/* JSON parsing and serialization. Copyright (C) 2017 Free Software Foundation, Inc. This file is part of GNU Emacs. GNU Emacs is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. GNU Emacs is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU Emacs. If not, see . */ #include #include #include #include #include "lisp.h" #include "buffer.h" #include "coding.h" static bool json_has_prefix (const char *string, const char *prefix) { return strncmp (string, prefix, strlen (prefix)) == 0; } static bool json_has_suffix (const char *string, const char *suffix) { size_t string_len = strlen (string); size_t suffix_len = strlen (suffix); return (string_len >= suffix_len && (memcmp (string + string_len - suffix_len, suffix, suffix_len) == 0)); } static Lisp_Object json_make_string (const char *data, size_t size) { if (PTRDIFF_MAX < size) string_overflow (); return make_specified_string (data, -1, size, true); } static Lisp_Object json_build_string (const char *data) { return json_make_string (data, strlen (data)); } static Lisp_Object json_encode (Lisp_Object string) { return code_convert_string (string, Qutf_8_unix, Qt, true, true, true); } static _Noreturn void json_out_of_memory (void) { memory_full (SIZE_MAX); } static _Noreturn void json_parse_error (const json_error_t *error) { Lisp_Object symbol; if (json_has_suffix (error->text, "expected near end of file")) symbol = Qjson_end_of_file; else if (json_has_prefix (error->text, "end of file expected")) symbol = Qjson_trailing_content; else symbol = Qjson_parse_error; xsignal (symbol, list5 (json_build_string (error->text), json_build_string (error->source), make_natnum (error->line), make_natnum (error->column), make_natnum (error->position))); } static void json_release_object (void *object) { json_decref (object); } static void check_string_without_embedded_nulls (Lisp_Object object) { CHECK_STRING (object); CHECK_TYPE (strlen (SSDATA (object)) == SBYTES (object), Qstring_without_embedded_nulls_p, object); } static ATTRIBUTE_WARN_UNUSED_RESULT json_t * json_check (json_t *object) { if (object == NULL) json_out_of_memory (); return object; } static json_t *lisp_to_json (Lisp_Object) ATTRIBUTE_WARN_UNUSED_RESULT; /* This returns Lisp_Object so we can use unbind_to. The return value is always nil. */ static Lisp_Object lisp_to_json_toplevel_1 (Lisp_Object lisp, json_t **json) { if (VECTORP (lisp)) { ptrdiff_t size = ASIZE (lisp); *json = json_check (json_array ()); ptrdiff_t count = SPECPDL_INDEX (); record_unwind_protect_ptr (json_release_object, json); for (ptrdiff_t i = 0; i < size; ++i) { int status = json_array_append_new (*json, lisp_to_json (AREF (lisp, i))); if (status == -1) json_out_of_memory (); eassert (status == 0); } eassert (json_array_size (*json) == size); clear_unwind_protect (count); return unbind_to (count, Qnil); } else if (HASH_TABLE_P (lisp)) { struct Lisp_Hash_Table *h = XHASH_TABLE (lisp); *json = json_check (json_object ()); ptrdiff_t count = SPECPDL_INDEX (); record_unwind_protect_ptr (json_release_object, *json); for (ptrdiff_t i = 0; i < HASH_TABLE_SIZE (h); ++i) if (!NILP (HASH_HASH (h, i))) { Lisp_Object key = json_encode (HASH_KEY (h, i)); /* We can’t specify the length, so the string must be null-terminated. */ check_string_without_embedded_nulls (key); int status = json_object_set_new (*json, SSDATA (key), lisp_to_json (HASH_VALUE (h, i))); if (status == -1) json_out_of_memory (); eassert (status == 0); } clear_unwind_protect (count); return unbind_to (count, Qnil); } wrong_type_argument (Qjson_value_p, lisp); } static ATTRIBUTE_WARN_UNUSED_RESULT json_t * lisp_to_json_toplevel (Lisp_Object lisp) { if (++lisp_eval_depth > max_lisp_eval_depth) xsignal0 (Qjson_object_too_deep); json_t *json; lisp_to_json_toplevel_1 (lisp, &json); --lisp_eval_depth; return json; } static ATTRIBUTE_WARN_UNUSED_RESULT json_t * lisp_to_json (Lisp_Object lisp) { if (EQ (lisp, QCnull)) return json_check (json_null ()); else if (EQ (lisp, QCfalse)) return json_check (json_false ()); else if (EQ (lisp, Qt)) return json_check (json_true ()); else if (INTEGERP (lisp)) { CHECK_TYPE_RANGED_INTEGER (json_int_t, lisp); return json_check (json_integer (XINT (lisp))); } else if (FLOATP (lisp)) return json_check (json_real (XFLOAT_DATA (lisp))); else if (STRINGP (lisp)) { Lisp_Object encoded = json_encode (lisp); ptrdiff_t size = SBYTES (encoded); return