all messages for Emacs-related lists mirrored at yhetil.org
 help / color / mirror / code / Atom feed
blob 4d02b751afee2cef38e0e18bb82fe02ca86f12d3 103713 bytes (raw)
name: lisp/emacs-lisp/smie.el 	 # note: path name is non-authoritative(*)

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
 
;;; smie.el --- Simple Minded Indentation Engine -*- lexical-binding: t -*-

;; Copyright (C) 2010-2017 Free Software Foundation, Inc.

;; Author: Stefan Monnier <monnier@iro.umontreal.ca>
;; Keywords: languages, lisp, internal, parsing, indentation

;; This file is part of GNU Emacs.

;; GNU Emacs is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation, either version 3 of the License, or
;; (at your option) any later version.

;; GNU Emacs is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
;; GNU General Public License for more details.

;; You should have received a copy of the GNU General Public License
;; along with this program.  If not, see <http://www.gnu.org/licenses/>.

;;; Commentary:

;; While working on the SML indentation code, the idea grew that maybe
;; I could write something generic to do the same thing, and at the
;; end of working on the SML code, I had a pretty good idea of what it
;; could look like.  That idea grew stronger after working on
;; LaTeX indentation.
;;
;; So at some point I decided to try it out, by writing a new
;; indentation code for Coq while trying to keep most of the code
;; "table driven", where only the tables are Coq-specific.  The result
;; (which was used for Beluga-mode as well) turned out to be based on
;; something pretty close to an operator precedence parser.

;; So here is another rewrite, this time following the actual principles of
;; operator precedence grammars.  Why OPG?  Even though they're among the
;; weakest kinds of parsers, these parsers have some very desirable properties
;; for Emacs:
;; - most importantly for indentation, they work equally well in either
;;   direction, so you can use them to parse backward from the indentation
;;   point to learn the syntactic context;
;; - they work locally, so there's no need to keep a cache of
;;   the parser's state;
;; - because of that locality, indentation also works just fine when earlier
;;   parts of the buffer are syntactically incorrect since the indentation
;;   looks at "as little as possible" of the buffer to make an indentation
;;   decision.
;; - they typically have no error handling and can't even detect a parsing
;;   error, so we don't have to worry about what to do in case of a syntax
;;   error because the parser just automatically does something.  Better yet,
;;   we can afford to use a sloppy grammar.

;; A good background to understand the development (especially the parts
;; building the 2D precedence tables and then computing the precedence levels
;; from it) can be found in pages 187-194 of "Parsing techniques" by Dick Grune
;; and Ceriel Jacobs (BookBody.pdf available at
;; http://dickgrune.com/Books/PTAPG_1st_Edition/).
;;
;; OTOH we had to kill many chickens, read many coffee grounds, and practice
;; untold numbers of black magic spells, to come up with the indentation code.
;; Since then, some of that code has been beaten into submission, but the
;; smie-indent-keyword is still pretty obscure.

;; Conflict resolution:
;;
;; - One source of conflicts is when you have:
;;     (exp ("IF" exp "ELSE" exp "END") ("CASE" cases "END"))
;;     (cases (cases "ELSE" insts) ...)
;;   The IF-rule implies ELSE=END and the CASE-rule implies ELSE>END.
;;   This can be resolved simply with:
;;     (exp ("IF" expelseexp "END") ("CASE" cases "END"))
;;     (expelseexp (exp) (exp "ELSE" exp))
;;     (cases (cases "ELSE" insts) ...)
;; - Another source of conflict is when a terminator/separator is used to
;;   terminate elements at different levels, as in:
;;     (decls ("VAR" vars) (decls "," decls))
;;     (vars (id) (vars "," vars))
;;   often these can be resolved by making the lexer distinguish the two
;;   kinds of commas, e.g. based on the following token.

;; TODO & BUGS:
;;
;; - We could try to resolve conflicts such as the IFexpELSEexpEND -vs-
;;   CASE(casesELSEexp)END automatically by changing the way BNF rules such as
;;   the IF-rule is handled.  I.e. rather than IF=ELSE and ELSE=END, we could
;;   turn them into IF<ELSE and ELSE>END and IF=END.
;; - Using the structural information SMIE gives us, it should be possible to
;;   implement a `smie-align' command that would automatically figure out what
;;   there is to align and how to do it (something like: align the token of
;;   lowest precedence that appears the same number of times on all lines,
;;   and then do the same on each side of that token).
;; - Maybe accept two juxtaposed non-terminals in the BNF under the condition
;;   that the first always ends with a terminal, or that the second always
;;   starts with a terminal.
;; - Permit EBNF-style notation.
;; - If the grammar has conflicts, the only way is to make the lexer return
;;   different tokens for the different cases.  This extra work performed by
;;   the lexer can be costly and unnecessary: we perform this extra work every
;;   time we find the conflicting token, regardless of whether or not the
;;   difference between the various situations is relevant to the current
;;   situation.  E.g. we may try to determine whether a ";" is a ";-operator"
;;   or a ";-separator" in a case where we're skipping over a "begin..end" pair
;;   where the difference doesn't matter.  For frequently occurring tokens and
;;   rarely occurring conflicts, this can be a significant performance problem.
;;   We could try and let the lexer return a "set of possible tokens
;;   plus a refinement function" and then let parser call the refinement
;;   function if needed.
;; - Make it possible to better specify the behavior in the face of
;;   syntax errors.  IOW provide some control over the choice of precedence
;;   levels within the limits of the constraints.  E.g. make it possible for
;;   the grammar to specify that "begin..end" has lower precedence than
;;   "Module..EndModule", so that if a "begin" is missing, scanning from the
;;   "end" will stop at "Module" rather than going past it (and similarly,
;;   scanning from "Module" should not stop at a spurious "end").

;;; Code:

;; FIXME:
;; - smie-indent-comment doesn't interact well with mis-indented lines (where
;;   the indent rules don't do what the user wants).  Not sure what to do.

(eval-when-compile (require 'cl-lib))

(defgroup smie nil
  "Simple Minded Indentation Engine."
  :group 'languages)

(defvar comment-continue)
(declare-function comment-string-strip "newcomment" (str beforep afterp))

;;; Building precedence level tables from BNF specs.

;; We have 4 different representations of a "grammar":
;; - a BNF table, which is a list of BNF rules of the form
;;   (NONTERM RHS1 ... RHSn) where each RHS is a list of terminals (tokens)
;;   or nonterminals.  Any element in these lists which does not appear as
;;   the `car' of a BNF rule is taken to be a terminal.
;; - A list of precedences (key word "precs"), is a list, sorted
;;   from lowest to highest precedence, of precedence classes that
;;   have the form (ASSOCIATIVITY TERMINAL1 .. TERMINALn), where
;;   ASSOCIATIVITY can be `assoc', `left', `right' or `nonassoc'.
;; - a 2 dimensional precedence table (key word "prec2"), is a 2D
;;   table recording the precedence relation (can be `<', `=', `>', or
;;   nil) between each pair of tokens.
;; - a precedence-level table (key word "grammar"), which is an alist
;;   giving for each token its left and right precedence level (a
;;   number or nil).  This is used in `smie-grammar'.
;; The prec2 tables are only intermediate data structures: the source
;; code normally provides a mix of BNF and precs tables, and then
;; turns them into a levels table, which is what's used by the rest of
;; the SMIE code.

(defvar smie-warning-count 0)

(defun smie-set-prec2tab (table x y val &optional override)
  (cl-assert (and x y))
  (let* ((key (cons x y))
         (old (gethash key table)))
    (if (and old (not (eq old val)))
        (if (and override (gethash key override))
            ;; FIXME: The override is meant to resolve ambiguities,
            ;; but it also hides real conflicts.  It would be great to
            ;; be able to distinguish the two cases so that overrides
            ;; don't hide real conflicts.
            (puthash key (gethash key override) table)
          (display-warning 'smie (format "Conflict: %s %s/%s %s" x old val y))
          (cl-incf smie-warning-count))
      (puthash key val table))))

(defun smie-precs->prec2 (precs)
  "Compute a 2D precedence table from a list of precedences.
PRECS should be a list, sorted by precedence (e.g. \"+\" will
come before \"*\"), of elements of the form \(left OP ...)
or (right OP ...) or (nonassoc OP ...) or (assoc OP ...).  All operators in
one of those elements share the same precedence level and associativity."
  (declare (pure t))
  (let ((prec2-table (make-hash-table :test 'equal)))
    (dolist (prec precs)
      (dolist (op (cdr prec))
        (let ((selfrule (cdr (assq (car prec)
                                   '((left . >) (right . <) (assoc . =))))))
          (when selfrule
            (dolist (other-op (cdr prec))
              (smie-set-prec2tab prec2-table op other-op selfrule))))
        (let ((op1 '<) (op2 '>))
          (dolist (other-prec precs)
            (if (eq prec other-prec)
                (setq op1 '> op2 '<)
              (dolist (other-op (cdr other-prec))
                (smie-set-prec2tab prec2-table op other-op op2)
                (smie-set-prec2tab prec2-table other-op op op1)))))))
    prec2-table))

(defun smie-merge-prec2s (&rest tables)
  (declare (pure t))
  (if (null (cdr tables))
      (car tables)
    (let ((prec2 (make-hash-table :test 'equal)))
      (dolist (table tables)
        (maphash (lambda (k v)
                   (if (consp k)
                       (smie-set-prec2tab prec2 (car k) (cdr k) v)
                     (if (and (gethash k prec2)
                              (not (equal (gethash k prec2) v)))
                         (error "Conflicting values for %s property" k)
                       (puthash k v prec2))))
                 table))
      prec2)))

