all messages for Emacs-related lists mirrored at yhetil.org
 help / color / mirror / code / Atom feed
blob 4769a54e708a6c48351767d6098a39c1f3da77fb 214030 bytes (raw)
name: src/alloc.c 	 # note: path name is non-authoritative(*)

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
 
/* Storage allocation and gc for GNU Emacs Lisp interpreter.

Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2020 Free Software
Foundation, Inc.

This file is part of GNU Emacs.

GNU Emacs is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or (at
your option) any later version.

GNU Emacs is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Emacs.  If not, see <https://www.gnu.org/licenses/>.  */

#include <config.h>

#include <errno.h>
#include <stdint.h>
#include <stdlib.h>
#include <limits.h>		/* For CHAR_BIT.  */
#include <signal.h>		/* For SIGABRT, SIGDANGER.  */

#ifdef HAVE_PTHREAD
#include <pthread.h>
#endif

#include "lisp.h"
#include "bignum.h"
#include "dispextern.h"
#include "intervals.h"
#include "ptr-bounds.h"
#include "puresize.h"
#include "sheap.h"
#include "sysstdio.h"
#include "systime.h"
#include "character.h"
#include "buffer.h"
#include "window.h"
#include "keyboard.h"
#include "frame.h"
#include "blockinput.h"
#include "pdumper.h"
#include "termhooks.h"		/* For struct terminal.  */
#ifdef HAVE_WINDOW_SYSTEM
#include TERM_HEADER
#endif /* HAVE_WINDOW_SYSTEM */

#include <flexmember.h>
#include <verify.h>
#include <execinfo.h>           /* For backtrace.  */

#ifdef HAVE_LINUX_SYSINFO
#include <sys/sysinfo.h>
#endif

#ifdef MSDOS
#include "dosfns.h"		/* For dos_memory_info.  */
#endif

#ifdef HAVE_MALLOC_H
# include <malloc.h>
#endif

#if defined HAVE_VALGRIND_VALGRIND_H && !defined USE_VALGRIND
# define USE_VALGRIND 1
#endif

#if USE_VALGRIND
#include <valgrind/valgrind.h>
#include <valgrind/memcheck.h>
#endif

#if HAVE_GTK4
#include <gtk/gtk.h>
#include <pgtkembed.h>
#endif

/* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
   We turn that on by default when ENABLE_CHECKING is defined;
   define GC_CHECK_MARKED_OBJECTS to zero to disable.  */

#if defined ENABLE_CHECKING && !defined GC_CHECK_MARKED_OBJECTS
# define GC_CHECK_MARKED_OBJECTS 1
#endif

/* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
   memory.  Can do this only if using gmalloc.c and if not checking
   marked objects.  */

#if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
     || defined HYBRID_MALLOC || GC_CHECK_MARKED_OBJECTS)
#undef GC_MALLOC_CHECK
#endif

#include <unistd.h>
#include <fcntl.h>

#if defined(USE_GTK) && !defined (HAVE_GTK4)
# include "gtkutil.h"
#elif defined (HAVE_GTK4)
# include "pgtksubr.h"
#endif
#ifdef WINDOWSNT
#include "w32.h"
#include "w32heap.h"	/* for sbrk */
#endif

/* MALLOC_SIZE_NEAR (N) is a good number to pass to malloc when
   allocating a block of memory with size close to N bytes.
   For best results N should be a power of 2.

   When calculating how much memory to allocate, GNU malloc (SIZE)
   adds sizeof (size_t) to SIZE for internal overhead, and then rounds
   up to a multiple of MALLOC_ALIGNMENT.  Emacs can improve
   performance a bit on GNU platforms by arranging for the resulting
   size to be a power of two.  This heuristic is good for glibc 2.0
   (1997) through at least glibc 2.31 (2020), and does not affect
   correctness on other platforms.  */

#define MALLOC_SIZE_NEAR(n) \
  (ROUNDUP (max (n, sizeof (size_t)), MALLOC_ALIGNMENT) - sizeof (size_t))
#ifdef __i386
enum { MALLOC_ALIGNMENT = 16 };
#else
enum { MALLOC_ALIGNMENT = max (2 * sizeof (size_t), alignof (long double)) };
#endif

#ifdef DOUG_LEA_MALLOC

/* Specify maximum number of areas to mmap.  It would be nice to use a
   value that explicitly means "no limit".  */

# define MMAP_MAX_AREAS 100000000

/* A pointer to the memory allocated that copies that static data
   inside glibc's malloc.  */
static void *malloc_state_ptr;

/* Restore the dumped malloc state.  Because malloc can be invoked
   even before main (e.g. by the dynamic linker), the dumped malloc
   state must be restored as early as possible using this special hook.  */
static void
malloc_initialize_hook (void)
{
  static bool malloc_using_checking;

  if (! initialized)
    {
# ifdef GNU_LINUX
      my_heap_start ();
# endif
      malloc_using_checking = getenv ("MALLOC_CHECK_") != NULL;
    }
  else
    {
      if (!malloc_using_checking)
	{
	  /* Work around a bug in glibc's malloc.  MALLOC_CHECK_ must be
	     ignored if the heap to be restored was constructed without
	     malloc checking.  Can't use unsetenv, since that calls malloc.  */
	  char **p = environ;
	  if (p)
	    for (; *p; p++)
	      if (strncmp (*p, "MALLOC_CHECK_=", 14) == 0)
		{
		  do
		    *p = p[1];
		  while (*++p);

		  break;
		}
	}

      if (malloc_set_state (malloc_state_ptr) != 0)
	emacs_abort ();
      alloc_unexec_post ();
    }
}

