@c -*-texinfo-*- @c This is part of the GNU Emacs Lisp Reference Manual. @c Copyright (C) 1990--1995, 1998--1999, 2001--2025 Free Software @c Foundation, Inc. @c See the file elisp.texi for copying conditions. @node Symbols @chapter Symbols @cindex symbol A @dfn{symbol} is an object with a unique name. This chapter describes symbols, their components, their property lists, and how they are created and interned. Separate chapters describe the use of symbols as variables and as function names; see @ref{Variables}, and @ref{Functions}. For the precise read syntax for symbols, see @ref{Symbol Type}. You can test whether an arbitrary Lisp object is a symbol with @code{symbolp}: @defun symbolp object This function returns @code{t} if @var{object} is a symbol, @code{nil} otherwise. @end defun @menu * Symbol Components:: Symbols have names, values, function definitions and property lists. * Definitions:: A definition says how a symbol will be used. * Creating Symbols:: How symbols are kept unique. * Symbol Properties:: Each symbol has a property list for recording miscellaneous information. * Shorthands:: Properly organize your symbol names but type less of them. * Symbols with Position:: Symbol variants containing integer positions @end menu @node Symbol Components @section Symbol Components @cindex symbol components Each symbol has four components (or ``cells''), each of which references another object: @table @asis @item Print name @cindex print name cell The symbol's name. @item Value @cindex value cell The symbol's current value as a variable. @item Function @cindex function cell The symbol's function definition. It can also hold a symbol, a keymap, or a keyboard macro. @item Property list @cindex property list cell The symbol's property list. @end table @noindent The print name cell always holds a string, and cannot be changed. Each of the other three cells can be set to any Lisp object. The print name cell holds the string that is the name of a symbol. Since symbols are represented textually by their names, it is important not to have two symbols with the same name. The Lisp reader ensures this: every time it reads a symbol, it looks for an existing symbol with the specified name before it creates a new one. To get a symbol's name, use the function @code{symbol-name} (@pxref{Creating Symbols}). However, although each symbol has only one unique @emph{print name}, it is nevertheless possible to refer to that same symbol via different alias names called ``shorthands'' (@pxref{Shorthands}). The value cell holds a symbol's value as a variable, which is what you get if the symbol itself is evaluated as a Lisp expression. @xref{Variables}, for details about how values are set and retrieved, including complications such as @dfn{local bindings} and @dfn{scoping rules}. Most symbols can have any Lisp object as a value, but certain special symbols have values that cannot be changed; these include @code{nil} and @code{t}, and any symbol whose name starts with @samp{:} (those are called @dfn{keywords}). @xref{Constant Variables}. The function cell holds a symbol's function definition. Often, we refer to ``the function @code{foo}'' when we really mean the function stored in the function cell of @code{foo}; we make the distinction explicit only when necessary. Typically, the function cell is used to hold a function (@pxref{Functions}) or a macro (@pxref{Macros}). However, it can also be used to hold a symbol (@pxref{Function Indirection}), keyboard macro (@pxref{Keyboard Macros}), keymap (@pxref{Keymaps}), or autoload object (@pxref{Autoloading}). To get the contents of a symbol's function cell, use the function @code{symbol-function} (@pxref{Function Cells}). The property list cell normally should hold a correctly formatted property list. To get a symbol's property list, use the function @code{symbol-plist}. @xref{Symbol Properties}. The value cell may be @dfn{void}, which means that the cell does not reference any object. (This is not the same thing as holding the symbol @code{void}, nor the same as holding the symbol @code{nil}.) Examining a value cell that is void results in an error, such as @samp{Symbol's value as variable is void}. Because each symbol has separate value and function cells, variables names and function names do not conflict. For example, the symbol @code{buffer-file-name} has a value (the name of the file being visited in the current buffer) as well as a function definition (a primitive function that returns the name of the file): @example buffer-file-name @result{} "/gnu/elisp/symbols.texi" (symbol-function 'buffer-file-name) @result{} # @end example @node Definitions @section Defining Symbols @cindex definitions of symbols A @dfn{definition} is a special kind of Lisp expression that announces your intention to use a symbol in a particular way. It typically specifies a value or meaning for the symbol for one kind of use, plus documentation for its meaning when used in this way. Thus, when you define a symbol as a variable, you can supply an