(defun smie-bnf->prec2 (bnf &rest resolvers)
  "Convert the BNF grammar into a prec2 table.
BNF is a list of nonterminal definitions of the form:
  (NONTERM RHS1 RHS2 ...)
where each RHS is a (non-empty) list of terminals (aka tokens) or non-terminals.
Not all grammars are accepted:
- an RHS cannot be an empty list (this is not needed, since SMIE allows all
  non-terminals to match the empty string anyway).
- an RHS cannot have 2 consecutive non-terminals: between each non-terminal
  needs to be a terminal (aka token).  This is a fundamental limitation of
  the parsing technology used (operator precedence grammar).
Additionally, conflicts can occur:
- The returned prec2 table holds constraints between pairs of
  token, and for any given pair only one constraint can be
  present, either: T1 < T2, T1 = T2, or T1 > T2.
- A token can either be an `opener' (something similar to an open-paren),
  a `closer' (like a close-paren), or `neither' of the two (e.g. an infix
  operator, or an inner token like \"else\").
Conflicts can be resolved via RESOLVERS, which is a list of elements that can
be either:
- a precs table (see `smie-precs->prec2') to resolve conflicting constraints,
- a constraint (T1 REL T2) where REL is one of = < or >."
  (declare (pure t))
  ;; FIXME: Add repetition operator like (repeat <separator> <elems>).
  ;; Maybe also add (or <elem1> <elem2>...) for things like
  ;; (exp (exp (or "+" "*" "=" ..) exp)).
  ;; Basically, make it EBNF (except for the specification of a separator in
  ;; the repetition, maybe).
  (let* ((nts (mapcar 'car bnf))        ;Non-terminals.
         (first-ops-table ())
         (last-ops-table ())
         (first-nts-table ())
         (last-nts-table ())
         (smie-warning-count 0)
         (prec2 (make-hash-table :test 'equal))
         (override
          (let ((precs ())
                (over (make-hash-table :test 'equal)))
            (dolist (resolver resolvers)
              (cond
               ((and (= 3 (length resolver)) (memq (nth 1 resolver) '(= < >)))
                (smie-set-prec2tab
                 over (nth 0 resolver) (nth 2 resolver) (nth 1 resolver)))
               ((memq (caar resolver) '(left right assoc nonassoc))
                (push resolver precs))
               (t (error "Unknown resolver %S" resolver))))
            (apply #'smie-merge-prec2s over
                   (mapcar 'smie-precs->prec2 precs))))
         again)
    (dolist (rules bnf)
      (let ((nt (car rules))
            (last-ops ())
            (first-ops ())
            (last-nts ())
            (first-nts ()))
        (dolist (rhs (cdr rules))
          (unless (consp rhs)
            (signal 'wrong-type-argument `(consp ,rhs)))
          (if (not (member (car rhs) nts))
              (cl-pushnew (car rhs) first-ops)
            (cl-pushnew (car rhs) first-nts)
            (when (consp (cdr rhs))
              ;; If the first is not an OP we add the second (which
              ;; should be an OP if BNF is an "operator grammar").
              ;; Strictly speaking, this should only be done if the
              ;; first is a non-terminal which can expand to a phrase
              ;; without any OP in it, but checking doesn't seem worth
              ;; the trouble, and it lets the writer of the BNF
              ;; be a bit more sloppy by skipping uninteresting base
              ;; cases which are terminals but not OPs.
              (when (member (cadr rhs) nts)
                (error "Adjacent non-terminals: %s %s"
                       (car rhs) (cadr rhs)))
              (cl-pushnew (cadr rhs) first-ops)))
          (let ((shr (reverse rhs)))
            (if (not (member (car shr) nts))
                (cl-pushnew (car shr) last-ops)
              (cl-pushnew (car shr) last-nts)
              (when (consp (cdr shr))
                (when (member (cadr shr) nts)
                  (error "Adjacent non-terminals: %s %s"
                         (cadr shr) (car shr)))
                (cl-pushnew (cadr shr) last-ops)))))
        (push (cons nt first-ops) first-ops-table)
        (push (cons nt last-ops) last-ops-table)
        (push (cons nt first-nts) first-nts-table)
        (push (cons nt last-nts) last-nts-table)))
    ;; Compute all first-ops by propagating the initial ones we have
    ;; now, according to first-nts.
    (setq again t)
    (while (prog1 again (setq again nil))
      (dolist (first-nts first-nts-table)
        (let* ((nt (pop first-nts))
               (first-ops (assoc nt first-ops-table)))
          (dolist (first-nt first-nts)
            (dolist (op (cdr (assoc first-nt first-ops-table)))
              (unless (member op first-ops)
                (setq again t)
                (push op (cdr first-ops))))))))
    ;; Same thing for last-ops.
    (setq again t)
    (while (prog1 again (setq again nil))
      (dolist (last-nts last-nts-table)
        (let* ((nt (pop last-nts))
               (last-ops (assoc nt last-ops-table)))
          (dolist (last-nt last-nts)
            (dolist (op (cdr (assoc last-nt last-ops-table)))
              (unless (member op last-ops)
                (setq again t)
                (push op (cdr last-ops))))))))
    ;; Now generate the 2D precedence table.
    (dolist (rules bnf)
      (dolist (rhs (cdr rules))
        (while (cdr rhs)
          (cond
           ((member (car rhs) nts)
            (dolist (last (cdr (assoc (car rhs) last-ops-table)))
              (smie-set-prec2tab prec2 last (cadr rhs) '> override)))
           ((member (cadr rhs) nts)
            (dolist (first (cdr (assoc (cadr rhs) first-ops-table)))
              (smie-set-prec2tab prec2 (car rhs) first '< override))
            (if (and (cddr rhs) (not (member (car (cddr rhs)) nts)))
                (smie-set-prec2tab prec2 (car rhs) (car (cddr rhs))
                                   '= override)))
           (t (smie-set-prec2tab prec2 (car rhs) (cadr rhs) '= override)))
          (setq rhs (cdr rhs)))))
    ;; Keep track of which tokens are openers/closer, so they can get a nil
    ;; precedence in smie-prec2->grammar.
    (puthash :smie-open/close-alist (smie-bnf--classify bnf) prec2)
    (puthash :smie-closer-alist (smie-bnf--closer-alist bnf) prec2)
    (if (> smie-warning-count 0)
        (display-warning
         'smie (format "Total: %d warnings" smie-warning-count)))
    prec2))

;; (defun smie-prec2-closer-alist (prec2 include-inners)
;;   "Build a closer-alist from a PREC2 table.
;; The return value is in the same form as `smie-closer-alist'.
;; INCLUDE-INNERS if non-nil means that inner keywords will be included
;; in the table, e.g. the table will include things like (\"if\" . \"else\")."
;;   (let* ((non-openers '())
;;          (non-closers '())
;;          ;; For each keyword, this gives the matching openers, if any.
;;          (openers (make-hash-table :test 'equal))
;;          (closers '())
;;          (done nil))
;;     ;; First, find the non-openers and non-closers.
;;     (maphash (lambda (k v)
;;                (unless (or (eq v '<) (member (cdr k) non-openers))
;;                  (push (cdr k) non-openers))
;;                (unless (or (eq v '>) (member (car k) non-closers))
;;                  (push (car k) non-closers)))
;;              prec2)
;;     ;; Then find the openers and closers.
;;     (maphash (lambda (k _)
;;                (unless (member (car k) non-openers)
;;                  (puthash (car k) (list (car k)) openers))
;;                (unless (or (member (cdr k) non-closers)
;;                            (member (cdr k) closers))
;;                  (push (cdr k) closers)))
;;              prec2)
;;     ;; Then collect the matching elements.
;;     (while (not done)
;;       (setq done t)
;;       (maphash (lambda (k v)
;;                  (when (eq v '=)
;;                    (let ((aopeners (gethash (car k) openers))
;;                          (dopeners (gethash (cdr k) openers))
;;                          (new nil))
;;                      (dolist (o aopeners)
;;                        (unless (member o dopeners)
;;                          (setq new t)
;;                          (push o dopeners)))
;;                      (when new
;;                        (setq done nil)
;;                        (puthash (cdr k) dopeners openers)))))
;;                prec2))
;;     ;; Finally, dump the resulting table.
;;     (let ((alist '()))
;;       (maphash (lambda (k v)
;;                  (when (or include-inners (member k closers))
;;                    (dolist (opener v)
;;                      (unless (equal opener k)
;;                        (push (cons opener k) alist)))))
;;                openers)
;;       alist)))

(defun smie-bnf--closer-alist (bnf &optional no-inners)
  ;; We can also build this closer-alist table from a prec2 table,
  ;; but it takes more work, and the order is unpredictable, which
  ;; is a problem for smie-close-block.
  ;; More convenient would be to build it from a levels table since we
  ;; always have this table (contrary to the BNF), but it has all the
  ;; disadvantages of the prec2 case plus the disadvantage that the levels
  ;; table has lost some info which would result in extra invalid pairs.
  "Build a closer-alist from a BNF table.
The return value is in the same form as `smie-closer-alist'.
NO-INNERS if non-nil means that inner keywords will be excluded
from the table, e.g. the table will not include things like (\"if\" . \"else\")."
  (let ((nts (mapcar #'car bnf))        ;non terminals.
        (alist '()))
    (dolist (nt bnf)
      (dolist (rhs (cdr nt))
        (unless (or (< (length rhs) 2) (member (car rhs) nts))
          (if no-inners
              (let ((last (car (last rhs))))
                (unless (member last nts)
                  (cl-pushnew (cons (car rhs) last) alist :test #'equal)))
            ;; Reverse so that the "real" closer gets there first,
            ;; which is important for smie-close-block.
            (dolist (term (reverse (cdr rhs)))
              (unless (member term nts)
                (cl-pushnew (cons (car rhs) term) alist :test #'equal)))))))
    (nreverse alist)))

(defun smie-bnf--set-class (table token class)
  (let ((prev (gethash token table class)))
    (puthash token
             (cond
              ((eq prev class) class)
              ((eq prev t) t) ;Non-terminal.
              (t (display-warning
                  'smie
                  (format "token %s is both %s and %s" token class prev))
                 'neither))
             table)))

(defun smie-bnf--classify (bnf)
  "Return a table classifying terminals.
Each terminal can either be an `opener', a `closer', or `neither'."
  (let ((table (make-hash-table :test #'equal))
        (alist '()))
    (dolist (category bnf)
      (puthash (car category) t table)) ;Mark non-terminals.
    (dolist (category bnf)
      (dolist (rhs (cdr category))
        (if (null (cdr rhs))
            (smie-bnf--set-class table (pop rhs) 'neither)
          (smie-bnf--set-class table (pop rhs) 'opener)
          (while (cdr rhs)              ;Remove internals.
            (smie-bnf--set-class table (pop rhs) 'neither))
          (smie-bnf--set-class table (pop rhs) 'closer))))
    (maphash (lambda (tok v)
               (when (memq v '(closer opener))
                 (push (cons tok v) alist)))
             table)
    alist))

(defun smie-debug--prec2-cycle (csts)
  "Return a cycle in CSTS, assuming there's one.
CSTS is a list of pairs representing arcs in a graph."
  ;; A PATH is of the form (START . REST) where REST is a reverse
  ;; list of nodes through which the path goes.
  (let ((paths (mapcar (lambda (pair) (list (car pair) (cdr pair))) csts))
        (cycle nil))
    (while (null cycle)
      (dolist (path (prog1 paths (setq paths nil)))
        (dolist (cst csts)
          (when (eq (car cst) (nth 1 path))
            (if (eq (cdr cst) (car path))
                (setq cycle path)
              (push (cons (car path) (cons (cdr cst) (cdr path)))
                    paths))))))
    (cons (car cycle) (nreverse (cdr cycle)))))

(defun smie-debug--describe-cycle (table cycle)
  (let ((names
         (mapcar (lambda (val)
                   (let ((res nil))
                     (dolist (elem table)
                       (if (eq (cdr elem) val)
                           (push (concat "." (car elem)) res))
                       (if (eq (cddr elem) val)
                           (push (concat (car elem) ".") res)))
                     (cl-assert res)
                     res))
                 cycle)))
    (mapconcat
     (lambda (elems) (mapconcat 'identity elems "="))
     (append names (list (car names)))
     " < ")))

;; (defun smie-check-grammar (grammar prec2 &optional dummy)
;;   (maphash (lambda (k v)
;;              (when (consp k)
;;                (let ((left (nth 2 (assoc (car k) grammar)))
;;                      (right (nth 1 (assoc (cdr k) grammar))))
;;                  (when (and left right)
;;                    (cond
;;                     ((< left right) (cl-assert (eq v '<)))
;;                     ((> left right) (cl-assert (eq v '>)))
;;                     (t (cl-assert (eq v '=))))))))
;;            prec2))

