The command bound to the current key sequence before remapping.
It equals `this-command' if the original command was not remapped through
any of the active keymaps. Otherwise, the value of `this-command' is the
result of looking up the original command in the active keymaps. */);
Vthis_original_command = Qnil;
DEFVAR_INT ("auto-save-interval", auto_save_interval,
doc: /* Number of input events between auto-saves.
Zero means disable autosaving due to number of characters typed. */);
auto_save_interval = 300;
DEFVAR_LISP ("auto-save-timeout", Vauto_save_timeout,
doc: /* Number of seconds idle time before auto-save.
Zero or nil means disable auto-saving due to idleness.
After auto-saving due to this many seconds of idle time,
Emacs also does a garbage collection if that seems to be warranted. */);
XSETFASTINT (Vauto_save_timeout, 30);
DEFVAR_LISP ("echo-keystrokes", Vecho_keystrokes,
doc: /* Nonzero means echo unfinished commands after this many seconds of pause.
The value may be integer or floating point.
If the value is zero, don't echo at all. */);
Vecho_keystrokes = make_number (1);
DEFVAR_INT ("polling-period", polling_period,
doc: /* Interval between polling for input during Lisp execution.
The reason for polling is to make C-g work to stop a running program.
Polling is needed only when using X windows and SIGIO does not work.
Polling is automatically disabled in all other cases. */);
polling_period = 2;
DEFVAR_LISP ("double-click-time", Vdouble_click_time,
doc: /* Maximum time between mouse clicks to make a double-click.
Measured in milliseconds. The value nil means disable double-click
recognition; t means double-clicks have no time limit and are detected
by position only. */);
Vdouble_click_time = make_number (500);
DEFVAR_INT ("double-click-fuzz", double_click_fuzz,
doc: /* Maximum mouse movement between clicks to make a double-click.
On window-system frames, value is the number of pixels the mouse may have
moved horizontally or vertically between two clicks to make a double-click.
On non window-system frames, value is interpreted in units of 1/8 characters
instead of pixels.
This variable is also the threshold for motion of the mouse
to count as a drag. */);
double_click_fuzz = 3;
DEFVAR_INT ("num-input-keys", num_input_keys,
doc: /* Number of complete key sequences read as input so far.
This includes key sequences read from keyboard macros.
The number is effectively the number of interactive command invocations. */);
num_input_keys = 0;
DEFVAR_INT ("num-nonmacro-input-events", num_nonmacro_input_events,
doc: /* Number of input events read from the keyboard so far.
This does not include events generated by keyboard macros. */);
num_nonmacro_input_events = 0;
DEFVAR_LISP ("last-event-frame", Vlast_event_frame,
doc: /* The frame in which the most recently read event occurred.
If the last event came from a keyboard macro, this is set to `macro'. */);
Vlast_event_frame = Qnil;
/* This variable is set up in sysdep.c. */
DEFVAR_LISP ("tty-erase-char", Vtty_erase_char,
doc: /* The ERASE character as set by the user with stty. */);
DEFVAR_LISP ("help-char", Vhelp_char,
doc: /* Character to recognize as meaning Help.
When it is read, do `(eval help-form)', and display result if it's a string.
If the value of `help-form' is nil, this char can be read normally. */);
XSETINT (Vhelp_char, Ctl ('H'));
DEFVAR_LISP ("help-event-list", Vhelp_event_list,
doc: /* List of input events to recognize as meaning Help.
These work just like the value of `help-char' (see that). */);
Vhelp_event_list = Qnil;
DEFVAR_LISP ("help-form", Vhelp_form,
doc: /* Form to execute when character `help-char' is read.
If the form returns a string, that string is displayed.
If `help-form' is nil, the help char is not recognized. */);
Vhelp_form = Qnil;
DEFVAR_LISP ("prefix-help-command", Vprefix_help_command,
doc: /* Command to run when `help-char' character follows a prefix key.
This command is used only when there is no actual binding
for that character after that prefix key. */);
Vprefix_help_command = Qnil;
DEFVAR_LISP ("top-level", Vtop_level,
doc: /* Form to evaluate when Emacs starts up.
Useful to set before you dump a modified Emacs. */);
Vtop_level = Qnil;
XSYMBOL (Qtop_level)->declared_special = false;
DEFVAR_KBOARD ("keyboard-translate-table", Vkeyboard_translate_table,
doc: /* Translate table for local keyboard input, or nil.
