/* Lisp functions pertaining to editing. -*- coding: utf-8 -*- Copyright (C) 1985-2024 Free Software Foundation, Inc. This file is part of GNU Emacs. GNU Emacs is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. GNU Emacs is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU Emacs. If not, see . */ #include #include #include #ifdef HAVE_PWD_H #include #include #endif #include #ifdef HAVE_SYS_UTSNAME_H #include #endif #ifdef HAVE_ANDROID #include "android.h" #endif #include "lisp.h" #include #include #include #include #include #include #include #include "composite.h" #include "intervals.h" #include "systime.h" #include "character.h" #include "buffer.h" #include "window.h" #include "blockinput.h" #ifdef WINDOWSNT # include "w32common.h" #endif #ifdef HAVE_TREE_SITTER #include "treesit.h" #endif static void update_buffer_properties (ptrdiff_t, ptrdiff_t); static Lisp_Object styled_format (ptrdiff_t, Lisp_Object *, bool); /* The cached value of Vsystem_name. This is used only to compare it to Vsystem_name, so it need not be visible to the GC. */ static Lisp_Object cached_system_name; static void init_and_cache_system_name (void) { init_system_name (); cached_system_name = Vsystem_name; } void init_editfns (void) { const char *user_name; register char *p; struct passwd *pw; /* password entry for the current user */ Lisp_Object tem; /* Set up system_name even when dumping. */ init_and_cache_system_name (); pw = getpwuid (getuid ()); #ifdef MSDOS /* We let the real user name default to "root" because that's quite accurate on MS-DOS and because it lets Emacs find the init file. (The DVX libraries override the Djgpp libraries here.) */ Vuser_real_login_name = build_string (pw ? pw->pw_name : "root"); #else Vuser_real_login_name = build_string (pw ? pw->pw_name : "unknown"); #endif /* Get the effective user name, by consulting environment variables, or the effective uid if those are unset. */ user_name = getenv ("LOGNAME"); if (!user_name) #ifdef WINDOWSNT user_name = getenv ("USERNAME"); /* it's USERNAME on NT */ #else /* WINDOWSNT */ user_name = getenv ("USER"); #endif /* WINDOWSNT */ if (!user_name) { pw = getpwuid (geteuid ()); user_name = pw ? pw->pw_name : "unknown"; } Vuser_login_name = build_string (user_name); /* If the user name claimed in the environment vars differs from the real uid, use the claimed name to find the full name. */ tem = Fstring_equal (Vuser_login_name, Vuser_real_login_name); if (! NILP (tem)) tem = Vuser_login_name; else { uid_t euid = geteuid (); tem = INT_TO_INTEGER (euid); } Vuser_full_name = Fuser_full_name (tem); p = getenv ("NAME"); if (p) Vuser_full_name = build_string (p); else if (NILP (Vuser_full_name)) Vuser_full_name = build_string ("unknown"); #if defined HAVE_SYS_UTSNAME_H { struct utsname uts; uname (&uts); Voperating_system_release = build_string (uts.release); } #elif defined WINDOWSNT Voperating_system_release = build_string (w32_version_string ()); #else Voperating_system_release = Qnil; #endif } DEFUN ("char-to-string", Fchar_to_string, Schar_to_string, 1, 1, 0, doc: /* Convert arg CHAR to a string containing that character. usage: (char-to-string CHAR) */) (Lisp_Object character) { int c, len; unsigned char str[MAX_MULTIBYTE_LENGTH]; CHECK_CHARACTER (character); c = XFIXNAT (character); len = CHAR_STRING (c, str); return make_string_from_bytes ((char *) str, 1, len); } DEFUN ("byte-to-string", Fbyte_to_string, Sbyte_to_string, 1, 1, 0, doc: /* Convert arg BYTE to a unibyte string containing that byte. */) (Lisp_Object byte) { unsigned char b; CHECK_FIXNUM (byte); if (XFIXNUM (byte) < 0 || XFIXNUM (byte) > 255) error ("Invalid byte"); b = XFIXNUM (byte); return make_unibyte_string ((char *) &b, 1); } DEFUN ("string-to-char", Fstring_to_char, Sstring_to_char, 1, 1, 0, doc: /* Return the first character in STRING. */) (Lisp_Object string) { CHECK_STRING (string); /* This returns zero if STRING is empty. */ return make_fixnum (STRING_MULTIBYTE (string) ? STRING_CHAR (SDATA (string)) : SREF (string, 0)); } DEFUN ("point", Fpoint, Spoint, 0, 0, 0, doc: /* Return value of point, as an integer. Beginning of buffer is position (point-min). */) (void) { Lisp_Object temp; XSETFASTINT (temp, PT); return temp; } DEFUN ("point-marker", Fpoint_marker, Spoint_marker, 0, 0, 0, doc: /* Return value of point, as a marker object. */) (void) { return build_marker (current_buffer, PT, PT_BYTE); } DEFUN ("goto-char", Fgoto_char, Sgoto_char, 1, 1, "(goto-char--read-natnum-interactive \"Go to char: \")", doc: /* Set point to POSITION, a number or marker. Beginning of buffer is position (point-min), end is (point-max). The return value is POSITION. If called interactively, a numeric prefix argument specifies POSITION; without a numeric prefix argument, read POSITION from the minibuffer. The default value is the number at point (if any). */) (register Lisp_Object position) { if (MARKERP (position)) set_point_from_marker (position); else if (FIXNUMP (position)) SET_PT (clip_to_bounds (BEGV, XFIXNUM (position), ZV)); else wrong_type_argument (Qinteger_or_marker_p, position); return position; } /* Return the start or end position of the region. BEGINNINGP means return the start. If there is no region active, signal an error. */ static Lisp_Object region_limit (bool beginningp) { Lisp_Object m; if (!NILP (Vtransient_mark_mode) && NILP (Vmark_even_if_inactive) && NILP (BVAR (current_buffer, mark_active))) xsignal0 (Qmark_inactive); m = Fmarker_position (BVAR (current_buffer, mark)); if (NILP (m)) error ("The mark is not set now, so there is no region"); /* Clip to the current narrowing (bug#11770). */ return make_fixnum ((PT < XFIXNAT (m)) == beginningp ? PT : clip_to_bounds (BEGV, XFIXNAT (m), ZV)); } DEFUN ("region-beginning", Fregion_beginning, Sregion_beginning, 0, 0, 0, doc: /* Return the integer value of point or mark, whichever is smaller. */) (void) { return region_limit (1); } DEFUN ("region-end", Fregion_end, Sregion_end, 0, 0, 0, doc: /* Return the integer value of point or mark, whichever is larger. */) (void) { return region_limit (0); } DEFUN ("mark-marker", Fmark_marker, Smark_marker, 0, 0, 0, doc: /* Return this buffer's mark, as a marker object. Watch out! Moving this marker changes the mark position. If you set the marker not to point anywhere, the buffer will have no mark. */) (void) { return BVAR (current_buffer, mark); } DEFUN ("get-pos-property", Fget_pos_property, Sget_pos_property, 2, 3, 0, doc: /* Return the value of POSITION's property PROP, in OBJECT. Almost identical to `get-char-property' except for the following difference: Whereas `get-char-property' returns the property of the char at (i.e. right after) POSITION, this pays attention to properties's stickiness and overlays's advancement settings, in order to find the property of POSITION itself, i.e. the property that a char would inherit if it were inserted at POSITION. */) (Lisp_Object position, register Lisp_Object prop, Lisp_Object object) { CHECK_FIXNUM_COERCE_MARKER (position); if (NILP (object)) XSETBUFFER (object, current_buffer); else if (WINDOWP (object)) object = XWINDOW (object)->contents; if (!BUFFERP (object)) /* pos-property only makes sense in buffers right now, since strings have no overlays and no notion of insertion for which stickiness could be obeyed. */ return Fget_text_property (position, prop, object); else { EMACS_INT posn = XFIXNUM (position); Lisp_Object tem; struct buffer *obuf = current_buffer; struct itree_node *node; struct sortvec items[2]; struct buffer *b = XBUFFER (object); struct sortvec *result = NULL; Lisp_Object res = Qnil; set_buffer_temp (b); ITREE_FOREACH (node, b->overlays, posn - 1, posn + 1, ASCENDING) { Lisp_Object ol = node->data; tem = Foverlay_get (ol, prop); if (NILP (tem) /* Check the overlay is indeed active at point. */ || ((node->begin == posn && OVERLAY_FRONT_ADVANCE_P (ol)) || (node->end == posn && ! OVERLAY_REAR_ADVANCE_P (ol)) || node->begin > posn || node->end < posn)) /* The overlay will not cover a char inserted at point. */ continue; struct sortvec *this = (result == items ? items + 1 : items); if (NILP (res) || (make_sortvec_item (this, node->data), compare_overlays (result, this) < 0)) { result = this; res = tem; } } set_buffer_temp (obuf); if (!NILP (res)) return res; { /* Now check the text properties. */ int stickiness = text_property_stickiness (prop, position, object); if (stickiness > 0) return Fget_text_property (position, prop, object); else if (stickiness < 0 && XFIXNUM (position) > BUF_BEGV (XBUFFER (object))) return Fget_text_property (make_fixnum (XFIXNUM (position) - 1), prop, object); else return Qnil; } } } /* Find the field surrounding POS in *BEG and *END. If POS is nil, the value of point is used instead. If BEG or END is null, means don't store the beginning or end of the field. BEG_LIMIT and END_LIMIT serve to limit the ranged of the returned results; they do not effect boundary behavior. If MERGE_AT_BOUNDARY is non-nil, then if POS is at the very first position of a field, then the beginning of the previous field is returned instead of the beginning of POS's field (since the end of a field is actually also the beginning of the next input field, this behavior is sometimes useful). Additionally in the MERGE_AT_BOUNDARY non-nil case, if two fields are separated by a field with the special value `boundary', and POS lies within it, then the two separated fields are considered to be adjacent, and POS between them, when finding the beginning and ending of the "merged" field. Either BEG or END may be 0, in which case the corresponding value is not stored. */ static void find_field (Lisp_Object pos, Lisp_Object merge_at_boundary, Lisp_Object beg_limit, ptrdiff_t *beg, Lisp_Object end_limit, ptrdiff_t *end) { /* Fields right before and after the point. */ Lisp_Object before_field, after_field; /* True if POS counts as the start of a field. */ bool at_field_start = 0; /* True if POS counts as the end of a field. */ bool at_field_end = 0; if (NILP (pos)) XSETFASTINT (pos, PT); else CHECK_FIXNUM_COERCE_MARKER (pos); after_field = get_char_property_and_overlay (pos, Qfield, Qnil, NULL); before_field = (XFIXNAT (pos) > BEGV ? get_char_property_and_overlay (make_fixnum (XFIXNUM (pos) - 1), Qfield, Qnil, NULL) /* Using nil here would be a more obvious choice, but it would fail when the buffer starts with a non-sticky field. */ : after_field); /* See if we need to handle the case where MERGE_AT_BOUNDARY is nil and POS is at beginning of a field, which can also be interpreted as the end of the previous field. Note that the case where if MERGE_AT_BOUNDARY is non-nil (see function comment) is actually the more natural one; then we avoid treating the beginning of a field specially. */ if (NILP (merge_at_boundary)) { Lisp_Object field = Fget_pos_property (pos, Qfield, Qnil); if (!EQ (field, after_field)) at_field_end = 1; if (!EQ (field, before_field)) at_field_start = 1; if (NILP (field) && at_field_start && at_field_end) /* If an inserted char would have a nil field while the surrounding text is non-nil, we're probably not looking at a zero-length field, but instead at a non-nil field that's not intended for editing (such as comint's prompts). */ at_field_end = at_field_start = 0; } /* Note about special `boundary' fields: Consider the case where the point (`.') is between the fields `x' and `y': xxxx.yyyy In this situation, if merge_at_boundary is non-nil, consider the `x' and `y' fields as forming one big merged field, and so the end of the field is the end of `y'. However, if `x' and `y' are separated by a special `boundary' field (a field with a `field' char-property of 'boundary), then ignore this special field when merging adjacent fields. Here's the same situation, but with a `boundary' field between the `x' and `y' fields: xxx.BBBByyyy Here, if point is at the end of `x', the beginning of `y', or anywhere in-between (within the `boundary' field), merge all three fields and consider the beginning as being the beginning of the `x' field, and the end as being the end of the `y' field. */ if (beg) { if (at_field_start) /* POS is at the edge of a field, and we should consider it as the beginning of the following field. */ *beg = XFIXNAT (pos); else /* Find the previous field boundary. */ { Lisp_Object p = pos; if (!NILP (merge_at_boundary) && EQ (before_field, Qboundary)) /* Skip a `boundary' field. */ p = Fprevious_single_char_property_change (p, Qfield, Qnil, beg_limit); p = Fprevious_single_char_property_change (p, Qfield, Qnil, beg_limit); *beg = NILP (p) ? BEGV : XFIXNAT (p); } } if (end) { if (at_field_end) /* POS is at the edge of a field, and we should consider it as the end of the previous field. */ *end = XFIXNAT (pos); else /* Find the next field boundary. */ { if (!NILP (merge_at_boundary) && EQ (after_field, Qboundary)) /* Skip a `boundary' field. */ pos = Fnext_single_char_property_change (pos, Qfield, Qnil, end_limit); pos = Fnext_single_char_property_change (pos, Qfield, Qnil, end_limit); *end = NILP (pos) ? ZV : XFIXNAT (pos); } } } DEFUN ("delete-field", Fdelete_field, Sdelete_field, 0, 1, 0, doc: /* Delete the field surrounding POS. A field is a region of text with the same `field' property. If POS is nil, the value of point is used for POS. */) (Lisp_Object pos) { ptrdiff_t beg, end; find_field (pos, Qnil, Qnil, &beg, Qnil, &end); if (beg != end) del_range (beg, end); return Qnil; } DEFUN ("field-string", Ffield_string, Sfield_string, 0, 1, 0, doc: /* Return the contents of the field surrounding POS as a string. A field is a region of text with the same `field' property. If POS is nil, the value of point is used for POS. */) (Lisp_Object pos) { ptrdiff_t beg, end; find_field (pos, Qnil, Qnil, &beg, Qnil, &end); return make_buffer_string (beg, end, 1); } DEFUN ("field-string-no-properties", Ffield_string_no_properties, Sfield_string_no_properties, 0, 1, 0, doc: /* Return the contents of the field around POS, without text properties. A field is a region of text with the same `field' property. If POS is nil, the value of point is used for POS. */) (Lisp_Object pos) { ptrdiff_t beg, end; find_field (pos, Qnil, Qnil, &beg, Qnil, &end); return make_buffer_string (beg, end, 0); } DEFUN ("field-beginning", Ffield_beginning, Sfield_beginning, 0, 3, 0, doc: /* Return the beginning of the field surrounding POS. A field is a region of text with the same `field' property. If POS is nil, the value of point is used for POS. If ESCAPE-FROM-EDGE is non-nil and POS is at the beginning of its field, then the beginning of the *previous* field is returned. If LIMIT is non-nil, it is a buffer position; if the beginning of the field is before LIMIT, then LIMIT will be returned instead. */) (Lisp_Object pos, Lisp_Object escape_from_edge, Lisp_Object limit) { ptrdiff_t beg; find_field (pos, escape_from_edge, limit, &beg, Qnil, 0); return make_fixnum (beg); } DEFUN ("field-end", Ffield_end, Sfield_end, 0, 3, 0, doc: /* Return the end of the field surrounding POS. A field is a region of text with the same `field' property. If POS is nil, the value of point is used for POS. If ESCAPE-FROM-EDGE is non-nil and POS is at the end of its field, then the end of the *following* field is returned. If LIMIT is non-nil, it is a buffer position; if the end of the field is after LIMIT, then LIMIT will be returned instead. */) (Lisp_Object pos, Lisp_Object escape_from_edge, Lisp_Object limit) { ptrdiff_t end; find_field (pos, escape_from_edge, Qnil, 0, limit, &end); return make_fixnum (end); } DEFUN ("constrain-to-field", Fconstrain_to_field, Sconstrain_to_field, 2, 5, 0, doc: /* Return the position closest to NEW-POS that is in the same field as OLD-POS. A field is a region of text with the same `field' property. If NEW-POS is nil, then use the current point instead, and move point to the resulting constrained position, in addition to returning that position. If OLD-POS is at the boundary of two fields, then the allowable positions for NEW-POS depends on the value of the optional argument ESCAPE-FROM-EDGE: If ESCAPE-FROM-EDGE is nil, then NEW-POS is constrained to the field that has the same `field' char-property as any new characters inserted at OLD-POS, whereas if ESCAPE-FROM-EDGE is non-nil, NEW-POS is constrained to the union of the two adjacent fields. Additionally, if two fields are separated by another field with the special value `boundary', then any point within this special field is also considered to be `on the boundary'. If the optional argument ONLY-IN-LINE is non-nil and constraining NEW-POS would move it to a different line, NEW-POS is returned unconstrained. This is useful for commands that move by line, like \\[next-line] or \\[beginning-of-line], which should generally respect field boundaries only in the case where they can still move to the right line. If the optional argument INHIBIT-CAPTURE-PROPERTY is non-nil, and OLD-POS has a non-nil property of that name, then any field boundaries are ignored. Field boundaries are not noticed if `inhibit-field-text-motion' is non-nil. */) (Lisp_Object new_pos, Lisp_Object old_pos, Lisp_Object escape_from_edge, Lisp_Object only_in_line, Lisp_Object inhibit_capture_property) { /* If non-zero, then the original point, before re-positioning. */ ptrdiff_t orig_point = 0; bool fwd; Lisp_Object prev_old, prev_new; if (NILP (new_pos)) /* Use the current point, and afterwards, set it. */ { orig_point = PT; XSETFASTINT (new_pos, PT); } CHECK_FIXNUM_COERCE_MARKER (new_pos); CHECK_FIXNUM_COERCE_MARKER (old_pos); fwd = (XFIXNUM (new_pos) > XFIXNUM (old_pos)); prev_old = make_fixnum (XFIXNUM (old_pos) - 1); prev_new = make_fixnum (XFIXNUM (new_pos) - 1); if (NILP (Vinhibit_field_text_motion) && !BASE_EQ (new_pos, old_pos) && (!NILP (Fget_char_property (new_pos, Qfield, Qnil)) || !NILP (Fget_char_property (old_pos, Qfield, Qnil)) /* To recognize field boundaries, we must also look at the previous positions; we could use `Fget_pos_property' instead, but in itself that would fail inside non-sticky fields (like comint prompts). */ || (XFIXNAT (new_pos) > BEGV && !NILP (Fget_char_property (prev_new, Qfield, Qnil))) || (XFIXNAT (old_pos) > BEGV && !NILP (Fget_char_property (prev_old, Qfield, Qnil)))) && (NILP (inhibit_capture_property) /* Field boundaries are again a problem; but now we must decide the case exactly, so we need to call `get_pos_property' as well. */ || (NILP (Fget_pos_property (old_pos, inhibit_capture_property, Qnil)) && (XFIXNAT (old_pos) <= BEGV || NILP (Fget_char_property (old_pos, inhibit_capture_property, Qnil)) || NILP (Fget_char_property (prev_old, inhibit_capture_property, Qnil)))))) /* It is possible that NEW_POS is not within the same field as OLD_POS; try to move NEW_POS so that it is. */ { ptrdiff_t counted; Lisp_Object field_bound; if (fwd) field_bound = Ffield_end (old_pos, escape_from_edge, new_pos); else field_bound = Ffield_beginning (old_pos, escape_from_edge, new_pos); if (/* See if ESCAPE_FROM_EDGE caused FIELD_BOUND to jump to the other side of NEW_POS, which would mean that NEW_POS is already acceptable, and it's not necessary to constrain it to FIELD_BOUND. */ ((XFIXNAT (field_bound) < XFIXNAT (new_pos)) ? fwd : !fwd) /* NEW_POS should be constrained, but only if either ONLY_IN_LINE is nil (in which case any constraint is OK), or NEW_POS and FIELD_BOUND are on the same line (in which case the constraint is OK even if ONLY_IN_LINE is non-nil). */ && (NILP (only_in_line) /* This is the ONLY_IN_LINE case, check that NEW_POS and FIELD_BOUND are on the same line by seeing whether there's an intervening newline or not. */ || (find_newline (XFIXNAT (new_pos), -1, XFIXNAT (field_bound), -1, fwd ? -1 : 1, &counted, NULL, 1), counted == 0))) /* Constrain NEW_POS to FIELD_BOUND. */ new_pos = field_bound; if (orig_point && XFIXNAT (new_pos) != orig_point) /* The NEW_POS argument was originally nil, so automatically set PT. */ SET_PT (XFIXNAT (new_pos)); } return new_pos; } static ptrdiff_t bol (Lisp_Object n, ptrdiff_t *out_count) { ptrdiff_t bytepos, charpos, count; if (NILP (n)) count = 0; else if (FIXNUMP (n)) count = clip_to_bounds (-BUF_BYTES_MAX, XFIXNUM (n) - 1, BUF_BYTES_MAX); else { CHECK_INTEGER (n); count = NILP (Fnatnump (n)) ? -BUF_BYTES_MAX : BUF_BYTES_MAX; } if (out_count) *out_count = count; scan_newline_from_point (count, &charpos, &bytepos); return charpos; } DEFUN ("pos-bol", Fpos_bol, Spos_bol, 0, 1, 0, doc: /* Return the position of the first character on the current line. With optional argument N, scan forward N - 1 lines first. If the scan reaches the end of the buffer, return that position. This function ignores text display directionality; it returns the position of the first character in logical order, i.e. the smallest character position on the logical line. See `vertical-motion' for movement by screen lines. This function does not move point. Also see `line-beginning-position'. */) (Lisp_Object n) { return make_fixnum (bol (n, NULL)); } DEFUN ("line-beginning-position", Fline_beginning_position, Sline_beginning_position, 0, 1, 0, doc: /* Return the position of the first character in the current line/field. With optional argument N non-nil, move forward N - 1 lines first. This function is like `pos-bol' (which see), but respects fields. This function constrains the returned position to the current field unless that position would be on a different line from the original, unconstrained result. If N is nil or 1, and a front-sticky field starts at point, the scan stops as soon as it starts. To ignore field boundaries, bind `inhibit-field-text-motion' to t. This function does not move point. */) (Lisp_Object n) { ptrdiff_t count, charpos = bol (n, &count); /* Return END constrained to the current input field. */ return Fconstrain_to_field (make_fixnum (charpos), make_fixnum (PT), count != 0 ? Qt : Qnil, Qt, Qnil); } static ptrdiff_t eol (Lisp_Object n) { ptrdiff_t count; if (NILP (n)) count = 1; else if (FIXNUMP (n)) count = clip_to_bounds (-BUF_BYTES_MAX, XFIXNUM (n), BUF_BYTES_MAX); else { CHECK_INTEGER (n); count = NILP (Fnatnump (n)) ? -BUF_BYTES_MAX : BUF_BYTES_MAX; } return find_before_next_newline (PT, 0, count - (count <= 0), NULL); } DEFUN ("pos-eol", Fpos_eol, Spos_eol, 0, 1, 0, doc: /* Return the position of the last character on the current line. With argument N not nil or 1, move forward N - 1 lines first. If scan reaches end of buffer, return that position. This function ignores text display directionality; it returns the position of the last character in logical order, i.e. the largest character position on the line. This function does not move point. Also see `line-end-position'. */) (Lisp_Object n) { return make_fixnum (eol (n)); } DEFUN ("line-end-position", Fline_end_position, Sline_end_position, 0, 1, 0, doc: /* Return the position of the last character in the current line/field. With argument N not nil or 1, move forward N - 1 lines first. If scan reaches end of buffer, return that position. This function is like `pos-eol' (which see), but respects fields. This function constrains the returned position to the current field unless that would be on a different line from the original, unconstrained result. If N is nil or 1, and a rear-sticky field ends at point, the scan stops as soon as it starts. To ignore field boundaries bind `inhibit-field-text-motion' to t. This function does not move point. */) (Lisp_Object n) { /* Return END_POS constrained to the current input field. */ return Fconstrain_to_field (make_fixnum (eol (n)), make_fixnum (PT), Qnil, Qt, Qnil); } /* Save current buffer state for save-excursion special form. */ void save_excursion_save (union specbinding *pdl) { eassert (pdl->unwind_excursion.kind == SPECPDL_UNWIND_EXCURSION); pdl->unwind_excursion.marker = Fpoint_marker (); /* Selected window if current buffer is shown in it, nil otherwise. */ pdl->unwind_excursion.window = (BASE_EQ (XWINDOW (selected_window)->contents, Fcurrent_buffer ()) ? selected_window : Qnil); } /* Restore saved buffer before leaving `save-excursion' special form. */ void save_excursion_restore (Lisp_Object marker, Lisp_Object window) { Lisp_Object buffer = Fmarker_buffer (marker); /* If we're unwinding to top level, saved buffer may be deleted. This means that all of its markers are unchained and so BUFFER is nil. */ if (NILP (buffer)) return; Fset_buffer (buffer); /* Point marker. */ Fgoto_char (marker); unchain_marker (XMARKER (marker)); /* If buffer was visible in a window, and a different window was selected, and the old selected window is still showing this buffer, restore point in that window. */ if (WINDOWP (window) && !BASE_EQ (window, selected_window)) { /* Set window point if WINDOW is live and shows the current buffer. */ Lisp_Object contents = XWINDOW (window)->contents; if (BUFFERP (contents) && XBUFFER (contents) == current_buffer) Fset_window_point (window, make_fixnum (PT)); } } DEFUN ("save-excursion", Fsave_excursion, Ssave_excursion, 0, UNEVALLED, 0, doc: /* Save point, and current buffer; execute BODY; restore those things. Executes BODY just like `progn'. The values of point and the current buffer are restored even in case of abnormal exit (throw or error). If you only want to save the current buffer but not point, then just use `save-current-buffer', or even `with-current-buffer'. Before Emacs 25.1, `save-excursion' used to save the mark state. To save the mark state as well as point and the current buffer, use `save-mark-and-excursion'. usage: (save-excursion &rest BODY) */) (Lisp_Object args) { register Lisp_Object val; specpdl_ref count = SPECPDL_INDEX (); record_unwind_protect_excursion (); val = Fprogn (args); return unbind_to (count, val); } DEFUN ("save-current-buffer", Fsave_current_buffer, Ssave_current_buffer, 0, UNEVALLED, 0, doc: /* Record which buffer is current; execute BODY; make that buffer current. BODY is executed just like `progn'. usage: (save-current-buffer &rest BODY) */) (Lisp_Object args) { specpdl_ref count = SPECPDL_INDEX (); record_unwind_current_buffer (); return unbind_to (count, Fprogn (args)); } DEFUN ("buffer-size", Fbuffer_size, Sbuffer_size, 0, 1, 0, doc: /* Return the number of characters in the current buffer. If BUFFER is not nil, return the number of characters in that buffer instead. This does not take narrowing into account; to count the number of characters in the accessible portion of the current buffer, use `(- (point-max) (point-min))', and to count the number of characters in the accessible portion of some other BUFFER, use `(with-current-buffer BUFFER (- (point-max) (point-min)))'. */) (Lisp_Object buffer) { if (NILP (buffer)) return make_fixnum (Z - BEG); else { CHECK_BUFFER (buffer); return make_fixnum (BUF_Z (XBUFFER (buffer)) - BUF_BEG (XBUFFER (buffer))); } } DEFUN ("point-min", Fpoint_min, Spoint_min, 0, 0, 0, doc: /* Return the minimum permissible value of point in the current buffer. This is 1, unless narrowing (a buffer restriction) is in effect. */) (void) { Lisp_Object temp; XSETFASTINT (temp, BEGV); return temp; } DEFUN ("point-min-marker", Fpoint_min_marker, Spoint_min_marker, 0, 0, 0, doc: /* Return a marker to the minimum permissible value of point in this buffer. This is the beginning, unless narrowing (a buffer restriction) is in effect. */) (void) { return build_marker (current_buffer, BEGV, BEGV_BYTE); } DEFUN ("point-max", Fpoint_max, Spoint_max, 0, 0, 0, doc: /* Return the maximum permissible value of point in the current buffer. This is (1+ (buffer-size)), unless narrowing (a buffer restriction) is in effect, in which case it is less. */) (void) { Lisp_Object temp; XSETFASTINT (temp, ZV); return temp; } DEFUN ("point-max-marker", Fpoint_max_marker, Spoint_max_marker, 0, 0, 0, doc: /* Return a marker to the maximum permissible value of point in this buffer. This is (1+ (buffer-size)), unless narrowing (a buffer restriction) is in effect, in which case it is less. */) (void) { return build_marker (current_buffer, ZV, ZV_BYTE); } DEFUN ("gap-position", Fgap_position, Sgap_position, 0, 0, 0, doc: /* Return the position of the gap, in the current buffer. See also `gap-size'. */) (void) { Lisp_Object temp; XSETFASTINT (temp, GPT); return temp; } DEFUN ("gap-size", Fgap_size, Sgap_size, 0, 0, 0, doc: /* Return the size of the current buffer's gap. See also `gap-position'. */) (void) { Lisp_Object temp; XSETFASTINT (temp, GAP_SIZE); return temp; } DEFUN ("position-bytes", Fposition_bytes, Sposition_bytes, 1, 1, 0, doc: /* Return the byte position for character position POSITION. If POSITION is out of range, the value is nil. */) (Lisp_Object position) { EMACS_INT pos = fix_position (position); if (! (BEG <= pos && pos <= Z)) return Qnil; return make_fixnum (CHAR_TO_BYTE (pos)); } DEFUN ("byte-to-position", Fbyte_to_position, Sbyte_to_position, 1, 1, 0, doc: /* Return the character position for byte position BYTEPOS. If BYTEPOS is out of range, the value is nil. */) (Lisp_Object bytepos) { ptrdiff_t pos_byte; CHECK_FIXNUM (bytepos); pos_byte = XFIXNUM (bytepos); if (pos_byte < BEG_BYTE || pos_byte > Z_BYTE) return Qnil; if (Z != Z_BYTE) /* There are multibyte characters in the buffer. The argument of BYTE_TO_CHAR must be a byte position at a character boundary, so search for the start of the current character. */ while (!CHAR_HEAD_P (FETCH_BYTE (pos_byte))) pos_byte--; return make_fixnum (BYTE_TO_CHAR (pos_byte)); } DEFUN ("following-char", Ffollowing_char, Sfollowing_char, 0, 0, 0, doc: /* Return the character following point, as a number. At the end of the buffer or accessible region, return 0. */) (void) { Lisp_Object temp; if (PT >= ZV) XSETFASTINT (temp, 0); else XSETFASTINT (temp, FETCH_CHAR (PT_BYTE)); return temp; } DEFUN ("preceding-char", Fprevious_char, Sprevious_char, 0, 0, 0, doc: /* Return the character preceding point, as a number. At the beginning of the buffer or accessible region, return 0. */) (void) { Lisp_Object temp; if (PT <= BEGV) XSETFASTINT (temp, 0); else if (!NILP (BVAR (current_buffer, enable_multibyte_characters))) { ptrdiff_t pos = PT_BYTE; pos -= prev_char_len (pos); XSETFASTINT (temp, FETCH_CHAR (pos)); } else XSETFASTINT (temp, FETCH_BYTE (PT_BYTE - 1)); return temp; } DEFUN ("bobp", Fbobp, Sbobp, 0, 0, 0, doc: /* Return t if point is at the beginning of the buffer. If the buffer is narrowed, this means the beginning of the narrowed part. */) (void) { if (PT == BEGV) return Qt; return Qnil; } DEFUN ("eobp", Feobp, Seobp, 0, 0, 0, doc: /* Return t if point is at the end of the buffer. If the buffer is narrowed, this means the end of the narrowed part. */) (void) { if (PT == ZV) return Qt; return Qnil; } DEFUN ("bolp", Fbolp, Sbolp, 0, 0, 0, doc: /* Return t if point is at the beginning of a line. */) (void) { if (PT == BEGV || FETCH_BYTE (PT_BYTE - 1) == '\n') return Qt; return Qnil; } DEFUN ("eolp", Feolp, Seolp, 0, 0, 0, doc: /* Return t if point is at the end of a line. `End of a line' includes point being at the end of the buffer. */) (void) { if (PT == ZV || FETCH_BYTE (PT_BYTE) == '\n') return Qt; return Qnil; } DEFUN ("char-after", Fchar_after, Schar_after, 0, 1, 0, doc: /* Return character in current buffer at position POS. POS is an integer or a marker and defaults to point. If POS is out of range, the value is nil. */) (Lisp_Object pos) { register ptrdiff_t pos_byte; if (NILP (pos)) { pos_byte = PT_BYTE; if (pos_byte < BEGV_BYTE || pos_byte >= ZV_BYTE) return Qnil; } else if (MARKERP (pos)) { pos_byte = marker_byte_position (pos); if (pos_byte < BEGV_BYTE || pos_byte >= ZV_BYTE) return Qnil; } else { EMACS_INT p = fix_position (pos); if (! (BEGV <= p && p < ZV)) return Qnil; pos_byte = CHAR_TO_BYTE (p); } return make_fixnum (FETCH_CHAR (pos_byte)); } DEFUN ("char-before", Fchar_before, Schar_before, 0, 1, 0, doc: /* Return character in current buffer preceding position POS. POS is an integer or a marker and defaults to point. If POS is out of range, the value is nil. */) (Lisp_Object pos) { register Lisp_Object val; register ptrdiff_t pos_byte; if (NILP (pos)) { pos_byte = PT_BYTE; XSETFASTINT (pos, PT); } if (MARKERP (pos)) { pos_byte = marker_byte_position (pos); if (pos_byte <= BEGV_BYTE || pos_byte > ZV_BYTE) return Qnil; } else { EMACS_INT p = fix_position (pos); if (! (BEGV < p && p <= ZV)) return Qnil; pos_byte = CHAR_TO_BYTE (p); } if (!NILP (BVAR (current_buffer, enable_multibyte_characters))) { pos_byte -= prev_char_len (pos_byte); XSETFASTINT (val, FETCH_CHAR (pos_byte)); } else { pos_byte--; XSETFASTINT (val, FETCH_BYTE (pos_byte)); } return val; } DEFUN ("user-login-name", Fuser_login_name, Suser_login_name, 0, 1, 0, doc: /* Return the name under which the user logged in, as a string. This is based on the effective uid, not the real uid. Also, if the environment variables LOGNAME or USER are set, that determines the value of this function. If optional argument UID is an integer, return the login name of the user with that uid, or nil if there is no such user. */) (Lisp_Object uid) { struct passwd *pw; uid_t id; /* Set up the user name info if we didn't do it before. (That can happen if Emacs is dumpable but you decide to run `temacs -l loadup' and not dump. */ if (NILP (Vuser_login_name)) init_editfns (); if (NILP (uid)) return Vuser_login_name; CONS_TO_INTEGER (uid, uid_t, id); block_input (); pw = getpwuid (id); unblock_input (); return (pw ? build_string (pw->pw_name) : Qnil); } DEFUN ("user-real-login-name", Fuser_real_login_name, Suser_real_login_name, 0, 0, 0, doc: /* Return the name of the user's real uid, as a string. This ignores the environment variables LOGNAME and USER, so it differs from `user-login-name' when running under `su'. */) (void) { /* Set up the user name info if we didn't do it before. (That can happen if Emacs is dumpable but you decide to run `temacs -l loadup' and not dump. */ if (NILP (Vuser_login_name)) init_editfns (); return Vuser_real_login_name; } DEFUN ("user-uid", Fuser_uid, Suser_uid, 0, 0, 0, doc: /* Return the effective uid of Emacs, as an integer. */) (void) { uid_t euid = geteuid (); return INT_TO_INTEGER (euid); } DEFUN ("user-real-uid", Fuser_real_uid, Suser_real_uid, 0, 0, 0, doc: /* Return the real uid of Emacs, as an integer. */) (void) { uid_t uid = getuid (); return INT_TO_INTEGER (uid); } DEFUN ("group-name", Fgroup_name, Sgroup_name, 1, 1, 0, doc: /* Return the name of the group whose numeric group ID is GID. The argument GID should be an integer or a float. Return nil if a group with such GID does not exists or is not known. */) (Lisp_Object gid) { struct group *gr; gid_t id; if (!NUMBERP (gid) && !CONSP (gid)) error ("Invalid GID specification"); CONS_TO_INTEGER (gid, gid_t, id); block_input (); gr = getgrgid (id); unblock_input (); return gr ? build_string (gr->gr_name) : Qnil; } DEFUN ("group-gid", Fgroup_gid, Sgroup_gid, 0, 0, 0, doc: /* Return the effective gid of Emacs, as an integer. */) (void) { gid_t egid = getegid (); return INT_TO_INTEGER (egid); } DEFUN ("group-real-gid", Fgroup_real_gid, Sgroup_real_gid, 0, 0, 0, doc: /* Return the real gid of Emacs, as an integer. */) (void) { gid_t gid = getgid (); return INT_TO_INTEGER (gid); } DEFUN ("user-full-name", Fuser_full_name, Suser_full_name, 0, 1, 0, doc: /* Return the full name of the user logged in, as a string. If the full name corresponding to Emacs's userid is not known, return "unknown". If optional argument UID is an integer, return the full name of the user with that uid, or nil if there is no such user. If UID is a string, return the full name of the user with that login name, or nil if there is no such user. If the full name includes commas, remove everything starting with