/* Declare the malloc initialization hook, which runs before 'main' starts.
   EXTERNALLY_VISIBLE works around Bug#22522.  */
typedef void (*voidfuncptr) (void);
# ifndef __MALLOC_HOOK_VOLATILE
#  define __MALLOC_HOOK_VOLATILE
# endif
voidfuncptr __MALLOC_HOOK_VOLATILE __malloc_initialize_hook EXTERNALLY_VISIBLE
  = malloc_initialize_hook;

#endif

#if defined DOUG_LEA_MALLOC || defined HAVE_UNEXEC

/* Allocator-related actions to do just before and after unexec.  */

void
alloc_unexec_pre (void)
{
# ifdef DOUG_LEA_MALLOC
  malloc_state_ptr = malloc_get_state ();
  if (!malloc_state_ptr)
    fatal ("malloc_get_state: %s", strerror (errno));
# endif
}

void
alloc_unexec_post (void)
{
# ifdef DOUG_LEA_MALLOC
  free (malloc_state_ptr);
# endif
}

# ifdef GNU_LINUX

/* The address where the heap starts.  */
void *
my_heap_start (void)
{
  static void *start;
  if (! start)
    start = sbrk (0);
  return start;
}
# endif

#endif

/* Mark, unmark, query mark bit of a Lisp string.  S must be a pointer
   to a struct Lisp_String.  */

#define XMARK_STRING(S)		((S)->u.s.size |= ARRAY_MARK_FLAG)
#define XUNMARK_STRING(S)	((S)->u.s.size &= ~ARRAY_MARK_FLAG)
#define XSTRING_MARKED_P(S)	(((S)->u.s.size & ARRAY_MARK_FLAG) != 0)

#define XMARK_VECTOR(V)		((V)->header.size |= ARRAY_MARK_FLAG)
#define XUNMARK_VECTOR(V)	((V)->header.size &= ~ARRAY_MARK_FLAG)
#define XVECTOR_MARKED_P(V)	(((V)->header.size & ARRAY_MARK_FLAG) != 0)

/* Default value of gc_cons_threshold (see below).  */

#define GC_DEFAULT_THRESHOLD (100000 * word_size)

/* Global variables.  */
struct emacs_globals globals;

/* maybe_gc collects garbage if this goes negative.  */

EMACS_INT consing_until_gc;

#ifdef HAVE_PDUMPER
/* Number of finalizers run: used to loop over GC until we stop
   generating garbage.  */
int number_finalizers_run;
#endif

/* True during GC.  */

bool gc_in_progress;

/* System byte and object counts reported by GC.  */

/* Assume byte counts fit in uintptr_t and object counts fit into
   intptr_t.  */
typedef uintptr_t byte_ct;
typedef intptr_t object_ct;

/* Large-magnitude value for a threshold count, which fits in EMACS_INT.
   Using only half the EMACS_INT range avoids overflow hassles.
   There is no need to fit these counts into fixnums.  */
#define HI_THRESHOLD (EMACS_INT_MAX / 2)

/* Number of live and free conses etc. counted by the most-recent GC.  */

static struct gcstat
{
  object_ct total_conses, total_free_conses;
  object_ct total_symbols, total_free_symbols;
  object_ct total_strings, total_free_strings;
  byte_ct total_string_bytes;
  object_ct total_vectors, total_vector_slots, total_free_vector_slots;
  object_ct total_floats, total_free_floats;
  object_ct total_intervals, total_free_intervals;
  object_ct total_buffers;
} gcstat;

/* Points to memory space allocated as "spare", to be freed if we run
   out of memory.  We keep one large block, four cons-blocks, and
   two string blocks.  */

static char *spare_memory[7];

/* Amount of spare memory to keep in large reserve block, or to see
   whether this much is available when malloc fails on a larger request.  */

#define SPARE_MEMORY (1 << 14)

/* Initialize it to a nonzero value to force it into data space
   (rather than bss space).  That way unexec will remap it into text
   space (pure), on some systems.  We have not implemented the
   remapping on more recent systems because this is less important
   nowadays than in the days of small memories and timesharing.  */

EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
#define PUREBEG (char *) pure

/* Pointer to the pure area, and its size.  */

static char *purebeg;
static ptrdiff_t pure_size;

/* Number of bytes of pure storage used before pure storage overflowed.
   If this is non-zero, this implies that an overflow occurred.  */

static ptrdiff_t pure_bytes_used_before_overflow;

/* Index in pure at which next pure Lisp object will be allocated..  */

static ptrdiff_t pure_bytes_used_lisp;

/* Number of bytes allocated for non-Lisp objects in pure storage.  */

static ptrdiff_t pure_bytes_used_non_lisp;

/* If positive, garbage collection is inhibited.  Otherwise, zero.  */

static intptr_t garbage_collection_inhibited;

/* The GC threshold in bytes, the last time it was calculated
   from gc-cons-threshold and gc-cons-percentage.  */
static EMACS_INT gc_threshold;

/* If nonzero, this is a warning delivered by malloc and not yet
   displayed.  */

const char *pending_malloc_warning;