If non-nil, the value should be a char-table. Each character read
from the keyboard is looked up in this char-table. If the value found
there is non-nil, then it is used instead of the actual input character.
The value can also be a string or vector, but this is considered obsolete.
If it is a string or vector of length N, character codes N and up are left
untranslated. In a vector, an element which is nil means "no translation".
This is applied to the characters supplied to input methods, not their
output. See also `translation-table-for-input'.
This variable has a separate binding for each terminal.
See Info node `(elisp)Multiple Terminals'. */);
DEFVAR_BOOL ("cannot-suspend", cannot_suspend,
doc: /* Non-nil means to always spawn a subshell instead of suspending.
\(Even if the operating system has support for stopping a process.) */);
cannot_suspend = false;
DEFVAR_BOOL ("menu-prompting", menu_prompting,
doc: /* Non-nil means prompt with menus when appropriate.
This is done when reading from a keymap that has a prompt string,
for elements that have prompt strings.
The menu is displayed on the screen
if X menus were enabled at configuration
time and the previous event was a mouse click prefix key.
Otherwise, menu prompting uses the echo area. */);
menu_prompting = true;
DEFVAR_LISP ("menu-prompt-more-char", menu_prompt_more_char,
doc: /* Character to see next line of menu prompt.
Type this character while in a menu prompt to rotate around the lines of it. */);
XSETINT (menu_prompt_more_char, ' ');
DEFVAR_INT ("extra-keyboard-modifiers", extra_keyboard_modifiers,
doc: /* A mask of additional modifier keys to use with every keyboard character.
Emacs applies the modifiers of the character stored here to each keyboard
character it reads. For example, after evaluating the expression
(setq extra-keyboard-modifiers ?\\C-x)
all input characters will have the control modifier applied to them.
Note that the character ?\\C-@, equivalent to the integer zero, does
not count as a control character; rather, it counts as a character
with no modifiers; thus, setting `extra-keyboard-modifiers' to zero
cancels any modification. */);
extra_keyboard_modifiers = 0;
DEFSYM (Qdeactivate_mark, "deactivate-mark");
DEFVAR_LISP ("deactivate-mark", Vdeactivate_mark,
doc: /* If an editing command sets this to t, deactivate the mark afterward.
The command loop sets this to nil before each command,
and tests the value when the command returns.
Buffer modification stores t in this variable. */);
Vdeactivate_mark = Qnil;
Fmake_variable_buffer_local (Qdeactivate_mark);
DEFVAR_LISP ("pre-command-hook", Vpre_command_hook,
doc: /* Normal hook run before each command is executed.
If an unhandled error happens in running this hook,
the function in which the error occurred is unconditionally removed, since
otherwise the error might happen repeatedly and make Emacs nonfunctional.
See also `post-command-hook'. */);
Vpre_command_hook = Qnil;
DEFVAR_LISP ("post-command-hook", Vpost_command_hook,
doc: /* Normal hook run after each command is executed.
If an unhandled error happens in running this hook,
the function in which the error occurred is unconditionally removed, since
otherwise the error might happen repeatedly and make Emacs nonfunctional.
It is a bad idea to use this hook for expensive processing. If
unavoidable, wrap your code in `(while-no-input (redisplay) CODE)' to
avoid making Emacs unresponsive while the user types.
See also `pre-command-hook'. */);
Vpost_command_hook = Qnil;
#if 0
DEFVAR_LISP ("echo-area-clear-hook", ...,
doc: /* Normal hook run when clearing the echo area. */);
#endif
DEFSYM (Qecho_area_clear_hook, "echo-area-clear-hook");
Fset (Qecho_area_clear_hook, Qnil);
DEFVAR_LISP ("lucid-menu-bar-dirty-flag", Vlucid_menu_bar_dirty_flag,
doc: /* Non-nil means menu bar, specified Lucid style, needs to be recomputed. */);
Vlucid_menu_bar_dirty_flag = Qnil;
DEFVAR_LISP ("menu-bar-final-items", Vmenu_bar_final_items,
doc: /* List of menu bar items to move to the end of the menu bar.
The elements of the list are event types that may have menu bar bindings. */);
Vmenu_bar_final_items = Qnil;
DEFVAR_LISP ("tool-bar-separator-image-expression", Vtool_bar_separator_image_expression,
doc: /* Expression evaluating to the image spec for a tool-bar separator.
