From mboxrd@z Thu Jan 1 00:00:00 1970 From: Christian Moe Subject: [Babel][R] Non-ascii characters in R plots Date: Sun, 19 Aug 2012 16:36:12 +0200 Message-ID: <5030F9DC.6040200@christianmoe.com> Reply-To: mail@christianmoe.com Mime-Version: 1.0 Content-Type: multipart/mixed; boundary="------------060902090209070005030607" Return-path: Received: from eggs.gnu.org ([208.118.235.92]:58192) by lists.gnu.org with esmtp (Exim 4.71) (envelope-from ) id 1T37Ek-00018X-3t for emacs-orgmode@gnu.org; Sun, 19 Aug 2012 11:16:22 -0400 Received: from Debian-exim by eggs.gnu.org with spam-scanned (Exim 4.71) (envelope-from ) id 1T37Ej-0004bX-7B for emacs-orgmode@gnu.org; Sun, 19 Aug 2012 11:16:22 -0400 Received: from b1.hitrost.net ([91.185.211.67]:29337) by eggs.gnu.org with esmtp (Exim 4.71) (envelope-from ) id 1T37Ei-0004bK-Mg for emacs-orgmode@gnu.org; Sun, 19 Aug 2012 11:16:21 -0400 Received: from lk.92.63.17.213.dc.cable.static.lj-kabel.net ([92.63.17.213] helo=Celebrian-2.local) by b1.hitrost.net with esmtpa (Exim 4.77) (envelope-from ) id 1T36Tc-002YK1-J2 for emacs-orgmode@gnu.org; Sun, 19 Aug 2012 16:27:40 +0200 List-Id: "General discussions about Org-mode." List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , Errors-To: emacs-orgmode-bounces+geo-emacs-orgmode=m.gmane.org@gnu.org Sender: emacs-orgmode-bounces+geo-emacs-orgmode=m.gmane.org@gnu.org To: Org Mode This is a multi-part message in MIME format. --------------060902090209070005030607 Content-Type: text/plain; charset=ISO-8859-1; format=flowed Content-Transfer-Encoding: 8bit Hi, When I the following example source block in Org I get a plot in which the non-ascii characters are replaced by double dots (namely, the degree sign in `degrees C' and the `Å' in `År', Norwegian for `Year'). #+begin_src R :results graphics :file ~/Desktop/testplot-with-Babel.png :width 480 :height 360 temp <- c(15, 17, 16, 19, 17, 18) year <- c(2000:2005) plot(year, temp, xlab="År", ylab="°C") #+end_src It seems to be a Babel problem, since, R is working fine; the special characters are preserved when I run the same script from the R command line. Compare the attached testplot-with-Babel.png and testplot.png. I'm running up-to-date Org on GNU Emacs 24.1 compiled for Mac OS 10.6.8. My .emacs sets current-language-environment to "UTF-8". Is this a bug, or is there a setting I should know about? Yours, Christian --------------060902090209070005030607 Content-Type: image/png; name="testplot.png" Content-Transfer-Encoding: base64 Content-Disposition: attachment; filename="testplot.png" iVBORw0KGgoAAAANSUhEUgAAAeAAAAFoCAYAAACPNyggAAAC0WlDQ1BJQ0MgUHJvZmlsZQAA KJGNlM9LFGEYx7+zjRgoQWBme4ihQ0ioTBZlROWuv9i0bVl/lBLE7Oy7u5Ozs9PM7JoiEV46 ZtE9Kg8e+gM8eOiUl8LALALpblFEgpeS7Xlnxt0R7ccLM/N5nx/f53nf4X2BGlkxTT0kAXnD sZJ9Uen66JhU+xEhHEEdwqhTVNuMJBIDoMFjsWtsvofAvyute/v/OurStpoHhP1A6Eea2Sqw 7xfZC1lqBBC5XsOEYzrE9zhbnv0x55TH8659KNlFvEh8QDUtHv+auEPNKWmgRiRuyQZiUgHO 60XV7+cgPfXMGB6k73Hq6S6ze3wWZtJKdz9xG/HnNOvu4ZrE8xmtN0bcTM9axuod9lg4oTmx IY9DI4YeH/C5yUjFr/qaoulEk9v6dmmwZ9t+S7mcIA4TJ8cL/TymkXI7p3JD1zwW9KlcV9zn d1Yxyeseo5g5U3f/F/UWeoVR6GDQYNDbgIQk+hBFK0xYKCBDHo0iNLIyN8YitjG+Z6SORIAl 8q9TzrqbcxtFyuZZI4jGMdNSUZDkD/JXeVV+Ks/JX2bDxeaqZ8a6qanLD76TLq+8ret7/Z48 