(defun smie-prec2->grammar (prec2)
  "Take a 2D precedence table and turn it into an alist of precedence levels.
PREC2 is a table as returned by `smie-precs->prec2' or
`smie-bnf->prec2'."
  (declare (pure t))
  ;; For each operator, we create two "variables" (corresponding to
  ;; the left and right precedence level), which are represented by
  ;; cons cells.  Those are the very cons cells that appear in the
  ;; final `table'.  The value of each "variable" is kept in the `car'.
  (let ((table ())
        (csts ())
        (eqs ()))
    ;; From `prec2' we construct a list of constraints between
    ;; variables (aka "precedence levels").  These can be either
    ;; equality constraints (in `eqs') or `<' constraints (in `csts').
    (maphash (lambda (k v)
               (when (consp k)
                 (let ((tmp (assoc (car k) table))
                       x y)
                   (if tmp
                       (setq x (cddr tmp))
                     (setq x (cons nil nil))
                     (push (cons (car k) (cons nil x)) table))
                   (if (setq tmp (assoc (cdr k) table))
                       (setq y (cdr tmp))
                     (setq y (cons nil (cons nil nil)))
                     (push (cons (cdr k) y) table))
                   (pcase v
                     (`= (push (cons x y) eqs))
                     (`< (push (cons x y) csts))
                     (`> (push (cons y x) csts))
                     (_ (error "SMIE error: prec2 has %S↦%S which ∉ {<,+,>}"
                               k v))))))
             prec2)
    ;; First process the equality constraints.
    (let ((eqs eqs))
      (while eqs
        (let ((from (caar eqs))
              (to (cdar eqs)))
          (setq eqs (cdr eqs))
          (if (eq to from)
              nil                       ;Nothing to do.
            (dolist (other-eq eqs)
              (if (eq from (cdr other-eq)) (setcdr other-eq to))
              (when (eq from (car other-eq))
                ;; This can happen because of `assoc' settings in precs
                ;; or because of a rhs like ("op" foo "op").
                (setcar other-eq to)))
            (dolist (cst csts)
              (if (eq from (cdr cst)) (setcdr cst to))
              (if (eq from (car cst)) (setcar cst to)))))))
    ;; Then eliminate trivial constraints iteratively.
    (let ((i 0))
      (while csts
        (let ((rhvs (mapcar 'cdr csts))
              (progress nil))
          (dolist (cst csts)
            (unless (memq (car cst) rhvs)
              (setq progress t)
              ;; We could give each var in a given iteration the same value,
              ;; but we can also give them arbitrarily different values.
              ;; Basically, these are vars between which there is no
              ;; constraint (neither equality nor inequality), so
              ;; anything will do.
              ;; We give them arbitrary values, which means that we
              ;; replace the "no constraint" case with either > or <
              ;; but not =.  The reason we do that is so as to try and
              ;; distinguish associative operators (which will have
              ;; left = right).
              (unless (caar cst)
                (setcar (car cst) i)
                ;; (smie-check-grammar table prec2 'step1)
                (cl-incf i))
              (setq csts (delq cst csts))))
          (unless progress
            (error "Can't resolve the precedence cycle: %s"
                   (smie-debug--describe-cycle
                    table (smie-debug--prec2-cycle csts)))))
        (cl-incf i 10))
      ;; Propagate equality constraints back to their sources.
      (dolist (eq (nreverse eqs))
        (when (null (cadr eq))
          ;; There's an equality constraint, but we still haven't given
          ;; it a value: that means it binds tighter than anything else,
          ;; and it can't be an opener/closer (those don't have equality
          ;; constraints).
          ;; So set it here rather than below since doing it below
          ;; makes it more difficult to obey the equality constraints.
          (setcar (cdr eq) i)
          (cl-incf i))
        (cl-assert (or (null (caar eq)) (eq (caar eq) (cadr eq))))
        (setcar (car eq) (cadr eq))
        ;; (smie-check-grammar table prec2 'step2)
        )
      ;; Finally, fill in the remaining vars (which did not appear on the
      ;; left side of any < constraint).
      (dolist (x table)
        (unless (nth 1 x)
          (setf (nth 1 x) i)
          (cl-incf i))                  ;See other (cl-incf i) above.
        (unless (nth 2 x)
          (setf (nth 2 x) i)
          (cl-incf i))))                ;See other (cl-incf i) above.
    ;; Mark closers and openers.
    (dolist (x (gethash :smie-open/close-alist prec2))
      (let* ((token (car x))
             (cons (pcase (cdr x)
                     (`closer (cddr (assoc token table)))
                     (`opener (cdr (assoc token table))))))
        ;; `cons' can be nil for openers/closers which only contain
        ;; "atomic" elements.
        (when cons
          (cl-assert (numberp (car cons)))
          (setf (car cons) (list (car cons))))))
    (let ((ca (gethash :smie-closer-alist prec2)))
      (when ca (push (cons :smie-closer-alist ca) table)))
    ;; (smie-check-grammar table prec2 'step3)
    table))

;;; Parsing using a precedence level table.

(defvar smie-grammar 'unset
  "List of token parsing info.
This list is normally built by `smie-prec2->grammar'.
Each element is of the form (TOKEN LEFT-LEVEL RIGHT-LEVEL).
Parsing is done using an operator precedence parser.
LEFT-LEVEL and RIGHT-LEVEL can be either numbers or a list, where a list
means that this operator does not bind on the corresponding side,
e.g. a LEFT-LEVEL of nil means this is a token that behaves somewhat like
an open-paren, whereas a RIGHT-LEVEL of nil would correspond to something
like a close-paren.")

(defvar smie-forward-token-function #'smie-default-forward-token
  "Function to scan forward for the next token.
Called with no argument should return a token and move to its end.
If no token is found, return nil or the empty string.
It can return nil when bumping into a parenthesis, which lets SMIE
use syntax-tables to handle them in efficient C code.")

(defvar smie-backward-token-function #'smie-default-backward-token
  "Function to scan backward the previous token.
Same calling convention as `smie-forward-token-function' except
it should move backward to the beginning of the previous token.")

(defalias 'smie-op-left 'car)
(defalias 'smie-op-right 'cadr)

(defun smie-default-backward-token ()
  (forward-comment (- (point)))
  (buffer-substring-no-properties
   (point)
   (progn (if (zerop (skip-syntax-backward "."))
              (skip-syntax-backward "w_'"))
          (point))))

(defun smie-default-forward-token ()
  (forward-comment (point-max))
  (buffer-substring-no-properties
   (point)
   (progn (if (zerop (skip-syntax-forward "."))
              (skip-syntax-forward "w_'"))
          (point))))

(defun smie--associative-p (toklevels)
  ;; in "a + b + c" we want to stop at each +, but in
  ;; "if a then b elsif c then d else c" we don't want to stop at each keyword.
  ;; To distinguish the two cases, we made smie-prec2->grammar choose
  ;; different levels for each part of "if a then b else c", so that
  ;; by checking if the left-level is equal to the right level, we can
  ;; figure out that it's an associative operator.
  ;; This is not 100% foolproof, tho, since the "elsif" will have to have
  ;; equal left and right levels (since it's optional), so smie-next-sexp
  ;; has to be careful to distinguish those different cases.
  (eq (smie-op-left toklevels) (smie-op-right toklevels)))

(defun smie-next-sexp (next-token next-sexp op-forw op-back halfsexp)
  "Skip over one sexp.
NEXT-TOKEN is a function of no argument that moves forward by one
token (after skipping comments if needed) and returns it.
NEXT-SEXP is a lower-level function to skip one sexp.
OP-FORW is the accessor to the forward level of the level data.
OP-BACK is the accessor to the backward level of the level data.
HALFSEXP if non-nil, means skip over a partial sexp if needed.  I.e. if the
first token we see is an operator, skip over its left-hand-side argument.
HALFSEXP can also be a token, in which case it means to parse as if
we had just successfully passed this token.
Possible return values:
  (FORW-LEVEL POS TOKEN): we couldn't skip TOKEN because its back-level
    is too high.  FORW-LEVEL is the forw-level of TOKEN,
    POS is its start position in the buffer.
  (t POS TOKEN): same thing when we bump on the wrong side of a paren.
    Instead of t, the `car' can also be some other non-nil non-number value.
  (nil POS TOKEN): we skipped over a paren-like pair.
  nil: we skipped over an identifier, matched parentheses, ..."
  (catch 'return
    (let ((levels
           (if (stringp halfsexp)
               (prog1 (list (cdr (assoc halfsexp smie-grammar)))
                 (setq halfsexp nil)))))
      (while
          (let* ((pos (point))
                 (token (funcall next-token))
                 (toklevels (cdr (assoc token smie-grammar))))
            (cond
             ((null toklevels)
              (when (zerop (length token))
                (condition-case err
                    (progn (funcall next-sexp 1) nil)
                  (scan-error
                   (let* ((epos1 (nth 2 err))
                          (epos (if (<= (point) epos1) (nth 3 err) epos1)))
                     (goto-char pos)
                     (throw 'return
                            (list t epos
                                  (unless (= (point) epos)
                                    (buffer-substring-no-properties
                                     epos
                                     (+ epos (if (< (point) epos) -1 1)))))))))
                (if (eq pos (point))
                    ;; We did not move, so let's abort the loop.
                    (throw 'return (list t (point))))))
             ((not (numberp (funcall op-back toklevels)))
              ;; A token like a paren-close.
              (cl-assert (numberp  ; Otherwise, why mention it in smie-grammar.
                          (funcall op-forw toklevels)))
              (push toklevels levels))
             (t
              (while (and levels (< (funcall op-back toklevels)
                                    (funcall op-forw (car levels))))
                (setq levels (cdr levels)))
              (cond
               ((null levels)
                (if (and halfsexp (numberp (funcall op-forw toklevels)))
                    (push toklevels levels)
                  (throw 'return
                         (prog1 (list (or (funcall op-forw toklevels) t)
                                      (point) token)
                           (goto-char pos)))))
               (t
                (let ((lastlevels levels))
                  (if (and levels (= (funcall op-back toklevels)
                                     (funcall op-forw (car levels))))
                      (setq levels (cdr levels)))
                  ;; We may have found a match for the previously pending
                  ;; operator.  Is this the end?
                  (cond
                   ;; Keep looking as long as we haven't matched the
                   ;; topmost operator.
                   (levels
                    (cond
                     ((numberp (funcall op-forw toklevels))
                      (push toklevels levels))
                     ;; FIXME: For some languages, we can express the grammar
                     ;; OK, but next-sexp doesn't stop where we'd want it to.
                     ;; E.g. in SML, we'd want to stop right in front of
                     ;; "local" if we're scanning (both forward and backward)
                     ;; from a "val/fun/..." at the same level.
                     ;; Same for Pascal/Modula2's "procedure" w.r.t
                     ;; "type/var/const".
                     ;;
                     ;; ((and (functionp (cadr (funcall op-forw toklevels)))
                     ;;       (funcall (cadr (funcall op-forw toklevels))
                     ;;                levels))
                     ;;  (setq levels nil))
                     ))
                   ;; We matched the topmost operator.  If the new operator
                   ;; is the last in the corresponding BNF rule, we're done.
                   ((not (numberp (funcall op-forw toklevels)))
                    ;; It is the last element, let's stop here.
                    (throw 'return (list nil (point) token)))
                   ;; If the new operator is not the last in the BNF rule,
                   ;; and is not associative, it's one of the inner operators
                   ;; (like the "in" in "let .. in .. end"), so keep looking.
                   ((not (smie--associative-p toklevels))
                    (push toklevels levels))
                   ;; The new operator is associative.  Two cases:
                   ;; - it's really just an associative operator (like + or ;)
                   ;;   in which case we should have stopped right before.
                   ((and lastlevels
                         (smie--associative-p (car lastlevels)))
                    (throw 'return
                           (prog1 (list (or (funcall op-forw toklevels) t)
                                        (point) token)
                             (goto-char pos))))
                   ;; - it's an associative operator within a larger construct
                   ;;   (e.g. an "elsif"), so we should just ignore it and keep
                   ;;   looking for the closing element.
                   (t (setq levels lastlevels))))))))
            levels)
        (setq halfsexp nil)))))

(defun smie-backward-sexp (&optional halfsexp)
  "Skip over one sexp.
HALFSEXP if non-nil, means skip over a partial sexp if needed.  I.e. if the
first token we see is an operator, skip over its left-hand-side argument.
HALFSEXP can also be a token, in which case we should skip the text
assuming it is the left-hand-side argument of that token.
Possible return values:
  (LEFT-LEVEL POS TOKEN): we couldn't skip TOKEN because its right-level
    is too high.  LEFT-LEVEL is the left-level of TOKEN,
    POS is its start position in the buffer.
  (t POS TOKEN): same thing but for an open-paren or the beginning of buffer.
    Instead of t, the `car' can also be some other non-nil non-number value.
  (nil POS TOKEN): we skipped over a paren-like pair.
  nil: we skipped over an identifier, matched parentheses, ..."
  (smie-next-sexp
   (indirect-function smie-backward-token-function)
   (lambda (n)
     (if (bobp)
         ;; Arguably backward-sexp should signal this error for us.
         (signal 'scan-error
                 (list "Beginning of buffer" (point) (point)))
       (backward-sexp n)))
   (indirect-function #'smie-op-left)
   (indirect-function #'smie-op-right)
   halfsexp))

(defun smie-forward-sexp (&optional halfsexp)
  "Skip over one sexp.
HALFSEXP if non-nil, means skip over a partial sexp if needed.  I.e. if the
first token we see is an operator, skip over its right-hand-side argument.
HALFSEXP can also be a token, in which case we should skip the text
assuming it is the right-hand-side argument of that token.
Possible return values:
  (RIGHT-LEVEL POS TOKEN): we couldn't skip TOKEN because its left-level
    is too high.  RIGHT-LEVEL is the right-level of TOKEN,
    POS is its end position in the buffer.
  (t POS TOKEN): same thing but for a close-paren or the end of buffer.
    Instead of t, the `car' can also be some other non-nil non-number value.
  (nil POS TOKEN): we skipped over a paren-like pair.
  nil: we skipped over an identifier, matched parentheses, ..."
  (smie-next-sexp
   (indirect-function smie-forward-token-function)
   (indirect-function #'forward-sexp)
   (indirect-function #'smie-op-right)
   (indirect-function #'smie-op-left)
   halfsexp))

;;; Miscellaneous commands using the precedence parser.