/* Pointer sanity only on request.  FIXME: Code depending on
   SUSPICIOUS_OBJECT_CHECKING is obsolete; remove it entirely.  */
#ifdef ENABLE_CHECKING
#define SUSPICIOUS_OBJECT_CHECKING 1
#endif

#ifdef SUSPICIOUS_OBJECT_CHECKING
struct suspicious_free_record
{
  void *suspicious_object;
  void *backtrace[128];
};
static void *suspicious_objects[32];
static int suspicious_object_index;
struct suspicious_free_record suspicious_free_history[64] EXTERNALLY_VISIBLE;
static int suspicious_free_history_index;
/* Find the first currently-monitored suspicious pointer in range
   [begin,end) or NULL if no such pointer exists.  */
static void *find_suspicious_object_in_range (void *begin, void *end);
static void detect_suspicious_free (void *ptr);
#else
# define find_suspicious_object_in_range(begin, end) ((void *) NULL)
# define detect_suspicious_free(ptr) ((void) 0)
#endif

/* Maximum amount of C stack to save when a GC happens.  */

#ifndef MAX_SAVE_STACK
#define MAX_SAVE_STACK 16000
#endif

/* Buffer in which we save a copy of the C stack at each GC.  */

#if MAX_SAVE_STACK > 0
static char *stack_copy;
static ptrdiff_t stack_copy_size;

/* Copy to DEST a block of memory from SRC of size SIZE bytes,
   avoiding any address sanitization.  */

static void * ATTRIBUTE_NO_SANITIZE_ADDRESS
no_sanitize_memcpy (void *dest, void const *src, size_t size)
{
  if (! ADDRESS_SANITIZER)
    return memcpy (dest, src, size);
  else
    {
      size_t i;
      char *d = dest;
      char const *s = src;
      for (i = 0; i < size; i++)
	d[i] = s[i];
      return dest;
    }
}

#endif /* MAX_SAVE_STACK > 0 */

static void unchain_finalizer (struct Lisp_Finalizer *);
static void mark_terminals (void);
static void gc_sweep (void);
static Lisp_Object make_pure_vector (ptrdiff_t);
static void mark_buffer (struct buffer *);

#if !defined REL_ALLOC || defined SYSTEM_MALLOC || defined HYBRID_MALLOC
static void refill_memory_reserve (void);
#endif
static void compact_small_strings (void);
static void free_large_strings (void);
extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;

/* Forward declare mark accessor functions: they're used all over the
   place.  */

inline static bool vector_marked_p (const struct Lisp_Vector *v);
inline static void set_vector_marked (struct Lisp_Vector *v);

inline static bool vectorlike_marked_p (const union vectorlike_header *v);
inline static void set_vectorlike_marked (union vectorlike_header *v);

inline static bool cons_marked_p (const struct Lisp_Cons *c);
inline static void set_cons_marked (struct Lisp_Cons *c);

inline static bool string_marked_p (const struct Lisp_String *s);
inline static void set_string_marked (struct Lisp_String *s);

inline static bool symbol_marked_p (const struct Lisp_Symbol *s);
inline static void set_symbol_marked (struct Lisp_Symbol *s);

inline static bool interval_marked_p (INTERVAL i);
inline static void set_interval_marked (INTERVAL i);

/* When scanning the C stack for live Lisp objects, Emacs keeps track of
   what memory allocated via lisp_malloc and lisp_align_malloc is intended
   for what purpose.  This enumeration specifies the type of memory.  */

enum mem_type
{
  MEM_TYPE_NON_LISP,
  MEM_TYPE_CONS,
  MEM_TYPE_STRING,
  MEM_TYPE_SYMBOL,
  MEM_TYPE_FLOAT,
  /* Since all non-bool pseudovectors are small enough to be
     allocated from vector blocks, this memory type denotes
     large regular vectors and large bool pseudovectors.  */
  MEM_TYPE_VECTORLIKE,
  /* Special type to denote vector blocks.  */
  MEM_TYPE_VECTOR_BLOCK,
  /* Special type to denote reserved memory.  */
  MEM_TYPE_SPARE
};

static bool
deadp (Lisp_Object x)
{
  return EQ (x, dead_object ());
}

#ifdef GC_MALLOC_CHECK

enum mem_type allocated_mem_type;

#endif /* GC_MALLOC_CHECK */

/* A node in the red-black tree describing allocated memory containing
   Lisp data.  Each such block is recorded with its start and end
   address when it is allocated, and removed from the tree when it
   is freed.

   A red-black tree is a balanced binary tree with the following
   properties:

   1. Every node is either red or black.
   2. Every leaf is black.
   3. If a node is red, then both of its children are black.
   4. Every simple path from a node to a descendant leaf contains
   the same number of black nodes.
   5. The root is always black.

   When nodes are inserted into the tree, or deleted from the tree,
   the tree is "fixed" so that these properties are always true.