initial value for the variable, plus documentation for the variable. @code{defvar} and @code{defconst} are special forms that define a symbol as a @dfn{global variable}---a variable that can be accessed at any point in a Lisp program. @xref{Variables}, for details about variables. To define a customizable variable, use the @code{defcustom} macro, which also calls @code{defvar} as a subroutine (@pxref{Customization}). In principle, you can assign a variable value to any symbol with @code{setq}, whether or not it has first been defined as a variable. However, you ought to write a variable definition for each global variable that you want to use; otherwise, your Lisp program may not act correctly if it is evaluated with lexical scoping enabled (@pxref{Variable Scoping}). @code{defun} defines a symbol as a function, creating a lambda expression and storing it in the function cell of the symbol. This lambda expression thus becomes the function definition of the symbol. (The term ``function definition'', meaning the contents of the function cell, is derived from the idea that @code{defun} gives the symbol its definition as a function.) @code{defsubst} and @code{defalias} are two other ways of defining a function. @xref{Functions}. @code{defmacro} defines a symbol as a macro. It creates a macro object and stores it in the function cell of the symbol. Note that a given symbol can be a macro or a function, but not both at once, because both macro and function definitions are kept in the function cell, and that cell can hold only one Lisp object at any given time. @xref{Macros}. As previously noted, Emacs Lisp allows the same symbol to be defined both as a variable (e.g., with @code{defvar}) and as a function or macro (e.g., with @code{defun}). Such definitions do not conflict. These definitions also act as guides for programming tools. For example, the @kbd{C-h f} and @kbd{C-h v} commands create help buffers containing links to the relevant variable, function, or macro definitions. @xref{Name Help,,, emacs, The GNU Emacs Manual}. @node Creating Symbols @section Creating and Interning Symbols @cindex reading symbols To understand how symbols are created in GNU Emacs Lisp, you must know how Lisp reads them. Lisp must ensure that it finds the same symbol every time it reads the same sequence of characters in the same context. Failure to do so would cause complete confusion. @cindex obarray When the Lisp reader encounters a name that references a symbol in the source code, it looks up that name in a table called an @dfn{obarray} to find the symbol that the programmer meant. An obarray is an unordered container of symbols, indexed by name. The Lisp reader also considers ``shorthands''. If the programmer supplied them, this allows the reader to find a symbol even if its name isn't present in its full form in the source code. @xref{Shorthands}. @cindex interning If a symbol with the desired name is found, the reader uses that symbol. If the obarray does not contain a symbol with that name, the reader makes a new symbol and adds it to the obarray. Finding or adding a symbol with a certain name is called @dfn{interning} it, and the symbol is then called an @dfn{interned symbol}. Interning ensures that each obarray has just one symbol with any particular name. Other like-named symbols may exist, but not in the same obarray. Thus, the reader gets the same symbols for the same names, as long as you keep reading with the same obarray. Interning usually happens automatically in the reader, but sometimes other programs may want to do it. For example, after the @kbd{M-x} command obtains the command name as a string using the minibuffer, it then interns the string, to get the interned symbol with that name. As another example, a hypothetical telephone book program could intern the name of each looked up person's name as a symbol, even if the obarray did not contain it, so that it could attach information to that new symbol, such as the last time someone looked it up. @cindex symbol equality @cindex uninterned symbol No obarray contains all symbols; in fact, some symbols are not in any obarray. They are called @dfn{uninterned symbols}. An uninterned symbol has the same four cells as other symbols; however, the only way to gain access to it is by finding it in some other object or as the value of a variable. Uninterned symbols are sometimes useful in generating Lisp code, see below. @cindex CL note---symbol in obarrays @quotation @b{Common Lisp note:} Unlike Common Lisp, Emacs Lisp does not provide for interning the same name in several different ``packages'', thus creating multiple symbols with the same name but different packages. Emacs Lisp provides a different namespacing system called ``shorthands'' (@pxref{Shorthands}). @end quotation @defun obarray-make &optional size This function creates and returns a new obarray. The optional @var{size} may be used to specify the number of symbols that it is expected to hold, but since obarrays grow automatically as needed, this