the first comma, because the \\='gecos\\=' field of the \\='/etc/passwd\\=' file is in general a comma-separated list. */) (Lisp_Object uid) { struct passwd *pw; register char *p, *q; Lisp_Object full; if (NILP (uid)) return Vuser_full_name; else if (NUMBERP (uid)) { uid_t u; CONS_TO_INTEGER (uid, uid_t, u); block_input (); pw = getpwuid (u); unblock_input (); } else if (STRINGP (uid)) { block_input (); pw = getpwnam (SSDATA (uid)); unblock_input (); } else error ("Invalid UID specification"); if (!pw) return Qnil; #if defined HAVE_ANDROID && !defined ANDROID_STUBIFY p = android_user_full_name (pw); #else p = USER_FULL_NAME; #endif /* Chop off everything after the first comma, since 'pw_gecos' is a comma-separated list. */ q = strchr (p, ','); full = make_string (p, q ? q - p : strlen (p)); #ifdef AMPERSAND_FULL_NAME p = SSDATA (full); q = strchr (p, '&'); /* Substitute the login name for the &, upcasing the first character. */ if (q) { Lisp_Object login = Fuser_login_name (INT_TO_INTEGER (pw->pw_uid)); if (!NILP (login)) { USE_SAFE_ALLOCA; char *r = SAFE_ALLOCA (strlen (p) + SBYTES (login) + 1); memcpy (r, p, q - p); char *s = lispstpcpy (&r[q - p], login); r[q - p] = upcase ((unsigned char) r[q - p]); strcpy (s, q + 1); full = build_string (r); SAFE_FREE (); } } #endif /* AMPERSAND_FULL_NAME */ return full; } DEFUN ("system-name", Fsystem_name, Ssystem_name, 0, 0, 0, doc: /* Return the host name of the machine you are running on, as a string. */) (void) { if (EQ (Vsystem_name, cached_system_name)) init_and_cache_system_name (); return Vsystem_name; } DEFUN ("emacs-pid", Femacs_pid, Semacs_pid, 0, 0, 0, doc: /* Return the process ID of Emacs, as an integer. */) (void) { pid_t pid = getpid (); return INT_TO_INTEGER (pid); } /* Insert NARGS Lisp objects in the array ARGS by calling INSERT_FUNC (if a type of object is Lisp_Int) or INSERT_FROM_STRING_FUNC (if a type of object is Lisp_String). INHERIT is passed to INSERT_FROM_STRING_FUNC as the last argument. */ static void general_insert_function (void (*insert_func) (const char *, ptrdiff_t), void (*insert_from_string_func) (Lisp_Object, ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t, bool), bool inherit, ptrdiff_t nargs, Lisp_Object *args) { ptrdiff_t argnum; Lisp_Object val; for (argnum = 0; argnum < nargs; argnum++) { val = args[argnum]; if (CHARACTERP (val)) { int c = XFIXNAT (val); unsigned char str[MAX_MULTIBYTE_LENGTH]; int len; if (!NILP (BVAR (current_buffer, enable_multibyte_characters))) len = CHAR_STRING (c, str); else { str[0] = CHAR_TO_BYTE8 (c); len = 1; } (*insert_func) ((char *) str, len); } else if (STRINGP (val)) { (*insert_from_string_func) (val, 0, 0, SCHARS (val), SBYTES (val), inherit); } else wrong_type_argument (Qchar_or_string_p, val); } } void insert1 (Lisp_Object arg) { Finsert (1, &arg); } DEFUN ("insert", Finsert, Sinsert, 0, MANY, 0, doc: /* Insert the arguments, either strings or characters, at point. Point and after-insertion markers move forward to end up after the inserted text. Any other markers at the point of insertion remain before the text. If the current buffer is multibyte, unibyte strings are converted to multibyte for insertion (see `string-make-multibyte'). If the current buffer is unibyte, multibyte strings are converted to unibyte for insertion (see `string-make-unibyte'). When operating on binary data, it may be necessary to preserve the original bytes of a unibyte string when inserting it into a multibyte buffer; to accomplish this, apply `string-as-multibyte' to the string and insert the result. usage: (insert &rest ARGS) */) (ptrdiff_t nargs, Lisp_Object *args) { general_insert_function (insert, insert_from_string, 0, nargs, args); return Qnil; } DEFUN ("insert-and-inherit", Finsert_and_inherit, Sinsert_and_inherit, 0, MANY, 0, doc: /* Insert the arguments at point, inheriting properties from adjoining text. Point and after-insertion markers move forward to end up after the inserted text. Any other markers at the point of insertion remain before the text. If the current buffer is multibyte, unibyte strings are converted to multibyte for insertion (see `unibyte-char-to-multibyte'). If the current buffer is unibyte, multibyte strings are converted to unibyte for insertion. usage: (insert-and-inherit &rest ARGS) */) (ptrdiff_t nargs, Lisp_Object *args) { general_insert_function (insert_and_inherit, insert_from_string, 1, nargs, args); return Qnil; } DEFUN ("insert-before-markers", Finsert_before_markers, Sinsert_before_markers, 0, MANY, 0, doc: /* Insert strings or characters at point, relocating markers after the text. Point and markers move forward to end up after the inserted text. If the current buffer is multibyte, unibyte strings are converted to multibyte for insertion (see `unibyte-char-to-multibyte'). If the current buffer is unibyte, multibyte strings are converted to unibyte for insertion. If an overlay begins at the insertion point, the inserted text falls outside the overlay; if a nonempty overlay ends at the insertion point, the inserted text falls inside that overlay. usage: (insert-before-markers &rest ARGS) */) (ptrdiff_t nargs, Lisp_Object *args) { general_insert_function (insert_before_markers, insert_from_string_before_markers, 0, nargs, args); return Qnil; } DEFUN ("insert-before-markers-and-inherit", Finsert_and_inherit_before_markers, Sinsert_and_inherit_before_markers, 0, MANY, 0, doc: /* Insert text at point, relocating markers and inheriting properties. Point and markers move forward to end up after the inserted text. If the current buffer is multibyte, unibyte strings are converted to multibyte for insertion (see `unibyte-char-to-multibyte'). If the current buffer is unibyte, multibyte strings are converted to unibyte for insertion. usage: (insert-before-markers-and-inherit &rest ARGS) */) (ptrdiff_t nargs, Lisp_Object *args) { general_insert_function (insert_before_markers_and_inherit, insert_from_string_before_markers, 1, nargs, args); return Qnil; } DEFUN ("insert-char", Finsert_char, Sinsert_char, 1, 3, "(list (read-char-by-name \"Insert character (Unicode name or hex): \")\ (prefix-numeric-value current-prefix-arg)\ t))", doc: /* Insert COUNT copies of CHARACTER. Interactively, prompt for CHARACTER using `read-char-by-name'. You can specify CHARACTER in one of these ways: - As its Unicode character name, e.g. \"LATIN SMALL LETTER A\". Completion is available; if you type a substring of the name preceded by an asterisk `*', Emacs shows all names which include that substring, not necessarily at the beginning of the name. - As a hexadecimal code point, e.g. 263A. Note that code points in Emacs are equivalent to Unicode up to 10FFFF (which is the limit of the Unicode code space). - As a code point with a radix specified with #, e.g. #o21430 (octal), #x2318 (hex), or #10r8984 (decimal). If called interactively, COUNT is given by the prefix argument. If omitted or nil, it defaults to 1. Inserting the character(s) relocates point and before-insertion markers in the same ways as the function `insert'. The optional third argument INHERIT, if non-nil, says to inherit text properties from adjoining text, if those properties are sticky. If called interactively, INHERIT is t. */) (Lisp_Object character, Lisp_Object count, Lisp_Object inherit) { int i, stringlen; register ptrdiff_t n; int c, len; unsigned char str[MAX_MULTIBYTE_LENGTH]; char string[4000]; CHECK_CHARACTER (character); if (NILP (count)) XSETFASTINT (count, 1); else CHECK_FIXNUM (count); c = XFIXNAT (character); if (!NILP (BVAR (current_buffer, enable_multibyte_characters))) len = CHAR_STRING (c, str); else str[0] = c, len = 1; if (XFIXNUM (count) <= 0) return Qnil; if (BUF_BYTES_MAX / len < XFIXNUM (count)) buffer_overflow (); n = XFIXNUM (count) * len; stringlen = min (n, sizeof string - sizeof string % len); for (i = 0; i < stringlen; i++) string[i] = str[i % len]; while (n > stringlen) { maybe_quit (); if (!NILP (inherit)) insert_and_inherit (string, stringlen); else insert (string, stringlen); n -= stringlen; } if (!NILP (inherit)) insert_and_inherit (string, n); else insert (string, n); return Qnil; } DEFUN ("insert-byte", Finsert_byte, Sinsert_byte, 2, 3, 0, doc: /* Insert COUNT (second arg) copies of BYTE (first arg). Both arguments are required. BYTE is a number of the range 0..255. If BYTE is 128..255 and the current buffer is multibyte, the corresponding eight-bit character is inserted. Point, and before-insertion markers, are relocated as in the function `insert'. The optional third arg INHERIT, if non-nil, says to inherit text properties from adjoining text, if those properties are sticky. */) (Lisp_Object byte, Lisp_Object count, Lisp_Object inherit) { CHECK_FIXNUM (byte); if (XFIXNUM (byte) < 0 || XFIXNUM (byte) > 255) args_out_of_range_3 (byte, make_fixnum (0), make_fixnum (255)); if (XFIXNUM (byte) >= 128 && ! NILP (BVAR (current_buffer, enable_multibyte_characters))) XSETFASTINT (byte, BYTE8_TO_CHAR (XFIXNUM (byte))); return Finsert_char (byte, count, inherit); } /* Making strings from buffer contents. */ /* Return a Lisp_String containing the text of the current buffer from START to END. If text properties are in use and the current buffer has properties in the range specified, the resulting string will also have them, if PROPS is true. We don't want to use plain old make_string here, because it calls make_uninit_string, which can cause the buffer arena to be compacted. make_string has no way of knowing that the data has been moved, and thus copies the wrong data into the string. This doesn't affect most of the other users of make_string, so it should be left as is. But we should use this function when conjuring buffer substrings. */ Lisp_Object make_buffer_string (ptrdiff_t start, ptrdiff_t end, bool props) { ptrdiff_t start_byte = CHAR_TO_BYTE (start); ptrdiff_t end_byte = CHAR_TO_BYTE (end); return make_buffer_string_both (start, start_byte, end, end_byte, props); } /* Return a Lisp_String containing the text of the current buffer from START / START_BYTE to END / END_BYTE. If text properties are in use and the current buffer has properties in the range specified, the resulting string will also have them, if PROPS is true. We don't want to use plain old make_string here, because it calls make_uninit_string, which can cause the buffer arena to be compacted. make_string has no way of knowing that the data has been moved, and thus copies the wrong data into the string. This doesn't effect most of the other users of make_string, so it should be left as is. But we should use this function when conjuring buffer substrings. */ Lisp_Object make_buffer_string_both (ptrdiff_t start, ptrdiff_t start_byte, ptrdiff_t end, ptrdiff_t end_byte, bool props) { Lisp_Object result, tem, tem1; ptrdiff_t beg0, end0, beg1, end1, size; if (start_byte < GPT_BYTE && GPT_BYTE < end_byte) { /* Two regions, before and after the gap. */ beg0 = start_byte; end0 = GPT_BYTE; beg1 = GPT_BYTE + GAP_SIZE - BEG_BYTE; end1 = end_byte + GAP_SIZE - BEG_BYTE; } else { /* The only region. */ beg0 = start_byte; end0 = end_byte; beg1 = -1; end1 = -1; } if (! NILP (BVAR (current_buffer, enable_multibyte_characters))) result = make_uninit_multibyte_string (end - start, end_byte - start_byte); else result = make_uninit_string (end - start); size = end0 - beg0; memcpy (SDATA (result), BYTE_POS_ADDR (beg0), size); if (beg1 != -1) memcpy (SDATA (result) + size, BEG_ADDR + beg1, end1 - beg1); /* If desired, update and copy the text properties. */ if (props) { update_buffer_properties (start, end); tem = Fnext_property_change (make_fixnum (start), Qnil, make_fixnum (end)); tem1 = Ftext_properties_at (make_fixnum (start), Qnil); if (XFIXNUM (tem) != end || !NILP (tem1)) copy_intervals_to_string (result, current_buffer, start, end - start); } return result; } /* Call Vbuffer_access_fontify_functions for the range START ... END in the current buffer, if necessary. */ static void update_buffer_properties (ptrdiff_t start, ptrdiff_t end) { /* If this buffer has some access functions, call them, specifying the range of the buffer being accessed. */ if (!NILP (Vbuffer_access_fontify_functions)) { /* But don't call them if we can tell that the work has already been done. */ if (!NILP (Vbuffer_access_fontified_property)) { Lisp_Object tem = Ftext_property_any (make_fixnum (start), make_fixnum (end), Vbuffer_access_fontified_property, Qnil, Qnil); if (NILP (tem)) return; } CALLN (Frun_hook_with_args, Qbuffer_access_fontify_functions, make_fixnum (start), make_fixnum (end)); } } DEFUN ("buffer-substring", Fbuffer_substring, Sbuffer_substring, 2, 2, 0, doc: /* Return the contents of part of the current buffer as a string. The two arguments START and END are character positions; they can be in either order. The string returned is multibyte if the buffer is multibyte. This function copies the text properties of that part of the buffer into the result string; if you don't want the text properties, use `buffer-substring-no-properties' instead. */) (Lisp_Object start, Lisp_Object end) { register ptrdiff_t b, e; validate_region (&start, &end); b = XFIXNUM (start); e = XFIXNUM (end); return make_buffer_string (b, e, 1); } DEFUN ("buffer-substring-no-properties", Fbuffer_substring_no_properties, Sbuffer_substring_no_properties, 2, 2, 0, doc: /* Return the characters of part of the buffer, without the text properties. The two arguments START and END are character positions; they can be in either order. */) (Lisp_Object start, Lisp_Object end) { register ptrdiff_t b, e; validate_region (&start, &end); b = XFIXNUM (start); e = XFIXNUM (end); return make_buffer_string (b, e, 0); } DEFUN ("buffer-string", Fbuffer_string, Sbuffer_string, 0, 0, 0, doc: /* Return the contents of the current buffer as a string. If narrowing is in effect, this function returns only the visible part of the buffer. This function copies the text properties of that part of the buffer into the result string; if you don’t want the text properties, use `buffer-substring-no-properties' instead. */) (void) { return make_buffer_string_both (BEGV, BEGV_BYTE, ZV, ZV_BYTE, 1); } DEFUN ("insert-buffer-substring", Finsert_buffer_substring, Sinsert_buffer_substring, 1, 3, 0, doc: /* Insert before point a substring of the contents of BUFFER. BUFFER may be a buffer or a buffer name. Arguments START and END are character positions specifying the substring. They default to the values of (point-min) and (point-max) in BUFFER. Point and before-insertion markers move forward to end up after the inserted text. Any other markers at the point of insertion remain before the text. If the current buffer is multibyte and BUFFER is unibyte, or vice versa, strings are converted from unibyte to multibyte or vice versa using `string-make-multibyte' or `string-make-unibyte', which see. */) (Lisp_Object buffer, Lisp_Object start, Lisp_Object end) { register EMACS_INT b, e, temp; register struct buffer *bp, *obuf; Lisp_Object buf; buf = Fget_buffer (buffer); if (NILP (buf)) nsberror (buffer); bp = XBUFFER (buf); if (!BUFFER_LIVE_P (bp)) error ("Selecting deleted buffer"); b = !NILP (start) ? fix_position (start) : BUF_BEGV (bp); e = !NILP (end) ? fix_position (end) : BUF_ZV (bp); if (b > e) temp = b, b = e, e = temp; if (!(BUF_BEGV (bp) <= b && e <= BUF_ZV (bp))) args_out_of_range (start, end); obuf = current_buffer; set_buffer_internal_1 (bp); update_buffer_properties (b, e); set_buffer_internal_1 (obuf); insert_from_buffer (bp, b, e - b, 0); return Qnil; } DEFUN ("compare-buffer-substrings", Fcompare_buffer_substrings, Scompare_buffer_substrings, 6, 6, 0, doc: /* Compare two substrings of two buffers; return result as number. Return -N if first string is less after N-1 chars, +N if first string is greater after N-1 chars, or 0 if strings match. The first substring is in BUFFER1 from START1 to END1 and the second is in BUFFER2 from START2 to END2. All arguments may be nil. If BUFFER1 or BUFFER2 is nil, the current buffer is used. If START1 or START2 is nil, the value of `point-min' in the respective buffers is used. If END1 or END2 is nil, the value of `point-max' in the respective buffers is used. The value of `case-fold-search' in the current buffer determines whether case is significant or ignored. */) (Lisp_Object buffer1, Lisp_Object start1, Lisp_Object end1, Lisp_Object buffer2, Lisp_Object start2, Lisp_Object end2) { register EMACS_INT begp1, endp1, begp2, endp2, temp; register struct buffer *bp1, *bp2; register Lisp_Object trt = (!NILP (Vcase_fold_search) ? BVAR (current_buffer, case_canon_table) : Qnil); ptrdiff_t chars = 0; ptrdiff_t i1, i2, i1_byte, i2_byte; /* Find the first buffer and its substring. */ if (NILP (buffer1)) bp1 = current_buffer; else { Lisp_Object buf1; buf1 = Fget_buffer (buffer1); if (NILP (buf1)) nsberror (buffer1); bp1 = XBUFFER (buf1); if (!BUFFER_LIVE_P (bp1)) error ("Selecting deleted buffer"); } begp1 = !NILP (start1) ? fix_position (start1) : BUF_BEGV (bp1); endp1 = !NILP (end1) ? fix_position (end1) : BUF_ZV (bp1); if (begp1 > endp1) temp = begp1, begp1 = endp1, endp1 = temp; if (!(BUF_BEGV (bp1) <= begp1 && begp1 <= endp1 && endp1 <= BUF_ZV (bp1))) args_out_of_range (start1, end1); /* Likewise for second substring. */ if (NILP (buffer2)) bp2 = current_buffer; else { Lisp_Object buf2; buf2 = Fget_buffer (buffer2); if (NILP (buf2)) nsberror (buffer2); bp2 = XBUFFER (buf2); if (!BUFFER_LIVE_P (bp2)) error ("Selecting deleted buffer"); } begp2 = !NILP (start2) ? fix_position (start2) : BUF_BEGV (bp2); endp2 = !NILP (end2) ? fix_position (end2) : BUF_ZV (bp2); if (begp2 > endp2) temp = begp2, begp2 = endp2, endp2 = temp; if (!