   A red-black tree with N internal nodes has height at most 2
   log(N+1).  Searches, insertions and deletions are done in O(log N).
   Please see a text book about data structures for a detailed
   description of red-black trees.  Any book worth its salt should
   describe them.  */

struct mem_node
{
  /* Children of this node.  These pointers are never NULL.  When there
     is no child, the value is MEM_NIL, which points to a dummy node.  */
  struct mem_node *left, *right;

  /* The parent of this node.  In the root node, this is NULL.  */
  struct mem_node *parent;

  /* Start and end of allocated region.  */
  void *start, *end;

  /* Node color.  */
  enum {MEM_BLACK, MEM_RED} color;

  /* Memory type.  */
  enum mem_type type;
};

/* Root of the tree describing allocated Lisp memory.  */

static struct mem_node *mem_root;

/* Lowest and highest known address in the heap.  */

static void *min_heap_address, *max_heap_address;

/* Sentinel node of the tree.  */

static struct mem_node mem_z;
#define MEM_NIL &mem_z

static struct mem_node *mem_insert (void *, void *, enum mem_type);
static void mem_insert_fixup (struct mem_node *);
static void mem_rotate_left (struct mem_node *);
static void mem_rotate_right (struct mem_node *);
static void mem_delete (struct mem_node *);
static void mem_delete_fixup (struct mem_node *);
static struct mem_node *mem_find (void *);

/* Addresses of staticpro'd variables.  Initialize it to a nonzero
   value if we might unexec; otherwise some compilers put it into
   BSS.  */

Lisp_Object const *staticvec[NSTATICS]
#ifdef HAVE_UNEXEC
= {&Vpurify_flag}
#endif
  ;

/* Index of next unused slot in staticvec.  */

int staticidx;

static void *pure_alloc (size_t, int);

/* Return PTR rounded up to the next multiple of ALIGNMENT.  */

static void *
pointer_align (void *ptr, int alignment)
{
  return (void *) ROUNDUP ((uintptr_t) ptr, alignment);
}

/* Extract the pointer hidden within O.  */

static ATTRIBUTE_NO_SANITIZE_UNDEFINED void *
XPNTR (Lisp_Object a)
{
  return (SYMBOLP (a)
	  ? (char *) lispsym + (XLI (a) - LISP_WORD_TAG (Lisp_Symbol))
	  : (char *) XLP (a) - (XLI (a) & ~VALMASK));
}

static void
XFLOAT_INIT (Lisp_Object f, double n)
{
  XFLOAT (f)->u.data = n;
}

/* Account for allocation of NBYTES in the heap.  This is a separate
   function to avoid hassles with implementation-defined conversion
   from unsigned to signed types.  */
static void
tally_consing (ptrdiff_t nbytes)
{
  consing_until_gc -= nbytes;
}

#ifdef DOUG_LEA_MALLOC
static bool
pointers_fit_in_lispobj_p (void)
{
  return (UINTPTR_MAX <= VAL_MAX) || USE_LSB_TAG;
}

static bool
mmap_lisp_allowed_p (void)
{
  /* If we can't store all memory addresses in our lisp objects, it's
     risky to let the heap use mmap and give us addresses from all
     over our address space.  We also can't use mmap for lisp objects
     if we might dump: unexec doesn't preserve the contents of mmapped
     regions.  */
  return pointers_fit_in_lispobj_p () && !will_dump_with_unexec_p ();
}
#endif

/* Head of a circularly-linked list of extant finalizers. */
struct Lisp_Finalizer finalizers;

/* Head of a circularly-linked list of finalizers that must be invoked
   because we deemed them unreachable.  This list must be global, and
   not a local inside garbage_collect, in case we GC again while
   running finalizers.  */
struct Lisp_Finalizer doomed_finalizers;

\f
/************************************************************************
				Malloc
 ************************************************************************/

#if defined SIGDANGER || (!defined SYSTEM_MALLOC && !defined HYBRID_MALLOC)

/* Function malloc calls this if it finds we are near exhausting storage.  */

void
malloc_warning (const char *str)
{
  pending_malloc_warning = str;
}

#endif

/* Display an already-pending malloc warning.  */

void
display_malloc_warning (void)
{
  call3 (intern ("display-warning"),
	 intern ("alloc"),
	 build_string (pending_malloc_warning),
	 intern ("emergency"));
  pending_malloc_warning = 0;
}
\f
/* Called if we can't allocate relocatable space for a buffer.  */

void
buffer_memory_full (ptrdiff_t nbytes)
{
  /* If buffers use the relocating allocator, no need to free
     spare_memory, because we may have plenty of malloc space left
     that we could get, and if we don't, the malloc that fails will
     itself cause spare_memory to be freed.  If buffers don't use the
     relocating allocator, treat this like any other failing
     malloc.  */

#ifndef REL_ALLOC
  memory_full (nbytes);
#else
  /* This used to call error, but if we've run out of memory, we could
     get infinite recursion trying to build the string.  */
  xsignal (Qnil, Vmemory_signal_data);
#endif
}

/* A common multiple of the positive integers A and B.  Ideally this
   would be the least common multiple, but there's no way to do that
   as a constant expression in C, so do the best that we can easily do.  */
#define COMMON_MULTIPLE(a, b) \
  ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))

/* LISP_ALIGNMENT is the alignment of Lisp objects.  It must be at
   least GCALIGNMENT so that pointers can be tagged.  It also must be
   at least as strict as the alignment of all the C types used to
   implement Lisp objects; since pseudovectors can contain any C type,
   this is max_align_t.  On recent GNU/Linux x86 and x86-64 this can
   often waste up to 8 bytes, since alignof (max_align_t) is 16 but
   typical vectors need only an alignment of 8.  Although shrinking
   the alignment to 8 would save memory, it cost a 20% hit to Emacs
   CPU performance on Fedora 28 x86-64 when compiled with gcc -m32.  */
enum { LISP_ALIGNMENT = alignof (union { max_align_t x;
					 GCALIGNED_UNION_MEMBER }) };
verify (LISP_ALIGNMENT % GCALIGNMENT == 0);