rarely provides any benefit. @end defun @defun obarrayp object This function returns @code{t} if @var{object} is an obarray, @code{nil} otherwise. @end defun Most of the functions below take a name and sometimes an obarray as arguments. A @code{wrong-type-argument} error is signaled if the name is not a string, or if the obarray is not an obarray object. @defun symbol-name symbol This function returns the string that is @var{symbol}'s name. For example: @example @group (symbol-name 'foo) @result{} "foo" @end group @end example @strong{Warning:} Never alter the string returned by that function. Doing that might make Emacs dysfunctional, and might even crash Emacs. @end defun @cindex uninterned symbol, and generating Lisp code Creating an uninterned symbol is useful in generating Lisp code, because an uninterned symbol used as a variable in the code you generate cannot clash with any variables used in other Lisp programs. @defun make-symbol name This function returns a newly-allocated, uninterned symbol whose name is @var{name} (which must be a string). Its value and function definition are void, and its property list is @code{nil}. In the example below, the value of @code{sym} is not @code{eq} to @code{foo} because it is a distinct uninterned symbol whose name is also @samp{foo}. @example (setq sym (make-symbol "foo")) @result{} foo (eq sym 'foo) @result{} nil @end example @end defun @defun gensym &optional prefix This function returns a symbol using @code{make-symbol}, whose name is made by appending @code{gensym-counter} to @var{prefix} and incrementing that counter, guaranteeing that no two calls to this function will generate a symbol with the same name. The prefix defaults to @code{"g"}. @end defun To avoid problems when accidentally interning printed representation of generated code (@pxref{Printed Representation}), it is recommended to use @code{gensym} instead of @code{make-symbol}. @defun intern name &optional obarray This function returns the interned symbol whose name is @var{name}. If there is no such symbol in the obarray @var{obarray}, @code{intern} creates a new one, adds it to the obarray, and returns it. If @var{obarray} is omitted, the value of the global variable @code{obarray} is used. @example (setq sym (intern "foo")) @result{} foo (eq sym 'foo) @result{} t (setq sym1 (intern "foo" other-obarray)) @result{} foo (eq sym1 'foo) @result{} nil @end example @end defun @cindex CL note---interning existing symbol @quotation @b{Common Lisp note:} In Common Lisp, you can intern an existing symbol in an obarray. In Emacs Lisp, you cannot do this, because the argument to @code{intern} must be a string, not a symbol. @end quotation @defun intern-soft name &optional obarray This function returns the symbol in @var{obarray} whose name is @var{name}, or @code{nil} if @var{obarray} has no symbol with that name. Therefore, you can use @code{intern-soft} to test whether a symbol with a given name is already interned. If @var{obarray} is omitted, the value of the global variable @code{obarray} is used. The argument @var{name} may also be a symbol; in that case, the function returns @var{name} if @var{name} is interned in the specified obarray, and otherwise @code{nil}. @example (intern-soft "frazzle") ; @r{No such symbol exists.} @result{} nil (make-symbol "frazzle") ; @r{Create an uninterned one.} @result{} frazzle @group (intern-soft "frazzle") ; @r{That one cannot be found.} @result{} nil @end group @group (setq sym (intern "frazzle")) ; @r{Create an interned one.} @result{} frazzle @end group @group (intern-soft "frazzle") ; @r{That one can be found!} @result{} frazzle @end group @group (eq sym 'frazzle) ; @r{And it is the same one.} @result{} t @end group @end example @end defun @defvar obarray This variable is the standard obarray for use by @code{intern} and @code{read}. @end defvar @defun mapatoms function &optional obarray @anchor{Definition of mapatoms} This function calls @var{function} once with each symbol in the obarray @var{obarray}. Then it returns @code{nil}. If @var{obarray} is omitted, it defaults to the value of @code{obarray}, the standard obarray for ordinary symbols. @example (setq count 0) @result{} 0 (defun count-syms (s) (setq count (1+ count))) @result{} count-syms (mapatoms 'count-syms) @result{} nil count @result{} 1871 @end example See @code{documentation} in @ref{Accessing Documentation}, for another example using @code{mapatoms}. @end defun @defun unintern symbol obarray This function deletes @var{symbol} from the obarray @var{obarray}. If @code{symbol} is not actually in the obarray, @code{unintern} does nothing. If @var{obarray} is @code{nil}, the current obarray is used. If you provide a string instead of a symbol as @var{symbol}, it stands for a symbol name. Then @code{unintern} deletes the symbol (if any) in the obarray which has that name. If there is no such symbol, @code{unintern} does nothing. If @code{unintern} does delete a symbol, it returns @code{t}. Otherwise it returns @code{nil}. @end defun @defun