fZXqRsirI0vWfGVNdqDTQHcZYzZcVeI12P34ZmCVLFCpFSlXadytVHJ9Nr0jgWp/2j2KXZpe bKrWWhUXbqzUL03v2KvCrlWxyqp2zqtxwXwmHhVPijGxQzwHSbwkdooXxW6anRcHKhnDpKJh wlWyoVCWgUnymjv+mRcL76y5o6GPGczSVImf/4RVyGg6CxzRf7j/c/B7xaOxIvDCBg6frto2 ku4dIjQuV23OFeDCN7oP3lZtzXQeDj0BFs6oRavkSwvCG4pmdxw+6SqYk5aWzTlSuyyflSJ0 JTEpZqhtLZKi65LrsiWL2cwqsXQb7Mypdk+lnnal5lO5vEHnr/YRsPWwXP75rFzeek49rAEv 9d/AvP1FThgxSQAAHkRJREFUeJzt3XtwzXf+x/FXiCoJGqRu0WqFFd2maYtFuz+0Fkvb1dmi xiXBpmhLaYzLlN50V82KUZEO2+i26WpLabtUlbCxdHVdqqrdlog0LnVLNHEkgiTn8/tjp5m1 IouenPeRPB8z/sj3w/e8P2fO19O5JIKcc04AAMCvalgPAABAdUSAAQAwQIABADBAgAEAMECA AQAwQIABADBAgAEAMECAAQAwQIABADBAgAEAMECAAQAwQIABADBAgAEAMECAAQAwQIABADBA gAEAMECAAQAwQIABADBAgAEAMECAAQAwQIABADBAgAEAMECAAQAwQIABADBAgAEAMECAAQAw QIABADBAgAEAMECAAQAwQIABADBAgAEAMECAAQAwQIABADBAgAEAMECAAQAwQIABADBAgAEA MECAAQAwQIABADBAgAEAMECAAQAwQIABADBAgAEAMECAAQAwQIABADBAgAEAMECAAQAwQIAB ADBAgAEAMECAAQAwQIABADBAgAEAMECAAQAwQIABADBAgAEAMECAAQAwQIABADAQbD2APy1f vlwlJSXWYwAAAsSNN96o++67z+S2g5xzzuSW/WzFihVKTExUbGys9SgAgAAxf/58LVmyRDEx MX6/7WrzDLikpETDhw/X6NGjrUcBAASIjIwMeb1ek9sOuPeACwsLdfToUVWTJ+YAgGoqIAJc WlqqyZMnKyIiQqGhobrlllsUFham6OhorVq1yno8AAB8LiBegp42bZpycnKUlpamvLw8Pf/8 85o5c6Zq1Kihp556SmfPntWAAQOsxwQAwGcCIsAfffSRPvvsMzVo0ECSNH78eCUnJys1NVWL Fy/W9OnTCTBQBZ07d06vvfaavvvuO4WFhSkhIUF16tSxHgvwi4B4Cfq2225Tenp62df//Oc/ 1bJlS0nSgQMHysIMoOooLS1Vhw4ddOLECQ0bNkw1a9bUDTfcoJMnT1qPBvhFQDwDnjBhgh58 8EG98sorOnfunDIzM7Vz506tXr1aY8aM0fLly61HBOBjqamp6tixo1588UVJUkxMjBo3bqz5 8+frhRdeMJ4OqHwBEeB77rlHR44c0cqVK1W3bl317t1btWrVUq1atZSRkXHZL0m99tprevvt t8tdy8zMVJs2bTRmzBhfjg7gKuXk5GjgwIEXHLv33nv16quvGk0E+FdABFiSrr/++osuxiZN mlzROeLj4xUfH1/u2sSJE3Xs2LGrng+Ab0VERGjdunXq06dP2bE333xTERERhlMB/hMwAQZQ vQwaNEgpKSl6+OGHNWHCBG3dulWvv/66Dh8+bD0a4BcBEeDExEQVFxdfcr1du3bq37+/HycC UNlq1qypDRs26M0339TGjRsVFhamrKwsXXfdddajAX4REAHOzs7WggULFBsbq5CQkIvWw8PD DaYCUNmCgoIUFxdnPQZgIiACnJSUJK/XK6/Xq+TkZOtxAACodAHxfcCSNHv2bHk8HhUUFFiP AgBApQuIZ8CSFBoaqiVLlliPAQCAXwTMM2AAAKoTAgwAgAECDACAAQIMAIABAgwAgAECDACA AQIMAIABAgwAgAECDACAAQIMAIABAgwAgAECDACAAQIMAIABAgwAgAECDACAAQIMAIABAgwA gAECDACAAQIMAIABAgwAgAECDACAAQIMAIABAgwAgAECDACAAQIMAIABAgwAgAECDACAAQIM AIABAgwAgAECDACAAQIMAIABAgwAgAECDACAAQIMAIABAgwAgAECDACAAQIMAIABAgwAgAEC DACAgYANsNfrVUFBgfUYAABUioAIsMfj0Zw5c/Tggw8qPT1dK1euVJMmTdS8eXM99thjhBgA UOUERIBffvllbdu2TX379tVTTz2lqVOnauXKlcrOztb58+f13nvvWY8IAIBPBVsPIEl//etf tW3bNoWEhOj48ePKzc1Vly5dJEnTpk3T008/rREjRhhPCQAINEuXLtWf/vQn1axZU3l5efr4 448VHh5uPdZlCYgAR0VFKS0tTT169NCmTZtUVFRUtrZ7927dddddhtMBAALRqlWrtHz5cr3/ /vtq0KCB1q1bp7i4OL3zzjuqX7++9Xj/U0AEOCEhQSNHjlRWVpbGjx+v06dPKyoqSnfccYc+ /fRTbdy48bLOk52drUOHDpW7dvjwYRUXF/twagCApcWLF2vevHlq0KCBJKlXr1764osvtHbt Wg0YMMB4uv8tIALcpUsXffPNN/rhhx/UqFEjnTt3TmvXrlV+fr7+/Oc/q06dOpd1nszMTG3e vLnctUOHDl0T/yICAFwe55zq1at3wbEGDRpc8CpqIAuIAEtSUFCQGjVqJEmqXbu2HnrooSs+ R8+ePdWzZ89y1zwej44dO/aTZgQABI4ePXpo/PjxWrJkiSTpwIEDGjt2rDIzM40nuzwBEeDE xMQKXx5u166d+vfv78eJAACBbty4cXrkkUfUs2dP/eIXv9CuXbu0adMmtW7d2nq0yxIQAc7O ztaCBQsUGxurkJCQi9avlU+0AQD8p2bNmvrggw+0fft2FRYWaty4cWratKn1WJctIAKclJQk r9crr9er5ORk63EAANeQjh07Wo9wVQLiB3FI0uzZs+XxePipVwCAaiEgngFLUmhoaNkb6QAA VHUB8wwYAIDqhAADAGCAAAMAYIAAAwBggAADAGCAAAMAYIAAAwBggAADAGCAAAMAYIAAAwBg gAADAGCAAAMAYIAAAwBggAADAGCAAAMAYIAAAwBggAADAGCAAAMAYIAAAwBggAADAGCAAAMA