(defun smie-backward-sexp-command (n)
  "Move backward through N logical elements."
  (interactive "^p")
  (smie-forward-sexp-command (- n)))

(defun smie-forward-sexp-command (n)
  "Move forward through N logical elements."
  (interactive "^p")
  (let ((forw (> n 0))
        (forward-sexp-function nil))
    (while (/= n 0)
      (setq n (- n (if forw 1 -1)))
      (let ((pos (point))
            (res (if forw
                     (smie-forward-sexp 'halfsexp)
                   (smie-backward-sexp 'halfsexp))))
        (if (and (car res) (= pos (point)) (not (if forw (eobp) (bobp))))
            (signal 'scan-error
                    (list "Containing expression ends prematurely"
                          (cadr res) (cadr res)))
          nil)))))

(defvar smie-closer-alist nil
  "Alist giving the closer corresponding to an opener.")

(defun smie-close-block ()
  "Close the closest surrounding block."
  (interactive)
  (let ((closer
         (save-excursion
           (backward-up-list 1)
           (if (looking-at "\\s(")
               (string (cdr (syntax-after (point))))
             (let* ((open (funcall smie-forward-token-function))
                    (closer (cdr (assoc open smie-closer-alist)))
                    (levels (list (assoc open smie-grammar)))
                    (seen '())
                    (found '()))
               (cond
                ;; Even if we improve the auto-computation of closers,
                ;; there are still cases where we need manual
                ;; intervention, e.g. for Octave's use of `until'
                ;; as a pseudo-closer of `do'.
                (closer)
                ((or (equal levels '(nil)) (numberp (nth 1 (car levels))))
                 (error "Doesn't look like a block"))
                (t
                 ;; Now that smie-setup automatically sets smie-closer-alist
                 ;; from the BNF, this is not really needed any more.
                 (while levels
                   (let ((level (pop levels)))
                     (dolist (other smie-grammar)
                       (when (and (eq (nth 2 level) (nth 1 other))
                                  (not (memq other seen)))
                         (push other seen)
                         (if (numberp (nth 2 other))
                             (push other levels)
                           (push (car other) found))))))
                 (cond
                  ((null found) (error "No known closer for opener %s" open))
                  ;; What should we do if there are various closers?
                  (t (car found))))))))))
    (unless (save-excursion (skip-chars-backward " \t") (bolp))
      (newline))
    (insert closer)
    (if (save-excursion (skip-chars-forward " \t") (eolp))
        (indent-according-to-mode)
      (reindent-then-newline-and-indent))))

(defun smie-down-list (&optional arg)
  "Move forward down one level paren-like blocks.  Like `down-list'.
With argument ARG, do this that many times.
A negative argument means move backward but still go down a level.
This command assumes point is not in a string or comment."
  (interactive "p")
  (let ((start (point))
        (inc (if (< arg 0) -1 1))
        (offset (if (< arg 0) 1 0))
        (next-token (if (< arg 0)
                        smie-backward-token-function
                      smie-forward-token-function)))
    (while (/= arg 0)
      (setq arg (- arg inc))
      (while
          (let* ((pos (point))
                 (token (funcall next-token))
                 (levels (assoc token smie-grammar)))
            (cond
             ((zerop (length token))
              (if (if (< inc 0) (looking-back "\\s(\\|\\s)" (1- (point)))
                    (looking-at "\\s(\\|\\s)"))
                  ;; Go back to `start' in case of an error.  This presumes
                  ;; none of the token we've found until now include a ( or ).
                  (progn (goto-char start) (down-list inc) nil)
                (forward-sexp inc)
                (/= (point) pos)))
             ((and levels (not (numberp (nth (+ 1 offset) levels)))) nil)
             ((and levels (not (numberp (nth (- 2 offset) levels))))
              (let ((end (point)))
                (goto-char start)
                (signal 'scan-error
                        (list "Containing expression ends prematurely"
                              pos end))))
             (t)))))))

(defvar smie-blink-matching-triggers '(?\s ?\n)
  "Chars which might trigger `blink-matching-open'.
These can include the final chars of end-tokens, or chars that are
typically inserted right after an end token.
I.e. a good choice can be:
    (delete-dups
     (mapcar (lambda (kw) (aref (cdr kw) (1- (length (cdr kw)))))
             smie-closer-alist))")

(defcustom smie-blink-matching-inners t
  "Whether SMIE should blink to matching opener for inner keywords.
If non-nil, it will blink not only for \"begin..end\" but also for \"if...else\"."
  :type 'boolean
  :group 'smie)

(defun smie-blink-matching-check (start end)
  (save-excursion
    (goto-char end)
    (let ((ender (funcall smie-backward-token-function)))
      (cond
       ((not (and ender (rassoc ender smie-closer-alist)))
        ;; This is not one of the begin..end we know how to check.
        (blink-matching-check-mismatch start end))
       ((not start) t)
       ((eq t (car (rassoc ender smie-closer-alist))) nil)
       (t
        (goto-char start)
        (let ((starter (funcall smie-forward-token-function)))
          (not (member (cons starter ender) smie-closer-alist))))))))

(defun smie-blink-matching-open ()
  "Blink the matching opener when applicable.
This uses SMIE's tables and is expected to be placed on `post-self-insert-hook'."
  (let ((pos (point))                   ;Position after the close token.
        token)
    (when (and blink-matching-paren
               smie-closer-alist                     ; Optimization.
               (or (eq (char-before) last-command-event) ;; Sanity check.
                   (save-excursion
                     (or (progn (skip-chars-backward " \t")
                                (setq pos (point))
                                (eq (char-before) last-command-event))
                         (progn (skip-chars-backward " \n\t")
                                (setq pos (point))
                                (eq (char-before) last-command-event)))))
               (memq last-command-event smie-blink-matching-triggers)
               (not (nth 8 (syntax-ppss))))
      (save-excursion
        (setq token (funcall smie-backward-token-function))
        (when (and (eq (point) (1- pos))
                   (= 1 (length token))
                   (not (rassoc token smie-closer-alist)))
          ;; The trigger char is itself a token but is not one of the
          ;; closers (e.g. ?\; in Octave mode), so go back to the
          ;; previous token.
          (setq pos (point))
          (setq token (funcall smie-backward-token-function)))
        (when (rassoc token smie-closer-alist)
          ;; We're after a close token.  Let's still make sure we
          ;; didn't skip a comment to find that token.
          (funcall smie-forward-token-function)
          (when (and (save-excursion
                       ;; Skip the trigger char, if applicable.
                       (if (eq (char-after) last-command-event)
                           (forward-char 1))
                       (if (eq ?\n last-command-event)
                           ;; Skip any auto-indentation, if applicable.
                           (skip-chars-forward " \t"))
                       (>= (point) pos))
                     ;; If token ends with a trigger char, don't blink for
                     ;; anything else than this trigger char, lest we'd blink
                     ;; both when inserting the trigger char and when
                     ;; inserting a subsequent trigger char like SPC.
                     (or (eq (char-before) last-command-event)
                         (not (memq (char-before)
                                    smie-blink-matching-triggers)))
                     ;; FIXME: For octave's "switch ... case ... case" we flash
                     ;; `switch' at the end of the first `case' and we burp
                     ;; "mismatch" at the end of the second `case'.
                     (or smie-blink-matching-inners
                         (not (numberp (nth 2 (assoc token smie-grammar))))))
            ;; The major mode might set blink-matching-check-function
            ;; buffer-locally so that interactive calls to
            ;; blink-matching-open work right, but let's not presume
            ;; that's the case.
            (let ((blink-matching-check-function #'smie-blink-matching-check))
              (blink-matching-open))))))))

(defvar-local smie--matching-block-data-cache nil)

(defun smie--opener/closer-at-point ()
  "Return (OPENER TOKEN START END) or nil.
OPENER is non-nil if TOKEN is an opener and nil if it's a closer."
  (let* ((start (point))
         ;; Move to a previous position outside of a token.
         (_ (funcall smie-backward-token-function))
         ;; Move to the end of the token before point.
         (btok (funcall smie-forward-token-function))
         (bend (point)))
    (cond
     ;; Token before point is a closer?
     ((and (>= bend start) (rassoc btok smie-closer-alist))
      (funcall smie-backward-token-function)
      (when (< (point) start)
        (prog1 (list nil btok (point) bend)
          (goto-char bend))))
     ;; Token around point is an opener?
     ((and (> bend start) (assoc btok smie-closer-alist))
      (funcall smie-backward-token-function)
      (when (<= (point) start) (list t btok (point) bend)))
     ((<= bend start)
      (let ((atok (funcall smie-forward-token-function))
            (aend (point)))
        (cond
         ((< aend start) nil)           ;Hopefully shouldn't happen.
         ;; Token after point is a closer?
         ((assoc atok smie-closer-alist)
          (funcall smie-backward-token-function)
          (when (<= (point) start)
            (list t atok (point) aend)))))))))

(defun smie--matching-block-data (orig &rest args)
  "A function suitable for `show-paren-data-function' (which see)."
  (if (or (null smie-closer-alist)
          (equal (cons (point) (buffer-chars-modified-tick))
                 (car smie--matching-block-data-cache)))
      (or (cdr smie--matching-block-data-cache)
          (apply orig args))
    (setq smie--matching-block-data-cache
          (list (cons (point) (buffer-chars-modified-tick))))
    (unless (nth 8 (syntax-ppss))
      (condition-case nil
          (let ((here (smie--opener/closer-at-point)))
            (when (and here
                       (or smie-blink-matching-inners
                           (not (numberp
                                 (nth (if (nth 0 here) 1 2)
                                      (assoc (nth 1 here) smie-grammar))))))
              (let ((there
                     (cond
                      ((car here)       ; Opener.
                       (let ((data (smie-forward-sexp 'halfsexp))
                             (tend (point)))
                         (unless (car data)
                           (funcall smie-backward-token-function)
                           (list (member (cons (nth 1 here) (nth 2 data))
                                         smie-closer-alist)
                                 (point) tend))))
                      (t                ;Closer.
                       (let ((data (smie-backward-sexp 'halfsexp))
                             (htok (nth 1 here)))
                         (if (car data)
                             (let* ((hprec (nth 2 (assoc htok smie-grammar)))
                                    (ttok (nth 2 data))
                                    (tprec (nth 1 (assoc ttok smie-grammar))))
                               (when (and (numberp hprec) ;Here is an inner.
                                          (eq hprec tprec))
                                 (goto-char (nth 1 data))
                                 (let ((tbeg (point)))
                                   (funcall smie-forward-token-function)
                                   (list t tbeg (point)))))
                           (let ((tbeg (point)))
                             (funcall smie-forward-token-function)
                             (list (member (cons (nth 2 data) htok)
                                           smie-closer-alist)
                                   tbeg (point)))))))))
                ;; Update the cache.
                (setcdr smie--matching-block-data-cache
                        (list (nth 2 here)  (nth 3 here)
                              (nth 1 there) (nth 2 there)
                              (not (nth 0 there)))))))
        (scan-error nil))
      (goto-char (caar smie--matching-block-data-cache)))
    (apply #'smie--matching-block-data orig args)))

;;; The indentation engine.