(BUF_BEGV (bp2) <= begp2 && begp2 <= endp2 && endp2 <= BUF_ZV (bp2))) args_out_of_range (start2, end2); i1 = begp1; i2 = begp2; i1_byte = buf_charpos_to_bytepos (bp1, i1); i2_byte = buf_charpos_to_bytepos (bp2, i2); while (i1 < endp1 && i2 < endp2) { /* When we find a mismatch, we must compare the characters, not just the bytes. */ int c1, c2; if (! NILP (BVAR (bp1, enable_multibyte_characters))) { c1 = BUF_FETCH_MULTIBYTE_CHAR (bp1, i1_byte); i1_byte += buf_next_char_len (bp1, i1_byte); i1++; } else { c1 = make_char_multibyte (BUF_FETCH_BYTE (bp1, i1)); i1++; } if (! NILP (BVAR (bp2, enable_multibyte_characters))) { c2 = BUF_FETCH_MULTIBYTE_CHAR (bp2, i2_byte); i2_byte += buf_next_char_len (bp2, i2_byte); i2++; } else { c2 = make_char_multibyte (BUF_FETCH_BYTE (bp2, i2)); i2++; } if (!NILP (trt)) { c1 = char_table_translate (trt, c1); c2 = char_table_translate (trt, c2); } if (c1 != c2) return make_fixnum (c1 < c2 ? -1 - chars : chars + 1); chars++; rarely_quit (chars); } /* The strings match as far as they go. If one is shorter, that one is less. */ if (chars < endp1 - begp1) return make_fixnum (chars + 1); else if (chars < endp2 - begp2) return make_fixnum (- chars - 1); /* Same length too => they are equal. */ return make_fixnum (0); } /* Set up necessary definitions for diffseq.h; see comments in diffseq.h for explanation. */ #undef ELEMENT #undef EQUAL #define USE_HEURISTIC #define XVECREF_YVECREF_EQUAL(ctx, xoff, yoff) \ buffer_chars_equal (ctx, xoff, yoff) #define OFFSET ptrdiff_t #define EXTRA_CONTEXT_FIELDS \ /* Buffers to compare. */ \ struct buffer *buffer_a; \ struct buffer *buffer_b; \ /* BEGV of each buffer */ \ ptrdiff_t beg_a; \ ptrdiff_t beg_b; \ /* Whether each buffer is unibyte/plain-ASCII or not. */ \ bool a_unibyte; \ bool b_unibyte; \ /* Bit vectors recording for each character whether it was deleted or inserted. */ \ unsigned char *deletions; \ unsigned char *insertions; \ struct timespec time_limit; \ sys_jmp_buf jmp; \ unsigned short quitcounter; #define NOTE_DELETE(ctx, xoff) set_bit ((ctx)->deletions, xoff) #define NOTE_INSERT(ctx, yoff) set_bit ((ctx)->insertions, yoff) #define EARLY_ABORT(ctx) compareseq_early_abort (ctx) struct context; static void set_bit (unsigned char *, OFFSET); static bool bit_is_set (const unsigned char *, OFFSET); static bool buffer_chars_equal (struct context *, OFFSET, OFFSET); static bool compareseq_early_abort (struct context *); #include "minmax.h" #include "diffseq.h" DEFUN ("replace-buffer-contents", Freplace_buffer_contents, Sreplace_buffer_contents, 1, 3, "bSource buffer: ", doc: /* Replace accessible portion of current buffer with that of SOURCE. SOURCE can be a buffer or a string that names a buffer. Interactively, prompt for SOURCE. As far as possible the replacement is non-destructive, i.e. existing buffer contents, markers, properties, and overlays in the current buffer stay intact. Because this function can be very slow if there is a large number of differences between the two buffers, there are two optional arguments mitigating this issue. The MAX-SECS argument, if given, defines a hard limit on the time used for comparing the buffers. If it takes longer than MAX-SECS, the function falls back to a plain `delete-region' and `insert-buffer-substring'. (Note that the checks are not performed too evenly over time, so in some cases it may run a bit longer than allowed). The optional argument MAX-COSTS defines the quality of the difference computation. If the actual costs exceed this limit, heuristics are used to provide a faster but suboptimal solution. The default value is 1000000. This function returns t if a non-destructive replacement could be performed. Otherwise, i.e., if MAX-SECS was exceeded, it returns nil. */) (Lisp_Object source, Lisp_Object max_secs, Lisp_Object max_costs) { struct buffer *a = current_buffer; Lisp_Object source_buffer = Fget_buffer (source); if (NILP (source_buffer)) nsberror (source); struct buffer *b = XBUFFER (source_buffer); if (! BUFFER_LIVE_P (b)) error ("Selecting deleted buffer"); if (a == b) error ("Cannot replace a buffer with itself"); ptrdiff_t too_expensive; if (NILP (max_costs)) too_expensive = 1000000; else if (FIXNUMP (max_costs)) too_expensive = clip_to_bounds (0, XFIXNUM (max_costs), PTRDIFF_MAX); else { CHECK_INTEGER (max_costs); too_expensive = NILP (Fnatnump (max_costs)) ? 0 : PTRDIFF_MAX; } struct timespec time_limit = make_timespec (0, -1); if (!NILP (max_secs)) { struct timespec tlim = timespec_add (current_timespec (), lisp_time_argument (max_secs)), tmax = make_timespec (TYPE_MAXIMUM (time_t), TIMESPEC_HZ - 1); if (timespec_cmp (tlim, tmax) < 0) time_limit = tlim; } ptrdiff_t min_a = BEGV; ptrdiff_t min_b = BUF_BEGV (b); ptrdiff_t size_a = ZV - min_a; ptrdiff_t size_b = BUF_ZV (b) - min_b; eassume (size_a >= 0); eassume (size_b >= 0); bool a_empty = size_a == 0; bool b_empty = size_b == 0; /* Handle trivial cases where at least one accessible portion is empty. */ if (a_empty && b_empty) return Qt; if (a_empty) { Finsert_buffer_substring (source, Qnil, Qnil); return Qt; } if (b_empty) { del_range_both (BEGV, BEGV_BYTE, ZV, ZV_BYTE, true); return Qt; } specpdl_ref count = SPECPDL_INDEX (); ptrdiff_t diags = size_a + size_b + 3; ptrdiff_t del_bytes = size_a / CHAR_BIT + 1; ptrdiff_t ins_bytes = size_b / CHAR_BIT + 1; ptrdiff_t *buffer; ptrdiff_t bytes_needed; if (ckd_mul (&bytes_needed, diags, 2 * sizeof *buffer) || ckd_add (&bytes_needed, bytes_needed, del_bytes + ins_bytes)) memory_full (SIZE_MAX); USE_SAFE_ALLOCA; buffer = SAFE_ALLOCA (bytes_needed); unsigned char *deletions_insertions = memset (buffer + 2 * diags, 0, del_bytes + ins_bytes); /* FIXME: It is not documented how to initialize the contents of the context structure. This code cargo-cults from the existing caller in src/analyze.c of GNU Diffutils, which appears to work. */ struct context ctx = { .buffer_a = a, .buffer_b = b, .beg_a = min_a, .beg_b = min_b, .a_unibyte = BUF_ZV (a) == BUF_ZV_BYTE (a), .b_unibyte = BUF_ZV (b) == BUF_ZV_BYTE (b), .deletions = deletions_insertions, .insertions = deletions_insertions + del_bytes, .fdiag = buffer + size_b + 1, .bdiag = buffer + diags + size_b + 1, .heuristic = true, .too_expensive = too_expensive, .time_limit = time_limit, }; /* compareseq requires indices to be zero-based. We add BEGV back later. */ bool early_abort; if (! sys_setjmp (ctx.jmp)) early_abort = compareseq (0, size_a, 0, size_b, false, &ctx); else early_abort = true; if (early_abort) { del_range (min_a, ZV); Finsert_buffer_substring (source, Qnil,Qnil); SAFE_FREE_UNBIND_TO (count, Qnil); return Qnil; } Fundo_boundary (); bool modification_hooks_inhibited = false; record_unwind_protect_excursion (); /* We are going to make a lot of small modifications, and having the modification hooks called for each of them will slow us down. Instead, we announce a single modification for the entire modified region. But don't do that if the caller inhibited modification hooks, because then they don't want that. */ if (!inhibit_modification_hooks) { prepare_to_modify_buffer (BEGV, ZV, NULL); specbind (Qinhibit_modification_hooks, Qt); modification_hooks_inhibited = true; } ptrdiff_t i = size_a; ptrdiff_t j = size_b; /* Walk backwards through the lists of changes. This was also cargo-culted from src/analyze.c in GNU Diffutils. Because we walk backwards, we don’t have to keep the positions in sync. */ while (i >= 0 || j >= 0) { rarely_quit (++ctx.quitcounter); /* Check whether there is a change (insertion or deletion) before the current position. */ if ((i > 0 && bit_is_set (ctx.deletions, i - 1)) || (j > 0 && bit_is_set (ctx.insertions, j - 1))) { ptrdiff_t end_a = min_a + i; ptrdiff_t end_b = min_b + j; /* Find the beginning of the current change run. */ while (i > 0 && bit_is_set (ctx.deletions, i - 1)) --i; while (j > 0 && bit_is_set (ctx.insertions, j - 1)) --j; ptrdiff_t beg_a = min_a + i; ptrdiff_t beg_b = min_b + j; eassert (beg_a <= end_a); eassert (beg_b <= end_b); eassert (beg_a < end_a || beg_b < end_b); if (beg_a < end_a) del_range (beg_a, end_a); if (beg_b < end_b) { SET_PT (beg_a); Finsert_buffer_substring (source, make_fixed_natnum (beg_b), make_fixed_natnum (end_b)); } } --i; --j; } SAFE_FREE_UNBIND_TO (count, Qnil); if (modification_hooks_inhibited) { signal_after_change (BEGV, size_a, ZV - BEGV); update_compositions (BEGV, ZV, CHECK_INSIDE); /* We've locked the buffer's file above in prepare_to_modify_buffer; if the buffer is unchanged at this point, i.e. no insertions or deletions have been made, unlock the file now. */ if (SAVE_MODIFF == MODIFF && STRINGP (BVAR (a, file_truename))) Funlock_file (BVAR (a, file_truename)); } return Qt; } static void set_bit (unsigned char *a, ptrdiff_t i) { eassume (0 <= i); a[i / CHAR_BIT] |= (1 << (i % CHAR_BIT)); } static bool bit_is_set (const unsigned char *a, ptrdiff_t i) { eassume (0 <= i); return a[i / CHAR_BIT] & (1 << (i % CHAR_BIT)); } /* Return true if the characters at position POS_A of buffer CTX->buffer_a and at position POS_B of buffer CTX->buffer_b are equal. POS_A and POS_B are zero-based. Text properties are ignored. Implementation note: this function is called inside the inner-most loops of compareseq, so it absolutely must be optimized for speed, every last bit of it. E.g., each additional use of BEGV or such likes will slow down replace-buffer-contents by dozens of percents, because builtin_lisp_symbol will be called one more time in the innermost loop. */ static bool buffer_chars_equal (struct context *ctx, ptrdiff_t pos_a, ptrdiff_t pos_b) { if (!++ctx->quitcounter) { maybe_quit (); if (compareseq_early_abort (ctx)) sys_longjmp (ctx->jmp, 1); } pos_a += ctx->beg_a; pos_b += ctx->beg_b; ptrdiff_t bpos_a = ctx->a_unibyte ? pos_a : buf_charpos_to_bytepos (ctx->buffer_a, pos_a); ptrdiff_t bpos_b = ctx->b_unibyte ? pos_b : buf_charpos_to_bytepos (ctx->buffer_b, pos_b); /* We make the below a series of specific test to avoid using BUF_FETCH_CHAR_AS_MULTIBYTE, which references Lisp symbols, and is therefore significantly slower (see the note in the commentary to this function). */ if (ctx->a_unibyte && ctx->b_unibyte) return BUF_FETCH_BYTE (ctx->buffer_a, bpos_a) == BUF_FETCH_BYTE (ctx->buffer_b, bpos_b); if (ctx->a_unibyte && !ctx->b_unibyte) return UNIBYTE_TO_CHAR (BUF_FETCH_BYTE (ctx->buffer_a, bpos_a)) == BUF_FETCH_MULTIBYTE_CHAR (ctx->buffer_b, bpos_b); if (!ctx->a_unibyte && ctx->b_unibyte) return BUF_FETCH_MULTIBYTE_CHAR (ctx->buffer_a, bpos_a) == UNIBYTE_TO_CHAR (BUF_FETCH_BYTE (ctx->buffer_b, bpos_b)); return BUF_FETCH_MULTIBYTE_CHAR (ctx->buffer_a, bpos_a) == BUF_FETCH_MULTIBYTE_CHAR (ctx->buffer_b, bpos_b); } static bool compareseq_early_abort (struct context *ctx) { if (ctx->time_limit.tv_nsec < 0) return false; return timespec_cmp (ctx->time_limit, current_timespec ()) < 0; } static void subst_char_in_region_unwind (Lisp_Object arg) { bset_undo_list (current_buffer, arg); } static void subst_char_in_region_unwind_1 (Lisp_Object arg) { bset_filename (current_buffer, arg); } DEFUN ("subst-char-in-region", Fsubst_char_in_region, Ssubst_char_in_region, 4, 5, 0, doc: /* From START to END, replace FROMCHAR with TOCHAR each time it occurs. If optional arg NOUNDO is non-nil, don't record this change for undo and don't mark the buffer as really changed. Both characters must have the same length of multi-byte form. */) (Lisp_Object start, Lisp_Object end, Lisp_Object fromchar, Lisp_Object tochar, Lisp_Object noundo) { register ptrdiff_t pos, pos_byte, stop, i, len, end_byte; /* Keep track of the first change in the buffer: if 0 we haven't found it yet. if < 0 we've found it and we've run the before-change-function. if > 0 we've actually performed it and the value is its position. */ ptrdiff_t changed = 0; unsigned char fromstr[MAX_MULTIBYTE_LENGTH], tostr[MAX_MULTIBYTE_LENGTH]; unsigned char *p; specpdl_ref count = SPECPDL_INDEX (); #define COMBINING_NO 0 #define COMBINING_BEFORE 1 #define COMBINING_AFTER 2 #define COMBINING_BOTH (COMBINING_BEFORE | COMBINING_AFTER) int maybe_byte_combining = COMBINING_NO; ptrdiff_t last_changed = 0; bool multibyte_p = !NILP (BVAR (current_buffer, enable_multibyte_characters)); int fromc, toc; restart: validate_region (&start, &end); CHECK_CHARACTER (fromchar); CHECK_CHARACTER (tochar); fromc = XFIXNAT (fromchar); toc = XFIXNAT (tochar); if (multibyte_p) { len = CHAR_STRING (fromc, fromstr); if (CHAR_STRING (toc, tostr) != len) error ("Characters in `subst-char-in-region' have different byte-lengths"); if (!ASCII_CHAR_P (*tostr)) { /* If *TOSTR is in the range 0x80..0x9F and TOCHAR is not a complete multibyte character, it may be combined with the after bytes. If it is in the range 0xA0..0xFF, it may be combined with the before and after bytes. */ if (!CHAR_HEAD_P (*tostr)) maybe_byte_combining = COMBINING_BOTH; else if (BYTES_BY_CHAR_HEAD (*tostr) > len) maybe_byte_combining = COMBINING_AFTER; } } else { len = 1; fromstr[0] = fromc; tostr[0] = toc; } pos = XFIXNUM (start); pos_byte = CHAR_TO_BYTE (pos); stop = CHAR_TO_BYTE (XFIXNUM (end)); end_byte = stop; /* If we don't want undo, turn off putting stuff on the list. That's faster than getting rid of things, and it prevents even the entry for a first change. Also inhibit locking the file. */ if (!changed && !NILP (noundo)) { record_unwind_protect (subst_char_in_region_unwind, BVAR (current_buffer, undo_list)); bset_undo_list (current_buffer, Qt); /* Don't do file-locking. */ record_unwind_protect (subst_char_in_region_unwind_1, BVAR (current_buffer, filename)); bset_filename (current_buffer, Qnil); } if (pos_byte < GPT_BYTE) stop = min (stop, GPT_BYTE); while (1) { ptrdiff_t pos_byte_next = pos_byte; if (pos_byte >= stop) { if (pos_byte >= end_byte) break; stop = end_byte; } p = BYTE_POS_ADDR (pos_byte); if (multibyte_p) pos_byte_next += next_char_len (pos_byte_next); else ++pos_byte_next; if (pos_byte_next - pos_byte == len && p[0] == fromstr[0] && (len == 1 || (p[1] == fromstr[1] && (len == 2 || (p[2] == fromstr[2] && (len == 3 || p[3] == fromstr[3])))))) { if (changed < 0) /* We've already seen this and run the before-change-function; this time we only need to record the actual position. */ changed = pos; else if (!changed) { changed = -1; modify_text (pos, XFIXNUM (end)); if (! NILP (noundo)) { modiff_count m = MODIFF; if (SAVE_MODIFF == m - 1) SAVE_MODIFF = m; if (BUF_AUTOSAVE_MODIFF (current_buffer) == m - 1) BUF_AUTOSAVE_MODIFF (current_buffer) = m; } /* The before-change-function may have moved the gap or even modified the buffer so we should start over. */ goto restart; } /* Take care of the case where the new character combines with neighboring bytes. */ if (maybe_byte_combining && (maybe_byte_combining == COMBINING_AFTER ? (pos_byte_next < Z_BYTE && ! CHAR_HEAD_P (FETCH_BYTE (pos_byte_next))) : ((pos_byte_next < Z_BYTE && ! CHAR_HEAD_P (FETCH_BYTE (pos_byte_next))) || (pos_byte > BEG_BYTE && ! ASCII_CHAR_P (FETCH_BYTE (pos_byte - 1)))))) { Lisp_Object tem, string; tem = BVAR (current_buffer, undo_list); /* Make a multibyte string containing this single character. */ string = make_multibyte_string ((char *) tostr, 1, len); /* replace_range is less efficient, because it moves the gap, but it handles combining correctly. */ replace_range (pos, pos + 1, string, false, false, true, false, false); pos_byte_next = CHAR_TO_BYTE (pos); if (pos_byte_next > pos_byte) /* Before combining happened. We should not increment POS. So, to cancel the later increment of POS, decrease it now. */ pos--; else pos_byte_next += next_char_len (pos_byte_next); if (! NILP (noundo)) bset_undo_list (current_buffer, tem); } else { if (NILP (noundo)) record_change (pos, 1); for (i = 0; i < len; i++) *p++ = tostr[i]; #ifdef HAVE_TREE_SITTER /* In the previous branch, replace_range() notifies changes to tree-sitter, but in this branch, we modified buffer content manually, so we need to notify tree-sitter manually. */ treesit_record_change (pos_byte, pos_byte + len, pos_byte + len); #endif } last_changed = pos + 1; } pos_byte = pos_byte_next; pos++; } if (changed > 0) { signal_after_change (changed, last_changed - changed, last_changed - changed); update_compositions (changed, last_changed, CHECK_ALL); } return unbind_to (count, Qnil); } static Lisp_Object check_translation (ptrdiff_t, ptrdiff_t, ptrdiff_t, Lisp_Object); /* Helper function for Ftranslate_region_internal. Check if a character sequence at POS (POS_BYTE) matches an element of VAL. VAL is a list (([FROM-CHAR ...] . TO) ...). If a matching element is found, return it. Otherwise return Qnil. */ static Lisp_Object check_translation (ptrdiff_t pos, ptrdiff_t pos_byte, ptrdiff_t end, Lisp_Object val) { int initial_buf[16]; int *buf = initial_buf; ptrdiff_t buf_size = ARRAYELTS (initial_buf); int *bufalloc = 0; ptrdiff_t buf_used = 0; Lisp_Object result = Qnil; for (; CONSP (val); val = XCDR (val)) { Lisp_Object elt; ptrdiff_t len, i; elt = XCAR (val); if (! CONSP (elt)) continue; elt = XCAR (elt); if (! VECTORP (elt)) continue; len = ASIZE (elt); if (len <= end - pos) { for (i = 0; i < len; i++) { if (buf_used <= i) { unsigned char *p = BYTE_POS_ADDR (pos_byte); int len1; if (buf_used == buf_size) { bufalloc = xpalloc (bufalloc, &buf_size, 1, -1, sizeof *bufalloc); if (buf == initial_buf) memcpy (bufalloc, buf, sizeof initial_buf); buf = bufalloc; } buf[buf_used++] = string_char_and_length (p, &len1); pos_byte += len1; } if (XFIXNUM (AREF (elt, i)) != buf[i]) break; } if (i == len) { result = XCAR (val); break; } } } xfree (bufalloc); return result; } DEFUN ("translate-region-internal", Ftranslate_region_internal, Stranslate_region_internal, 3, 3, 0, doc: /* Internal use only. From START to END, translate characters according to TABLE. TABLE is a string or a char-table; the Nth character in it is the mapping for the character with code N. It returns the number of characters changed. */) (Lisp_Object start, Lisp_Object end, Lisp_Object table) { int translatable_chars = MAX_CHAR + 1; bool multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters)); bool string_multibyte UNINIT; validate_region (&start, &end); if (STRINGP (table)) { if (! multibyte) table = string_make_unibyte (table); translatable_chars = min (translatable_chars, SBYTES (table)); string_multibyte = STRING_MULTIBYTE (table); } else if (! (CHAR_TABLE_P (table) && EQ (XCHAR_TABLE (table)->purpose, Qtranslation_table))) error ("Not a translation table"); ptrdiff_t pos = XFIXNUM (start); ptrdiff_t pos_byte = CHAR_TO_BYTE (pos); ptrdiff_t end_pos = XFIXNUM (end); modify_text (pos, end_pos); ptrdiff_t characters_changed = 0; while (pos < end_pos) { unsigned char *p = BYTE_POS_ADDR (pos_byte); unsigned char *str UNINIT; unsigned char buf[MAX_MULTIBYTE_LENGTH]; int len, oc; if (multibyte) oc = string_char_and_length (p, &len); else oc = *p, len = 1; if (oc < translatable_chars) { int nc; /* New character. */ int str_len UNINIT; Lisp_Object val; if (STRINGP (table)) { /* Reload as signal_after_change in last iteration may GC. */ unsigned char *tt = SDATA (table); if (string_multibyte) { str = tt + string_char_to_byte (table, oc); nc = string_char_and_length (str, &str_len); } else { nc = tt[oc]; if (! ASCII_CHAR_P (nc) && multibyte) { str_len = BYTE8_STRING (nc, buf); str = buf; } else { str_len = 1; str = tt + oc; } } } else { nc = oc; val = CHAR_TABLE_REF (table, oc); if (CHARACTERP (val)) { nc = XFIXNAT (val); str_len = CHAR_STRING (nc, buf); str = buf; } else if (VECTORP (val) || (CONSP (val))) { /* VAL is [TO_CHAR ...] or (([FROM-CHAR ...] . TO) ...) where TO is TO-CHAR or [TO-CHAR ...]