/* True if malloc (N) is known to return storage suitably aligned for
   Lisp objects whenever N is a multiple of LISP_ALIGNMENT.  In
   practice this is true whenever alignof (max_align_t) is also a
   multiple of LISP_ALIGNMENT.  This works even for x86, where some
   platform combinations (e.g., GCC 7 and later, glibc 2.25 and
   earlier) have bugs where alignof (max_align_t) is 16 even though
   the malloc alignment is only 8, and where Emacs still works because
   it never does anything that requires an alignment of 16.  */
enum { MALLOC_IS_LISP_ALIGNED = alignof (max_align_t) % LISP_ALIGNMENT == 0 };

/* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
   BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
   If that variable is set, block input while in one of Emacs's memory
   allocation functions.  There should be no need for this debugging
   option, since signal handlers do not allocate memory, but Emacs
   formerly allocated memory in signal handlers and this compile-time
   option remains as a way to help debug the issue should it rear its
   ugly head again.  */
#ifdef XMALLOC_BLOCK_INPUT_CHECK
bool block_input_in_memory_allocators EXTERNALLY_VISIBLE;
static void
malloc_block_input (void)
{
  if (block_input_in_memory_allocators)
    block_input ();
}
static void
malloc_unblock_input (void)
{
  if (block_input_in_memory_allocators)
    unblock_input ();
}
# define MALLOC_BLOCK_INPUT malloc_block_input ()
# define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
#else
# define MALLOC_BLOCK_INPUT ((void) 0)
# define MALLOC_UNBLOCK_INPUT ((void) 0)
#endif

#define MALLOC_PROBE(size)			\
  do {						\
    if (profiler_memory_running)		\
      malloc_probe (size);			\
  } while (0)

static void *lmalloc (size_t, bool) ATTRIBUTE_MALLOC_SIZE ((1));
static void *lrealloc (void *, size_t);

/* Like malloc but check for no memory and block interrupt input.  */

void *
xmalloc (size_t size)
{
  void *val;

  MALLOC_BLOCK_INPUT;
  val = lmalloc (size, false);
  MALLOC_UNBLOCK_INPUT;

  if (!val && size)
    memory_full (size);
  MALLOC_PROBE (size);
  return val;
}

/* Like the above, but zeroes out the memory just allocated.  */

void *
xzalloc (size_t size)
{
  void *val;

  MALLOC_BLOCK_INPUT;
  val = lmalloc (size, true);
  MALLOC_UNBLOCK_INPUT;

  if (!val && size)
    memory_full (size);
  MALLOC_PROBE (size);
  return val;
}

/* Like realloc but check for no memory and block interrupt input.  */

void *
xrealloc (void *block, size_t size)
{
  void *val;

  MALLOC_BLOCK_INPUT;
  /* We must call malloc explicitly when BLOCK is 0, since some
     reallocs don't do this.  */
  if (! block)
    val = lmalloc (size, false);
  else
    val = lrealloc (block, size);
  MALLOC_UNBLOCK_INPUT;

  if (!val && size)
    memory_full (size);
  MALLOC_PROBE (size);
  return val;
}


/* Like free but block interrupt input.  */

void
xfree (void *block)
{
  if (!block)
    return;
  if (pdumper_object_p (block))
    return;
  MALLOC_BLOCK_INPUT;
  free (block);
  MALLOC_UNBLOCK_INPUT;
  /* We don't call refill_memory_reserve here
     because in practice the call in r_alloc_free seems to suffice.  */
}


/* Other parts of Emacs pass large int values to allocator functions
   expecting ptrdiff_t.  This is portable in practice, but check it to
   be safe.  */
verify (INT_MAX <= PTRDIFF_MAX);


/* Allocate an array of NITEMS items, each of size ITEM_SIZE.
   Signal an error on memory exhaustion, and block interrupt input.  */

void *
xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
{
  eassert (0 <= nitems && 0 < item_size);
  ptrdiff_t nbytes;
  if (INT_MULTIPLY_WRAPV (nitems, item_size, &nbytes) || SIZE_MAX < nbytes)
    memory_full (SIZE_MAX);
  return xmalloc (nbytes);
}


/* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
   Signal an error on memory exhaustion, and block interrupt input.  */

void *
xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
{
  eassert (0 <= nitems && 0 < item_size);
  ptrdiff_t nbytes;
  if (INT_MULTIPLY_WRAPV (nitems, item_size, &nbytes) || SIZE_MAX < nbytes)
    memory_full (SIZE_MAX);
  return xrealloc (pa, nbytes);
}


/* Grow PA, which points to an array of *NITEMS items, and return the
   location of the reallocated array, updating *NITEMS to reflect its
   new size.  The new array will contain at least NITEMS_INCR_MIN more
   items, but will not contain more than NITEMS_MAX items total.
   ITEM_SIZE is the size of each item, in bytes.

   ITEM_SIZE and NITEMS_INCR_MIN must be positive.  *NITEMS must be
   nonnegative.  If NITEMS_MAX is -1, it is treated as if it were
   infinity.