(defcustom smie-indent-basic 4
  "Basic amount of indentation."
  :type 'integer
  :group 'smie)

(defvar smie-rules-function #'ignore
  "Function providing the indentation rules.
It takes two arguments METHOD and ARG where the meaning of ARG
and the expected return value depends on METHOD.
METHOD can be:
- :after, in which case ARG is a token and the function should return the
  OFFSET to use for indentation after ARG.
- :before, in which case ARG is a token and the function should return the
  OFFSET to use to indent ARG itself.
- :elem, in which case the function should return either:
  - the offset to use to indent function arguments (ARG = `arg')
  - the basic indentation step (ARG = `basic').
  - the token to use (when ARG = `empty-line-token') when we don't know how
    to indent an empty line.
- :list-intro, in which case ARG is a token and the function should return
  non-nil if TOKEN is followed by a list of expressions (not separated by any
  token) rather than an expression.
- :close-all, in which case ARG is a close-paren token at indentation and
  the function should return non-nil if it should be aligned with the opener
  of the last close-paren token on the same line, if there are multiple.
  Otherwise, it will be aligned with its own opener.

When ARG is a token, the function is called with point just before that token.
A return value of nil always means to fallback on the default behavior, so the
function should return nil for arguments it does not expect.

OFFSET can be:
nil				use the default indentation rule.
\(column . COLUMN)		indent to column COLUMN.
NUMBER				offset by NUMBER, relative to a base token
				which is the current token for :after and
				its parent for :before.

The functions whose name starts with \"smie-rule-\" are helper functions
designed specifically for use in this function.")

(defvar smie--hanging-eolp-function
  ;; FIXME: This is a quick hack for 24.4.  Don't document it and replace with
  ;; a well-defined function with a cleaner interface instead!
  (lambda ()
    (skip-chars-forward " \t")
    (or (eolp)
	(and ;; (looking-at comment-start-skip) ;(bug#16041).
	 (forward-comment (point-max))))))

(defalias 'smie-rule-hanging-p 'smie-indent--hanging-p)
(defun smie-indent--hanging-p ()
  "Return non-nil if the current token is \"hanging\".
A hanging keyword is one that's at the end of a line except it's not at
the beginning of a line."
  (and (not (smie-indent--bolp))
       (save-excursion
         (<= (line-end-position)
             (progn
               (and (zerop (length (funcall smie-forward-token-function)))
		    (not (eobp))
		    ;; Could be an open-paren.
		    (forward-char 1))
	       (funcall smie--hanging-eolp-function)
               (point))))))

(defalias 'smie-rule-bolp 'smie-indent--bolp)
(defun smie-indent--bolp ()
  "Return non-nil if the current token is the first on the line."
  (save-excursion (skip-chars-backward " \t") (bolp)))

(defun smie-indent--bolp-1 ()
  ;; Like smie-indent--bolp but also returns non-nil if it's the first
  ;; non-comment token.  Maybe we should simply always use this?
  "Return non-nil if the current token is the first on the line.
Comments are treated as spaces."
  (let ((bol (line-beginning-position)))
    (save-excursion
      (forward-comment (- (point)))
      (<= (point) bol))))

(defun smie-indent--current-column ()
  "Like `current-column', but if there's a comment before us, use that."
  ;; This is used, so that when we align elements, we don't get
  ;;    toto = { /* foo, */ a,
  ;;                        b }
  ;; but
  ;;    toto = { /* foo, */ a,
  ;;             b }
  (let ((pos (point))
        (lbp (line-beginning-position)))
    (save-excursion
      (unless (and (forward-comment -1) (>= (point) lbp))
        (goto-char pos))
      (current-column))))

;; Dynamically scoped.
(defvar smie--parent) (defvar smie--after) (defvar smie--token)

(defun smie-indent--parent ()
  (or smie--parent
      (save-excursion
        (let* ((pos (point))
               (tok (funcall smie-forward-token-function)))
          (unless (numberp (cadr (assoc tok smie-grammar)))
            (goto-char pos))
          (setq smie--parent
                (or (smie-backward-sexp 'halfsexp)
                    (let (res)
                      (while (null (setq res (smie-backward-sexp))))
                      (list nil (point) (nth 2 res)))))))))

(defun smie-rule-parent-p (&rest parents)
  "Return non-nil if the current token's parent is among PARENTS.
Only meaningful when called from within `smie-rules-function'."
  (member (nth 2 (smie-indent--parent)) parents))

(defun smie-rule-next-p (&rest tokens)
  "Return non-nil if the next token is among TOKENS.
Only meaningful when called from within `smie-rules-function'."
  (let ((next
         (save-excursion
           (unless smie--after
             (smie-indent-forward-token) (setq smie--after (point)))
           (goto-char smie--after)
           (smie-indent-forward-token))))
    (member (car next) tokens)))

(defun smie-rule-prev-p (&rest tokens)
  "Return non-nil if the previous token is among TOKENS."
  (let ((prev (save-excursion
                (smie-indent-backward-token))))
    (member (car prev) tokens)))

(defun smie-rule-sibling-p ()
  "Return non-nil if the parent is actually a sibling.
Only meaningful when called from within `smie-rules-function'."
  (eq (car (smie-indent--parent))
      (cadr (assoc smie--token smie-grammar))))

(defun smie-rule-parent (&optional offset)
  "Align with parent.
If non-nil, OFFSET should be an integer giving an additional offset to apply.
Only meaningful when called from within `smie-rules-function'."
  (save-excursion
    (goto-char (cadr (smie-indent--parent)))
    (cons 'column
          (+ (or offset 0)
             (smie-indent-virtual)))))

(defvar smie-rule-separator-outdent 2)

(defun smie-indent--separator-outdent ()
  ;; FIXME: Here we actually have several reasonable behaviors.
  ;; E.g. for a parent token of "FOO" and a separator ";" we may want to:
  ;; 1- left-align ; with FOO.
  ;; 2- right-align ; with FOO.
  ;; 3- align content after ; with content after FOO.
  ;; 4- align content plus add/remove spaces so as to align ; with FOO.
  ;; Currently, we try to align the contents (option 3) which actually behaves
  ;; just like option 2 (if the number of spaces after FOO and ; is equal).
  (let ((afterpos (save-excursion
                    (let ((tok (funcall smie-forward-token-function)))
                      (unless tok
                        (with-demoted-errors
                          (error "smie-rule-separator: can't skip token %s"
                                 smie--token))))
                    (skip-chars-forward " ")
                    (unless (eolp) (point)))))
    (or (and afterpos
             ;; This should always be true, unless
             ;; smie-forward-token-function skipped a \n.
             (< afterpos (line-end-position))
             (- afterpos (point)))
        smie-rule-separator-outdent)))

(defun smie-rule-separator (method)
  "Indent current token as a \"separator\".
By \"separator\", we mean here a token whose sole purpose is to separate
various elements within some enclosing syntactic construct, and which does
not have any semantic significance in itself (i.e. it would typically no exist
as a node in an abstract syntax tree).
Such a token is expected to have an associative syntax and be closely tied
to its syntactic parent.  Typical examples are \",\" in lists of arguments
\(enclosed inside parentheses), or \";\" in sequences of instructions (enclosed
in a {..} or begin..end block).
METHOD should be the method name that was passed to `smie-rules-function'.
Only meaningful when called from within `smie-rules-function'."
  ;; FIXME: The code below works OK for cases where the separators
  ;; are placed consistently always at beginning or always at the end,
  ;; but not if some are at the beginning and others are at the end.
  ;; I.e. it gets confused in cases such as:
  ;;     (  a
  ;;     ,  a,
  ;;        b
  ;;     ,  c,
  ;;        d
  ;;     )
  ;;
  ;; Assuming token is associative, the default rule for associative
  ;; tokens (which assumes an infix operator) works fine for many cases.
  ;; We mostly need to take care of the case where token is at beginning of
  ;; line, in which case we want to align it with its enclosing parent.
  (cond
   ((and (eq method :before) (smie-rule-bolp) (not (smie-rule-sibling-p)))
    (let ((parent-col (cdr (smie-rule-parent)))
          (parent-pos-col     ;FIXME: we knew this when computing smie--parent.
           (save-excursion
             (goto-char (cadr smie--parent))
             (smie-indent-forward-token)
             (forward-comment (point-max))
             (current-column))))
      (cons 'column
            (max parent-col
                 (min parent-pos-col
                      (- parent-pos-col (smie-indent--separator-outdent)))))))
   ((and (eq method :after) (smie-indent--bolp))
    (smie-indent--separator-outdent))))

(defun smie-indent--offset (elem)
  (or (funcall smie-rules-function :elem elem)
      (if (not (eq elem 'basic))
          (funcall smie-rules-function :elem 'basic))
      smie-indent-basic))

(defun smie-indent--rule (method token
                          ;; FIXME: Too many parameters.
                          &optional after parent base-pos)
  "Compute indentation column according to `smie-rules-function'.
METHOD and TOKEN are passed to `smie-rules-function'.
AFTER is the position after TOKEN, if known.
PARENT is the parent info returned by `smie-backward-sexp', if known.
BASE-POS is the position relative to which offsets should be applied."
  ;; This is currently called in 3 cases:
  ;; - :before opener, where rest=nil but base-pos could as well be parent.
  ;; - :before other, where
  ;;                  ; after=nil
  ;;                  ; parent is set
  ;;                  ; base-pos=parent
  ;; - :after tok, where
  ;;                  ; after is set; parent=nil; base-pos=point;
  (save-excursion
    (let ((offset (smie-indent--rule-1 method token after parent)))
      (cond
       ((not offset) nil)
       ((eq (car-safe offset) 'column) (cdr offset))
       ((integerp offset)
        (+ offset
           (if (null base-pos) 0
             (goto-char base-pos)
             ;; Use smie-indent-virtual when indenting relative to an opener:
             ;; this will also by default use current-column unless
             ;; that opener is hanging, but will additionally consult
             ;; rules-function, so it gives it a chance to tweak indentation
             ;; (e.g. by forcing indentation relative to its own parent, as in
             ;; fn a => fn b => fn c =>).
             ;; When parent==nil it doesn't matter because the only case
             ;; where it's really used is when the base-pos is hanging anyway.
             (if (or (and parent (null (car parent)))
                     (smie-indent--hanging-p))
                 (smie-indent-virtual) (current-column)))))
       (t (error "Unknown indentation offset %s" offset))))))

(defun smie-indent--rule-1 (method token &optional after parent)
  (let ((smie--parent parent)
        (smie--token token)
        (smie--after after))
    (funcall smie-rules-function method token)))