. */ nc = -1; } } if (nc != oc && nc >= 0) { /* Simple one char to one char translation. */ if (len != str_len) { Lisp_Object string; /* This is less efficient, because it moves the gap, but it should handle multibyte characters correctly. */ string = make_multibyte_string ((char *) str, 1, str_len); replace_range (pos, pos + 1, string, true, false, true, false, false); len = str_len; } else { record_change (pos, 1); while (str_len-- > 0) *p++ = *str++; signal_after_change (pos, 1, 1); update_compositions (pos, pos + 1, CHECK_BORDER); #ifdef HAVE_TREE_SITTER /* In the previous branch, replace_range() notifies changes to tree-sitter, but in this branch, we modified buffer content manually, so we need to notify tree-sitter manually. */ treesit_record_change (pos_byte, pos_byte + len, pos_byte + len); #endif } characters_changed++; } else if (nc < 0) { if (CONSP (val)) { val = check_translation (pos, pos_byte, end_pos, val); if (NILP (val)) { pos_byte += len; pos++; continue; } /* VAL is ([FROM-CHAR ...] . TO). */ len = ASIZE (XCAR (val)); val = XCDR (val); } else len = 1; Lisp_Object string = (VECTORP (val) ? Fconcat (1, &val) : Fmake_string (make_fixnum (1), val, Qnil)); replace_range (pos, pos + len, string, true, false, true, false, false); pos_byte += SBYTES (string); pos += SCHARS (string); characters_changed += SCHARS (string); end_pos += SCHARS (string) - len; continue; } } pos_byte += len; pos++; } return make_fixnum (characters_changed); } DEFUN ("delete-region", Fdelete_region, Sdelete_region, 2, 2, "r", doc: /* Delete the text between START and END. If called interactively, delete the region between point and mark. This command deletes buffer text without modifying the kill ring. */) (Lisp_Object start, Lisp_Object end) { validate_region (&start, &end); del_range (XFIXNUM (start), XFIXNUM (end)); return Qnil; } DEFUN ("delete-and-extract-region", Fdelete_and_extract_region, Sdelete_and_extract_region, 2, 2, 0, doc: /* Delete the text between START and END and return it. */) (Lisp_Object start, Lisp_Object end) { validate_region (&start, &end); if (XFIXNUM (start) == XFIXNUM (end)) return empty_unibyte_string; return del_range_1 (XFIXNUM (start), XFIXNUM (end), 1, 1); } /* Alist of buffers in which labeled restrictions are used. The car of each list element is a buffer, the cdr is a list of triplets (label begv-marker zv-marker). The last triplet of that list always uses the (uninterned) Qoutermost_restriction label, and records the restriction bounds that were current when the first labeled restriction was entered (which may be a narrowing that was set by the user and is visible on display). This alist is used internally by narrow-to-region, internal--labeled-narrow-to-region, widen, internal--labeled-widen and save-restriction. For efficiency reasons, an alist is used instead of a buffer-local variable: otherwise reset_outermost_restrictions, which is called during each redisplay cycle, would have to loop through all live buffers. */ static Lisp_Object labeled_restrictions; /* Add BUF with its list of labeled RESTRICTIONS in the labeled_restrictions alist. */ static void labeled_restrictions_add (Lisp_Object buf, Lisp_Object restrictions) { labeled_restrictions = nconc2 (list1 (list2 (buf, restrictions)), labeled_restrictions); } /* Remove BUF and its list of labeled restrictions from the labeled_restrictions alist. Do nothing if BUF is not present in labeled_restrictions. */ static void labeled_restrictions_remove (Lisp_Object buf) { labeled_restrictions = Fdelq (Fassoc (buf, labeled_restrictions, Qnil), labeled_restrictions); } /* Retrieve one of the labeled restriction bounds in BUF from the labeled_restrictions alist, as a marker, or return nil if BUF is not in labeled_restrictions or is a killed buffer. When OUTERMOST is true, the restriction bounds that were current when the first labeled restriction was entered are returned. Otherwise the bounds of the innermost labeled restriction are returned. */ static Lisp_Object labeled_restrictions_get_bound (Lisp_Object buf, bool begv, bool outermost) { if (NILP (Fbuffer_live_p (buf))) return Qnil; Lisp_Object restrictions = assq_no_quit (buf, labeled_restrictions); if (NILP (restrictions)) return Qnil; restrictions = XCAR (XCDR (restrictions)); Lisp_Object bounds = outermost ? XCDR (assq_no_quit (Qoutermost_restriction, restrictions)) : XCDR (XCAR (restrictions)); eassert (! NILP (bounds)); Lisp_Object marker = begv ? XCAR (bounds) : XCAR (XCDR (bounds)); eassert (EQ (Fmarker_buffer (marker), buf)); return marker; } /* Retrieve the label of the innermost labeled restriction in BUF. Return nil if BUF is not in labeled_restrictions or is a killed buffer. */ static Lisp_Object labeled_restrictions_peek_label (Lisp_Object buf) { if (NILP (Fbuffer_live_p (buf))) return Qnil; Lisp_Object restrictions = assq_no_quit (buf, labeled_restrictions); if (NILP (restrictions)) return Qnil; Lisp_Object label = XCAR (XCAR (XCAR (XCDR (restrictions)))); eassert (! NILP (label)); return label; } /* Add a labeled RESTRICTION for BUF in the labeled_restrictions alist. */ static void labeled_restrictions_push (Lisp_Object buf, Lisp_Object restriction) { Lisp_Object restrictions = assq_no_quit (buf, labeled_restrictions); if (NILP (restrictions)) labeled_restrictions_add (buf, list1 (restriction)); else XSETCDR (restrictions, list1 (nconc2 (list1 (restriction), XCAR (XCDR (restrictions))))); } /* Remove the innermost labeled restriction in BUF from the labeled_restrictions alist. Do nothing if BUF is not present in labeled_restrictions. */ static void labeled_restrictions_pop (Lisp_Object buf) { Lisp_Object restrictions = assq_no_quit (buf, labeled_restrictions); if (NILP (restrictions)) return; if (BASE_EQ (labeled_restrictions_peek_label (buf), Qoutermost_restriction)) labeled_restrictions_remove (buf); else XSETCDR (restrictions, list1 (XCDR (XCAR (XCDR (restrictions))))); } /* Unconditionally remove all labeled restrictions in current_buffer. */ void labeled_restrictions_remove_in_current_buffer (void) { labeled_restrictions_remove (Fcurrent_buffer ()); } static void unwind_reset_outermost_restriction (Lisp_Object buf) { Lisp_Object begv = labeled_restrictions_get_bound (buf, true, false); Lisp_Object zv = labeled_restrictions_get_bound (buf, false, false); if (! NILP (begv) && ! NILP (zv)) { SET_BUF_BEGV_BOTH (XBUFFER (buf), marker_position (begv), marker_byte_position (begv)); SET_BUF_ZV_BOTH (XBUFFER (buf), marker_position (zv), marker_byte_position (zv)); } else labeled_restrictions_remove (buf); } /* Restore the restriction bounds that were current when the first labeled restriction was entered, and restore the bounds of the innermost labeled restriction upon return. In particular, this function is called when redisplay starts, so that if a Lisp function executed during redisplay calls (redisplay) while labeled restrictions are in effect, these restrictions will not become visible on display. See https://debbugs.gnu.org/cgi/bugreport.cgi?bug=57207#140 and https://debbugs.gnu.org/cgi/bugreport.cgi?bug=57207#254 for example recipes that demonstrate why this is necessary. */ void reset_outermost_restrictions (void) { Lisp_Object val, buf; for (val = labeled_restrictions; CONSP (val); val = XCDR (val)) { buf = XCAR (XCAR (val)); eassert (BUFFERP (buf)); Lisp_Object begv = labeled_restrictions_get_bound (buf, true, true); Lisp_Object zv = labeled_restrictions_get_bound (buf, false, true); if (! NILP (begv) && ! NILP (zv)) { SET_BUF_BEGV_BOTH (XBUFFER (buf), marker_position (begv), marker_byte_position (begv)); SET_BUF_ZV_BOTH (XBUFFER (buf), marker_position (zv), marker_byte_position (zv)); record_unwind_protect (unwind_reset_outermost_restriction, buf); } else labeled_restrictions_remove (buf); } } /* Helper functions to save and restore the labeled restrictions of the current buffer in Fsave_restriction. */ static Lisp_Object labeled_restrictions_save (void) { Lisp_Object buf = Fcurrent_buffer (); Lisp_Object restrictions = assq_no_quit (buf, labeled_restrictions); if (! NILP (restrictions)) restrictions = XCAR (XCDR (restrictions)); return Fcons (buf, Fcopy_sequence (restrictions)); } static void labeled_restrictions_restore (Lisp_Object buf_and_restrictions) { Lisp_Object buf = XCAR (buf_and_restrictions); Lisp_Object restrictions = XCDR (buf_and_restrictions); labeled_restrictions_remove (buf); if (! NILP (restrictions)) labeled_restrictions_add (buf, restrictions); } static void unwind_labeled_narrow_to_region (Lisp_Object label) { Finternal__labeled_widen (label); } /* Narrow current_buffer to BEGV-ZV with a restriction labeled with LABEL. */ void labeled_narrow_to_region (Lisp_Object begv, Lisp_Object zv, Lisp_Object label) { record_unwind_protect (restore_point_unwind, Fpoint_marker ()); record_unwind_protect (unwind_labeled_narrow_to_region, label); Finternal__labeled_narrow_to_region (begv, zv, label); } DEFUN ("widen", Fwiden, Swiden, 0, 0, "", doc: /* Remove restrictions (narrowing) from current buffer. This allows the buffer's full text to be seen and edited. However, when restrictions have been set by `with-restriction' with a label, `widen' restores the narrowing limits set by `with-restriction'. To gain access to other portions of the buffer, use `without-restriction' with the same label. */) (void) { Lisp_Object buf = Fcurrent_buffer (); Lisp_Object label = labeled_restrictions_peek_label (buf); if (NILP (label)) { if (BEG != BEGV || Z != ZV) current_buffer->clip_changed = 1; BEGV = BEG; BEGV_BYTE = BEG_BYTE; SET_BUF_ZV_BOTH (current_buffer, Z, Z_BYTE); } else { Lisp_Object begv = labeled_restrictions_get_bound (buf, true, false); Lisp_Object zv = labeled_restrictions_get_bound (buf, false, false); eassert (! NILP (begv) && ! NILP (zv)); ptrdiff_t begv_charpos = marker_position (begv); ptrdiff_t zv_charpos = marker_position (zv); if (begv_charpos != BEGV || zv_charpos != ZV) current_buffer->clip_changed = 1; SET_BUF_BEGV_BOTH (current_buffer, begv_charpos, marker_byte_position (begv)); SET_BUF_ZV_BOTH (current_buffer, zv_charpos, marker_byte_position (zv)); /* If the only remaining bounds in labeled_restrictions for current_buffer are the bounds that were set by the user, no labeled restriction is in effect in current_buffer anymore: remove it from the labeled_restrictions alist. */ if (BASE_EQ (label, Qoutermost_restriction)) labeled_restrictions_pop (buf); } /* Changing the buffer bounds invalidates any recorded current column. */ invalidate_current_column (); return Qnil; } DEFUN ("narrow-to-region", Fnarrow_to_region, Snarrow_to_region, 2, 2, "r", doc: /* Restrict editing in this buffer to the current region. The rest of the text becomes temporarily invisible and untouchable but is not deleted; if you save the buffer in a file, the invisible text is included in the file. \\[widen] makes all visible again. See also `save-restriction'. When calling from Lisp, pass two arguments START and END: positions (integers or markers) bounding the text that should remain visible. However, when restrictions have been set by `with-restriction' with a label, `narrow-to-region' can be used only within the limits of these restrictions. If the START or END arguments are outside these limits, the corresponding limit set by `with-restriction' is used instead of the argument. To gain access to other portions of the buffer, use `without-restriction' with the same label. */) (Lisp_Object start, Lisp_Object end) { EMACS_INT s = fix_position (start), e = fix_position (end); if (e < s) { EMACS_INT tem = s; s = e; e = tem; } if (!(BEG <= s && s <= e && e <= Z)) args_out_of_range (start, end); Lisp_Object buf = Fcurrent_buffer (); if (! NILP (labeled_restrictions_peek_label (buf))) { /* Limit the start and end positions to those of the innermost labeled restriction. */ Lisp_Object begv = labeled_restrictions_get_bound (buf, true, false); Lisp_Object zv = labeled_restrictions_get_bound (buf, false, false); eassert (! NILP (begv) && ! NILP (zv)); ptrdiff_t begv_charpos = marker_position (begv); ptrdiff_t zv_charpos = marker_position (zv); if (s < begv_charpos) s = begv_charpos; if (s > zv_charpos) s = zv_charpos; if (e < begv_charpos) e = begv_charpos; if (e > zv_charpos) e = zv_charpos; } if (BEGV != s || ZV != e) current_buffer->clip_changed = 1; SET_BUF_BEGV (current_buffer, s); SET_BUF_ZV (current_buffer, e); if (PT < s) SET_PT (s); if (e < PT) SET_PT (e); /* Changing the buffer bounds invalidates any recorded current column. */ invalidate_current_column (); return Qnil; } DEFUN ("internal--labeled-narrow-to-region", Finternal__labeled_narrow_to_region, Sinternal__labeled_narrow_to_region, 3, 3, 0, doc: /* Restrict this buffer to START-END, and label the restriction with LABEL. This is an internal function used by `with-restriction'. */) (Lisp_Object start, Lisp_Object end, Lisp_Object label) { Lisp_Object buf = Fcurrent_buffer (); Lisp_Object outermost_restriction = list3 (Qoutermost_restriction, Fpoint_min_marker (), Fpoint_max_marker ()); Fnarrow_to_region (start, end); if (NILP (labeled_restrictions_peek_label (buf))) labeled_restrictions_push (buf, outermost_restriction); labeled_restrictions_push (buf, list3 (label, Fpoint_min_marker (), Fpoint_max_marker ())); return Qnil; } DEFUN ("internal--labeled-widen", Finternal__labeled_widen, Sinternal__labeled_widen, 1, 1, 0, doc: /* Remove the current restriction if it is labeled with LABEL, and widen. This is an internal function used by `without-restriction'. */) (Lisp_Object label) { Lisp_Object buf = Fcurrent_buffer (); if (EQ (labeled_restrictions_peek_label (buf), label)) labeled_restrictions_pop (buf); Fwiden (); return Qnil; } static Lisp_Object save_restriction_save_1 (void) { if (BEGV == BEG && ZV == Z) /* The common case that the buffer isn't narrowed. We return just the buffer object, which save_restriction_restore recognizes as meaning `no restriction'. */ return Fcurrent_buffer (); else /* We have to save a restriction, so return a pair of markers, one for the beginning and one for the end. */ { Lisp_Object beg, end; beg = build_marker (current_buffer, BEGV, BEGV_BYTE); end = build_marker (current_buffer, ZV, ZV_BYTE); /* END must move forward if text is inserted at its exact location. */ XMARKER (end)->insertion_type = 1; return Fcons (beg, end); } } static void save_restriction_restore_1 (Lisp_Object data) { struct buffer *cur = NULL; struct buffer *buf = (CONSP (data) ? XMARKER (XCAR (data))->buffer : XBUFFER (data)); if (buf && buf != current_buffer && !NILP (BVAR (buf, pt_marker))) { /* If `buf' uses markers to keep track of PT, BEGV, and ZV (as is the case if it is or has an indirect buffer), then make sure it is current before we update BEGV, so set_buffer_internal takes care of managing those markers. */ cur = current_buffer; set_buffer_internal (buf); } if (CONSP (data)) /* A pair of marks bounding a saved restriction. */ { struct Lisp_Marker *beg = XMARKER (XCAR (data)); struct Lisp_Marker *end = XMARKER (XCDR (data)); eassert (buf == end->buffer); if (buf /* Verify marker still points to a buffer. */ && (beg->charpos != BUF_BEGV (buf) || end->charpos != BUF_ZV (buf))) /* The restriction has changed from the saved one, so restore the saved restriction. */ { ptrdiff_t pt = BUF_PT (buf); SET_BUF_BEGV_BOTH (buf, beg->charpos, beg->bytepos); SET_BUF_ZV_BOTH (buf, end->charpos, end->bytepos); if (pt < beg->charpos || pt > end->charpos) /* The point is outside the new visible range, move it inside. */ SET_BUF_PT_BOTH (buf, clip_to_bounds (beg->charpos, pt, end->charpos), clip_to_bounds (beg->bytepos, BUF_PT_BYTE (buf), end->bytepos)); buf->clip_changed = 1; /* Remember that the narrowing changed. */ } /* Detach the markers, and free the cons instead of waiting for GC. */ detach_marker (XCAR (data)); detach_marker (XCDR (data)); free_cons (XCONS (data)); } else /* A buffer, which means that there was no old restriction. */ { if (buf /* Verify marker still points to a buffer. */ && (BUF_BEGV (buf) != BUF_BEG (buf) || BUF_ZV (buf) != BUF_Z (buf))) /* The buffer has been narrowed, get rid of the narrowing. */ { SET_BUF_BEGV_BOTH (buf, BUF_BEG (buf), BUF_BEG_BYTE (buf)); SET_BUF_ZV_BOTH (buf, BUF_Z (buf), BUF_Z_BYTE (buf)); buf->clip_changed = 1; /* Remember that the narrowing changed. */ } } /* Changing the buffer bounds invalidates any recorded current column. */ invalidate_current_column (); if (cur) set_buffer_internal (cur); } Lisp_Object save_restriction_save (void) { Lisp_Object restriction = save_restriction_save_1 (); Lisp_Object labeled_restrictions = labeled_restrictions_save (); return Fcons (restriction, labeled_restrictions); } void save_restriction_restore (Lisp_Object data) { labeled_restrictions_restore (XCDR (data)); save_restriction_restore_1 (XCAR (data)); } DEFUN ("save-restriction", Fsave_restriction, Ssave_restriction, 0, UNEVALLED, 0, doc: /* Execute BODY, saving and restoring current buffer's restrictions. The buffer's restrictions make parts of the beginning and end invisible. \(They are set up with `narrow-to-region' and eliminated with `widen'.) This special form, `save-restriction', saves the current buffer's restrictions, including those that were set by `with-restriction' with a label argument, when it is entered, and restores them when it is exited. So any `narrow-to-region' within BODY lasts only until the end of the form. The old restrictions settings are restored even in case of abnormal exit \(throw or error). The value returned is the value of the last form in BODY. Note: if you are using both `save-excursion' and `save-restriction', use `save-excursion' outermost: (save-excursion (save-restriction ...)) usage: (save-restriction &rest BODY) */) (Lisp_Object body) { register Lisp_Object val; specpdl_ref count = SPECPDL_INDEX (); record_unwind_protect (save_restriction_restore, save_restriction_save ()); val = Fprogn (body); return unbind_to (count, val); } /* i18n (internationalization). */ DEFUN ("ngettext", Fngettext, Sngettext, 3, 3, 0, doc: /* Return the translation of MSGID (plural MSGID-PLURAL) depending on N. MSGID is the singular form of the string to be converted; use it as the key for the search in the translation catalog. MSGID-PLURAL is the plural form. Use N to select the proper translation. If no message catalog is found, MSGID is returned if N is equal to 1, otherwise MSGID-PLURAL. */) (Lisp_Object msgid, Lisp_Object msgid_plural, Lisp_Object n) { CHECK_STRING (msgid); CHECK_STRING (msgid_plural); CHECK_INTEGER (n); /* Placeholder implementation until we get our act together. */ return BASE_EQ (n, make_fixnum (1)) ? msgid : msgid_plural; } DEFUN ("message", Fmessage, Smessage, 1, MANY, 0, doc: /* Display a message at the bottom of the screen. The message also goes into the `*Messages*' buffer, if `message-log-max' is non-nil. (In keyboard macros, that's all it does.) Return the message. In batch mode, the message is printed to the standard error stream, followed by a newline. The first argument is a format control string, and the rest are data to be formatted under control of the string. Percent sign (%), grave accent (\\=`) and apostrophe (\\=') are special in the format; see `format-message' for details. To display STRING without special treatment, use (message "%s" STRING). If the first argument is nil or the empty string, the function clears any existing message; this lets the minibuffer contents show. See also `current-message'. usage: (message FORMAT-STRING &rest ARGS) */) (ptrdiff_t nargs, Lisp_Object *args) { if (NILP (args[0]) || (STRINGP (args[0]) && SBYTES (args[0]) == 0)) { message1 (0); return args[0]; } else { Lisp_Object val = Fformat_message (nargs, args); message3 (val); return val; } } DEFUN ("message-box", Fmessage_box, Smessage_box, 1, MANY, 0, doc: /* Display a message, in a dialog box if possible. If a dialog box is not available, use the echo area. The first argument is a format control string, and the rest are data to be formatted under control of the string. See `format-message' for details. If the first argument is nil or the empty string, clear any existing message; let the minibuffer contents show. usage: (message-box FORMAT-STRING &rest ARGS) */) (ptrdiff_t nargs, Lisp_Object *args) { if (NILP (args[0])) { message1 (0); return Qnil; } else { Lisp_Object val = Fformat_message (nargs, args); Lisp_Object pane, menu; pane = list1 (Fcons (build_string ("OK"), Qt)); menu = Fcons (val, pane); Fx_popup_dialog (Qt, menu, Qt); return val; } } DEFUN ("message-or-box", Fmessage_or_box, Smessage_or_box, 1, MANY, 0, doc: /* Display a message in a dialog box or in the echo area. If this command was invoked with the mouse, use a dialog box if `use-dialog-box' is non-nil. Otherwise, use the echo area. The first argument is a format control string, and the rest are data to be formatted under control of the string. See `format-message' for details. If the first argument is nil or the empty string, clear any existing message; let the minibuffer contents show. usage: (message-or-box FORMAT-STRING &rest ARGS) */) (ptrdiff_t nargs, Lisp_Object *args) { if ((NILP (last_nonmenu_event) || CONSP (last_nonmenu_event)) && use_dialog_box) return Fmessage_box (nargs, args); return Fmessage (nargs, args); } DEFUN ("current-message", Fcurrent_message, Scurrent_message, 0, 0, 0, doc: /* Return the string currently displayed in the echo area, or nil if none. */) (void) { return current_message (); } DEFUN ("propertize", Fpropertize, Spropertize, 1, MANY, 0, doc: /* Return a copy of STRING with text properties added. First argument is the string to copy. Remaining arguments form a sequence of PROPERTY VALUE pairs for text properties to add to the result. See Info node `(elisp) Text Properties' for more information. usage: (propertize STRING &rest PROPERTIES) */) (ptrdiff_t nargs, Lisp_Object *args) { Lisp_Object properties, string; ptrdiff_t i; /* Number of args must be odd. */ if ((nargs & 1) == 0) xsignal2 (Qwrong_number_of_arguments, Qpropertize, make_fixnum (nargs)); properties = string = Qnil; /* First argument must be a string. */ CHECK_STRING (args[0]); string = Fcopy_sequence (args[0]); for (i = 1; i < nargs; i += 2) properties = Fcons (args[i], Fcons (args[i + 1], properties)); Fadd_text_properties (make_fixnum (0), make_fixnum (SCHARS (string)), properties, string); return string; } /* Convert the prefix of STR from ASCII decimal digits to a number. Set *STR_END to the address of the first non-digit. Return the number, or PTRDIFF_MAX on overflow. Return 0 if there is no number. This is like strtol for ptrdiff_t and base 10 and C locale, except without negative numbers or errno. */ static ptrdiff_t str2num (char *str, char **str_end) { ptrdiff_t n = 0; for (; c_isdigit (*str); str++) if (ckd_mul (&n, n, 10) || ckd_add (&n, n, *str - '0')) n = PTRDIFF_MAX; *str_end = str; return n; } DEFUN ("format", Fformat, Sformat, 1, MANY, 0, doc: /* Format a string out of a format-string and arguments. The first argument is a format control string. The other arguments are substituted into it to make the result, a string. The format control string may contain %-sequences meaning to substitute the next available argument, or the argument explicitly specified: %s means produce a string argument. Actually, produces any object with `princ'. %d means produce as signed number in decimal. %o means produce a number in octal. %x means produce a number in hex. %X is like %x, but uses upper case. %e means produce a number in exponential notation. %f means produce a number in decimal-point notation. %g means produce a number in exponential notation if the exponent would be less than -4 or greater than or equal to the precision (default: 6); otherwise it produces in decimal-point notation. %c means produce a number as a single character. %S means produce any object as an s-expression (using `prin1'). The argument used for %d, %o, %x, %e, %f, %g or %c must be a number. %o, %x, and %X treat arguments as unsigned if `binary-as-unsigned' is t (this is experimental; email 32252@debbugs.gnu.org if you need it). Use %% to put a single % into the output. A %-sequence other than %% may contain optional field number, flag, width, and precision specifiers, as follows: %character where field is [0-9]+ followed by a literal dollar "$", flags is [+ #0-]+, width is [0-9]+, and precision is a literal period "." followed by [0-9]+. If a %-sequence is numbered with a field with positive value N, the Nth argument is substituted instead of the next one. A format can contain either numbered or unnumbered %-sequences but not both, except that %% can be mixed with numbered %-sequences. The + flag character inserts a + before any nonnegative number, while a space inserts a space before any nonnegative number; these flags affect only numeric %-sequences, and the + flag takes precedence. The - and 0 flags affect the width specifier, as described below. The # flag means to use an alternate display form for %o, %x, %X, %e, %f, and %g sequences: for %o, it ensures that the result begins with \"0\"; for %x and %X, it prefixes nonzero results with \"0x\" or \"0X\"; for %e and %f, it causes a decimal point to be included even if the precision is zero; for %g, it causes a decimal point to be included even if the precision is zero, and also forces trailing zeros after the decimal point to be left in place. The width specifier supplies a lower limit for the length of the produced representation. The padding, if any, normally goes on the left, but it goes on the right if the - flag is present. The padding character is normally a space, but it is 0 if the 0 flag is present. The 0 flag is ignored if the - flag is present, or the format sequence is something other than %d, %o, %x, %e, %f, and %g. For %e and %f sequences, the number after the "." in the precision specifier says how many decimal places to show; if zero, the decimal point itself is omitted. For %g, the precision specifies how many significant digits to produce; zero or omitted are treated as 1. For %s and %S, the precision specifier truncates the string to the given width. Text properties, if any, are copied from the format-string to the produced text. usage: (format STRING &rest OBJECTS) */) (ptrdiff_t nargs, Lisp_Object *args) { return styled_format (nargs, args, false); } DEFUN ("format-message", Fformat_message, Sformat_message, 1, MANY, 0, doc: /* Format a string out of a format-string and arguments. The first argument is a format control string. The other arguments are substituted into it to make the result, a string. This acts like `format', except it also replaces each grave accent (\\=`) by a left quote, and each apostrophe (\\=') by a right quote. The left and right quote replacement characters are specified by `text-quoting-style'. usage: (format-message STRING &rest OBJECTS) */) (ptrdiff_t nargs, Lisp_Object *args) { return styled_format (nargs, args, true); } /* Implement ‘format-message’ if MESSAGE is true, ‘format’ otherwise. */ static Lisp_Object styled_format (ptrdiff_t nargs, Lisp_Object *args, bool message) { enum { /* Maximum precision for a %f conversion such that the trailing output digit might be nonzero. Any precision larger than this will not yield useful information. */ USEFUL_PRECISION_MAX = ((1 - LDBL_MIN_EXP) * (FLT_RADIX == 2 || FLT_RADIX == 10 ? 1 : FLT_RADIX == 16 ? 4 : -1)), /* Maximum number of bytes (including terminating null) generated by any format, if precision is no more than USEFUL_PRECISION_MAX. On all practical hosts, %Lf is the worst case. */ SPRINTF_BUFSIZE = (sizeof "-." + (LDBL_MAX_10_EXP + 1) + USEFUL_PRECISION_MAX) }; verify (USEFUL_PRECISION_MAX > 0); ptrdiff_t n; /* The number of the next arg to substitute. */ char initial_buffer[1000 + SPRINTF_BUFSIZE]; char *buf = initial_buffer; ptrdiff_t bufsize = sizeof initial_buffer; ptrdiff_t max_bufsize = STRING_BYTES_BOUND + 1; char *p; specpdl_ref buf_save_value_index UNINIT; char *format, *end; ptrdiff_t nchars; /* When we make a multibyte string, we must pay attention to the byte combining problem, i.e., a byte may be combined with a multibyte character of the previous string. This flag tells if we must consider such a situation or not. */ bool maybe_combine_byte; Lisp_Object val; bool arg_intervals = false; USE_SAFE_ALLOCA; sa_avail -= sizeof initial_buffer; /* Information recorded for each format spec. */ struct info { /* The corresponding argument, converted to string if conversion was needed. */ Lisp_Object argument; /* The start and end bytepos in the output string. */ ptrdiff_t start, end; /* The start bytepos of the spec in the format string. */ ptrdiff_t fbeg; /* Whether the argument is a string with intervals. */ bool_bf intervals : 1; } *info; CHECK_STRING (args[0]); char *format_start = SSDATA (args[0]); bool multibyte_format = STRING_MULTIBYTE (args[0]); ptrdiff_t formatlen = SBYTES (args[0]); bool fmt_props = !!string_intervals (args[0]); /* Upper bound on number of format specs. Each uses at least 2 chars. */ ptrdiff_t nspec_bound = SCHARS (args[0]) >> 1; /* Allocate the info and discarded tables. */ ptrdiff_t info_size, alloca_size; if (ckd_mul (&info_size, nspec_bound, sizeof *info) || ckd_add (&alloca_size, formatlen, info_size) || SIZE_MAX < alloca_size) memory_full (SIZE_MAX); info = SAFE_ALLOCA (alloca_size); /* discarded[I] is 1 if byte I of the format string was not copied into the output. It is 2 if byte I was not the first byte of its character. */ char *discarded = (char *) &info[nspec_bound]; memset (discarded, 0, formatlen); /* Try to determine whether the result should be multibyte. This is not always right; sometimes the result needs to be multibyte because of an object that we will pass through prin1. or because a grave accent or apostrophe is requoted, and in that case, we won't know it here. */ /* True if the output should be a multibyte string, which is true if any of the inputs is one. */ bool multibyte = multibyte_format; for (ptrdiff_t i = 1; !multibyte && i < nargs; i++) if (STRINGP (args[i]) && STRING_MULTIBYTE (args[i])) multibyte = true; Lisp_Object quoting_style = message ? Ftext_quoting_style () : Qnil; ptrdiff_t ispec; ptrdiff_t nspec = 0; /* True if a string needs to be allocated to hold the result. */ bool new_result = false; /* If we start out planning a unibyte result, then discover it has to be multibyte, we jump back to retry. */ retry: p = buf; nchars = 0; /* N is the argument index, ISPEC is the specification index. */ n = 0; ispec = 0; /* Scan the format and store result in BUF. */ format = format_start; end = format + formatlen; maybe_combine_byte = false; while (format != end) { /* The values of N, ISPEC, and FORMAT when the loop body is entered. */ ptrdiff_t n0 = n; ptrdiff_t ispec0 = ispec; char *format0 = format; char const *convsrc = format; unsigned char format_char = *format++; /* Number of bytes to be preallocated for the next directive's output. At the end of each iteration this is at least CONVBYTES_ROOM, and is greater if the current directive output was so large that it will be retried after buffer reallocation. */ ptrdiff_t convbytes = 1; enum { CONVBYTES_ROOM = SPRINTF_BUFSIZE - 1 }; eassert (p <= buf + bufsize - SPRINTF_BUFSIZE); if (format_char == '%') { /* General format specifications look like '%' [field-number] [flags] [field-width] [precision] format where field-number ::= [0-9]+ '$' flags ::= [-+0# ]+ field-width ::= [0-9]+ precision ::= '.' [0-9]* If present, a field-number specifies the argument number to substitute. Otherwise, the next argument is taken. If a field-width is specified, it specifies to which width the output should be padded with blanks, if the output string is shorter than field-width. If precision is specified, it specifies the number of digits to print after the '.' for floats, or the max. number of chars to print from a string. */ ptrdiff_t num; char *num_end; if (c_isdigit (*format)) { num = str2num (format, &num_end); if (*num_end == '$') { n = num - 1; format = num_end + 1; } } bool minus_flag = false; bool plus_flag = false; bool space_flag = false; bool sharp_flag = false; bool zero_flag = false; for (; ; format++) { switch (*format) { case '-': minus_flag = true; continue; case '+': plus_flag = true; continue; case ' ': space_flag = true; continue; case '#': sharp_flag = true; continue; case '0': zero_flag = true; continue; } break; } /* Ignore flags when sprintf ignores them. */ space_flag &= ! plus_flag; zero_flag &= ! minus_flag; num = str2num (format, &num_end); if (max_bufsize <= num) string_overflow (); ptrdiff_t field_width = num; bool precision_given = *num_end == '.'; ptrdiff_t precision = (precision_given ? str2num (num_end + 1, &num_end) : PTRDIFF_MAX); format = num_end; if (format == end) error ("Format string ends in middle of format specifier"); char conversion = *format++; memset (&discarded[format0 - format_start], 1, format - format0 - (conversion == '%')); info[ispec].fbeg = format0 - format_start; if (conversion == '%') { new_result = true; goto copy_char; } ++n; if (! (n < nargs)) error ("Not enough arguments for format string"); struct info *spec = &info[ispec++]; if (nspec < ispec) { spec->argument = args[n]; spec->intervals = false; nspec = ispec; } Lisp_Object arg = spec->argument; /* For 'S', prin1 the argument, and then treat like 's'. For 's', princ any argument that is not a string or symbol. But don't do this conversion twice, which might happen after retrying. */ if ((conversion == 'S' || (conversion == 's' && ! STRINGP (arg) && ! SYMBOLP (arg)))) { if (EQ (arg, args[n])) { Lisp_Object noescape = conversion == 'S' ? Qnil : Qt; spec->argument = arg = Fprin1_to_string (arg, noescape, Qnil); if (STRING_MULTIBYTE (arg) && ! multibyte) { multibyte = true; goto retry; } } conversion = 's'; } else if (conversion == 'c') { if (FIXNUMP (arg) && ! ASCII_CHAR_P (XFIXNUM (arg))) { if (!multibyte) { multibyte = true; goto retry; } spec->argument = arg = Fchar_to_string (arg); } if (!EQ (arg, args[n])) conversion = 's'; zero_flag = false; } if (SYMBOLP (arg)) { spec->argument = arg = SYMBOL_NAME (arg); if (STRING_MULTIBYTE (arg) && ! multibyte) { multibyte = true; goto retry; } } bool float_conversion = conversion == 'e' || conversion == 'f' || conversion == 'g'; if (conversion == 's') { if (format == end && format - format_start == 2 && ! string_intervals (args[0])) { val = arg; goto return_val; } /* handle case (precision[n] >= 0) */ ptrdiff_t prec = -1; if (precision_given) prec = precision; /* lisp_string_width ignores a precision of 0, but GNU libc functions print 0 characters when the precision is 0. Imitate libc behavior here. Changing lisp_string_width is the right thing, and will be done, but meanwhile we work with it. */ ptrdiff_t width, nbytes; ptrdiff_t nchars_string; if (prec == 0) width = nchars_string = nbytes = 0; else { ptrdiff_t nch, nby; nchars_string = SCHARS (arg); width = lisp_string_width (arg, 0, nchars_string, prec, &nch, &nby, false); if (prec < 0) nbytes = SBYTES (arg); else { nchars_string = nch; nbytes = nby; } } convbytes = nbytes; if (convbytes && multibyte && ! STRING_MULTIBYTE (arg)) convbytes = count_size_as_multibyte (SDATA (arg), nbytes); ptrdiff_t padding = width < field_width ? field_width - width : 0; if (max_bufsize - padding <= convbytes) string_overflow (); convbytes += padding; if (convbytes <= buf + bufsize - p) { /* If the format spec has properties, we should account for the padding on the left in the info[] array. */ if (fmt_props) spec->start = nchars; if (! minus_flag) { memset (p, ' ', padding); p += padding; nchars += padding; } /* If the properties will come from the argument, we don't extend them to the left due to padding. */ if (!fmt_props) spec->start = nchars; if (p > buf && multibyte && !ASCII_CHAR_P (*((unsigned char *) p - 1)) && STRING_MULTIBYTE (arg) && !CHAR_HEAD_P (SREF (arg, 0))) maybe_combine_byte = true; p += copy_text (SDATA (arg), (unsigned char *) p, nbytes, STRING_MULTIBYTE (arg), multibyte); nchars += nchars_string; if (minus_flag) { memset (p, ' ', padding); p += padding; nchars += padding; } spec->end = nchars; /* If this argument has text properties, record where in the result string it appears. */ if (string_intervals (arg)) spec->intervals = arg_intervals = true; new_result = true; convbytes = CONVBYTES_ROOM; } } else if (! (conversion == 'c' || conversion == 'd' || float_conversion || conversion == 'i' || conversion == 'o' || conversion == 'x' || conversion == 'X')) { unsigned char *p = (unsigned char *) format - 1; if (multibyte_format) error ("Invalid format operation %%%c", STRING_CHAR (p)); else error (*p <= 127 ? "Invalid format operation %%%c" : "Invalid format operation char #o%03o", *p); } else if (! (FIXNUMP (arg) || ((BIGNUMP (arg) || FLOATP (arg)) && conversion != 'c'))) error ("Format specifier doesn't match argument type"); else { /* Length of PRIdMAX without the trailing "d". */ enum { pMlen = sizeof PRIdMAX - 2 }; /* Avoid undefined behavior in underlying sprintf. */ if (conversion == 'd' || conversion == 'i') sharp_flag = false; /* Create the copy of the conversion specification, with any width and precision removed, with ".*" inserted, with "L" possibly inserted for floating-point formats, and with PRIdMAX (sans "d") inserted for integer formats. At most two flags F can be specified at once. */ char convspec[sizeof "%FF.*d" + max (sizeof "L" - 1, pMlen)]; char *f = convspec; *f++ = '%'; /* MINUS_FLAG and ZERO_FLAG are dealt with later. */ *f = '+'; f += plus_flag; *f = ' '; f += space_flag; *f = '#'; f += sharp_flag; *f++ = '.'; *f++ = '*'; if (! (float_conversion || conversion == 'c')) { memcpy (f, PRIdMAX, pMlen); f += pMlen; zero_flag &= ! precision_given; } *f++ = conversion; *f = '\0'; int prec = -1; if (precision_given) prec = min (precision, USEFUL_PRECISION_MAX); /* Characters to be inserted after spaces and before leading zeros. This can occur with bignums, since bignum_to_string does only leading '-'. */ char prefix[sizeof "-0x" - 1]; int prefixlen = 0; /* Use sprintf or bignum_to_string to format this number. Omit padding and excess precision, though, because sprintf limits output length to INT_MAX and bignum_to_string doesn't do padding or precision. Use five sprintf conversions: double, long double, unsigned char (passed as int), wide signed int, and wide unsigned int. Treat them separately because the sprintf ABI is sensitive to which type is passed. Be careful about integer overflow, NaNs, infinities, and conversions; for example, the min and max macros are not suitable here. */ ptrdiff_t sprintf_bytes; if (float_conversion) { /* Format as a long double if the arg is an integer that would lose less information than when formatting it as a double. Otherwise, format as a double; this is likely to be faster and better-tested. */ bool format_as_long_double = false; double darg; long double ldarg UNINIT; if (FLOATP (arg)) darg = XFLOAT_DATA (arg); else { bool format_bignum_as_double = false; if (LDBL_MANT_DIG <= DBL_MANT_DIG) { if (FIXNUMP (arg)) darg = XFIXNUM (arg); else format_bignum_as_double = true; } else { if (INTEGERP (arg)) { intmax_t iarg; uintmax_t uarg; if (integer_to_intmax (arg, &iarg)) ldarg = iarg; else if (integer_to_uintmax (arg, &uarg)) ldarg = uarg; else format_bignum_as_double = true; } if (!format_bignum_as_double) { darg = ldarg; format_as_long_double = darg != ldarg; } } if (format_bignum_as_double) darg = bignum_to_double (arg); } if (format_as_long_double) { f[-1] = 'L'; *f++ = conversion; *f = '\0'; sprintf_bytes = sprintf (p, convspec, prec, ldarg); } else sprintf_bytes = sprintf (p, convspec, prec, darg); } else if (conversion == 'c') { /* Don't use sprintf here, as it might mishandle prec. */ p[0] = XFIXNUM (arg); p[1] = '\0'; sprintf_bytes = prec != 0; } else if (BIGNUMP (arg)) bignum_arg: { int base = ((conversion == 'd' || conversion == 'i') ? 10 : conversion == 'o' ? 8 : 16); sprintf_bytes = bignum_bufsize (arg, base); if (sprintf_bytes <= buf + bufsize - p) { int signedbase = conversion == 'X' ? -base : base; sprintf_bytes = bignum_to_c_string (p, sprintf_bytes, arg, signedbase); bool negative = p[0] == '-'; prec = min (precision, sprintf_bytes - prefixlen); prefix[prefixlen] = plus_flag ? '+' : ' '; prefixlen += (plus_flag | space_flag) & !negative; prefix[prefixlen] = '0'; prefix[prefixlen + 1] = conversion; prefixlen += sharp_flag && base == 16 ? 2 : 0; } } else if (conversion == 'd' || conversion == 'i') { if (FIXNUMP (arg)) { intmax_t x = XFIXNUM (arg); sprintf_bytes = sprintf (p, convspec, prec, x); } else { strcpy (f - pMlen - 1, "f"); double x = XFLOAT_DATA (arg); /* Truncate and then convert -0 to 0, to be more consistent with %x etc.; see Bug#31938. */ x = trunc (x); x = x ? x : 0; sprintf_bytes = sprintf (p, convspec, 0, x); bool signedp = ! c_isdigit (p[0]); prec = min (precision, sprintf_bytes - signedp); } } else { uintmax_t x; bool negative; if (FIXNUMP (arg)) { if (binary_as_unsigned) { x = XUFIXNUM (arg); negative = false; } else { EMACS_INT i = XFIXNUM (arg); negative = i < 0; x = negative ? -i : i; } } else { double d = XFLOAT_DATA (arg); double abs_d = fabs (d); if (abs_d < UINTMAX_MAX + 1.0) { negative = d <= -1; x = abs_d; } else { arg = double_to_integer (d); goto bignum_arg; } } p[0] = negative ? '-' : plus_flag ? '+' : ' '; bool signedp = negative | plus_flag | space_flag; sprintf_bytes = sprintf (p + signedp, convspec, prec, x); sprintf_bytes += signedp; } /* Now the length of the formatted item is known, except it omits padding and excess precision. Deal with excess precision first. This happens when the format specifies ridiculously large precision, or when %d or %i formats a float that would ordinarily need fewer digits than a specified precision, or when a bignum is formatted using an integer format with enough precision. */ ptrdiff_t excess_precision = precision_given ? precision - prec : 0; ptrdiff_t trailing_zeros = 0; if (excess_precision != 0 && float_conversion) { if (! c_isdigit (p[sprintf_bytes - 1]) || (conversion == 'g' && ! (sharp_flag && strchr (p, '.')))) excess_precision = 0; trailing_zeros = excess_precision; } ptrdiff_t leading_zeros = excess_precision - trailing_zeros; /* Compute the total bytes needed for this item, including excess precision and padding. */ ptrdiff_t numwidth; if (ckd_add (&numwidth, prefixlen + sprintf_bytes, excess_precision)) numwidth = PTRDIFF_MAX; ptrdiff_t padding = numwidth < field_width ? field_width - numwidth : 0; if (max_bufsize - (prefixlen + sprintf_bytes) <= excess_precision || max_bufsize - padding <= numwidth) string_overflow (); convbytes = numwidth + padding; if (convbytes <= buf + bufsize - p) { bool signedp = p[0] == '-' || p[0] == '+' || p[0] == ' '; int beglen = (signedp + ((p[signedp] == '0' && (p[signedp + 1] == 'x' || p[signedp + 1] == 'X')) ? 2 : 0)); eassert (prefixlen == 0 || beglen == 0 || (beglen == 1 && p[0] == '-' && ! (prefix[0] == '-' || prefix[0] == '+' || prefix[0] == ' '))); if (zero_flag && 0 <= char_hexdigit (p[beglen])) { leading_zeros += padding; padding = 0; } if (leading_zeros == 0 && sharp_flag && conversion == 'o' && p[beglen] != '0') { leading_zeros++; padding -= padding != 0; } int endlen = 0; if (trailing_zeros && (conversion == 'e' || conversion == 'g')) { char *e = strchr (p, 'e'); if (e) endlen = p + sprintf_bytes - e; } ptrdiff_t midlen = sprintf_bytes - beglen - endlen; ptrdiff_t leading_padding = minus_flag ? 0 : padding; ptrdiff_t trailing_padding = padding - leading_padding; /* Insert padding and excess-precision zeros. The output contains the following components, in left-to-right order: LEADING_PADDING spaces. BEGLEN bytes taken from the start of sprintf output. PREFIXLEN bytes taken from the start of the prefix array. LEADING_ZEROS zeros. MIDLEN bytes taken from the middle of sprintf output. TRAILING_ZEROS zeros. ENDLEN bytes taken from the end of sprintf output. TRAILING_PADDING spaces. The sprintf output is taken from the buffer starting at P and continuing for SPRINTF_BYTES bytes. */ ptrdiff_t incr = (padding + leading_zeros + prefixlen + sprintf_bytes + trailing_zeros); /* Optimize for the typical case with padding or zeros. */ if (incr != sprintf_bytes) { /* Move data to make room to insert spaces and '0's. As this may entail overlapping moves, process the output right-to-left and use memmove. With any luck this code is rarely executed. */ char *src = p + sprintf_bytes; char *dst = p + incr; dst -= trailing_padding; memset (dst, ' ', trailing_padding); src -= endlen; dst -= endlen; memmove (dst, src, endlen); dst -= trailing_zeros; memset (dst, '0', trailing_zeros); src -= midlen; dst -= midlen; memmove (dst, src, midlen); dst -= leading_zeros; memset (dst, '0', leading_zeros); dst -= prefixlen; memcpy (dst, prefix, prefixlen); src -= beglen; dst -= beglen; memmove (dst, src, beglen); dst -= leading_padding; memset (dst, ' ', leading_padding); } p += incr; spec->start = nchars; spec->end = nchars += incr; new_result = true; convbytes = CONVBYTES_ROOM; } } } else { unsigned char str[MAX_MULTIBYTE_LENGTH]; if ((format_char == '`' || format_char == '\'') && EQ (quoting_style, Qcurve)) { if (! multibyte) { multibyte = true; goto retry; } convsrc = format_char == '`' ? uLSQM : uRSQM; convbytes = 3; new_result = true; } else if (format_char == '`' && EQ (quoting_style, Qstraight)) { convsrc = "'"; new_result = true; } else { /* Copy a single character from format to buf. */ if (multibyte_format) { /* Copy a whole multibyte character. */ if (p > buf && !ASCII_CHAR_P (*((unsigned char *) p - 1)) && !CHAR_HEAD_P (format_char)) maybe_combine_byte = true; while (! CHAR_HEAD_P (*format)) format++; convbytes = format - format0; memset (&discarded[format0 + 1 - format_start], 2, convbytes - 1); } else if (multibyte && !ASCII_CHAR_P (format_char)) { int c = BYTE8_TO_CHAR (format_char); convbytes = CHAR_STRING (c, str); convsrc = (char *) str; new_result = true; } } copy_char: memcpy (p, convsrc, convbytes); p += convbytes; nchars++; convbytes = CONVBYTES_ROOM; } ptrdiff_t used = p - buf; ptrdiff_t buflen_needed; if (ckd_add (&buflen_needed, used, convbytes)) string_overflow (); if (bufsize <= buflen_needed) { if (max_bufsize <= buflen_needed) string_overflow (); /* Either there wasn't enough room to store this conversion, or there won't be enough room to do a sprintf the next time through the loop. Allocate enough room (and then some). */ bufsize = (buflen_needed <= max_bufsize / 2 ? buflen_needed * 2 : max_bufsize); if (buf == initial_buffer) { buf = xmalloc (bufsize); buf_save_value_index = SPECPDL_INDEX (); record_unwind_protect_ptr (xfree, buf); memcpy (buf, initial_buffer, used); } else { buf = xrealloc (buf, bufsize); set_unwind_protect_ptr (buf_save_value_index, xfree, buf); } p = buf + used; if (convbytes != CONVBYTES_ROOM) { /* There wasn't enough room for this conversion; do it over. */ eassert (CONVBYTES_ROOM < convbytes); format = format0; n = n0; ispec = ispec0; } } } if (bufsize < p - buf) emacs_abort (); if (! new_result) { val = args[0]; goto return_val; } if (maybe_combine_byte) nchars = multibyte_chars_in_text ((unsigned char *) buf, p - buf); val = make_specified_string (buf, nchars, p - buf, multibyte); /* If the format string has text properties, or any of the string arguments has text properties, set up text properties of the result string. */ if (string_intervals (args[0]) || arg_intervals) { /* Add text properties from the format string. */ Lisp_Object len = make_fixnum (SCHARS (args[0])); Lisp_Object props = text_property_list (args[0], make_fixnum (0), len, Qnil); if (CONSP (props)) { ptrdiff_t bytepos = 0, position = 0, translated = 0; ptrdiff_t fieldn = 0; /* Adjust the bounds of each text property to the proper start and end in the output string. */ /* Put the positions in PROPS in increasing order, so that we can do (effectively) one scan through the position space of the format string. */ props = Fnreverse (props); /* BYTEPOS is the byte position in the format string, POSITION is the untranslated char position in it, TRANSLATED is the translated char position in BUF, and ARGN is the number of the next arg we will come to. */ for (Lisp_Object list = props; CONSP (list); list = XCDR (list)) { Lisp_Object item = XCAR (list); /* First adjust the property start position. */ ptrdiff_t pos = XFIXNUM (XCAR (item)); /* Advance BYTEPOS, POSITION, TRANSLATED and ARGN up to this position. */ for (; position < pos; bytepos++) { if (! discarded[bytepos]) position++, translated++; else if (discarded[bytepos] == 1) { position++; if (fieldn < nspec && bytepos >= info[fieldn].fbeg && translated == info[fieldn].start) { translated += info[fieldn].end - info[fieldn].start; fieldn++; } } } XSETCAR (item, make_fixnum (translated)); /* Likewise adjust the property end position. */ pos = XFIXNUM (XCAR (XCDR (item))); for (; position < pos; bytepos++) { if (! discarded[bytepos]) position++, translated++; else if (discarded[bytepos] == 1) { position++; if (fieldn < nspec && bytepos >= info[fieldn].fbeg && translated == info[fieldn].start) { translated += info[fieldn].end - info[fieldn].start; fieldn++; } } } XSETCAR (XCDR (item), make_fixnum (translated)); } add_text_properties_from_list (val, props, make_fixnum (0)); } /* Add text properties from arguments. */ if (arg_intervals) for (ptrdiff_t i = 0; i < nspec; i++) if (info[i].intervals) { len = make_fixnum (SCHARS (info[i].argument)); Lisp_Object new_len = make_fixnum (info[i].end - info[i].start); props = text_property_list (info[i].argument, make_fixnum (0), len, Qnil); props = extend_property_ranges (props, len, new_len); /* If successive arguments have properties, be sure that the value of `composition' property be the copy. */ if (1 < i && info[i - 1].end) make_composition_value_copy (props); add_text_properties_from_list (val, props, make_fixnum (info[i].start)); } } return_val: /* If we allocated BUF or INFO with malloc, free it too. */ SAFE_FREE (); return val; } DEFUN ("char-equal", Fchar_equal, Schar_equal, 2, 2, 0, doc: /* Return t if two characters match, optionally ignoring case. Both arguments must be characters (i.e. integers). Case is ignored if `case-fold-search' is non-nil in the current buffer. */) (register Lisp_Object c1, Lisp_Object c2) { int i1, i2; /* Check they're chars, not just integers, otherwise we could get array bounds violations in downcase. */ CHECK_CHARACTER (c1); CHECK_CHARACTER (c2); if (XFIXNUM (c1) == XFIXNUM (c2)) return Qt; if (NILP (Vcase_fold_search)) return Qnil; i1 = XFIXNAT (c1); i2 = XFIXNAT (c2); /* FIXME: It is possible to compare multibyte characters even when the current buffer is unibyte. Unfortunately this is ambiguous for characters between 128 and 255, as they could be either eight-bit raw bytes or Latin-1 characters. Assume the former for now. See Bug#17011, and also see casefiddle.c's casify_object, which has a similar problem. */ if (NILP (BVAR (current_buffer, enable_multibyte_characters))) { if (SINGLE_BYTE_CHAR_P (i1)) i1 = UNIBYTE_TO_CHAR (i1); if (SINGLE_BYTE_CHAR_P (i2)) i2 = UNIBYTE_TO_CHAR (i2); } return (downcase (i1) == downcase (i2) ? Qt : Qnil); } /* Transpose the markers in two regions of the current buffer, and adjust the ones between them if necessary (i.e.: if the regions differ in size). START1, END1 are the character positions of the first region. START1_BYTE, END1_BYTE are the byte positions. START2, END2 are the character positions of the second region. START2_BYTE, END2_BYTE are the byte positions. Traverses the entire marker list of the buffer to do so, adding an appropriate amount to some, subtracting from some, and leaving the rest untouched. Most of this is copied from adjust_markers in insdel.c. It's the caller's job to ensure that START1 <= END1 <= START2 <= END2. */ static void transpose_markers (ptrdiff_t start1, ptrdiff_t end1, ptrdiff_t