json_check (json_stringn (SSDATA (encoded), size)); } /* LISP now must be a vector or hashtable. */ return lisp_to_json_toplevel (lisp); } DEFUN ("json-serialize", Fjson_serialize, Sjson_serialize, 1, 1, NULL, doc: /* Return the JSON representation of OBJECT as a string. OBJECT must be a vector or hashtable, and its elements can recursively contain `:null', `:false', t, numbers, strings, or other vectors and hashtables. `:null', `:false', and t will be converted to JSON null, false, and true values, respectively. Vectors will be converted to JSON arrays, and hashtables to JSON objects. Hashtable keys must be strings without embedded null characters and must be unique within each object. */) (Lisp_Object object) { ptrdiff_t count = SPECPDL_INDEX (); json_t *json = lisp_to_json_toplevel (object); record_unwind_protect_ptr (json_release_object, json); char *string = json_dumps (json, JSON_COMPACT); if (string == NULL) json_out_of_memory (); record_unwind_protect_ptr (free, string); return unbind_to (count, json_build_string (string)); } struct json_buffer_and_size { const char *buffer; size_t size; }; static Lisp_Object json_insert (void *data) { const struct json_buffer_and_size *buffer_and_size = data; if (buffer_and_size->size > PTRDIFF_MAX) buffer_overflow (); insert (buffer_and_size->buffer, buffer_and_size->size); return Qnil; } struct json_insert_data { /* nil if json_insert succeeded, otherwise the symbol Qcatch_all_memory_full or a cons (ERROR-SYMBOL . ERROR-DATA). */ Lisp_Object error; }; static int json_insert_callback (const char *buffer, size_t size, void *data) { /* This function may not exit nonlocally. */ struct json_insert_data *d = data; struct json_buffer_and_size buffer_and_size = {.buffer = buffer, .size = size}; d->error = internal_catch_all (json_insert, &buffer_and_size, Fidentity); return NILP (d->error) ? 0 : -1; } DEFUN ("json-insert", Fjson_insert, Sjson_insert, 1, 1, NULL, doc: /* Insert the JSON representation of OBJECT before point. This is the same as (insert (json-serialize OBJECT)), but potentially faster. See the function `json-serialize' for allowed values of OBJECT. */) (Lisp_Object object) { ptrdiff_t count = SPECPDL_INDEX (); json_t *json = lisp_to_json (object); record_unwind_protect_ptr (json_release_object, json); struct json_insert_data data; int status = json_dump_callback (json, json_insert_callback, &data, JSON_COMPACT); if (status == -1) { if (CONSP (data.error)) xsignal (XCAR (data.error), XCDR (data.error)); else json_out_of_memory (); } eassert (status == 0); eassert (NILP (data.error)); return unbind_to (count, Qnil); } static Lisp_Object json_to_lisp (json_t *json) { switch (json_typeof (json)) { case JSON_NULL: return QCnull; case JSON_FALSE: return QCfalse; case JSON_TRUE: return Qt; case JSON_INTEGER: { json_int_t value = json_integer_value (json); if (FIXNUM_OVERFLOW_P (value)) xsignal0 (Qoverflow_error); return make_number (value); } case JSON_REAL: return make_float (json_real_value (json)); case JSON_STRING: return json_make_string (json_string_value (json), json_string_length (json)); case JSON_ARRAY: { if (++lisp_eval_depth > max_lisp_eval_depth) xsignal0 (Qjson_object_too_deep); size_t size = json_array_size (json); if (FIXNUM_OVERFLOW_P (size)) memory_full (size); struct Lisp_Vector *v = allocate_vector (size); for (ptrdiff_t i = 0; i < size; ++i) v->contents[i] = json_to_lisp (json_array_get (json, i)); --lisp_eval_depth; return make_lisp_ptr (v, Lisp_Vectorlike); } case JSON_OBJECT: { if (++lisp_eval_depth > max_lisp_eval_depth) xsignal0 (Qjson_object_too_deep); size_t size = json_object_size (json); if (FIXNUM_OVERFLOW_P (size)) memory_full (size); Lisp_Object result = make_hash_table (hashtest_equal, size, DEFAULT_REHASH_SIZE, DEFAULT_REHASH_THRESHOLD, Qnil, false); struct Lisp_Hash_Table *h = XHASH_TABLE (result); const char *key_str; json_t *value; json_object_foreach (json, key_str, value) { Lisp_Object key = json_build_string (key_str); EMACS_UINT hash; ptrdiff_t i = hash_lookup (h, key, &hash); eassert (i < 0); hash_put (h, key, json_to_lisp (value), hash); } --lisp_eval_depth; return result; } } /* Can’t get here. */ emacs_abort (); } DEFUN ("json-parse-string", Fjson_parse_string, Sjson_parse_string, 1, 1, NULL, doc: /* Parse the JSON STRING into a Lisp object. This is essentially the reverse operation of `json-serialize', which see. The returned object will be a vector or hashtable. Its elements will be `:null', `:false', t, numbers, strings, or further vectors and hashtables. If there are duplicate keys in an object, all but the last one are ignored. If STRING doesn't contain a valid JSON object, an error of type `json-parse-error' is signaled. */) (Lisp_Object string) { ptrdiff_t count = SPECPDL_INDEX (); Lisp_Object encoded = json_encode (string); check_string_without_embedded_nulls (encoded); json_error_t error; json_t *object = json_loads (SSDATA (encoded), 0, &error); if (object == NULL) json_parse_error (&error); /* Avoid leaking the object in case of further errors. */ if (object != NULL) record_unwind_protect_ptr (json_release_object, object); return unbind_to (count, json_to_lisp (object)); } struct json_read_buffer_data { ptrdiff_t point; }; static size_t json_read_buffer_callback (void *buffer, size_t buflen, void *data) { struct json_read_buffer_data *d = data; /* First, parse from point to the gap or the end of the accessible portion, whatever is closer. */ ptrdiff_t point = d->point; ptrdiff_t end = BUFFER_CEILING_OF (point) + 1; ptrdiff_t count = end - point; if (buflen < count) count = buflen; memcpy (buffer, BYTE_POS_ADDR (point), count); d->point += count; return count; } DEFUN ("json-parse-buffer", Fjson_parse_buffer, Sjson_parse_buffer, 0, 0, NULL, doc: /* Read JSON object from current buffer starting at point. This is similar to `json-parse-string', which see. Move point after the end of the object if parsing was successful. On error, point is not moved. */) (void) { ptrdiff_t count = SPECPDL_INDEX (); ptrdiff_t point = PT_BYTE; struct json_read_buffer_data data = {.point = point}; json_error_t error; json_t *object = json_load_callback (json_read_buffer_callback, &data, JSON_DISABLE_EOF_CHECK, &error); if (object == NULL) json_parse_error (&error); /* Avoid leaking the object in case of further errors. */ record_unwind_protect_ptr (json_release_object, object); /* Convert and then move point only if everything succeeded. */ Lisp_Object lisp = json_to_lisp (object); /* Adjust point by how much we just read. Do this here because tokener->char_offset becomes incorrect below. */ eassert (0 <= error.position && error.position <= ZV_BYTE - point); point += error.position; SET_PT_BOTH (BYTE_TO_CHAR (point), point); return unbind_to (count, lisp); } /* Simplified version of ‘define-error’ that works with pure objects. */ static void define_error (Lisp_Object name, const char *message, Lisp_Object parent) { Lisp_Object parent_conditions = Fget (parent, Qerror_conditions); eassert (CONSP (parent_conditions)); eassert (!NILP (Fmemq (parent, parent_conditions))); eassert (NILP (Fmemq (name, parent_conditions))); Fput (name, Qerror_conditions, pure_cons (name, parent_conditions)); Fput (name, Qerror_message, build_pure_c_string (message)); } void syms_of_json (void) { DEFSYM (QCnull, ":null"); DEFSYM (QCfalse, ":false"); DEFSYM (Qstring_without_embedded_nulls_p, "string-without-embedded-nulls-p"); DEFSYM (Qjson_value_p, "json-value-p"); DEFSYM (Qutf_8_unix, "utf-8-unix"); DEFSYM (Qjson_error, "json-error"); DEFSYM (Qjson_out_of_memory, "json-out-of-memory"); DEFSYM (Qjson_parse_error, "json-parse-error"); DEFSYM (Qjson_end_of_file, "json-end-of-file"); DEFSYM (Qjson_trailing_content, "json-trailing-content"); DEFSYM (Qjson_object_too_deep, "json-object-too-deep"); define_error (Qjson_error, "generic JSON error", Qerror); define_error (Qjson_out_of_memory, "no free memory for creating JSON object", Qjson_error); define_error (Qjson_parse_error, "could not parse JSON stream", Qjson_error); define_error (Qjson_end_of_file, "end of JSON stream", Qjson_parse_error); define_error (Qjson_trailing_content, "trailing content after JSON stream", Qjson_parse_error); define_error (Qjson_object_too_deep, "object cyclic or Lisp evaluation too deep", Qjson_error); DEFSYM (Qpure, "pure"); DEFSYM (Qside_effect_free, "side-effect-free"); DEFSYM (Qjson_serialize, "json-serialize"); DEFSYM (Qjson_parse_string, "json-parse-string"); Fput (Qjson_serialize, Qpure, Qt); Fput (Qjson_serialize, Qside_effect_free, Qt); Fput (Qjson_parse_string, Qpure, Qt); Fput (Qjson_parse_string, Qside_effect_free, Qt); defsubr (&Sjson_serialize); defsubr (&Sjson_insert); defsubr (&Sjson_parse_string); defsubr (&Sjson_parse_buffer); }