(defun smie-indent-forward-token ()
  "Skip token forward and return it, along with its levels."
  (let ((tok (funcall smie-forward-token-function)))
    (cond
     ((< 0 (length tok)) (assoc tok smie-grammar))
     ((looking-at "\\s(\\|\\s)\\(\\)")
      (forward-char 1)
      (cons (buffer-substring-no-properties (1- (point)) (point))
            (if (match-end 1) '(0 nil) '(nil 0))))
     ((looking-at "\\s\"\\|\\s|")
      (forward-sexp 1)
      nil)
     ((eobp) nil)
     (t (error "Bumped into unknown token")))))

(defun smie-indent-backward-token ()
  "Skip token backward and return it, along with its levels."
  (let ((tok (funcall smie-backward-token-function))
        class)
    (cond
     ((< 0 (length tok)) (assoc tok smie-grammar))
     ;; 4 == open paren syntax, 5 == close.
     ((memq (setq class (syntax-class (syntax-after (1- (point))))) '(4 5))
      (forward-char -1)
      (cons (buffer-substring-no-properties (point) (1+ (point)))
            (if (eq class 4) '(nil 0) '(0 nil))))
     ((memq class '(7 15))
      (backward-sexp 1)
      nil)
     ((bobp) nil)
     (t (error "Bumped into unknown token")))))

(defun smie-indent-virtual ()
  ;; We used to take an optional arg (with value :not-hanging) to specify that
  ;; we should only use (smie-indent-calculate) if we're looking at a hanging
  ;; keyword.  This was a bad idea, because the virtual indent of a position
  ;; should not depend on the caller, since it leads to situations where two
  ;; dependent indentations get indented differently.
  "Compute the virtual indentation to use for point.
This is used when we're not trying to indent point but just
need to compute the column at which point should be indented
in order to figure out the indentation of some other (further down) point."
  ;; Trust pre-existing indentation on other lines.
  (if (smie-indent--bolp) (current-column) (smie-indent-calculate)))

(defun smie-indent-fixindent ()
  ;; Obey the `fixindent' special comment.
  (and (smie-indent--bolp)
       (save-excursion
         (comment-normalize-vars)
         (re-search-forward (concat comment-start-skip
                                    "fixindent"
                                    comment-end-skip)
                            ;; 1+ to account for the \n comment termination.
                            (1+ (line-end-position)) t))
       (current-column)))

(defun smie-indent-bob ()
  ;; Start the file at column 0.
  (save-excursion
    (forward-comment (- (point)))
    (if (bobp) 0)))

(defun smie-indent-close ()
  ;; Align close paren with opening paren.
  (save-excursion
    ;; (forward-comment (point-max))
    (when (looking-at "\\s)")
      (if (smie-indent--rule-1 :close-all
                               (buffer-substring-no-properties
                                (point) (1+ (point)))
                               (1+ (point)))
          (while (not (zerop (skip-syntax-forward ")")))
            (skip-chars-forward " \t"))
        (forward-char 1))
      (condition-case nil
          (progn
            (backward-sexp 1)
            (smie-indent-virtual))      ;:not-hanging
        (scan-error nil)))))

(defun smie-indent-keyword (&optional token)
  "Indent point based on the token that follows it immediately.
If TOKEN is non-nil, assume that that is the token that follows point.
Returns either a column number or nil if it considers that indentation
should not be computed on the basis of the following token."
  (save-excursion
    (let* ((pos (point))
           (toklevels
            (if token
                (assoc token smie-grammar)
              (let* ((res (smie-indent-forward-token)))
                ;; Ignore tokens on subsequent lines.
                (if (and (< pos (line-beginning-position))
                         ;; Make sure `token' also *starts* on another line.
                         (save-excursion
                           (let ((endpos (point)))
                             (goto-char pos)
                             (forward-line 1)
                             ;; As seen in bug#22960, pos may be inside
                             ;; a string, and forward-token may then stumble.
                             (and (ignore-errors
                                    (equal res (smie-indent-forward-token)))
                                  (eq (point) endpos)))))
                    nil
                  (goto-char pos)
                  res)))))
      (setq token (pop toklevels))
      (cond
       ((null (cdr toklevels)) nil)     ;Not a keyword.
       ((not (numberp (car toklevels)))
        ;; Different cases:
        ;; - smie-indent--bolp: "indent according to others".
        ;; - common hanging: "indent according to others".
        ;; - SML-let hanging: "indent like parent".
        ;; - if-after-else: "indent-like parent".
        ;; - middle-of-line: "trust current position".
        (cond
         ((smie-indent--rule :before token))
         ((smie-indent--bolp-1)         ;I.e. non-virtual indent.
          ;; For an open-paren-like thingy at BOL, always indent only
          ;; based on other rules (typically smie-indent-after-keyword).
          ;; FIXME: we do the same if after a comment, since we may be trying
          ;; to compute the indentation of this comment and we shouldn't indent
          ;; based on the indentation of subsequent code.
          nil)
         (t
          ;; By default use point unless we're hanging.
          (unless (smie-indent--hanging-p) (current-column)))))
       (t
        ;; FIXME: This still looks too much like black magic!!
        (let* ((parent (smie-backward-sexp token)))
          ;; Different behaviors:
          ;; - align with parent.
          ;; - parent + offset.
          ;; - after parent's column + offset (actually, after or before
          ;;   depending on where backward-sexp stopped).
          ;; ? let it drop to some other indentation function (almost never).
          ;; ? parent + offset + parent's own offset.
          ;; Different cases:
          ;; - bump into a same-level operator.
          ;; - bump into a specific known parent.
          ;; - find a matching open-paren thingy.
          ;; - bump into some random parent.
          ;; ? borderline case (almost never).
          ;; ? bump immediately into a parent.
          (cond
           ((not (or (< (point) pos)
                     (and (cadr parent) (< (cadr parent) pos))))
            ;; If we didn't move at all, that means we didn't really skip
            ;; what we wanted.  Should almost never happen, other than
            ;; maybe when an infix or close-paren is at the beginning
            ;; of a buffer.
            nil)
           ((save-excursion
              (goto-char pos)
              (smie-indent--rule :before token nil parent (cadr parent))))
           ((eq (car parent) (car toklevels))
            ;; We bumped into a same-level operator; align with it.
            (if (and (smie-indent--bolp) (/= (point) pos)
                     (save-excursion
                       (goto-char (goto-char (cadr parent)))
                       (not (smie-indent--bolp))))
                ;; If the parent is at EOL and its children are indented like
                ;; itself, then we can just obey the indentation chosen for the
                ;; child.
                ;; This is important for operators like ";" which
                ;; are usually at EOL (and have an offset of 0): otherwise we'd
                ;; always go back over all the statements, which is
                ;; a performance problem and would also mean that fixindents
                ;; in the middle of such a sequence would be ignored.
                ;;
                ;; This is a delicate point!
                ;; Even if the offset is not 0, we could follow the same logic
                ;; and subtract the offset from the child's indentation.
                ;; But that would more often be a bad idea: OT1H we generally
                ;; want to reuse the closest similar indentation point, so that
                ;; the user's choice (or the fixindents) are obeyed.  But OTOH
                ;; we don't want this to affect "unrelated" parts of the code.
                ;; E.g. a fixindent in the body of a "begin..end" should not
                ;; affect the indentation of the "end".
                (current-column)
              (goto-char (cadr parent))
              ;; Don't use (smie-indent-virtual :not-hanging) here, because we
              ;; want to jump back over a sequence of same-level ops such as
              ;;    a -> b -> c
              ;;    -> d
              ;; So as to align with the earliest appropriate place.
              (smie-indent-virtual)))
           (t
            (if (and (= (point) pos) (smie-indent--bolp))
                ;; Since we started at BOL, we're not computing a virtual
                ;; indentation, and we're still at the starting point, so
                ;; we can't use `current-column' which would cause
                ;; indentation to depend on itself and we can't use
                ;; smie-indent-virtual since that would be an inf-loop.
                nil
              ;; In indent-keyword, if we're indenting `then' wrt `if', we
              ;; want to use indent-virtual rather than use just
              ;; current-column, so that we can apply the (:before . "if")
              ;; rule which does the "else if" dance in SML.  But in other
              ;; cases, we do not want to use indent-virtual (e.g. indentation
              ;; of "*" w.r.t "+", or ";" wrt "(").  We could just always use
              ;; indent-virtual and then have indent-rules say explicitly to
              ;; use `point' after things like "(" or "+" when they're not at
              ;; EOL, but you'd end up with lots of those rules.
              ;; So we use a heuristic here, which is that we only use virtual
              ;; if the parent is tightly linked to the child token (they're
              ;; part of the same BNF rule).
              (if (car parent)
                  (smie-indent--current-column)
                (smie-indent-virtual)))))))))))

(defun smie-indent-comment ()
  "Compute indentation of a comment."
  ;; Don't do it for virtual indentations.  We should normally never be "in
  ;; front of a comment" when doing virtual-indentation anyway.  And if we are
  ;; (as can happen in octave-mode), moving forward can lead to inf-loops.
  (and (smie-indent--bolp)
       (let ((pos (point)))
         (save-excursion
           (beginning-of-line)
           (and (re-search-forward comment-start-skip (line-end-position) t)
                (eq pos (or (match-end 1) (match-beginning 0))))))
       (save-excursion
         (forward-comment (point-max))
         (skip-chars-forward " \t\r\n")
         (unless
             ;; Don't align with a closer, since the comment is "within" the
             ;; closed element.  Don't align with EOB either.
             (save-excursion
               (let ((next (funcall smie-forward-token-function)))
                 (or (if (zerop (length next))
                         (or (eobp) (eq (car (syntax-after (point))) 5)))
                     (rassoc next smie-closer-alist))))
	   ;; FIXME: We assume here that smie-indent-calculate will compute the
           ;; indentation of the next token based on text before the comment,
           ;; but this is not guaranteed, so maybe we should let
           ;; smie-indent-calculate return some info about which buffer
           ;; position was used as the "indentation base" and check that this
           ;; base is before `pos'.
           (smie-indent-calculate)))))

(defun smie-indent-comment-continue ()
  ;; indentation of comment-continue lines.
  (let ((continue (and comment-continue
                       (comment-string-strip comment-continue t t))))
    (and (< 0 (length continue))
         (looking-at (regexp-quote continue)) (nth 4 (syntax-ppss))
         (let ((ppss (syntax-ppss)))
           (save-excursion
             (forward-line -1)
             (if (<= (point) (nth 8 ppss))
                 (progn (goto-char (1+ (nth 8 ppss))) (current-column))
               (skip-chars-forward " \t")
               (if (looking-at (regexp-quote continue))
                   (current-column))))))))

(defun smie-indent-comment-close ()
  (and (boundp 'comment-end-skip)
       comment-end-skip
       (not (looking-at " \t*$"))       ;Not just a \n comment-closer.
       (looking-at comment-end-skip)
       (let ((end (match-string 0)))
         (and (nth 4 (syntax-ppss))
              (save-excursion
                (goto-char (nth 8 (syntax-ppss)))
                (and (looking-at comment-start-skip)
                     (let ((start (match-string 0)))
                       ;; Align the common substring between starter
                       ;; and ender, if possible.
                       (if (string-match "\\(.+\\).*\n\\(.*?\\)\\1"
                                         (concat start "\n" end))
                           (+ (current-column) (match-beginning 0)
                              (- (match-beginning 2) (match-end 2)))
                         (current-column)))))))))

(defun smie-indent-comment-inside ()
  (and (nth 4 (syntax-ppss))
       'noindent))

(defun smie-indent-inside-string ()
  (and (nth 3 (syntax-ppss))
       'noindent))

(defun smie-indent-after-keyword ()
  ;; Indentation right after a special keyword.
  (save-excursion
    (let* ((pos (point))
           (toklevel (smie-indent-backward-token))
           (tok (car toklevel)))
      (cond
       ((null toklevel) nil)
       ((smie-indent--rule :after tok pos nil (point)))
       ;; The default indentation after a keyword/operator is
       ;; 0 for infix, t for prefix, and use another rule
       ;; for postfix.
       ((not (numberp (nth 2 toklevel))) nil)                   ;A closer.
       ((or (not (numberp (nth 1 toklevel)))                    ;An opener.
            (rassoc tok smie-closer-alist))                     ;An inner.
        (+ (smie-indent-virtual) (smie-indent--offset 'basic))) ;
       (t (smie-indent-virtual))))))                            ;An infix.