start2, ptrdiff_t end2, ptrdiff_t start1_byte, ptrdiff_t end1_byte, ptrdiff_t start2_byte, ptrdiff_t end2_byte) { register ptrdiff_t amt1, amt1_byte, amt2, amt2_byte, diff, diff_byte, mpos; register struct Lisp_Marker *marker; /* Update point as if it were a marker. */ if (PT < start1) ; else if (PT < end1) TEMP_SET_PT_BOTH (PT + (end2 - end1), PT_BYTE + (end2_byte - end1_byte)); else if (PT < start2) TEMP_SET_PT_BOTH (PT + (end2 - start2) - (end1 - start1), (PT_BYTE + (end2_byte - start2_byte) - (end1_byte - start1_byte))); else if (PT < end2) TEMP_SET_PT_BOTH (PT - (start2 - start1), PT_BYTE - (start2_byte - start1_byte)); /* We used to adjust the endpoints here to account for the gap, but that isn't good enough. Even if we assume the caller has tried to move the gap out of our way, it might still be at start1 exactly, for example; and that places it `inside' the interval, for our purposes. The amount of adjustment is nontrivial if there's a `denormalized' marker whose position is between GPT and GPT + GAP_SIZE, so it's simpler to leave the dirty work to Fmarker_position, below. */ /* The difference between the region's lengths */ diff = (end2 - start2) - (end1 - start1); diff_byte = (end2_byte - start2_byte) - (end1_byte - start1_byte); /* For shifting each marker in a region by the length of the other region plus the distance between the regions. */ amt1 = (end2 - start2) + (start2 - end1); amt2 = (end1 - start1) + (start2 - end1); amt1_byte = (end2_byte - start2_byte) + (start2_byte - end1_byte); amt2_byte = (end1_byte - start1_byte) + (start2_byte - end1_byte); for (marker = BUF_MARKERS (current_buffer); marker; marker = marker->next) { mpos = marker->bytepos; if (mpos >= start1_byte && mpos < end2_byte) { if (mpos < end1_byte) mpos += amt1_byte; else if (mpos < start2_byte) mpos += diff_byte; else mpos -= amt2_byte; marker->bytepos = mpos; } mpos = marker->charpos; if (mpos >= start1 && mpos < end2) { if (mpos < end1) mpos += amt1; else if (mpos < start2) mpos += diff; else mpos -= amt2; } marker->charpos = mpos; } } DEFUN ("transpose-regions", Ftranspose_regions, Stranspose_regions, 4, 5, "(if (< (length mark-ring) 2)\ (error \"Other region must be marked before transposing two regions\")\ (let* ((num (if current-prefix-arg\ (prefix-numeric-value current-prefix-arg)\ 0))\ (ring-length (length mark-ring))\ (eltnum (mod num ring-length))\ (eltnum2 (mod (1+ num) ring-length)))\ (list (point) (mark) (elt mark-ring eltnum) (elt mark-ring eltnum2))))", doc: /* Transpose region STARTR1 to ENDR1 with STARTR2 to ENDR2. The regions should not be overlapping, because the size of the buffer is never changed in a transposition. Optional fifth arg LEAVE-MARKERS, if non-nil, means don't update any markers that happen to be located in the regions. Transposing beyond buffer boundaries is an error. Interactively, STARTR1 and ENDR1 are point and mark; STARTR2 and ENDR2 are the last two marks pushed to the mark ring; LEAVE-MARKERS is nil. If a prefix argument N is given, STARTR2 and ENDR2 are the two successive marks N entries back in the mark ring. A negative prefix argument instead counts forward from the oldest mark in the mark ring. */) (Lisp_Object startr1, Lisp_Object endr1, Lisp_Object startr2, Lisp_Object endr2, Lisp_Object leave_markers) { register ptrdiff_t start1, end1, start2, end2; ptrdiff_t start1_byte, start2_byte, len1_byte, len2_byte, end2_byte; ptrdiff_t gap, len1, len_mid, len2; unsigned char *start1_addr, *start2_addr, *temp; INTERVAL cur_intv, tmp_interval1, tmp_interval_mid, tmp_interval2, tmp_interval3; Lisp_Object buf; XSETBUFFER (buf, current_buffer); cur_intv = buffer_intervals (current_buffer); validate_region (&startr1, &endr1); validate_region (&startr2, &endr2); start1 = XFIXNAT (startr1); end1 = XFIXNAT (endr1); start2 = XFIXNAT (startr2); end2 = XFIXNAT (endr2); gap = GPT; /* Swap the regions if they're reversed. */ if (start2 < end1) { register ptrdiff_t glumph = start1; start1 = start2; start2 = glumph; glumph = end1; end1 = end2; end2 = glumph; } len1 = end1 - start1; len2 = end2 - start2; if (start2 < end1) error ("Transposed regions overlap"); /* Nothing to change for adjacent regions with one being empty */ else if ((start1 == end1 || start2 == end2) && end1 == start2) return Qnil; /* The possibilities are: 1. Adjacent (contiguous) regions, or separate but equal regions (no, really equal, in this case!), or 2. Separate regions of unequal size. The worst case is usually No. 2. It means that (aside from potential need for getting the gap out of the way), there also needs to be a shifting of the text between the two regions. So if they are spread far apart, we are that much slower... sigh. */ /* It must be pointed out that the really studly thing to do would be not to move the gap at all, but to leave it in place and work around it if necessary. This would be extremely efficient, especially considering that people are likely to do transpositions near where they are working interactively, which is exactly where the gap would be found. However, such code would be much harder to write and to read. So, if you are reading this comment and are feeling squirrely, by all means have a go! I just didn't feel like doing it, so I will simply move the gap the minimum distance to get it out of the way, and then deal with an unbroken array. */ start1_byte = CHAR_TO_BYTE (start1); end2_byte = CHAR_TO_BYTE (end2); /* Make sure the gap won't interfere, by moving it out of the text we will operate on. */ if (start1 < gap && gap < end2) { if (gap - start1 < end2 - gap) move_gap_both (start1, start1_byte); else move_gap_both (end2, end2_byte); } start2_byte = CHAR_TO_BYTE (start2); len1_byte = CHAR_TO_BYTE (end1) - start1_byte; len2_byte = end2_byte - start2_byte; #ifdef BYTE_COMBINING_DEBUG if (end1 == start2) { if (count_combining_before (BYTE_POS_ADDR (start2_byte), len2_byte, start1, start1_byte) || count_combining_before (BYTE_POS_ADDR (start1_byte), len1_byte, end2, start2_byte + len2_byte) || count_combining_after (BYTE_POS_ADDR (start1_byte), len1_byte, end2, start2_byte + len2_byte)) emacs_abort (); } else { if (count_combining_before (BYTE_POS_ADDR (start2_byte), len2_byte, start1, start1_byte) || count_combining_before (BYTE_POS_ADDR (start1_byte), len1_byte, start2, start2_byte) || count_combining_after (BYTE_POS_ADDR (start2_byte), len2_byte, end1, start1_byte + len1_byte) || count_combining_after (BYTE_POS_ADDR (start1_byte), len1_byte, end2, start2_byte + len2_byte)) emacs_abort (); } #endif /* Hmmm... how about checking to see if the gap is large enough to use as the temporary storage? That would avoid an allocation... interesting. Later, don't fool with it now. */ if (end1 == start2) /* adjacent regions */ { modify_text (start1, end2); record_change (start1, len1 + len2); tmp_interval1 = copy_intervals (cur_intv, start1, len1); tmp_interval2 = copy_intervals (cur_intv, start2, len2); /* Don't use Fset_text_properties: that can cause GC, which can clobber objects stored in the tmp_intervals. */ tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0); if (tmp_interval3) set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3); USE_SAFE_ALLOCA; /* First region smaller than second. */ if (len1_byte < len2_byte) { temp = SAFE_ALLOCA (len2_byte); /* Don't precompute these addresses. We have to compute them at the last minute, because the relocating allocator might have moved the buffer around during the xmalloc. */ start1_addr = BYTE_POS_ADDR (start1_byte); start2_addr = BYTE_POS_ADDR (start2_byte); memcpy (temp, start2_addr, len2_byte); memcpy (start1_addr + len2_byte, start1_addr, len1_byte); memcpy (start1_addr, temp, len2_byte); } else /* First region not smaller than second. */ { temp = SAFE_ALLOCA (len1_byte); start1_addr = BYTE_POS_ADDR (start1_byte); start2_addr = BYTE_POS_ADDR (start2_byte); memcpy (temp, start1_addr, len1_byte); memcpy (start1_addr, start2_addr, len2_byte); memcpy (start1_addr + len2_byte, temp, len1_byte); } SAFE_FREE (); graft_intervals_into_buffer (tmp_interval1, start1 + len2, len1, current_buffer, 0); graft_intervals_into_buffer (tmp_interval2, start1, len2, current_buffer, 0); update_compositions (start1, start1 + len2, CHECK_BORDER); update_compositions (start1 + len2, end2, CHECK_TAIL); } /* Non-adjacent regions, because end1 != start2, bleagh... */ else { len_mid = start2_byte - (start1_byte + len1_byte); if (len1_byte == len2_byte) /* Regions are same size, though, how nice. */ { USE_SAFE_ALLOCA; modify_text (start1, end2); record_change (start1, len1); record_change (start2, len2); tmp_interval1 = copy_intervals (cur_intv, start1, len1); tmp_interval2 = copy_intervals (cur_intv, start2, len2); tmp_interval3 = validate_interval_range (buf, &startr1, &endr1, 0); if (tmp_interval3) set_text_properties_1 (startr1, endr1, Qnil, buf, tmp_interval3); tmp_interval3 = validate_interval_range (buf, &startr2, &endr2, 0); if (tmp_interval3) set_text_properties_1 (startr2, endr2, Qnil, buf, tmp_interval3); temp = SAFE_ALLOCA (len1_byte); start1_addr = BYTE_POS_ADDR (start1_byte); start2_addr = BYTE_POS_ADDR (start2_byte); memcpy (temp, start1_addr, len1_byte); memcpy (start1_addr, start2_addr, len2_byte); memcpy (start2_addr, temp, len1_byte); SAFE_FREE (); graft_intervals_into_buffer (tmp_interval1, start2, len1, current_buffer, 0); graft_intervals_into_buffer (tmp_interval2, start1, len2, current_buffer, 0); } else if (len1_byte < len2_byte) /* Second region larger than first */ /* Non-adjacent & unequal size, area between must also be shifted. */ { USE_SAFE_ALLOCA; modify_text (start1, end2); record_change (start1, (end2 - start1)); tmp_interval1 = copy_intervals (cur_intv, start1, len1); tmp_interval_mid = copy_intervals (cur_intv, end1, len_mid); tmp_interval2 = copy_intervals (cur_intv, start2, len2); tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0); if (tmp_interval3) set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3); /* holds region 2 */ temp = SAFE_ALLOCA (len2_byte); start1_addr = BYTE_POS_ADDR (start1_byte); start2_addr = BYTE_POS_ADDR (start2_byte); memcpy (temp, start2_addr, len2_byte); memcpy (start1_addr + len_mid + len2_byte, start1_addr, len1_byte); memmove (start1_addr + len2_byte, start1_addr + len1_byte, len_mid); memcpy (start1_addr, temp, len2_byte); SAFE_FREE (); graft_intervals_into_buffer (tmp_interval1, end2 - len1, len1, current_buffer, 0); graft_intervals_into_buffer (tmp_interval_mid, start1 + len2, len_mid, current_buffer, 0); graft_intervals_into_buffer (tmp_interval2, start1, len2, current_buffer, 0); } else /* Second region smaller than first. */ { USE_SAFE_ALLOCA; record_change (start1, (end2 - start1)); modify_text (start1, end2); tmp_interval1 = copy_intervals (cur_intv, start1, len1); tmp_interval_mid = copy_intervals (cur_intv, end1, len_mid); tmp_interval2 = copy_intervals (cur_intv, start2, len2); tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0); if (tmp_interval3) set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3); /* holds region 1 */ temp = SAFE_ALLOCA (len1_byte); start1_addr = BYTE_POS_ADDR (start1_byte); start2_addr = BYTE_POS_ADDR (start2_byte); memcpy (temp, start1_addr, len1_byte); memcpy (start1_addr, start2_addr, len2_byte); memmove (start1_addr + len2_byte, start1_addr + len1_byte, len_mid); memcpy (start1_addr + len2_byte + len_mid, temp, len1_byte); SAFE_FREE (); graft_intervals_into_buffer (tmp_interval1, end2 - len1, len1, current_buffer, 0); graft_intervals_into_buffer (tmp_interval_mid, start1 + len2, len_mid, current_buffer, 0); graft_intervals_into_buffer (tmp_interval2, start1, len2, current_buffer, 0); } update_compositions (start1, start1 + len2, CHECK_BORDER); update_compositions (end2 - len1, end2, CHECK_BORDER); } /* When doing multiple transpositions, it might be nice to optimize this. Perhaps the markers in any one buffer should be organized in some sorted data tree. */ if (NILP (leave_markers)) { transpose_markers (start1, end1, start2, end2, start1_byte, start1_byte + len1_byte, start2_byte, start2_byte + len2_byte); } else { /* The character positions of the markers remain intact, but we still need to update their byte positions, because the transposed regions might include multibyte sequences which make some original byte positions of the markers invalid. */ adjust_markers_bytepos (start1, start1_byte, end2, end2_byte, 0); } #ifdef HAVE_TREE_SITTER /* I don't think it's common to transpose two far-apart regions, so amalgamating the edit into one should be fine. This is what the signal_after_change below does, too. */ treesit_record_change (start1_byte, end2_byte, end2_byte); #endif signal_after_change (start1, end2 - start1, end2 - start1); return Qnil; } void syms_of_editfns (void) { DEFSYM (Qbuffer_access_fontify_functions, "buffer-access-fontify-functions"); DEFSYM (Qwall, "wall"); DEFSYM (Qpropertize, "propertize"); staticpro (&labeled_restrictions); DEFVAR_LISP ("inhibit-field-text-motion", Vinhibit_field_text_motion, doc: /* Non-nil means text motion commands don't notice fields. */); Vinhibit_field_text_motion = Qnil; DEFVAR_LISP ("buffer-access-fontify-functions", Vbuffer_access_fontify_functions, doc: /* List of functions called by `buffer-substring' to fontify if necessary. Each function is called with two arguments which specify the range of the buffer being accessed. */); Vbuffer_access_fontify_functions = Qnil; { Lisp_Object obuf; obuf = Fcurrent_buffer (); /* Do this here, because init_buffer_once is too early--it won't work. */ Fset_buffer (Vprin1_to_string_buffer); /* Make sure buffer-access-fontify-functions is nil in this buffer. */ Fset (Fmake_local_variable (Qbuffer_access_fontify_functions), Qnil); Fset_buffer (obuf); } DEFVAR_LISP ("buffer-access-fontified-property", Vbuffer_access_fontified_property, doc: /* Property which (if non-nil) indicates text has been fontified. `buffer-substring' need not call the `buffer-access-fontify-functions' functions if all the text being accessed has this property. */); Vbuffer_access_fontified_property = Qnil; DEFVAR_LISP ("system-name", Vsystem_name, doc: /* The host name of the machine Emacs is running on. */); Vsystem_name = cached_system_name = Qnil; DEFVAR_LISP ("user-full-name", Vuser_full_name, doc: /* The full name of the user logged in. */); DEFVAR_LISP ("user-login-name", Vuser_login_name, doc: /* The user's name, taken from environment variables if possible. */); Vuser_login_name = Qnil; DEFVAR_LISP ("user-real-login-name", Vuser_real_login_name, doc: /* The user's name, based upon the real uid only. */); DEFVAR_LISP ("operating-system-release", Voperating_system_release, doc: /* The kernel version of the operating system on which Emacs is running. The value is a string. It can also be nil if Emacs doesn't know how to get the kernel version on the underlying OS. */); DEFVAR_BOOL ("binary-as-unsigned", binary_as_unsigned, doc: /* Non-nil means `format' %x and %o treat integers as unsigned. This has machine-dependent results. Nil means to treat integers as signed, which is portable and is the default; for example, if N is a negative integer, (read (format "#x%x" N)) returns N only when this variable is nil. This variable is experimental; email 32252@debbugs.gnu.org if you need it to be non-nil. */); binary_as_unsigned = false; DEFSYM (Qoutermost_restriction, "outermost-restriction"); Funintern (Qoutermost_restriction, Qnil); defsubr (&Spropertize); defsubr (&Schar_equal); defsubr (&Sgoto_char); defsubr (&Sstring_to_char); defsubr (&Schar_to_string); defsubr (&Sbyte_to_string); defsubr (&Sbuffer_substring); defsubr (&Sbuffer_substring_no_properties); defsubr (&Sbuffer_string); defsubr (&Sget_pos_property); defsubr (&Spoint_marker); defsubr (&Smark_marker); defsubr (&Spoint); defsubr (&Sregion_beginning); defsubr (&Sregion_end); /* Symbol for the text property used to mark fields. */ DEFSYM (Qfield, "field"); /* A special value for Qfield properties. */ DEFSYM (Qboundary, "boundary"); defsubr (&Sfield_beginning); defsubr (&Sfield_end); defsubr (&Sfield_string); defsubr (&Sfield_string_no_properties); defsubr (&Sdelete_field); defsubr (&Sconstrain_to_field); defsubr (&Sline_beginning_position); defsubr (&Sline_end_position); defsubr (&Spos_bol); defsubr (&Spos_eol); defsubr (&Ssave_excursion); defsubr (&Ssave_current_buffer); defsubr (&Sbuffer_size); defsubr (&Spoint_max); defsubr (&Spoint_min); defsubr (&Spoint_min_marker); defsubr (&Spoint_max_marker); defsubr (&Sgap_position); defsubr (&Sgap_size); defsubr (&Sposition_bytes); defsubr (&Sbyte_to_position); defsubr (&Sbobp); defsubr (&Seobp); defsubr (&Sbolp); defsubr (&Seolp); defsubr (&Sfollowing_char); defsubr (&Sprevious_char); defsubr (&Schar_after); defsubr (&Schar_before); defsubr (&Sinsert); defsubr (&Sinsert_before_markers); defsubr (&Sinsert_and_inherit); defsubr (&Sinsert_and_inherit_before_markers); defsubr (&Sinsert_char); defsubr (&Sinsert_byte); defsubr (&Sngettext); defsubr (&Suser_login_name); defsubr (&Sgroup_name); defsubr (&Suser_real_login_name); defsubr (&Suser_uid); defsubr (&Suser_real_uid); defsubr (&Sgroup_gid); defsubr (&Sgroup_real_gid); defsubr (&Suser_full_name); defsubr (&Semacs_pid); defsubr (&Ssystem_name); defsubr (&Smessage); defsubr (&Smessage_box); defsubr (&Smessage_or_box); defsubr (&Scurrent_message); defsubr (&Sformat); defsubr (&Sformat_message); defsubr (&Sinsert_buffer_substring); defsubr (&Scompare_buffer_substrings); defsubr (&Sreplace_buffer_contents); defsubr (&Ssubst_char_in_region); defsubr (&Stranslate_region_internal); defsubr (&Sdelete_region); defsubr (&Sdelete_and_extract_region); defsubr (&Swiden); defsubr (&Snarrow_to_region); defsubr (&Sinternal__labeled_narrow_to_region); defsubr (&Sinternal__labeled_widen); defsubr (&Ssave_restriction); defsubr (&Stranspose_regions); }