obarray-clear obarray This function removes all symbols from @var{obarray}. @end defun @node Symbol Properties @section Symbol Properties @cindex symbol property A symbol may possess any number of @dfn{symbol properties}, which can be used to record miscellaneous information about the symbol. For example, when a symbol has a @code{risky-local-variable} property with a non-@code{nil} value, that means the variable which the symbol names is a risky file-local variable (@pxref{File Local Variables}). Each symbol's properties and property values are stored in the symbol's property list cell (@pxref{Symbol Components}), in the form of a property list (@pxref{Property Lists}). @menu * Symbol Plists:: Accessing symbol properties. * Standard Properties:: Standard meanings of symbol properties. @end menu @node Symbol Plists @subsection Accessing Symbol Properties The following functions can be used to access symbol properties. @defun get symbol property This function returns the value of the property named @var{property} in @var{symbol}'s property list. If there is no such property, it returns @code{nil}. Thus, there is no distinction between a value of @code{nil} and the absence of the property. The name @var{property} is compared with the existing property names using @code{eq}, so any object is a legitimate property. See @code{put} for an example. @end defun @defun put symbol property value This function puts @var{value} onto @var{symbol}'s property list under the property name @var{property}, replacing any previous property value. The @code{put} function returns @var{value}. @example (put 'fly 'verb 'transitive) @result{}'transitive (put 'fly 'noun '(a buzzing little bug)) @result{} (a buzzing little bug) (get 'fly 'verb) @result{} transitive (symbol-plist 'fly) @result{} (verb transitive noun (a buzzing little bug)) @end example @end defun @defun symbol-plist symbol This function returns the property list of @var{symbol}. @end defun @defun setplist symbol plist This function sets @var{symbol}'s property list to @var{plist}. Normally, @var{plist} should be a well-formed property list, but this is not enforced. The return value is @var{plist}. @example (setplist 'foo '(a 1 b (2 3) c nil)) @result{} (a 1 b (2 3) c nil) (symbol-plist 'foo) @result{} (a 1 b (2 3) c nil) @end example For symbols in special obarrays, which are not used for ordinary purposes, it may make sense to use the property list cell in a nonstandard fashion; in fact, the abbrev mechanism does so (@pxref{Abbrevs}). You could define @code{put} in terms of @code{setplist} and @code{plist-put}, as follows: @example (defun put (symbol prop value) (setplist symbol (plist-put (symbol-plist symbol) prop value))) @end example @end defun @defun function-get symbol property &optional autoload This function is identical to @code{get}, except that if @var{symbol} is the name of a function alias, it looks in the property list of the symbol naming the actual function. @xref{Defining Functions}. If the optional argument @var{autoload} is non-@code{nil}, and @var{symbol} is auto-loaded, this function will try to autoload it, since autoloading might set @var{property} of @var{symbol}. If @var{autoload} is the symbol @code{macro}, only try autoloading if @var{symbol} is an auto-loaded macro. @end defun @defun function-put function property value This function sets @var{property} of @var{function} to @var{value}. @var{function} should be a symbol. This function is preferred to calling @code{put} for setting properties of a function, because it will allow us some day to implement remapping of old properties to new ones. @end defun @node Standard Properties @subsection Standard Symbol Properties Here, we list the symbol properties which are used for special purposes in Emacs. In the following table, whenever we say ``the named function'', that means the function whose name is the relevant symbol; similarly for ``the named variable'' etc. @table @code @item :advertised-binding This property value specifies the preferred key binding, when showing documentation, for the named function. @xref{Keys in Documentation}. @item char-table-extra-slots The value, if non-@code{nil}, specifies the number of extra slots in the named char-table type. @xref{Char-Tables}. @item customized-face @itemx face-defface-spec @itemx saved-face @itemx theme-face These properties are used to record a face's standard, saved, customized, and themed face specs. Do not set them directly; they are managed by @code{defface} and related functions. @xref{Defining Faces}. @item customized-value @itemx saved-value @itemx standard-value @itemx theme-value These properties are used to record a customizable variable's standard value, saved value, customized-but-unsaved value, and themed values. Do not set them directly; they are managed by @code{defcustom} and related functions. @xref{Variable Definitions}. @item definition-name @itemx definition-type These properties help find the definition of a symbol in the source code when it might be hard to find