(defun smie-indent-empty-line ()
  "Indentation rule when there's nothing yet on the line."
  ;; Without this rule, SMIE assumes that an empty line will be filled with an
  ;; argument (since it falls back to smie-indent-sexps), which tends
  ;; to indent far too deeply.
  (when (eolp)
    (let ((token (or (funcall smie-rules-function :elem 'empty-line-token)
                     ;; FIXME: Should we default to ";"?
                     ;; ";"
                     )))
      (when (assoc token smie-grammar)
        (smie-indent-keyword token)))))

(defun smie-indent-exps ()
  ;; Indentation of sequences of simple expressions without
  ;; intervening keywords or operators.  E.g. "a b c" or "g (balbla) f".
  ;; Can be a list of expressions or a function call.
  ;; If it's a function call, the first element is special (it's the
  ;; function).  We distinguish function calls from mere lists of
  ;; expressions based on whether the preceding token is listed in
  ;; the `list-intro' entry of smie-indent-rules.
  ;;
  ;; TODO: to indent Lisp code, we should add a way to specify
  ;; particular indentation for particular args depending on the
  ;; function (which would require always skipping back until the
  ;; function).
  ;; TODO: to indent C code, such as "if (...) {...}" we might need
  ;; to add similar indentation hooks for particular positions, but
  ;; based on the preceding token rather than based on the first exp.
  (save-excursion
    (let ((positions nil)
          arg)
      (while (and (null (car (smie-backward-sexp)))
                  (push (point) positions)
                  (not (smie-indent--bolp))))
      (save-excursion
        ;; Figure out if the atom we just skipped is an argument rather
        ;; than a function.
        (setq arg
              (or (null (car (smie-backward-sexp)))
                  (funcall smie-rules-function :list-intro
                           (funcall smie-backward-token-function)))))
      (cond
       ((null positions)
        ;; We're the first expression of the list.  In that case, the
        ;; indentation should be (have been) determined by its context.
        nil)
       (arg
        ;; There's a previous element, and it's not special (it's not
        ;; the function), so let's just align with that one.
        (goto-char (car positions))
        (smie-indent--current-column))
       ((cdr positions)
        ;; We skipped some args plus the function and bumped into something.
        ;; Align with the first arg.
        (goto-char (cadr positions))
        (smie-indent--current-column))
       (positions
        ;; We're the first arg.
        (goto-char (car positions))
        (+ (smie-indent--offset 'args)
           ;; We used to use (smie-indent-virtual), but that
           ;; doesn't seem right since it might then indent args less than
           ;; the function itself.
           (smie-indent--current-column)))))))

(defvar smie-indent-functions
  '(smie-indent-fixindent smie-indent-bob smie-indent-close
    smie-indent-comment smie-indent-comment-continue smie-indent-comment-close
    smie-indent-comment-inside smie-indent-inside-string
    smie-indent-keyword smie-indent-after-keyword
    smie-indent-empty-line smie-indent-exps)
  "Functions to compute the indentation.
Each function is called with no argument, shouldn't move point, and should
return either nil if it has no opinion, or an integer representing the column
to which that point should be aligned, if we were to reindent it.")

(defun smie-indent-calculate ()
  "Compute the indentation to use for point."
  (run-hook-with-args-until-success 'smie-indent-functions))

(defun smie-indent-line ()
  "Indent current line using the SMIE indentation engine."
  (interactive)
  (let* ((savep (point))
	 (indent (or (with-demoted-errors
                       (save-excursion
                         (forward-line 0)
                         (skip-chars-forward " \t")
                         (if (>= (point) savep) (setq savep nil))
                         (or (smie-indent-calculate) 0)))
                     0)))
    (if (not (numberp indent))
        ;; If something funny is used (e.g. `noindent'), return it.
        indent
      (if (< indent 0) (setq indent 0)) ;Just in case.
      (if savep
          (save-excursion (indent-line-to indent))
        (indent-line-to indent)))))

(defun smie-auto-fill (do-auto-fill)
  (let ((fc (current-fill-column)))
    (when (and fc (> (current-column) fc))
      ;; The loop below presumes BOL is outside of strings or comments.  Also,
      ;; sometimes we prefer to fill the comment than the code around it.
      (unless (or (nth 8 (save-excursion
                           (syntax-ppss (line-beginning-position))))
                  (nth 4 (save-excursion
                           (move-to-column fc)
                           (syntax-ppss))))
        (while
            (and (with-demoted-errors
                   (save-excursion
                     (let ((end (point))
                           (bsf nil)    ;Best-so-far.
                           (gain 0))
                       (beginning-of-line)
                       (while (progn
                                (smie-indent-forward-token)
                                (and (<= (point) end)
                                     (<= (current-column) fc)))
                         ;; FIXME?  `smie-indent-calculate' can (and often
                         ;; does) return a result that actually depends on the
                         ;; presence/absence of a newline, so the gain computed
                         ;; here may not be accurate, but in practice it seems
                         ;; to work well enough.
                         (skip-chars-forward " \t")
                         (let* ((newcol (smie-indent-calculate))
                                (newgain (- (current-column) newcol)))
                           (when (> newgain gain)
                             (setq gain newgain)
                             (setq bsf (point)))))
                       (when (> gain 0)
                         (goto-char bsf)
                         (newline-and-indent)
                         'done))))
                 (> (current-column) fc))))
      (when (> (current-column) fc)
        (funcall do-auto-fill)))))


(defun smie-setup (grammar rules-function &rest keywords)
  "Setup SMIE navigation and indentation.
GRAMMAR is a grammar table generated by `smie-prec2->grammar'.
RULES-FUNCTION is a set of indentation rules for use on `smie-rules-function'.
KEYWORDS are additional arguments, which can use the following keywords:
- :forward-token FUN
- :backward-token FUN"
  (setq-local smie-rules-function rules-function)
  (setq-local smie-grammar grammar)
  (setq-local indent-line-function #'smie-indent-line)
  (add-function :around (local 'normal-auto-fill-function) #'smie-auto-fill)
  (setq-local forward-sexp-function #'smie-forward-sexp-command)
  (while keywords
    (let ((k (pop keywords))
          (v (pop keywords)))
      (pcase k
        (`:forward-token
         (set (make-local-variable 'smie-forward-token-function) v))
        (`:backward-token
         (set (make-local-variable 'smie-backward-token-function) v))
        (_ (message "smie-setup: ignoring unknown keyword %s" k)))))
  (let ((ca (cdr (assq :smie-closer-alist grammar))))
    (when ca
      (setq-local smie-closer-alist ca)
      ;; Only needed for interactive calls to blink-matching-open.
      (setq-local blink-matching-check-function #'smie-blink-matching-check)
      (add-hook 'post-self-insert-hook
                #'smie-blink-matching-open 'append 'local)
      (add-function :around (local 'show-paren-data-function)
                    #'smie--matching-block-data)
      ;; Setup smie-blink-matching-triggers.  Rather than wait for SPC to
      ;; blink, try to blink as soon as we type the last char of a block ender.
      (let ((closers (sort (mapcar #'cdr smie-closer-alist) #'string-lessp))
            (triggers ())
            closer)
        (while (setq closer (pop closers))
          (unless
              ;; FIXME: this eliminates prefixes of other closers, but we
              ;; should probably eliminate prefixes of other keywords as well.
              (and closers (string-prefix-p closer (car closers)))
            (push (aref closer (1- (length closer))) triggers)))
        (setq-local smie-blink-matching-triggers
                    (append smie-blink-matching-triggers
                            (delete-dups triggers)))))))

(declare-function edebug-instrument-function "edebug" (func))

(defun smie-edebug ()
  "Instrument the `smie-rules-function' for Edebug."
  (interactive)
  (require 'edebug)
  (if (symbolp smie-rules-function)
      (edebug-instrument-function smie-rules-function)
    (error "Sorry, don't know how to instrument a lambda expression")))

(defun smie--next-indent-change ()
  "Go to the next line that needs to be reindented (and reindent it)."
  (interactive)
  (while
      (let ((tick (buffer-chars-modified-tick)))
        (indent-according-to-mode)
        (eq tick (buffer-chars-modified-tick)))
    (forward-line 1)))

;;; User configuration

;; This is designed to be a completely independent "module", so we can play
;; with various kinds of smie-config modules without having to change the core.

;; This smie-config module is fairly primitive and suffers from serious
;; restrictions:
;; - You can only change a returned offset, so you can't change the offset
;;   passed to smie-rule-parent, nor can you change the object with which
;;   to align (in general).
;; - The rewrite rule can only distinguish cases based on the kind+token arg
;;   and smie-rules-function's return value, so you can't distinguish cases
;;   where smie-rules-function returns the same value.
;; - Since config-rules depend on the return value of smie-rules-function, any
;;   config change that modifies this return value (e.g. changing
;;   foo-indent-basic) ends up invalidating config-rules.
;; This last one is a serious problem since it means that file-local
;; config-rules will only work if the user hasn't changed foo-indent-basic.
;; One possible way to change it is to modify smie-rules-functions so they can
;; return special symbols like +, ++, -, etc.  Or make them use a new
;; smie-rule-basic function which can then be used to know when a returned
;; offset was computed based on foo-indent-basic.

(defvar-local smie-config--mode-local nil
  "Indentation config rules installed for this major mode.
Typically manipulated from the major-mode's hook.")
(defvar-local smie-config--buffer-local nil
  "Indentation config rules installed for this very buffer.
E.g. provided via a file-local call to `smie-config-local'.")
(defvar smie-config--trace nil
  "Variable used to trace calls to `smie-rules-function'.")

(defun smie-config--advice (orig kind token)
  (let* ((ret (funcall orig kind token))
         (sig (list kind token ret))
         (brule (rassoc sig smie-config--buffer-local))
         (mrule (rassoc sig smie-config--mode-local)))
    (when smie-config--trace
      (setq smie-config--trace (or brule mrule)))
    (cond
     (brule (car brule))
     (mrule (car mrule))
     (t ret))))

(defun smie-config--mode-hook (rules)
  (setq smie-config--mode-local
        (append rules smie-config--mode-local))
  (add-function :around (local 'smie-rules-function) #'smie-config--advice))

(defvar smie-config--modefuns nil)

(defun smie-config--setter (var value)
  (setq-default var value)
  (let ((old-modefuns smie-config--modefuns))
    (setq smie-config--modefuns nil)
    (pcase-dolist (`(,mode . ,rules) value)
      (let ((modefunname (intern (format "smie-config--modefun-%s" mode))))
        (fset modefunname (lambda () (smie-config--mode-hook rules)))
        (push modefunname smie-config--modefuns)
        (add-hook (intern (format "%s-hook" mode)) modefunname)))
    ;; Neuter any left-over previously installed hook.
    (dolist (modefun old-modefuns)
      (unless (memq modefun smie-config--modefuns)
        (fset modefun #'ignore)))))

(defcustom smie-config nil
  ;; FIXME: there should be a file-local equivalent.
  "User configuration of SMIE indentation.
This is a list of elements (MODE . RULES), where RULES is a list
of elements describing when and how to change the indentation rules.
Each RULE element should be of the form (NEW KIND TOKEN NORMAL),
where KIND and TOKEN are the elements passed to `smie-rules-function',
NORMAL is the value returned by `smie-rules-function' and NEW is the
value with which to replace it."
  :version "24.4"
  ;; FIXME improve value-type.
  :type '(choice (const nil)
                 (alist :key-type symbol))
  :initialize 'custom-initialize-default
  :set #'smie-config--setter)