   If PA is null, then allocate a new array instead of reallocating
   the old one.

   Block interrupt input as needed.  If memory exhaustion occurs, set
   *NITEMS to zero if PA is null, and signal an error (i.e., do not
   return).

   Thus, to grow an array A without saving its old contents, do
   { xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
   The A = NULL avoids a dangling pointer if xpalloc exhausts memory
   and signals an error, and later this code is reexecuted and
   attempts to free A.  */

void *
xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
	 ptrdiff_t nitems_max, ptrdiff_t item_size)
{
  ptrdiff_t n0 = *nitems;
  eassume (0 < item_size && 0 < nitems_incr_min && 0 <= n0 && -1 <= nitems_max);

  /* The approximate size to use for initial small allocation
     requests.  This is the largest "small" request for the GNU C
     library malloc.  */
  enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };

  /* If the array is tiny, grow it to about (but no greater than)
     DEFAULT_MXFAST bytes.  Otherwise, grow it by about 50%.
     Adjust the growth according to three constraints: NITEMS_INCR_MIN,
     NITEMS_MAX, and what the C language can represent safely.  */

  ptrdiff_t n, nbytes;
  if (INT_ADD_WRAPV (n0, n0 >> 1, &n))
    n = PTRDIFF_MAX;
  if (0 <= nitems_max && nitems_max < n)
    n = nitems_max;

  ptrdiff_t adjusted_nbytes
    = ((INT_MULTIPLY_WRAPV (n, item_size, &nbytes) || SIZE_MAX < nbytes)
       ? min (PTRDIFF_MAX, SIZE_MAX)
       : nbytes < DEFAULT_MXFAST ? DEFAULT_MXFAST : 0);
  if (adjusted_nbytes)
    {
      n = adjusted_nbytes / item_size;
      nbytes = adjusted_nbytes - adjusted_nbytes % item_size;
    }

  if (! pa)
    *nitems = 0;
  if (n - n0 < nitems_incr_min
      && (INT_ADD_WRAPV (n0, nitems_incr_min, &n)
	  || (0 <= nitems_max && nitems_max < n)
	  || INT_MULTIPLY_WRAPV (n, item_size, &nbytes)))
    memory_full (SIZE_MAX);
  pa = xrealloc (pa, nbytes);
  *nitems = n;
  return pa;
}


/* Like strdup, but uses xmalloc.  */

char *
xstrdup (const char *s)
{
  ptrdiff_t size;
  eassert (s);
  size = strlen (s) + 1;
  return memcpy (xmalloc (size), s, size);
}

/* Like above, but duplicates Lisp string to C string.  */

char *
xlispstrdup (Lisp_Object string)
{
  ptrdiff_t size = SBYTES (string) + 1;
  return memcpy (xmalloc (size), SSDATA (string), size);
}

/* Assign to *PTR a copy of STRING, freeing any storage *PTR formerly
   pointed to.  If STRING is null, assign it without copying anything.
   Allocate before freeing, to avoid a dangling pointer if allocation
   fails.  */

void
dupstring (char **ptr, char const *string)
{
  char *old = *ptr;
  *ptr = string ? xstrdup (string) : 0;
  xfree (old);
}


/* Like putenv, but (1) use the equivalent of xmalloc and (2) the
   argument is a const pointer.  */

void
xputenv (char const *string)
{
  if (putenv ((char *) string) != 0)
    memory_full (0);
}

/* Return a newly allocated memory block of SIZE bytes, remembering
   to free it when unwinding.  */
void *
record_xmalloc (size_t size)
{
  void *p = xmalloc (size);
  record_unwind_protect_ptr (xfree, p);
  return p;
}


/* Like malloc but used for allocating Lisp data.  NBYTES is the
   number of bytes to allocate, TYPE describes the intended use of the
   allocated memory block (for strings, for conses, ...).  */

#if ! USE_LSB_TAG
void *lisp_malloc_loser EXTERNALLY_VISIBLE;
#endif

static void *
lisp_malloc (size_t nbytes, bool clearit, enum mem_type type)
{
  register void *val;

  MALLOC_BLOCK_INPUT;

#ifdef GC_MALLOC_CHECK
  allocated_mem_type = type;
#endif

  val = lmalloc (nbytes, clearit);

#if ! USE_LSB_TAG
  /* If the memory just allocated cannot be addressed thru a Lisp
     object's pointer, and it needs to be,
     that's equivalent to running out of memory.  */
  if (val && type != MEM_TYPE_NON_LISP)
    {
      Lisp_Object tem;
      XSETCONS (tem, (char *) val + nbytes - 1);
      if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
	{
	  lisp_malloc_loser = val;
	  free (val);
	  val = 0;
	}
    }
#endif

#ifndef GC_MALLOC_CHECK
  if (val && type != MEM_TYPE_NON_LISP)
    mem_insert (val, (char *) val + nbytes, type);
#endif

  MALLOC_UNBLOCK_INPUT;
  if (!val && nbytes)
    memory_full (nbytes);
  MALLOC_PROBE (nbytes);
  return val;
}

/* Free BLOCK.  This must be called to free memory allocated with a
   call to lisp_malloc.  */

static void
lisp_free (void *block)
{
  if (pdumper_object_p (block))
    return;