the definition by textual search of the source file. The Emacs Help commands such as @kbd{C-h f} (@pxref{Help,,, emacs, The GNU Emacs Manual}) use these properties to show the definition of a symbol via a button in the @file{*Help*} buffer where the symbol's documentation is shown. For example, a @code{define-derived-mode} (@pxref{Derived Modes}) might define a mode-specific function or a variable implicitly; or your Lisp program might generate a run-time call to @code{defun} to define a function (@pxref{Defining Functions}). In these and similar cases, the @code{definition-name} property of the symbol should be another symbol whose definition can be found by textual search and whose code defines the original symbol. In the example with @code{define-derived-mode}, the value of this property of the functions and variables it defines should be the mode symbol. In some cases, the definition cannot be found by looking for the definition of another symbol. For example, a test file might use a macro to generate calls to @code{ert-deftest} (@pxref{,,,ert, ERT: Emacs Lisp Regression Testing}) where the code is boiler plate and only varying data need to be passed in. In such cases, the @code{definition-type} property of the symbol can be a symbol that has an entry in @code{find-function-regexp-alist} telling how to find the definition of symbols of this type. In the example of a macro defining calls to @code{ert-deftest}, the macro could put the property @code{definition-type} on each test defined. The file defining the macro would also define a definition-finding function or regexp and add it to @code{find-function-regexp-alist} after that variable is loaded. Here is an example using a function to find the definition: @example (defmacro define-foo-test (data) "Define a test of the foo system using DATA." (declare (debug (&rest sexp))) (let ((test-name (intern (concat ...)))) `(progn (put ',test-name 'definition-type 'foo-test-type) (ert-deftest ,test-name () ,(concat "Test foo with " ...) ...)))) (defun foo-find-test-def-function (test-name) "Search for the `define-foo-test' call defining TEST-NAME. Return non-nil if the definition is found." (save-match-data (let ((regexp ...)) (save-restriction (widen) (goto-char (point-min)) (re-search-forward regexp nil t))))) (with-eval-after-load "find-func" (add-to-list 'find-function-regexp-alist '(foo-test-type . foo-find-test-def-function))) @end example @item disabled If the value is non-@code{nil}, the named function is disabled as a command. @xref{Disabling Commands}. @item face-documentation The value stores the documentation string of the named face. This is set automatically by @code{defface}. @xref{Defining Faces}. @item history-length The value, if non-@code{nil}, specifies the maximum minibuffer history length for the named history list variable. @xref{Minibuffer History}. @item interactive-form The value is an interactive form for the named function. Normally, you should not set this directly; use the @code{interactive} special form instead. @xref{Interactive Call}. @item menu-enable The value is an expression for determining whether the named menu item should be enabled in menus. @xref{Simple Menu Items}. @item mode-class If the value is @code{special}, the named major mode is special. @xref{Major Mode Conventions}. @item permanent-local If the value is non-@code{nil}, the named variable is a buffer-local variable whose value should not be reset when changing major modes. @xref{Creating Buffer-Local}. @item permanent-local-hook If the value is non-@code{nil}, the named function should not be deleted from the local value of a hook variable when changing major modes. @xref{Setting Hooks}. @item pure @cindex @code{pure} property If the value is non-@code{nil}, the named function is considered to be pure (@pxref{What Is a Function}). Calls with constant arguments can be evaluated at compile time. This may shift run time errors to compile time. Not to be confused with pure storage (@pxref{Pure Storage}). @item risky-local-variable If the value is non-@code{nil}, the named variable is considered risky as a file-local variable. @xref{File Local Variables}. @item safe-function If the value is non-@code{nil}, the named function is considered generally safe for evaluation. @xref{Function Safety}. @item safe-local-eval-function If the value is non-@code{nil}, the named function is safe to call in file-local evaluation forms. @xref{File Local Variables}. @item safe-local-variable The value specifies a function for determining safe file-local values for the named variable. @xref{File Local Variables}. Since this value is consulted when loading files, the function should be efficient and should ideally not lead to loading any libraries to determine the safeness (e.g., it should not be an autoloaded function). @item side-effect-free @cindex @code{side-effect-free} property A non-@code{nil} value indicates that the named function is free of side effects (@pxref{What Is a Function}), so the byte compiler may ignore a