YIAAAwBggAADAGCAAAMAYIAAAwBggAADAGCAAAMAYIAAAwBggAADAGCAAAMAYIAAAwBggAAD AGCAAAMAYIAAAwBggAADAGCAAAMAYIAAAwBggAADAGCAAAMAYOCyAlxaWqri4uJKG+LIkSMq LS2ttPMDABBoLgqwc05JSUmaPn162bGtW7cqJiZG6enplTJEv3799H//93/KysqqlPMDABBo LgrwSy+9pJSUFPXv37/sWKdOnTRu3DgNGDBAO3bsqJRBbr/9dnXt2lVz587VqVOnKuU2AAAI FBcFeMWKFXr33XfVoUOHsmPBwcEaM2aMJkyYoOXLl1fKIPHx8fr000+1Zs0aRUREaMyYMfr0 00/l8Xgq5fbgGydOnNBHH32k9evXV+rbFEB1lZ+frzVr1mjDhg06e/as9TjwoQsCXFJSoqys LLVt27bc39y9e3dt37690oaJjIxUWlqatm/frtDQUA0bNkxhYWGKj4+vtNvE1du1a5ceffRR ffXVV1q5cqUiIiKUl5dnPRZQZWRkZKh///764osvtG7dOoWFhenEiRPWY8FHgi/4IjhY7du3 19atW9W1a9eLfvPWrVvVqVOnSh+qXbt2mjNnjubMmaPCwkKdPHmy0m8TV+aHH37QnXfeqS++ +EIxMTGSpJtvvlnTp09XcnKy8XTAta+wsFDR0dFas2aNevToIUlq27atpkyZopSUFNWsWdN4 QvxUwf99YMSIERo1apTeffdd3XHHHZIkr9erFStW6KWXXtLq1at9PsTkyZPVsmXLctdCQkIU EhJyWedZtWqV0tLSyl3btGmTGjdufNUz4kJffvmlpk2bVhZfSUpISNCvfvUrw6mAquPbb7/V qFGjyuIrSaNGjdLq1at14sQJNWvWzHA6+MJFAR49erSKiorUqVMnNWrUSOHh4dq3b5/q1aun Dz/8sNxnxj/V4MGDfXKeTp066ZZbbil3LS8vT2fOnPHJ7UCqW7eucnNzLzh29uzZi44BuDoh ISHKz8+/4FhpaakOHDigunXrGk0FX7oowJI0YcIEjR07Vjt37tSBAwcUHR2tn/3sZwH/kkeT Jk3UpEmTctcaN26sY8eO+XmiqqtTp0564403NG/ePD3xxBMqKirShAkTFBcXZz0aUCVERUWp RYsW+v3vf69JkyapuLhY06ZNU58+fdSgQQPr8eAD5QZYkmrXrq0uXbqoS5culT5EYmJihZ+g bdeu3QXfFgV7QUFBmj9/vuLi4nT//fcrNDRUgwYNUmxsrPVoQJUxa9YsPf744/r1r3+t0NBQ 9e3bV6NHj7YeCz5yUYCTkpK0bds2RUZG6rnnnvPLENnZ2VqwYIFiY2PLfb83PDzcL3PgytSq VUtLliyxHgOosmrWrKlFixZZj4FKckGAvV6vdu7cqbfeeksTJ05Ubm6uXz64lJSUJK/XK6/X yydoAQDVwgXfB1yjRg3VrVtXL774oo4fP+7XTw3Pnj1bHo9HBQUFfrtNAACsXPQSdHJysvbt 26fIyEi/DhIaGsrLmQCAaqPcD2G1adPG33MAAFCt8P8BAwBggAADAGCAAAMAYIAAAwBggAAD AGCAAAMAYIAAAwBggAADAGCAAAMAYIAAAwBggAADAGCAAAMAYIAAAwBggAADAGCAAAMAYIAA AwBggAADAGCAAAMAYIAAAwBggAADAGCAAAMAYIAAAwBggAADAGCAAAMAYIAAAwBggAADAGCA AAMAYIAAAwBggAADAGCAAAMAYIAAAwBggAADAGCAAAMAYIAAAwBggAADAGCAAAMAYIAAAwBg gAADAGAgYAN89uxZFRcXW48BAEClCIgAHzx4UMOHD9eOHTuUk5OjUaNGqWnTprrhhhs0cuRI nT9/3npEAAB8KiAC/Oyzz+qmm27SbbfdpqSkJJWUlOjrr7/W7t27dfr0ac2cOdN6RAAAfCrY egBJ2rRpk/bs2aPrrrtOH3zwgT788ENFRERIkmbOnKkxY8YYTwhcnczMTC1evFhnzpxR586d NXjwYOuRAASIgHgG3LZtW6WmpkqSunfvro8//rhs7aOPPlKbNm2sRgOuWkZGhkaMGKGuXbtq 6NCheuaZZzRx4kTrsQAEiIB4BpycnKwHHnhAixcvVmRkpCZNmqTXX39dNWrUkMfj0aZNm6xH BK7Y448/rnnz5unuu++WJO3fv1+xsbHasmWLunbtajwdAGsBEeDWrVvrm2++UVpamvbu3aub brpJYWFhatOmjfr166fg4Msb87XXXtPbb79d7tq+fft06623+nJsoEI1atRQTExM2ddBQUHq 0KGDTpw4YTgVgEAREAGW/v2XU69evdSrV6+rPkd8fLzi4+PLXZs4caKOHTt21ecGrlSrVq20 fv169e7dW5JUWlqqRYsWlb3dAqB6C5gAA1XN5MmT1aZNG6WkpKhVq1aaO3eu+vfvX/aSNIDq LSACnJiYWOEP3WjXrp369+/vx4mAny4yMlInT57UokWLlJ2drbFjx+qBBx6wHgtAgAiIAGdn Z2vBggWKjY1VSEjIRevh4eEGUwE/XcOGDTVt2jTrMQAEoIAIcFJSkrxer7xer5KTk63HAQCg 0gXE9wFL0uzZs+XxeFRQUGA9CgAAlS4gngFLUmhoqJYsWWI9BgAAfhEwz4ABAKhOCDAAAAYI MAAABggwAAAGCDAAAAYIMAAABggwAAAGCDAAAAYIMAAABggwAAAGCDAAAAYIMAAABggwAAAG CDAAAAYIMAAABggwAAAGCDAAAAYIMAAABggwAAAGCDAAAAYIMAAABggwAAAGCDAAAAYIMAAA BggwAAAGCDAAAAYIMAAABggwAAAGCDAAAAYIMAAABggwAAAGCDAAAAYIMAAABggwAAAGCDAA AAYIMAAABggwAAAGCDAAAAYIMAAABgI2wDk5OSopKbEeAwCAShEQAR4+fLj27NkjSdq7d6/6 9eunli1bqmnTpnryySdVXFxsPCEAAL4VEAH++uuvVVhYKEmaNWuW2rVrpyNHjmjLli3Kzs7W rFmzjCcEAMC3AiLA/2nt2rV6/vnn1bBhQ7Vt21YvvfSSNm7caDLL559/roEDB+o3v/mN7rjj Du3YscNkDgBA1RNsPcCPtmzZoubNm6tz5846efKk6tWrJ0n66quvdOedd/p9noMHD6pDhw76 