  MALLOC_BLOCK_INPUT;
  free (block);
#ifndef GC_MALLOC_CHECK
  mem_delete (mem_find (block));
#endif
  MALLOC_UNBLOCK_INPUT;
}

/*****  Allocation of aligned blocks of memory to store Lisp data.  *****/

/* The entry point is lisp_align_malloc which returns blocks of at most
   BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary.  */

/* Byte alignment of storage blocks.  */
#define BLOCK_ALIGN (1 << 10)
verify (POWER_OF_2 (BLOCK_ALIGN));

/* Use aligned_alloc if it or a simple substitute is available.
   Aligned allocation is incompatible with unexmacosx.c, so don't use
   it on Darwin if HAVE_UNEXEC.  */

#if ! (defined DARWIN_OS && defined HAVE_UNEXEC)
# if (defined HAVE_ALIGNED_ALLOC					\
      || (defined HYBRID_MALLOC						\
	  ? defined HAVE_POSIX_MEMALIGN					\
	  : !defined SYSTEM_MALLOC && !defined DOUG_LEA_MALLOC))
#  define USE_ALIGNED_ALLOC 1
# elif !defined HYBRID_MALLOC && defined HAVE_POSIX_MEMALIGN
#  define USE_ALIGNED_ALLOC 1
#  define aligned_alloc my_aligned_alloc /* Avoid collision with lisp.h.  */
static void *
aligned_alloc (size_t alignment, size_t size)
{
  /* POSIX says the alignment must be a power-of-2 multiple of sizeof (void *).
     Verify this for all arguments this function is given.  */
  verify (BLOCK_ALIGN % sizeof (void *) == 0
	  && POWER_OF_2 (BLOCK_ALIGN / sizeof (void *)));
  verify (MALLOC_IS_LISP_ALIGNED
	  || (LISP_ALIGNMENT % sizeof (void *) == 0
	      && POWER_OF_2 (LISP_ALIGNMENT / sizeof (void *))));
  eassert (alignment == BLOCK_ALIGN
	   || (!MALLOC_IS_LISP_ALIGNED && alignment == LISP_ALIGNMENT));

  void *p;
  return posix_memalign (&p, alignment, size) == 0 ? p : 0;
}
# endif
#endif

/* Padding to leave at the end of a malloc'd block.  This is to give
   malloc a chance to minimize the amount of memory wasted to alignment.
   It should be tuned to the particular malloc library used.
   On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
   aligned_alloc on the other hand would ideally prefer a value of 4
   because otherwise, there's 1020 bytes wasted between each ablocks.
   In Emacs, testing shows that those 1020 can most of the time be
   efficiently used by malloc to place other objects, so a value of 0 can
   still preferable unless you have a lot of aligned blocks and virtually
   nothing else.  */
#define BLOCK_PADDING 0
#define BLOCK_BYTES \
  (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)

/* Internal data structures and constants.  */

#define ABLOCKS_SIZE 16

/* An aligned block of memory.  */
struct ablock
{
  union
  {
    char payload[BLOCK_BYTES];
    struct ablock *next_free;
  } x;

  /* ABASE is the aligned base of the ablocks.  It is overloaded to
     hold a virtual "busy" field that counts twice the number of used
     ablock values in the parent ablocks, plus one if the real base of
     the parent ablocks is ABASE (if the "busy" field is even, the
     word before the first ablock holds a pointer to the real base).
     The first ablock has a "busy" ABASE, and the others have an
     ordinary pointer ABASE.  To tell the difference, the code assumes
     that pointers, when cast to uintptr_t, are at least 2 *
     ABLOCKS_SIZE + 1.  */
  struct ablocks *abase;

  /* The padding of all but the last ablock is unused.  The padding of
     the last ablock in an ablocks is not allocated.  */
#if BLOCK_PADDING
  char padding[BLOCK_PADDING];
#endif
};

/* A bunch of consecutive aligned blocks.  */
struct ablocks
{
  struct ablock blocks[ABLOCKS_SIZE];
};

/* Size of the block requested from malloc or aligned_alloc.  */
#define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)

#define ABLOCK_ABASE(block) \
  (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE)	\
   ? (struct ablocks *) (block)					\
   : (block)->abase)

/* Virtual `busy' field.  */
#define ABLOCKS_BUSY(a_base) ((a_base)->blocks[0].abase)

/* Pointer to the (not necessarily aligned) malloc block.  */
#ifdef USE_ALIGNED_ALLOC
#define ABLOCKS_BASE(abase) (abase)
#else
#define ABLOCKS_BASE(abase) \
  (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void **) (abase))[-1])
#endif

/* The list of free ablock.   */
static struct ablock *free_ablock;

/* Allocate an aligned block of nbytes.
   Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
   smaller or equal to BLOCK_BYTES.  */
static void *
lisp_align_malloc (size_t nbytes, enum mem_type type)
{
  void *base, *val;
  struct ablocks *abase;

  eassert (nbytes <= BLOCK_BYTES);

  MALLOC_BLOCK_INPUT;

#ifdef GC_MALLOC_CHECK
  allocated_mem_type = type;
#endif

  if (!free_ablock)
    {
      int i;
      bool aligned;

#ifdef DOUG_LEA_MALLOC
      if (!mmap_lisp_allowed_p ())
        mallopt (M_MMAP_MAX, 0);
#endif