This is used internally by graphical displays that do not render
tool-bar separators natively. Otherwise it is unused (e.g. on GTK). */);
Vtool_bar_separator_image_expression = Qnil;
DEFVAR_KBOARD ("overriding-terminal-local-map",
Voverriding_terminal_local_map,
doc: /* Per-terminal keymap that takes precedence over all other keymaps.
This variable is intended to let commands such as `universal-argument'
set up a different keymap for reading the next command.
`overriding-terminal-local-map' has a separate binding for each
terminal device. See Info node `(elisp)Multiple Terminals'. */);
DEFVAR_LISP ("overriding-local-map", Voverriding_local_map,
doc: /* Keymap that replaces (overrides) local keymaps.
If this variable is non-nil, Emacs looks up key bindings in this
keymap INSTEAD OF the keymap char property, minor mode maps, and the
buffer's local map. Hence, the only active keymaps would be
`overriding-terminal-local-map', this keymap, and `global-keymap', in
order of precedence. */);
Voverriding_local_map = Qnil;
DEFVAR_LISP ("overriding-local-map-menu-flag", Voverriding_local_map_menu_flag,
doc: /* Non-nil means `overriding-local-map' applies to the menu bar.
Otherwise, the menu bar continues to reflect the buffer's local map
and the minor mode maps regardless of `overriding-local-map'. */);
Voverriding_local_map_menu_flag = Qnil;
DEFVAR_LISP ("special-event-map", Vspecial_event_map,
doc: /* Keymap defining bindings for special events to execute at low level. */);
Vspecial_event_map = list1 (Qkeymap);
DEFVAR_LISP ("track-mouse", do_mouse_tracking,
doc: /* Non-nil means generate motion events for mouse motion. */);
DEFVAR_KBOARD ("system-key-alist", Vsystem_key_alist,
doc: /* Alist of system-specific X windows key symbols.
Each element should have the form (N . SYMBOL) where N is the
numeric keysym code (sans the \"system-specific\" bit 1<<28)
and SYMBOL is its name.
`system-key-alist' has a separate binding for each terminal device.
See Info node `(elisp)Multiple Terminals'. */);
DEFVAR_KBOARD ("local-function-key-map", Vlocal_function_key_map,
doc: /* Keymap that translates key sequences to key sequences during input.
This is used mainly for mapping key sequences into some preferred
key events (symbols).
The `read-key-sequence' function replaces any subsequence bound by
`local-function-key-map' with its binding. More precisely, when the
active keymaps have no binding for the current key sequence but
`local-function-key-map' binds a suffix of the sequence to a vector or
string, `read-key-sequence' replaces the matching suffix with its
binding, and continues with the new sequence.
If the binding is a function, it is called with one argument (the prompt)
and its return value (a key sequence) is used.
The events that come from bindings in `local-function-key-map' are not
themselves looked up in `local-function-key-map'.
For example, suppose `local-function-key-map' binds `ESC O P' to [f1].
Typing `ESC O P' to `read-key-sequence' would return [f1]. Typing
`C-x ESC O P' would return [?\\C-x f1]. If [f1] were a prefix key,
typing `ESC O P x' would return [f1 x].
`local-function-key-map' has a separate binding for each terminal
device. See Info node `(elisp)Multiple Terminals'. If you need to
define a binding on all terminals, change `function-key-map'
instead. Initially, `local-function-key-map' is an empty keymap that
has `function-key-map' as its parent on all terminal devices. */);
DEFVAR_KBOARD ("input-decode-map", Vinput_decode_map,
doc: /* Keymap that decodes input escape sequences.
This is used mainly for mapping ASCII function key sequences into
real Emacs function key events (symbols).
The `read-key-sequence' function replaces any subsequence bound by
`input-decode-map' with its binding. Contrary to `function-key-map',
this map applies its rebinding regardless of the presence of an ordinary
binding. So it is more like `key-translation-map' except that it applies
before `function-key-map' rather than after.
If the binding is a function, it is called with one argument (the prompt)
and its return value (a key sequence) is used.
The events that come from bindings in `input-decode-map' are not
themselves looked up in `input-decode-map'. */);
DEFVAR_LISP ("function-key-map", Vfunction_key_map,
doc: /* The parent keymap of all `local-function-key-map' instances.