8ssvFR0drf379+t3v/udXn31VUVFRfl9HgBA1RIQAR4yZIhWrVqlmTNn6tSpU7r++uv1zjvv 6Pnnn1dycrI2bNhwWefJzs7WoUOHyl07fPjwFb2X/NZbb2nFihWKjo6WJLVu3VpTpkzRu+++ qxdeeOGyzwMAQHkCIsAJCQlKSEiQJH3//ffyeDySpD59+mjSpEkKDQ29rPNkZmZq8+bN5a7l 5+erefPmlz3TmTNn1LBhwwuOhYaGqqio6LLPAQDApQREgP9TixYt1KJFC0lS586dr+jP9uzZ Uz179ix3benSpcrLy7vsc3Xr1k0zZszQ+vXrVbt2bZ0/f17dunXTypUrr2gmAADKExABTkxM rPDl4Xbt2ql///5+nEjq1auX/vWvf6l9+/YaPny4vv76a73yyivq16+fX+cAAFRNARHg7Oxs LViwQLGxsQoJCbloPTw83GAqaeLEiXrwwQd15MgRDR48WG3btjWZAwBQ9QREgJOSkuT1euX1 epWcnGw9zgUiIyMVGRlpPQYAoIoJmO8Dnj17tjwejwoKCqxHAQCg0gXEM2Dp358wXrJkifUY AAD4RcA8AwYAoDoJcs456yH8YdeuXerXr99V/VSt9PR0XX/99ZUwVdVw9uxZ1apVSzVr1rQe JSB5vV6dO3dOderUsR4lYBUWFpb7AUz82/nz51WjRg0FBwfMi5YB5ceMde3a9Yr/bFZWltLS 0sq+/dWfqk2Af4oePXooPT3deoyA9dxzz6lnz5765S9/aT1KQMrIyNDcuXO1cOFC61ECFtdY xebNm6dbb71VDz30kPUoASknJ0dPPvmkli5daj3KFeElaAAADBBgAAAMEGAAAAwQYAAADBBg AAAMEGAAAAzwbUiX4ejRo2rWrJn1GAErLy9PderU4XulL6G4uFinTp1S48aNrUcJWFxjFfN4 PAoODlbdunWtRwlIXq9Xubm5uvHGG61HuSIEGAAAA7wEDQCAAQIMAIABAgwAgAECDACAAQIM AIABAgwAgAECDACAAQIMvyouLrYeAQACQrUM8LJly9S9e3dFRkYqNjZWe/fuLVt7+eWXFRUV pZYtW2ru3Lllx/Py8jRw4EBFRETo9ttv1+eff162tnHjRt1zzz1q1qyZHnnkERUUFPh1P762 Z88eDRkyRJGRkbrvvvu0YsWKsrWK9nqp++5HH3zwgbp06eKXPVSmkpISTZkyRdHR0YqOjtaM GTPK/mFxNY+Tis53rfL1NbZs2TJ17txZrVq10tChQ3XmzBm/7sfXKusa83g8uvnmm7V+/Xq/ 7KOy+Poak6ROnTrppptuKvu1aNEiv+/rIq6aOXr0qAsPD3eZmZnO6/W6+fPnu969ezvnnFu+ fLnr2LGjO378uPvuu+9c+/btXVpamnPOuUGDBrlp06a54uJit2rVKte8eXNXVFTkcnNzXbNm zdyWLVvcmTNn3JgxY9xjjz1mucWfrFevXm7BggXO6/W6vXv3uvDwcHfs2LEK91rRfZeXl+em Tp3qmjZt6u666y7LrflESkqK69u3rzt9+rQ7ffq06927t0tJSXHOXd3jpKLzXYt8fY1lZWW5 Jk2auO+++84VFxe7oUOHuilTplhu8Sfz9TX2o5EjR7r69etfdPxa4+trLDc319WvX99lZ2eX /Tp16pTlFp1zzlW7AH///fdu48aNZV/v3LnThYaGOuecGzVqlHv11VfL1mbNmuXi4+Odc87V q1fP5eTklK3dddddbt26de6TTz5xPXr0KDuemZnpbrjhhsreRqUpLS1177//vjt//nzZsdat W7uPP/64wr1WdN8tW7bMTZo0ya1evbpKBHjbtm1u3759ZV9PnTrVxcXFOeeu7nFS0fmuRb6+ xrxe7wXHR4wY4caPH1/Z26g0lXGNOefcypUr3ciRI12nTp2u+QD7+hrbsGGD69GjhysoKHBf ffWVKykp8dNOKlbtXoJu3ry5unXrVvZ1SkqK+vTpI0k6ePCgmjdvXrbWrFkznThxQvn5+Tp3 7twFP0y/adOmOnHiRLl/Jj8/X+fPn/fDbnyvRo0aevjhh1WrVi1J/35J5+TJk+rcuXOFe73U fSdJAwYM0B//+Mcq84PkO3bsqMjISEnSmTNn9M4776hv375X/Ti51PmuVb6+xoKCgtS4cWNl ZGRo8ODB+uyzz5SQkOC/DflYZVxjJ0+e1LPPPqs5c+b4dzOVxNfX2K5du5SRkaGYmBh16NBB nTt31qlTp/y+r/9W7QL8n1JTU7VixQolJiZKknJychQSElK2XrduXRUUFCg3N/eC45IUEhJS 7lqdOnUk6Zp/H1iSsrKyNGTIEL3yyisKCwurcK+Xuu+qspKSEg0dOlTR0dEaMGDAT36c/Pf5 qgJfXGM/8ng8at68uYqKirRx40a/zF/ZfHWNjR07VtOnT1dYWJh/N1DJfHWNNWzYUKNHj1ZG RoYOHjyo4OBgLV++3K97KU+1DXBqaqoSEhK0bt063XTTTZKkxo0b6/Tp02W/x+PxqFmzZmrU qNEFxytaKygoUO3ata/5CyErK0vdunVTQkKChg8fLkkV7vVS911VVVJSokcffVT5+flatmyZ pIvvH+nyHyflne9a56tr7EcdOnRQYmKiFi1apMmTJ8td4/+Rm6+usRUrVmjPnj1q2LCh0tPT 5fF4tGvXLn3//fd+35Mv+fIai4uL04wZMxQUFKQbb7xRsbGxWrp0qV/3U55qGeDly5crISFB n3zyiaKjo8uOt2jRQocOHSr7+tChQ2rZsqXCwsJ03XXX6ejRo2VrBw8eVMuWLdWiRQsdPHjw guMREREKCgryz2YqweHDh3X//ffriSee0NNPP112vKK9Xuq+q4q8Xq/i4uKUk5OjVatWlf0/ yFf7OLnU+a5lvrzGdu/erb/85S9lx2NiYnT8+HHl5eX5ZzOVwJfX2JEjR+T1ejVu3DiNGzdO Bw4cUHJysv7+97/7dU++5Otr7P3339fu3bvL1kpLS9WgQQP/behSrN+E9rcDBw64+vXru3/8 4x+upKSk7Jdzzq1atcp16NDB5ebmuiNHjrioqCi3ZcsW55xzw4cPd1OnTnWlpaVu7dq1LjIy 