call whose value is unused. If the property's value is @code{error-free}, the byte compiler may even delete such unused calls. In addition to byte compiler optimizations, this property is also used for determining function safety (@pxref{Function Safety}). @item important-return-value @cindex @code{important-return-value} property A non-@code{nil} value makes the byte compiler warn about code that calls the named function without using its returned value. This is useful for functions where doing so is likely to be a mistake. @item undo-inhibit-region If non-@code{nil}, the named function prevents the @code{undo} operation from being restricted to the active region, if @code{undo} is invoked immediately after the function. @xref{Undo}. @item variable-documentation If non-@code{nil}, this specifies the named variable's documentation string. This is set automatically by @code{defvar} and related functions. @xref{Defining Faces}. @end table @node Shorthands @section Shorthands @cindex shorthands @cindex symbolic shorthands @cindex namespacing @cindex namespaces The symbol @dfn{shorthands}, sometimes known as ``renamed symbols'', are symbolic forms found in Lisp source. They're just like regular symbolic forms, except that when the Lisp reader encounters them, it produces symbols which have a different and usually longer @dfn{print name} (@pxref{Symbol Components}). It is useful to think of shorthands as @emph{abbreviating} the full names of intended symbols. Despite this, do not confuse shorthands with the Abbrev system (@pxref{Abbrevs}). @cindex namespace etiquette Shorthands make Emacs Lisp's @dfn{namespacing etiquette} easier to work with. Since all symbols are stored in a single obarray (@pxref{Creating Symbols}), programmers commonly prefix each symbol name with the name of the library where it originates. For example, the functions @code{text-property-search-forward} and @code{text-property-search-backward} both belong to the @file{text-property-search.el} library (@pxref{Loading}). By properly prefixing symbol names, one effectively prevents clashes between similarly named symbols which belong to different libraries and thus do different things. However, this practice commonly originates very long symbols names, which are inconvenient to type and read after a while. Shorthands solve these issues in a clean way. @defvar read-symbol-shorthands This variable's value is an alist whose elements have the form @code{(@var{shorthand-prefix} . @var{longhand-prefix})}. Each element instructs the Lisp reader to read every symbol form which starts with @var{shorthand-prefix} as if it started with @var{longhand-prefix} instead. This variable may only be set in file-local variables (@pxref{File Variables, , Local Variables in Files, emacs, The GNU Emacs Manual}). @end defvar Here's an example of shorthands usage in a hypothetical string manipulating library @file{some-nice-string-utils.el}. @smalllisp (defun some-nice-string-utils-split (separator s &optional omit-nulls) "A match-data saving variant of `split-string'." (save-match-data (split-string s separator omit-nulls))) (defun some-nice-string-utils-lines (s) "Split string S at newline characters into a list of strings." (some-nice-string-utils-split "\\(\r\n\\|[\n\r]\\)" s)) @end smalllisp As can be seen, it's quite tedious to read or develop this code since the symbol names to type are so long. We can use shorthands to alleviate that. @lisp (defun snu-split (separator s &optional omit-nulls) "A match-data saving variation on `split-string'." (save-match-data (split-string s separator omit-nulls))) (defun snu-lines (s) "Split string S into a list of strings on newline characters." (snu-split "\\(\r\n\\|[\n\r]\\)" s)) ;; Local Variables: ;; read-symbol-shorthands: (("snu-" . "some-nice-string-utils-")) ;; End: @end lisp Even though the two excerpts look different, they are quite identical after the Lisp reader processes them. Both will lead to the very same symbols being interned (@pxref{Creating Symbols}). Thus loading or byte-compiling any of the two files has equivalent results. The shorthands @code{snu-split} and @code{snu-lines} used in the second version are @emph{not} interned in the obarray. This is easily seen by moving point to the location where the shorthands are used and waiting for ElDoc (@pxref{Programming Language Doc, , Local Variables in Files, emacs, The GNU Emacs Manual}) to hint at the true full name of the symbol under point in the echo area. Since @code{read-symbol-shorthands} is a file-local variable, it is possible that multiple libraries depending on @file{some-nice-string-utils-lines.el} refer to the same symbols under @emph{different} shorthands, or not using shorthands at all. In the next example, the @file{my-tricks.el} library refers to the symbol @code{some-nice-string-utils-lines} using the @code{sns-} prefix instead of @code{snu-}. @example (defun t-reverse-lines (s) (string-join (reverse (sns-lines s)) "\n") ;; Local Variables: ;; read-symbol-shorthands: (("t-" . "my-tricks-") ;; ("sns-" . "some-nice-string-utils-")) ;; End: @end example Note that if you have two shorthands in the same file where one is the prefix of the other, the longer shorthand will be attempted first. This happens regardless of the order you specify shorthands in the local variables section of your file. @example '( t//foo ; reads to 'my-tricks--foo', not 'my-tricks-/foo' t/foo ; reads to 'my-tricks-foo' ) ;; Local Variables: ;; read-symbol-shorthands: (("t/" . "my-tricks-") ;; ("t//" . "my-tricks--") ;; End: @end example @subsection Exceptions There are two exceptions to rules governing Shorthand transformations: @itemize @bullet @item Symbol forms comprised entirely of characters in the Emacs Lisp symbol constituent class (@pxref{Syntax Class Table}) are not transformed. For example, it's possible to use @code{-} or @code{/=} as shorthand prefixes, but that won't shadow the arithmetic @emph{functions} of those names. @item Symbol forms whose names start with @samp{#_} are not transformed. @end itemize @node Symbols with Position @section Symbols with Position @cindex symbol with position @cindex bare symbol A @dfn{symbol with position} is a symbol, called the @dfn{bare symbol}, together with a nonnegative fixnum called the @dfn{position}. Even though a symbol with position often acts like its bare symbol, it is not a symbol: instead, it is an object that has both a bare symbol and a position. Because symbols with position are not symbols, they don't have entries in the obarray, though their bare symbols typically do (@pxref{Creating Symbols}). The byte compiler uses symbols with position, records in them the position of each symbol occurrence, and uses those positions in warning and error messages. They shouldn't normally be used otherwise. Doing so can cause unexpected results with basic Emacs functions such as @code{eq} and @code{equal}. The printed representation of a symbol with position uses the hash notation outlined in @ref{Printed Representation}. It looks like @samp{#}. It has no read syntax. You can cause just the bare symbol to be printed by binding the variable @code{print-symbols-bare} to non-@code{nil} around the print operation. The byte compiler does this before writing its output to the compiled Lisp file. When the flag variable @code{symbols-with-pos-enabled} is non-@code{nil}, a symbol with position ordinarily behaves like its bare symbol. For example, @samp{(eq (position-symbol 'foo 12345) 'foo)} yields @code{t}, and @code{equal} likewise treats a symbol with position as its bare symbol. When @code{symbols-with-pos-enabled} is @code{nil}, symbols with position behave as themselves, not as symbols. For example, @samp{(eq (position-symbol 'foo 12345) 'foo)} yields @code{nil}, and @code{equal} likewise treats a symbol with position as not equal to its bare symbol. Most of the time in Emacs @code{symbols-with-pos-enabled} is @code{nil}, but the byte compiler and the native compiler bind it to @code{t} when they run and Emacs runs a little more slowly in this case. Typically, symbols with position are created by the byte compiler calling the reader function @code{read-positioning-symbols} (@pxref{Input Functions}). One can also be created with the function @code{position-symbol}. @defvar symbols-with-pos-enabled This variable affects the behavior of symbols with position when they are not being printed and are not arguments to one of the functions defined later in this section. When this variable is non-@code{nil}, such a symbol with position behaves like its bare symbol; otherwise it behaves as itself, not as a symbol. @end defvar @defvar print-symbols-bare When bound to non-@code{nil}, the Lisp printer prints only the bare symbol of a symbol with position, ignoring the position. Otherwise a symbol with position prints as itself, not as a symbol. @end defvar @defun symbol-with-pos-p object This function returns @code{t} if @var{object} is a symbol with position, @code{nil} otherwise. Unlike @code{symbolp}, this function ignores @code{symbols-with-pos-enabled}. @end defun @defun bare-symbol sym This function returns the bare symbol of the symbol with position @var{sym}, or @var{sym} itself if it is already a symbol. For any other type of object, it signals an error. This function ignores @code{symbols-with-pos-enabled}. @end defun @defun symbol-with-pos-pos sympos This function returns the position, a nonnegative fixnum, from the symbol with position @var{sympos}. For any other type of object, it signals an error. This function ignores @code{symbols-with-pos-enabled}. @end defun @defun position-symbol sym pos Make a new symbol with position. The new object's bare symbol is taken from @var{sym}, which is either a symbol, or a symbol with position whose bare symbol is used. The new object's position is taken from @var{pos}, which is either a nonnegative fixnum, or a symbol with position whose position is used. Emacs signals an error if either argument is invalid. This function ignores @code{symbols-with-pos-enabled}. @end defun