Function key definitions that apply to all terminal devices should go
here. If a mapping is defined in both the current
`local-function-key-map' binding and this variable, then the local
definition will take precedence. */);
Vfunction_key_map = Fmake_sparse_keymap (Qnil);
DEFVAR_LISP ("key-translation-map", Vkey_translation_map,
doc: /* Keymap of key translations that can override keymaps.
This keymap works like `input-decode-map', but comes after `function-key-map'.
Another difference is that it is global rather than terminal-local. */);
Vkey_translation_map = Fmake_sparse_keymap (Qnil);
DEFVAR_LISP ("deferred-action-list", Vdeferred_action_list,
doc: /* List of deferred actions to be performed at a later time.
The precise format isn't relevant here; we just check whether it is nil. */);
Vdeferred_action_list = Qnil;
DEFVAR_LISP ("deferred-action-function", Vdeferred_action_function,
doc: /* Function to call to handle deferred actions, after each command.
This function is called with no arguments after each command
whenever `deferred-action-list' is non-nil. */);
Vdeferred_action_function = Qnil;
DEFVAR_LISP ("delayed-warnings-list", Vdelayed_warnings_list,
doc: /* List of warnings to be displayed after this command.
Each element must be a list (TYPE MESSAGE [LEVEL [BUFFER-NAME]]),
as per the args of `display-warning' (which see).
If this variable is non-nil, `delayed-warnings-hook' will be run
immediately after running `post-command-hook'. */);
Vdelayed_warnings_list = Qnil;
DEFVAR_LISP ("timer-list", Vtimer_list,
doc: /* List of active absolute time timers in order of increasing time. */);
Vtimer_list = Qnil;
DEFVAR_LISP ("timer-idle-list", Vtimer_idle_list,
doc: /* List of active idle-time timers in order of increasing time. */);
Vtimer_idle_list = Qnil;
DEFVAR_LISP ("input-method-function", Vinput_method_function,
doc: /* If non-nil, the function that implements the current input method.
It's called with one argument, a printing character that was just read.
\(That means a character with code 040...0176.)
Typically this function uses `read-event' to read additional events.
When it does so, it should first bind `input-method-function' to nil
so it will not be called recursively.
The function should return a list of zero or more events
to be used as input. If it wants to put back some events
to be reconsidered, separately, by the input method,
it can add them to the beginning of `unread-command-events'.
The input method function can find in `input-method-previous-message'
the previous echo area message.
The input method function should refer to the variables
`input-method-use-echo-area' and `input-method-exit-on-first-char'
for guidance on what to do. */);
Vinput_method_function = Qlist;
DEFVAR_LISP ("input-method-previous-message",
Vinput_method_previous_message,
doc: /* When `input-method-function' is called, hold the previous echo area message.
This variable exists because `read-event' clears the echo area
before running the input method. It is nil if there was no message. */);
Vinput_method_previous_message = Qnil;
DEFVAR_LISP ("show-help-function", Vshow_help_function,
doc: /* If non-nil, the function that implements the display of help.
It's called with one argument, the help string to display. */);
Vshow_help_function = Qnil;
DEFVAR_LISP ("disable-point-adjustment", Vdisable_point_adjustment,
doc: /* If non-nil, suppress point adjustment after executing a command.
After a command is executed, if point moved into a region that has
special properties (e.g. composition, display), Emacs adjusts point to
the boundary of the region. But when a command leaves this variable at
a non-nil value (e.g., with a setq), this point adjustment is suppressed.
This variable is set to nil before reading a command, and is checked
just after executing the command. */);
Vdisable_point_adjustment = Qnil;
DEFVAR_LISP ("global-disable-point-adjustment",
Vglobal_disable_point_adjustment,
doc: /* If non-nil, always suppress point adjustments.
The default value is nil, in which case point adjustments are
suppressed only after special commands that leave
`disable-point-adjustment' (which see) at a non-nil value. */);
Vglobal_disable_point_adjustment = Qnil;
DEFVAR_LISP ("minibuffer-message-timeout", Vminibuffer_message_timeout,
doc: /* How long to display an echo-area message when the minibuffer is active.
If the value is a number, it should be specified in seconds.
If the value is not a number, such messages never time out. */);
Vminibuffer_message_timeout = make_number (2);
DEFVAR_LISP ("throw-on-input", Vthrow_on_input,
doc: /* If non-nil, any keyboard input throws to this symbol.