0p09e9YVFRW58PBw99lnn7ni4mI3ZswY9/TTT1tu8Sfr3r27mzx58gX3j9frrXCvFd13P0pP T68SH8JKTk52t99+u8vPzy+7f0pLS51zV/c4qeh81yJfX2OHDx92YWFhLjc31znn3B/+8AcX FRVltj9fqKxrzDlXJT6E5etrbN68ee6BBx5wXq/XeTwe17VrV5eammq5RedcNfwU9OTJk52k i34VFha60tJSN2zYMNe4cWMXERHhnn322bI/t3//fhcVFeVatWrlWrdu7f72t7+Vrb399tuu Xr167pZbbnE9evRwHo/HYms+sX379nLvnzfeeMM5d+m9VnTf/aiqBLhVq1YX3T99+/Z1zl3d 46Si812LKuMamzdvnmvfvr37+c9/7n7729+63bt3W2zNJyrzGnOuagTY19fY6dOn3aBBg1z7 9u1do0aN3LBhw1xRUZHJ3v5TkHPX+BsplcDj8ah27dqqXbv2RWs5OTkKDw+/6HhJSYlOnz59 zb/3ezkq2mtF9111wuOkYldzjTnndPr0adWvX98fI5riGvvfruYa+/EHuATKd2QQYAAADFTL D2EBAGCNAAMAYIAAAwBggAADAGCAAAMAYIAAAwBggAADAGCAAAMAYIAAAwBggAADAGCAAAMA YIAAAwBggAADAGCAAAMAYIAAAwBggAADAGCAAAPVxObNm/XGG2+otLTUehQAIsBAtbF582aV lJTowIED1qMAEAEGqo2MjAzFx8crLCzMehQAIsBAtVBSUqL09HSNGDFCS5YssR4HgAgwUC2s WbNGd955p5544gmlpKRcsNajRw/Nnj1bTZs21SeffGI0IVD9EGCgGkhNTdXAgQN19913q7Cw UDt27Chby8zMVFpamhYuXKiYmBjDKYHqJcg556yHAFB58vPz1apVKx06dEj16tXTM888o5Mn T2rhwoWSpJYtW2rhwoXq16+f8aRA9RJsPQCAyrVs2TKdO3dO9957ryTp1KlTysvLU2JiokJC QiT9O8IA/IsAA1VcamqqZsyYofvvv7/sWGxsrN577z3FxcVJkoKD+asA8DeuOqAK279/vz7/ /HOtXr1aDRo0KDs+bNgwpaSklAUYgP/xISygCnvrrbfUq1evC+IrSUOGDNGWLVv07bffGk0G gA9hAQBggGfAAAAYIMAAABggwAAAGCDAAAAYIMAAABggwAAAGCDAAAAYIMAAABggwAAAGCDA AAAYIMAAABggwAAAGCDAAAAYIMAAABggwAAAGCDAAAAYIMAAABj4fxSG7V2xImdWAAAAAElF TkSuQmCC --------------060902090209070005030607 Content-Type: image/png; name="testplot-with-Babel.png" Content-Transfer-Encoding: base64 Content-Disposition: attachment; filename="testplot-with-Babel.png" iVBORw0KGgoAAAANSUhEUgAAAeAAAAFoCAYAAACPNyggAAAC0WlDQ1BJQ0MgUHJvZmlsZQAA KJGNlM9LFGEYx7+zjRgoQWBme4ihQ0ioTBZlROWuv9i0bVl/lBLE7Oy7u5Ozs9PM7JoiEV46 ZtE9Kg8e+gM8eOiUl8LALALpblFEgpeS7Xlnxt0R7ccLM/N5nx/f53nf4X2BGlkxTT0kAXnD sZJ9Uen66JhU+xEhHEEdwqhTVNuMJBIDoMFjsWtsvofAvyute/v/OurStpoHhP1A6Eea2Sqw 7xfZC1lqBBC5XsOEYzrE9zhbnv0x55TH8659KNlFvEh8QDUtHv+auEPNKWmgRiRuyQZiUgHO 60XV7+cgPfXMGB6k73Hq6S6ze3wWZtJKdz9xG/HnNOvu4ZrE8xmtN0bcTM9axuod9lg4oTmx IY9DI4YeH/C5yUjFr/qaoulEk9v6dmmwZ9t+S7mcIA4TJ8cL/TymkXI7p3JD1zwW9KlcV9zn d1Yxyeseo5g5U3f/F/UWeoVR6GDQYNDbgIQk+hBFK0xYKCBDHo0iNLIyN8YitjG+Z6SORIAl 8q9TzrqbcxtFyuZZI4jGMdNSUZDkD/JXeVV+Ks/JX2bDxeaqZ8a6qanLD76TLq+8ret7/Z48 fZXqRsirI0vWfGVNdqDTQHcZYzZcVeI12P34ZmCVLFCpFSlXadytVHJ9Nr0jgWp/2j2KXZpe bKrWWhUXbqzUL03v2KvCrlWxyqp2zqtxwXwmHhVPijGxQzwHSbwkdooXxW6anRcHKhnDpKJh wlWyoVCWgUnymjv+mRcL76y5o6GPGczSVImf/4RVyGg6CxzRf7j/c/B7xaOxIvDCBg6frto2 ku4dIjQuV23OFeDCN7oP3lZtzXQeDj0BFs6oRavkSwvCG4pmdxw+6SqYk5aWzTlSuyyflSJ0 JTEpZqhtLZKi65LrsiWL2cwqsXQb7Mypdk+lnnal5lO5vEHnr/YRsPWwXP75rFzeek49rAEv 9d/AvP1FThgxSQAAHXlJREFUeJzt3XtwlOXZx/FfSAAhAQwkckoQJVCCGtECBWxfQCkgiMWp iIxAOBQBKwjG4TBFq4UWmRIGgTClgFVaVBDUgqicCkXFIiqI1kKMIQEETIIJm3BMsvf7R8ed UkIKuLvXQ/L9zOSPPI88e907e/tlDwkRzjknAAAQVjWsBwAAoDoiwAAAGCDAAAAYIMAAABgg wAAAGCDAAAAYIMAAABggwAAAGCDAAAAYIMAAABggwAAAGCDAAAAYIMAAABggwAAAGCDAAAAY IMAAABggwAAAGCDAAAAYIMAAABggwAAAGCDAAAAYIMAAABggwAAAGCDAAAAYIMAAABggwAAA GCDAAAAYIMAAABggwAAAGCDAAAAYIMAAABggwAAAGCDAAAAYIMAAABggwAAAGCDAAAAYIMAA ABggwAAAGCDAAAAYIMAAABggwAAAGCDAAAAYIMAAABggwAAAGCDAAAAYIMAAABggwAAAGCDA AAAYIMAAABggwAAAGCDAAAAYIMAAABggwAAAGCDAAAAYIMAAABggwAAAGCDAAAAYiLIeIJxW r16tsrIy6zEAAB5x3XXX6c477zS57QjnnDO55TBbs2aN0tPTlZqaaj0KAMAj5s+frxUrVqh9 +/Zhv+1q8wy4rKxMw4YN05gxY6xHAQB4RGZmpvx+v8lte+494JMnT+ro0aOqJk/MAQDVlCcC XF5ersmTJyshIUExMTG64YYbFBsbq5SUFK1bt856PAAAgs4TL0FPmzZN+fn52rRpkwoLC/X0 009rxowZqlGjhh577DGdOXNGAwcOtB4TAICg8USA33zzTX3wwQdq0KCBJGnChAnKyMjQ8uXL tWzZMk2fPp0AA1XQ2bNntWTJEh04cECxsbFKS0tTnTp1rMcCwsITL0HfdNNN2rp1a+D7f/zj H0pMTJQk5ebmBsIMoOooLy9Xhw4dlJeXp6FDhyoyMlLXXnutjh8/bj0aEBaeeAY8ceJE9e/f X88995zOnj2rrKwsffLJJ1q/fr3Gjh2r1atXW48IIMiWL1+ujh076je/+Y0kqX379oqLi9P8 +fP1zDPPGE8HhJ4nAnzHHXfoyJEjWrt2rerWravevXurZs2aqlmzpjIzMy/5JaklS5bopZde qvBcVlaWWrdurbFjxwZzdABXKD8/Xw888MB5x3784x9r0aJFRhMB4eWJAEvSNddcc8FmbNy4 8WVdY/To0Ro9enSF5yZNmqRjx45d8XwAgishIUEbN25Unz59AsdefPFFJSQkGE4FhI9nAgyg ehk0aJCWLl2q++67TxMnTtTOnTv1/PPP6/Dhw9ajAWHhiQCnp6ertLT0oufbtm2rAQMGhHEi AKEWGRmpLVu26MUXX9S2bdsUGxur7Oxs1apVy3o0ICw8EeCcnBwtXLhQqampio6OvuB8fHy8 wVQAQi0iIkLDhw+3HgMw4YkAL1iwQH6/X36/XxkZGdbjAAAQcp74OWBJmj17tnw+n0pKSqxH AQAg5DzxDFiSYmJitGLFCusxAAAIC888AwYAoDohwAAAGCDAAAAYIMAAABggwAAAGCDAAAAY IMAAABggwAAAGCDAAAAYIMAAABggwAAAGCDAAAAYIMAAABggwAAAGCDAAAAYIMAAABggwAAA GCDAAAAYIMAAABggwAAAGCDAAAAYIMAAABggwAAAGCDAAAAYIMAAABggwAAAGCDAAAAYIMAA ABggwAAAGCDAAAAYIMAAABggwAAAGCDAAAAYIMAAABggwAAAGCDAAAAYIMAAABggwAAAGCDA AAAY8GyA/X6/SkpKrMcAACAkPBFgn8+nOXPmqH///tq6davWrl2rxo0bq1mzZnr44YcJMQCg yvFEgJ999ll9+OGH6tu3rx577DFNnTpVa9euVU5Ojs6dO6dXX33VekQAAIIqynoASfrrX/+q Dz/8UNHR0frmm29UUFCgLl26SJKmTZumxx9/XCNGjDCeEgDgNStXrtQf//hHRUZGqrCwUG+9 9Zbi4+Otx7oknghwcnKyNm3apB49emj79u06ffp04NzevXt1++23G04HAPCidevWafXq1Xrt tdfUoEEDbdy4UcOHD9fLL7+s+vXrW4/3P3kiwGlpaRo5cqSys7M1YcIEFRcXKzk5Wbfeeqve e+89bdu27ZKuk5OTo0OHDlV47vDhwyotLQ3i1AAAS8uWLdO8efPUoEEDSVKvXr20e/dubdiw QQMHDjSe7n/zRIC7dOmiL774Qt9++60aNWqks2fPasOGDSoqKtKf/vQn1alT55Kuk5WVpXff fbfCc4cOHboq/kYEALg0zjnVq1fvvGMNGjQ471VUL/NEgCUpIiJCjRo1kiTVrl1b995772Vf o2fPnurZs2eF53w+n44dO/a9ZgQAeEePHj00YcIErVixQpKUm5urcePGKSsry3iyS+OJAKen p1f68nDbtm01YMCAME4EAPC68ePH6/7771fPnj31ox/9SHv27NH27dvVqlUr69EuiScCnJOT o4ULFyo1NVXR0dEXnL9aPtEGAAifyMhIvf7669q1a5dOnjyp8ePHq0mTJtZjXTJPBHjBggXy +/3y+/3KyMiwHgcAcBXp2LGj9QhXxBO/iEOSZs+eLZ/Px2+9AgBUC554BixJMTExgTfSAQCo 6jzzDBgAgOqEAAMAYIAAAwBggAADAGCAAAMAYIAAAwBggAADAGCAAAMAYIAAAwBggAADAGCA AAMAYIAAAwBggAADAGCAAAMAYIAAAwBggAADAGCAAAMAYIAAAwBggAADAGCAAAMAYIAAAwBg gAADAGCAAAMAYIAAAwBggAADAGCAAAMAYIAAAwBggAADAGCAAAMAYIAAAwBggAADAGCAAAMA YIAAAwBggAADAGCAAAMAYIAAAwBggAADAGCAAAMAYOCSAlxeXq7S0tJQzwIAQLVxQYCdc1qw YIGmT58eOLZz5061b99eW7duDckQR44cUXl5eUiuDQCAF10Q4JkzZ2rp0qUaMGBA4FinTp00 fvx4DRw4UB999FHQh+jXr5/+7//+T9nZ2UG/NgAAXnRBgNesWaNXXnlFHTp0CByLiorS2LFj NXHiRK1evTokg9xyyy3q2rWr5s6dqxMnToTkNgAA8IrzAlxWVqbs7Gy1adOmwv+4e/fu2rVr V0gGGT16tN577z29/fbbSkhI0NixY/Xee+/J5/OF5PYQHHl5eXrzzTe1efNmPicAhEBRUZHe fvttbdmyRWfOnLEeB0F0XoCjoqLUrl077dy5s8L/eOfOnerUqVPIhklKStKmTZu0a9cuxcTE aOjQoYqNjdXo0aNDdpu4cnv27NGDDz6ozz77TGvXrlVCQoIKCwutxwKqjMzMTA0YMEC7d+/W xo0bFRsbq7y8POuxECRR/31gxIgRGjVqlF555RXdeuutkiS/3681a9Zo5syZWr9+fciHatu2 rebMmaM5c+bo5MmTOn78eMhvE5fn22+/1W233abdu3erffv2kqTrr79e06dPV0ZGhvF0wNXv 5MmTSklJ0dtvv60ePXpIktq0aaMpU6Zo6dKlioyMNJ4Q39cFAR4zZoxOnz6tTp06qVGjRoqP j9eXX36pevXq6Y033lDXrl2DPsTkyZOVmJhY4bno6GhFR0df0nXWrVunTZs2VXhu+/btiouL u+IZcb5PP/1U06ZNC8RXktLS0vTTn/7UcCqg6vjXv/6lUaNGBeIrSaNGjdL69euVl5enpk2b Gk6HYLggwJI0ceJEjRs3Tp988olyc3OVkpKiH/zgByH7G9fgwYODcp1OnTrphhtuqPBcYWGh