(defun smie-config-local (rules)
  "Add RULES as local indentation rules to use in this buffer.
These replace any previous local rules, but supplement the rules
specified in `smie-config'."
  (setq smie-config--buffer-local rules)
  (add-function :around (local 'smie-rules-function) #'smie-config--advice))

;; Make it so we can set those in the file-local block.
;; FIXME: Better would be to be able to write "smie-config-local: (...)" rather
;; than "eval: (smie-config-local '(...))".
(put 'smie-config-local 'safe-local-eval-function t)

(defun smie-config--get-trace ()
  (save-excursion
    (forward-line 0)
    (skip-chars-forward " \t")
    (let* ((trace ())
           (srf-fun (lambda (orig kind token)
                      (let* ((pos (point))
                             (smie-config--trace t)
                             (res (funcall orig kind token)))
                        (push (if (consp smie-config--trace)
                                  (list pos kind token res smie-config--trace)
                                (list pos kind token res))
                              trace)
                        res))))
      (unwind-protect
          (progn
            (add-function :around (local 'smie-rules-function) srf-fun)
            (cons (smie-indent-calculate)
                  trace))
        (remove-function (local 'smie-rules-function) srf-fun)))))

(defun smie-config-show-indent (&optional arg)
  "Display the SMIE rules that are used to indent the current line.
If prefix ARG is given, then move briefly point to the buffer
position corresponding to each rule."
  (interactive "P")
  (let ((trace (cdr (smie-config--get-trace))))
    (cond
     ((null trace) (message "No SMIE rules involved"))
     ((not arg)
      (message "Rules used: %s"
               (mapconcat (lambda (elem)
                            (pcase-let ((`(,_pos ,kind ,token ,res ,rewrite)
                                         elem))
                              (format "%S %S -> %S%s" kind token res
                                      (if (null rewrite) ""
                                        (format "(via %S)" (nth 3 rewrite))))))
                          trace
                          ", ")))
     (t
      (save-excursion
        (pcase-dolist (`(,pos ,kind ,token ,res ,rewrite) trace)
          (message "%S %S -> %S%s" kind token res
                   (if (null rewrite) ""
                     (format "(via %S)" (nth 3 rewrite))))
          (goto-char pos)
          (sit-for blink-matching-delay)))))))

(defun smie-config--guess-value (sig)
  (add-function :around (local 'smie-rules-function) #'smie-config--advice)
  (let* ((rule (cons 0 sig))
         (smie-config--buffer-local (cons rule smie-config--buffer-local))
         (goal (current-indentation))
         (cur (smie-indent-calculate)))
    (cond
     ((and (eq goal
               (progn (setf (car rule) (- goal cur))
                      (smie-indent-calculate))))
      (- goal cur)))))

(defun smie-config-set-indent ()
  "Add a rule to adjust the indentation of current line."
  (interactive)
  (let* ((trace (cdr (smie-config--get-trace)))
         (_ (unless trace (error "No SMIE rules involved")))
         (sig (if (null (cdr trace))
                  (pcase-let* ((elem (car trace))
                               (`(,_pos ,kind ,token ,res ,rewrite) elem))
                    (list kind token (or (nth 3 rewrite) res)))
                (let* ((choicestr
                        (completing-read
                         "Adjust rule: "
                         (mapcar (lambda (elem)
                                   (format "%s %S"
                                           (substring (symbol-name (cadr elem))
                                                      1)
                                           (nth 2 elem)))
                                 trace)
                         nil t nil nil
                         nil)) ;FIXME: Provide good default!
                       (choicelst (car (read-from-string
                                        (concat "(:" choicestr ")")))))
                  (catch 'found
                    (pcase-dolist (`(,_pos ,kind ,token ,res ,rewrite) trace)
                      (when (and (eq kind (car choicelst))
                                 (equal token (nth 1 choicelst)))
                        (throw 'found (list kind token
                                            (or (nth 3 rewrite) res)))))))))
         (default-new (smie-config--guess-value sig))
         (newstr (read-string (format "Adjust rule (%S %S -> %S) to%s: "
                                      (nth 0 sig) (nth 1 sig) (nth 2 sig)
                                      (if (not default-new) ""
                                        (format " (default %S)" default-new)))
                              nil nil (format "%S" default-new)))
         (new (car (read-from-string newstr))))
    (let ((old (rassoc sig smie-config--buffer-local)))
      (when old
        (setq smie-config--buffer-local
              (remove old smie-config--buffer-local))))
    (push (cons new sig) smie-config--buffer-local)
    (message "Added rule %S %S -> %S (via %S)"
             (nth 0 sig) (nth 1 sig) new (nth 2 sig))
    (add-function :around (local 'smie-rules-function) #'smie-config--advice)))

(defun smie-config--guess (beg end)
  (let ((otraces (make-hash-table :test #'equal))
        (smie-config--buffer-local nil)
        (smie-config--mode-local nil)
        (pr (make-progress-reporter "Analyzing the buffer" beg end)))

    ;; First, lets get the indentation traces and offsets for the region.
    (save-excursion
      (goto-char beg)
      (forward-line 0)
      (while (< (point) end)
        (skip-chars-forward " \t")
        (unless (eolp)                  ;Skip empty lines.
          (progress-reporter-update pr (point))
          (let* ((itrace (smie-config--get-trace))
                 (nindent (car itrace))
                 (trace (mapcar #'cdr (cdr itrace)))
                 (cur (current-indentation)))
            (when (numberp nindent)     ;Skip `noindent' and friends.
              (cl-incf (gethash (cons (- cur nindent) trace) otraces 0)))))
        (forward-line 1)))
    (progress-reporter-done pr)

    ;; Second, compile the data.  Our algorithm only knows how to adjust rules
    ;; where the smie-rules-function returns an integer.  We call those
    ;; "adjustable sigs".  We build a table mapping each adjustable sig
    ;; to its data, describing the total number of times we encountered it,
    ;; the offsets found, and the traces in which it was found.
    (message "Guessing...")
    (let ((sigs (make-hash-table :test #'equal)))
      (maphash (lambda (otrace count)
                 (let ((offset (car otrace))
                       (trace (cdr otrace))
                       (double nil))
                   (let ((sigs trace))
                     (while sigs
                       (let ((sig (pop sigs)))
                         (if (and (integerp (nth 2 sig)) (member sig sigs))
                             (setq double t)))))
                   (if double
                       ;; Disregard those traces where an adjustable sig
                       ;; appears twice, because the rest of the code assumes
                       ;; that adding a rule to add an offset N will change the
                       ;; end result by N rather than 2*N or more.
                       nil
                     (dolist (sig trace)
                       (if (not (integerp (nth 2 sig)))
                           ;; Disregard those sigs that return nil or a column,
                           ;; because our algorithm doesn't know how to adjust
                           ;; them anyway.
                           nil
                         (let ((sig-data (or (gethash sig sigs)
                                             (let ((data (list 0 nil nil)))
                                               (puthash sig data sigs)
                                               data))))
                           (cl-incf (nth 0 sig-data) count)
                           (push (cons count otrace) (nth 2 sig-data))
                           (let ((sig-off-data
                                  (or (assq offset (nth 1 sig-data))
                                      (let ((off-data (cons offset 0)))
                                        (push off-data (nth 1 sig-data))
                                        off-data))))
                             (cl-incf (cdr sig-off-data) count))))))))
               otraces)

      ;; Finally, guess the indentation rules.
      (prog1
	  (smie-config--guess-1 sigs)
        (message "Guessing...done")))))

(defun smie-config--guess-1 (sigs)
  (let ((ssigs nil)
        (rules nil))
    ;; Sort the sigs by frequency of occurrence.
    (maphash (lambda (sig sig-data) (push (cons sig sig-data) ssigs)) sigs)
    (setq ssigs (sort ssigs (lambda (sd1 sd2) (> (cadr sd1) (cadr sd2)))))
    (while ssigs
      (pcase-let ((`(,sig ,total ,off-alist ,cotraces) (pop ssigs)))
        (cl-assert (= total (apply #'+ (mapcar #'cdr off-alist))))
        (let* ((sorted-off-alist
                (sort off-alist (lambda (x y) (> (cdr x) (cdr y)))))
               (offset (caar sorted-off-alist)))
          (if (zerop offset)
              ;; Nothing to do with this sig; indentation is
              ;; correct already.
              nil
            (push (cons (+ offset (nth 2 sig)) sig) rules)
            ;; Adjust the rest of the data.
            (pcase-dolist ((and cotrace `(,count ,toffset . ,trace))
                           cotraces)
              (setf (nth 1 cotrace) (- toffset offset))
              (dolist (sig trace)
                (let ((sig-data (cdr (assq sig ssigs))))
                  (when sig-data
                    (let* ((ooff-data (assq toffset (nth 1 sig-data)))
                           (noffset (- toffset offset))
                           (noff-data
                            (or (assq noffset (nth 1 sig-data))
                                (let ((off-data (cons noffset 0)))
                                  (push off-data (nth 1 sig-data))
                                  off-data))))
                      (cl-assert (>= (cdr ooff-data) count))
                      (cl-decf (cdr ooff-data) count)
                      (cl-incf (cdr noff-data) count))))))))))
    rules))

(defun smie-config-guess ()
  "Try and figure out this buffer's indentation settings.
To save the result for future sessions, use `smie-config-save'."
  (interactive)
  (if (eq smie-grammar 'unset)
      (user-error "This buffer does not seem to be using SMIE"))
  (let ((config (smie-config--guess (point-min) (point-max))))
    (cond
     ((null config) (message "Nothing to change"))
     ((null smie-config--buffer-local)
      (smie-config-local config)
      (message "Local rules set"))
     ((y-or-n-p "Replace existing local config? ")
      (message "Local rules replaced")
      (smie-config-local config))
     ((y-or-n-p "Merge with existing local config? ")
      (message "Local rules adjusted")
      (smie-config-local (append config smie-config--buffer-local)))
     (t
      (message "Rules guessed: %S" config)))))

(defun smie-config-save ()
  "Save local rules for use with this major mode.
One way to generate local rules is the command `smie-config-guess'."
  (interactive)
  (cond
   ((null smie-config--buffer-local)
    (message "No local rules to save"))
   (t
    (let* ((existing (assq major-mode smie-config))
           (config
            (cond ((null existing)
                   (message "Local rules saved in `smie-config'")
                   smie-config--buffer-local)
                  ((y-or-n-p "Replace the existing mode's config? ")
                   (message "Mode rules replaced in `smie-config'")
                   smie-config--buffer-local)
                  ((y-or-n-p "Merge with existing mode's config? ")
                   (message "Mode rules adjusted in `smie-config'")
                   (append smie-config--buffer-local (cdr existing)))
                  (t (error "Abort")))))
      (if existing
          (setcdr existing config)
        (push (cons major-mode config) smie-config))
      (setq smie-config--mode-local config)
      (kill-local-variable 'smie-config--buffer-local)
      (customize-mark-as-set 'smie-config)))))

(provide 'smie)
;;; smie.el ends here

debug log:

solving 4d02b751afee2cef38e0e18bb82fe02ca86f12d3 ...
found 4d02b751afee2cef38e0e18bb82fe02ca86f12d3 in https://git.savannah.gnu.org/cgit/emacs.git

(*) Git path names are given by the tree(s) the blob belongs to.
    Blobs themselves have no identifier aside from the hash of its contents.^

Code repositories for project(s) associated with this external index

	https://git.savannah.gnu.org/cgit/emacs.git
	https://git.savannah.gnu.org/cgit/emacs/org-mode.git

This is an external index of several public inboxes,
see mirroring instructions on how to clone and mirror
all data and code used by this external index.