The value of that variable is passed to `quit-flag' and later causes a
peculiar kind of quitting. */);
Vthrow_on_input = Qnil;
DEFVAR_LISP ("command-error-function", Vcommand_error_function,
doc: /* Function to output error messages.
Called with three arguments:
- the error data, a list of the form (SIGNALED-CONDITION . SIGNAL-DATA)
such as what `condition-case' would bind its variable to,
- the context (a string which normally goes at the start of the message),
- the Lisp function within which the error was signaled. */);
Vcommand_error_function = intern ("command-error-default-function");
DEFVAR_LISP ("enable-disabled-menus-and-buttons",
Venable_disabled_menus_and_buttons,
doc: /* If non-nil, don't ignore events produced by disabled menu items and tool-bar.
Help functions bind this to allow help on disabled menu items
and tool-bar buttons. */);
Venable_disabled_menus_and_buttons = Qnil;
DEFVAR_LISP ("select-active-regions",
Vselect_active_regions,
doc: /* If non-nil, an active region automatically sets the primary selection.
If the value is `only', only temporarily active regions (usually made
by mouse-dragging or shift-selection) set the window selection.
This takes effect only when Transient Mark mode is enabled. */);
Vselect_active_regions = Qt;
DEFVAR_LISP ("saved-region-selection",
Vsaved_region_selection,
doc: /* Contents of active region prior to buffer modification.
If `select-active-regions' is non-nil, Emacs sets this to the
text in the region before modifying the buffer. The next call to
the function `deactivate-mark' uses this to set the window selection. */);
Vsaved_region_selection = Qnil;
DEFVAR_LISP ("selection-inhibit-update-commands",
Vselection_inhibit_update_commands,
doc: /* List of commands which should not update the selection.
Normally, if `select-active-regions' is non-nil and the mark remains
active after a command (i.e. the mark was not deactivated), the Emacs
command loop sets the selection to the text in the region. However,
if the command is in this list, the selection is not updated. */);
Vselection_inhibit_update_commands
= list2 (Qhandle_switch_frame, Qhandle_select_window);
DEFVAR_LISP ("debug-on-event",
Vdebug_on_event,
doc: /* Enter debugger on this event. When Emacs
receives the special event specified by this variable, it will try to
break into the debugger as soon as possible instead of processing the
event normally through `special-event-map'.
Currently, the only supported values for this
variable are `sigusr1' and `sigusr2'. */);
Vdebug_on_event = intern_c_string ("sigusr2");
DEFVAR_BOOL ("attempt-stack-overflow-recovery",
attempt_stack_overflow_recovery,
doc: /* If non-nil, attempt to recover from C stack
overflow. This recovery is unsafe and may lead to deadlocks or data
corruption, but it usually works and may preserve modified buffers
that would otherwise be lost. If nil, treat stack overflow like any
other kind of crash. */);
attempt_stack_overflow_recovery = true;
DEFVAR_BOOL ("attempt-orderly-shutdown-on-fatal-signal",
attempt_orderly_shutdown_on_fatal_signal,
doc: /* If non-nil, attempt to perform an orderly
shutdown when Emacs receives a fatal signal (e.g., a crash).
This cleanup is unsafe and may lead to deadlocks or data corruption,
but it usually works and may preserve modified buffers that would
otherwise be lost. If nil, crash immediately in response to fatal
signals. */);
attempt_orderly_shutdown_on_fatal_signal = true;
/* Create the initial keyboard. Qt means 'unset'. */
initial_kboard = allocate_kboard (Qt);
}
void
keys_of_keyboard (void)
{
initial_define_key (global_map, Ctl ('Z'), "suspend-emacs");
initial_define_key (control_x_map, Ctl ('Z'), "suspend-emacs");
initial_define_key (meta_map, Ctl ('C'), "exit-recursive-edit");
initial_define_key (global_map, Ctl (']'), "abort-recursive-edit");
initial_define_key (meta_map, 'x', "execute-extended-command");
initial_define_lispy_key (Vspecial_event_map, "delete-frame",
"handle-delete-frame");
#ifdef HAVE_NTGUI
initial_define_lispy_key (Vspecial_event_map, "end-session",
"kill-emacs");
#endif
initial_define_lispy_key (Vspecial_event_map, "ns-put-working-text",
"ns-put-working-text");
initial_define_lispy_key (Vspecial_event_map, "ns-unput-working-text",
"ns-unput-working-text");
/* Here we used to use `ignore-event' which would simple set prefix-arg to
current-prefix-arg, as is done in `handle-switch-frame'.