Tp06FZTbgVS3bl0VFBScd+zMmTMXHANwZaKjo1VUVHTesfLycuXm5qpu3bpGUyGYLvqLOGrX rq0uXbrowQcfVLt27a6KlzsaN26sm2++ucKvuLg41apVy3rEKqNTp06KjIzUvHnzVFpaKp/P p0ceeUTDhw+3Hg2oEpKTk9W8eXP99re/1dmzZ1VSUqKJEyeqT58+atCggfV4CIIKnwFfzP79 +3Xq1CnddtttQR0iPT290k/Qtm3b9ryfS4a9iIgIzZ8/X8OHD9ddd92lmJgYDRo0SKmpqdaj AVXGrFmz9Mgjj+juu+9WTEyM+vbtqzFjxliPhSC5rAC/+uqrys3N1ZIlS4I6RE5OjhYuXKjU 1NQK3++Nj48P6u0hOGrWrKkVK1ZYjwFUWZGRkVq8eLH1GAiRywrwf/56ymBasGCB/H6//H4/ n6AFAFQLl/WvIe3fv1+7d+8OySCzZ8+Wz+dTSUlJSK4PAICXXFaAX331VS1atCgkg8TExGjF ihWKiYkJyfUBAPAST7wEDQBAdXNZz4ABAEBwEGAAAAwQYAAADBBgAAAMEGAAAAwQYAAADBBg AAAMEGAAAAwQYAAADBBgAAAMEGAAAAwQYAAADBBgAAAMEGAAAAwQYAAADBBgAAAMEGAAAAwQ YAAADBBgAAAMEGAAAAwQYAAADBBgAAAMEGAAAAwQYAAADBBgAAAMEGAAAAwQYAAADBBgAAAM EGAAAAwQYAAADBBgAAAMEGAAAAwQYAAADBBgAAAMEGAAAAwQYAAADBBgAAAMEGAAAAx4NsBn zpxRaWmp9RgAAISEJwJ88OBBDRs2TB999JHy8/M1atQoNWnSRNdee61Gjhypc+fOWY8IAEBQ eSLATz31lFq0aKGbbrpJCxYsUFlZmT7//HPt3btXxcXFmjFjhvWIAAAEVZT1AJK0fft27du3 T7Vq1dLrr7+uN954QwkJCZKkGTNmaOzYscYTAlcmKytLy5Yt06lTp9S5c2cNHjzYeiQAHuGJ Z8Bt2rTR8uXLJUndu3fXW2+9FTj35ptvqnXr1lajAVcsMzNTI0aMUNeuXTVkyBD96le/0qRJ k6zHAuARnngGnJGRoXvuuUfLli1TUlKSnnjiCT3//POqUaOGfD6ftm/fbj0icNkeeeQRzZs3 Tz/84Q8lSV999ZVSU1O1Y8cOde3a1Xg6ANY8EeBWrVrpiy++0KZNm7R//361aNFCsbGxat26 tfr166eoqEsbc8mSJXrppZcqPPfll1/qxhtvDObYQKVq1Kih9u3bB76PiIhQhw4dlJeXZzgV AK/wRIClf//PqVevXurVq9cVX2P06NEaPXp0hecmTZqkY8eOXfG1gcvVsmVLbd68Wb1795Yk lZeXa/HixYG3WwBUb54JMFDVTJ48Wa1bt9bSpUvVsmVLzZ07VwMGDAi8JA2gevNEgNPT0yv9 pRtt27bVgAEDwjgR8P0lJSXp+PHjWrx4sXJycjRu3Djdc8891mMB8AhPBDgnJ0cLFy5Uamqq oqOjLzgfHx9vMBXw/TVs2FDTpk2zHgOAB3kiwAsWLJDf75ff71dGRob1OAAAhJwnfg5YkmbP ni2fz6eSkhLrUQAACDlPPAOWpJiYGK1YscJ6DAAAwsIzz4ABAKhOCDAAAAYIMAAABggwAAAG CDAAAAYIMAAABggwAAAGCDAAAAYIMAAABggwAAAGCDAAAAYIMAAABggwAAAGCDAAAAYIMAAA BggwAAAGCDAAAAYIMAAABggwAAAGCDAAAAYIMAAABggwAAAGCDAAAAYIMAAABggwAAAGCDAA AAYIMAAABggwAAAGCDAAAAYIMAAABggwAAAGCDAAAAYIMAAABggwAAAGCDAAAAYIMAAABggw AAAGCDAAAAYIMAAABjwb4Pz8fJWVlVmPAQBASHgiwMOGDdO+ffskSfv371e/fv2UmJioJk2a 6NFHH1VpaanxhAAABJcnAvz555/r5MmTkqRZs2apbdu2OnLkiHbs2KGcnBzNmjXLeEIAAILL EwH+Txs2bNDTTz+thg0bqk2bNpo5c6a2bdtmMsvHH3+sBx54QD/72c9066236qOPPjKZAwBQ 9URZD/CdHTt2qFmzZurcubOOHz+uevXqSZI+++wz3XbbbWGf5+DBg+rQoYM+/fRTpaSk6Kuv vtIvfvELLVq0SMnJyWGfBwBQtXgiwA899JDWrVunGTNm6MSJE7rmmmv08ssv6+mnn1ZGRoa2 bNlySdfJycnRoUOHKjx3+PDhy3ov+c9//rPWrFmjlJQUSVKrVq00ZcoUvfLKK3rmmWcu+ToA AFTEEwFOS0tTWlqaJOnrr7+Wz+eTJPXp00dPPPGEYmJiLuk6WVlZevfddys8V1RUpGbNml3y TKdOnVLDhg3POxYTE6PTp09f8jUAALgYTwT4PzVv3lzNmzeXJHXu3Pmy/mzPnj3Vs2fPCs+t XLlShYWFl3ytbt266cknn9TmzZtVu3ZtnTt3Tt26ddPatWsvayYAACriiQCnp6dX+vJw27Zt NWDAgDBOJPXq1Uv//Oc/1a5dOw0bNkyff/65nnvuOfXr1y+scwAAqiZPBDgnJ0cLFy5Uamqq oqOjLzgfHx9vMJU0adIk9e/fX0eOHNHgwYPVpk0bkzkAAFWPJwK8YMEC+f1++f1+ZWRkWI9z nqSkJCUlJVmPAQCoYjzzc8CzZ8+Wz+dTSUmJ9SgAAIScJ54BS//+hPGKFSusxwAAICw88wwY AIDqJMI556yHCIc9e/aoX79+V/RbtbZu3aprrrkmBFNVDWfOnFHNmjUVGRlpPYon+f1+nT17 VnXq1LEexbNOnjxZ4Qcw8W/nzp1TjRo1FBXlmRctPeW7jHXt2vWy/2x2drY2bdoU+PHXcKo2 Af4+evTooa1bt1qP4Vm//vWv1bNnT/3kJz+xHsWTMjMzNXfuXP3hD3+wHsWz2GOVmzdvnm68 8Ubde++91qN4Un5+vh599FGtXLnSepTLwkvQAAAYIMAAABggwAAAGCDAAAAYIMAAABggwAAA GODHkC7B0aNH1bRpU+sxPKuwsFB16tThZ6UvorS0VCdOnFBcXJz1KJ7FHqucz+dTVFSU6tat az2KJ/n9fhUUFOi6666zHuWyEGAAAAzwEjQAAAYIMAAABggwAAAGCDAAAAYIMAAABggwAAAG