But `handle-switch-frame is not run from the special-map.
Commands from that map are run in a special way that automatically
preserves the prefix-arg. Restoring the prefix arg here is not just
redundant but harmful:
- C-u C-x v =
- current-prefix-arg is set to non-nil, prefix-arg is set to nil.
- after the first prompt, the exit-minibuffer-hook is run which may
iconify a frame and thus push a `iconify-frame' event.
- after running exit-minibuffer-hook, current-prefix-arg is
restored to the non-nil value it had before the prompt.
- we enter the second prompt.
current-prefix-arg is non-nil, prefix-arg is nil.
- before running the first real event, we run the special iconify-frame
event, but we pass the `special' arg to command-execute so
current-prefix-arg and prefix-arg are left untouched.
- here we foolishly copy the non-nil current-prefix-arg to prefix-arg.
- the next key event will have a spuriously non-nil current-prefix-arg. */
initial_define_lispy_key (Vspecial_event_map, "iconify-frame",
"ignore");
initial_define_lispy_key (Vspecial_event_map, "make-frame-visible",
"ignore");
/* Handling it at such a low-level causes read_key_sequence to get
* confused because it doesn't realize that the current_buffer was
* changed by read_char.
*
* initial_define_lispy_key (Vspecial_event_map, "select-window",
* "handle-select-window"); */
initial_define_lispy_key (Vspecial_event_map, "save-session",
"handle-save-session");
#ifdef HAVE_DBUS
/* Define a special event which is raised for dbus callback
functions. */
initial_define_lispy_key (Vspecial_event_map, "dbus-event",
"dbus-handle-event");
#endif
#ifdef USE_FILE_NOTIFY
/* Define a special event which is raised for notification callback
functions. */
initial_define_lispy_key (Vspecial_event_map, "file-notify",
"file-notify-handle-event");
#endif /* USE_FILE_NOTIFY */
initial_define_lispy_key (Vspecial_event_map, "config-changed-event",
"ignore");
#if defined (WINDOWSNT)
initial_define_lispy_key (Vspecial_event_map, "language-change",
"ignore");
#endif
initial_define_lispy_key (Vspecial_event_map, "focus-in",
"handle-focus-in");
initial_define_lispy_key (Vspecial_event_map, "focus-out",
"handle-focus-out");
}
/* Mark the pointers in the kboard objects.
Called by Fgarbage_collect. */
void
mark_kboards (void)
{
KBOARD *kb;
Lisp_Object *p;
for (kb = all_kboards; kb; kb = kb->next_kboard)
{
if (kb->kbd_macro_buffer)
for (p = kb->kbd_macro_buffer; p < kb->kbd_macro_ptr; p++)
mark_object (*p);
mark_object (KVAR (kb, Voverriding_terminal_local_map));
mark_object (KVAR (kb, Vlast_command));
mark_object (KVAR (kb, Vreal_last_command));
mark_object (KVAR (kb, Vkeyboard_translate_table));
mark_object (KVAR (kb, Vlast_repeatable_command));
mark_object (KVAR (kb, Vprefix_arg));
mark_object (KVAR (kb, Vlast_prefix_arg));
mark_object (KVAR (kb, kbd_queue));
mark_object (KVAR (kb, defining_kbd_macro));
mark_object (KVAR (kb, Vlast_kbd_macro));
mark_object (KVAR (kb, Vsystem_key_alist));
mark_object (KVAR (kb, system_key_syms));
mark_object (KVAR (kb, Vwindow_system));
mark_object (KVAR (kb, Vinput_decode_map));
mark_object (KVAR (kb, Vlocal_function_key_map));
mark_object (KVAR (kb, Vdefault_minibuffer_frame));
mark_object (KVAR (kb, echo_string));
mark_object (KVAR (kb, echo_prompt));
}
{
union buffered_input_event *event;
for (event = kbd_fetch_ptr; event != kbd_store_ptr; event++)
{
if (event == kbd_buffer + KBD_BUFFER_SIZE)
event = kbd_buffer;
/* These two special event types has no Lisp_Objects to mark. */
if (event->kind != SELECTION_REQUEST_EVENT
&& event->kind != SELECTION_CLEAR_EVENT)
{
mark_object (event->ie.x);
mark_object (event->ie.y);
mark_object (event->ie.frame_or_window);
mark_object (event->ie.arg);
}
}
}
}