CDAAAAYIMMKqtLTUegQA8IRqGeBVq1ape/fuSkpKUmpqqvbv3x849+yzzyo5OVmJiYmaO3du 4HhhYaEeeOABJSQk6JZbbtHHH38cOLdt2zbdcccdatq0qe6//36VlJSEdT3Btm/fPj300ENK SkrSnXfeqTVr1gTOVbbWi91333n99dfVpUuXsKwhlMrKyjRlyhSlpKQoJSVFTz75ZOAvFlfy OKnselerYO+xVatWqXPnzmrZsqWGDBmiU6dOhXU9wRaqPebz+XT99ddr8+bNYVlHqAR7j0lS p06d1KJFi8DX4sWLw76uC7hq5ujRoy4+Pt5lZWU5v9/v5s+f73r37u2cc2716tWuY8eO7ptv vnEHDhxw7dq1c5s2bXLOOTdo0CA3bdo0V1pa6tatW+eaNWvmTp8+7QoKClzTpk3djh073KlT p9zYsWPdww8/bLnE761Xr15u4cKFzu/3u/3797v4+Hh37NixStda2X1XWFjopk6d6po0aeJu v/12y6UFxdKlS13fvn1dcXGxKy4udr1793ZLly51zl3Z46Sy612Ngr3HsrOzXePGjd2BAwdc aWmpGzJkiJsyZYrlEr+3YO+x74wcOdLVr1//guNXm2DvsYKCAle/fn2Xk5MT+Dpx4oTlEp1z zlW7AH/99ddu27Ztge8/+eQTFxMT45xzbtSoUW7RokWBc7NmzXKjR492zjlXr149l5+fHzh3 ++23u40bN7p33nnH9ejRI3A8KyvLXXvttaFeRsiUl5e71157zZ07dy5wrFWrVu6tt96qdK2V 3XerVq1yTzzxhFu/fn2VCPCHH37ovvzyy8D3U6dOdcOHD3fOXdnjpLLrXY2Cvcf8fv95x0eM GOEmTJgQ6mWETCj2mHPOrV271o0cOdJ16tTpqg9wsPfYli1bXI8ePVxJSYn77LPPXFlZWZhW Urlq9xJ0s2bN1K1bt8D3S5cuVZ8+fSRJBw8eVLNmzQLnmjZtqry8PBUVFens2bPn/TL9Jk2a KC8vr8I/U1RUpHPnzoVhNcFXo0YN3XfffapZs6akf7+kc/z4cXXu3LnStV7svpOkgQMH6ve/ /32V+UXyHTt2VFJSkiTp1KlTevnll9W3b98rfpxc7HpXq2DvsYiICMXFxSkzM1ODBw/WBx98 oLS0tPAtKMhCsceOHz+up556SnPmzAnvYkIk2Htsz549yszMVPv27dWhQwd17txZJ06cCPu6 /lu1C/B/Wr58udasWaP09HRJUn5+vqKjowPn69atq5KSEhUUFJx3XJKio6MrPFenTh1Juurf B5ak7OxsPfTQQ3ruuecUGxtb6Vovdt9VZWVlZRoyZIhSUlI0cODA7/04+e/rVQXB2GPf8fl8 atasmU6fPq1t27aFZf5QC9YeGzdunKZPn67Y2NjwLiDEgrXHGjZsqDFjxigzM1MHDx5UVFSU Vq9eHda1VKTaBnj58uVKS0vTxo0b1aJFC0lSXFyciouLA/+Nz+dT06ZN1ahRo/OOV3aupKRE tWvXvuo3QnZ2trp166a0tDQNGzZMkipd68Xuu6qqrKxMDz74oIqKirRq1SpJF94/0qU/Tiq6 3tUuWHvsOx06dFB6eroWL16syZMny13l/5BbsPbYmjVrtG/fPjVs2FBbt26Vz+fTnj179PXX X4d9TcEUzD02fPhwPfnkk4qIiNB1112n1NRUrVy5MqzrqUi1DPDq1auVlpamd955RykpKYHj zZs316FDhwLfHzp0SImJiYqNjVWtWrV09OjRwLmDBw8qMTFRzZs318GDB887npCQoIiIiPAs JgQOHz6su+66S7/85S/1+OOPB45XttaL3XdVkd/v1/Dhw5Wfn69169YF/h3kK32cXOx6V7Ng 7rG9e/fqL3/5S+B4+/bt9c0336iwsDA8iwmBYO6xI0eOyO/3a/z48Ro/frxyc3OVkZGhv//9 72FdUzAFe4+99tpr2rt3b+BceXm5GjRoEL4FXYz1m9Dhlpub6+rXr+/ef/99V1ZWFvhyzrl1 69a5Dh06uIKCAnfkyBGXnJzsduzY4ZxzbtiwYW7q1KmuvLzcbdiwwSUlJbkzZ86406dPu/j4 ePfBBx+40tJSN3bsWPf4449bLvF76969u5s8efJ594/f7690rZXdd9/ZunVrlfgQVkZGhrvl lltcUVFR4P4pLy93zl3Z46Sy612Ngr3HDh8+7GJjY11BQYFzzrnf/e53Ljk52Wx9wRCqPeac qxIfwgr2Hps3b5675557nN/vdz6fz3Xt2tUtX77cconOuWr4KejJkyc7SRd8nTx50pWXl7uh Q4e6uLg4l5CQ4J566qnAn/vqq69ccnKya9mypWvVqpX729/+Fjj30ksvuXr16rkbbrjB9ejR w/l8PoulBcWuXbsqvH9eeOEF59zF11rZffedqhLgli1bXnD/9O3b1zl3ZY+Tyq53NQrFHps3 b55r166du/nmm93Pf/5zt3fvXoulBUUo95hzVSPAwd5jxcXFbtCgQa5du3auUaNGbujQoe70 6dMma/tPEc5d5W+khIDP51Pt2rVVu3btC87l5+crPj7+guNlZWUqLi6+6t/7vRSVrbWy+646 4XFSuSvZY845FRcXq379+uEY0RR77H+7kj323S9w8cpPZBBgAAAMVMsPYQEAYI0AAwBggAAD AGCAAAMAYIAAAwBggAADAGCAAAMAYIAAAwBggAADAGCAAAMAYIAAAwBggAADAGCAAAMAYIAA AwBggAADAGCAAAMAYIAAAwBggAADAGCAAAMAYIAAAwBggAAD1djs2bM1c+ZMJSYm6rHHHrMe B6hWoqwHAGAnLy9PL7zwghYvXqzmzZtbjwNUKwQYqOb69++v+++/33oMoNrhJWigmktMTLQe AaiWCDBQzUVGRlqPAFRLBBioBnbv3q0TJ05IknJzc3XgwAHjiQAQYKAauPvuu/X+++9LkubM maPf/OY3xhMBiHDOOeshAACobngGDACAAQIMAIABAgwAgAECDACAAQIMAIABAgwAgAECDACA AQIMAIABAgwAgAECDACAAQIMAIABAgwAgAECDACAAQIMAIABAgwAgAECDACAAQIMAICB/wfj KJeiy5cCrwAAAABJRU5ErkJggg== --------------060902090209070005030607--