#ifdef USE_ALIGNED_ALLOC
      verify (ABLOCKS_BYTES % BLOCK_ALIGN == 0);
      abase = base = aligned_alloc (BLOCK_ALIGN, ABLOCKS_BYTES);
#else
      base = malloc (ABLOCKS_BYTES);
      abase = pointer_align (base, BLOCK_ALIGN);
#endif

      if (base == 0)
	{
	  MALLOC_UNBLOCK_INPUT;
	  memory_full (ABLOCKS_BYTES);
	}

      aligned = (base == abase);
      if (!aligned)
	((void **) abase)[-1] = base;

#ifdef DOUG_LEA_MALLOC
      if (!mmap_lisp_allowed_p ())
          mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
#endif

#if ! USE_LSB_TAG
      /* If the memory just allocated cannot be addressed thru a Lisp
	 object's pointer, and it needs to be, that's equivalent to
	 running out of memory.  */
      if (type != MEM_TYPE_NON_LISP)
	{
	  Lisp_Object tem;
	  char *end = (char *) base + ABLOCKS_BYTES - 1;
	  XSETCONS (tem, end);
	  if ((char *) XCONS (tem) != end)
	    {
	      lisp_malloc_loser = base;
	      free (base);
	      MALLOC_UNBLOCK_INPUT;
	      memory_full (SIZE_MAX);
	    }
	}
#endif

      /* Initialize the blocks and put them on the free list.
	 If `base' was not properly aligned, we can't use the last block.  */
      for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
	{
	  abase->blocks[i].abase = abase;
	  abase->blocks[i].x.next_free = free_ablock;
	  free_ablock = &abase->blocks[i];
	}
      intptr_t ialigned = aligned;
      ABLOCKS_BUSY (abase) = (struct ablocks *) ialigned;

      eassert ((uintptr_t) abase % BLOCK_ALIGN == 0);
      eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
      eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
      eassert (ABLOCKS_BASE (abase) == base);
      eassert ((intptr_t) ABLOCKS_BUSY (abase) == aligned);
    }

  abase = ABLOCK_ABASE (free_ablock);
  ABLOCKS_BUSY (abase)
    = (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
  val = free_ablock;
  free_ablock = free_ablock->x.next_free;

#ifndef GC_MALLOC_CHECK
  if (type != MEM_TYPE_NON_LISP)
    mem_insert (val, (char *) val + nbytes, type);
#endif

  MALLOC_UNBLOCK_INPUT;

  MALLOC_PROBE (nbytes);

  eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
  return val;
}

static void
lisp_align_free (void *block)
{
  struct ablock *ablock = block;
  struct ablocks *abase = ABLOCK_ABASE (ablock);

  MALLOC_BLOCK_INPUT;
#ifndef GC_MALLOC_CHECK
  mem_delete (mem_find (block));
#endif
  /* Put on free list.  */
  ablock->x.next_free = free_ablock;
  free_ablock = ablock;
  /* Update busy count.  */
  intptr_t busy = (intptr_t) ABLOCKS_BUSY (abase) - 2;
  eassume (0 <= busy && busy <= 2 * ABLOCKS_SIZE - 1);
  ABLOCKS_BUSY (abase) = (struct ablocks *) busy;

  if (busy < 2)
    { /* All the blocks are free.  */
      int i = 0;
      bool aligned = busy;
      struct ablock **tem = &free_ablock;
      struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];

      while (*tem)
	{
	  if (*tem >= (struct ablock *) abase && *tem < atop)
	    {
	      i++;
	      *tem = (*tem)->x.next_free;
	    }
	  else
	    tem = &(*tem)->x.next_free;
	}
      eassert ((aligned & 1) == aligned);
      eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
#ifdef USE_POSIX_MEMALIGN
      eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
#endif
      free (ABLOCKS_BASE (abase));
    }
  MALLOC_UNBLOCK_INPUT;
}

/* True if a malloc-returned pointer P is suitably aligned for SIZE,
   where Lisp object alignment may be needed if SIZE is a multiple of
   LISP_ALIGNMENT.  */

static bool
laligned (void *p, size_t size)
{
  return (MALLOC_IS_LISP_ALIGNED || (intptr_t) p % LISP_ALIGNMENT == 0
	  || size % LISP_ALIGNMENT != 0);
}

/* Like malloc and realloc except that if SIZE is Lisp-aligned, make
   sure the result is too, if necessary by reallocating (typically
   with larger and larger sizes) until the allocator returns a
   Lisp-aligned pointer.  Code that needs to allocate C heap memory
   for a Lisp object should use one of these functions to obtain a
   pointer P; that way, if T is an enum Lisp_Type value and L ==
   make_lisp_ptr (P, T), then XPNTR (L) == P and XTYPE (L) == T.

   On typical modern platforms these functions' loops do not iterate.
   On now-rare (and perhaps nonexistent) platforms, the loops in
   theory could repeat forever.  If an infinite loop is possible on a
   platform, a build would surely loop and the builder can then send
   us a bug report.  Adding a counter to try to detect any such loop
   would complicate the code (and possibly introduce bugs, in code
   that's never really exercised) for little benefit.  */

static void *
lmalloc (size_t size, bool clearit)
{
#ifdef USE_ALIGNED_ALLOC
  if (! MALLOC_IS_LISP_ALIGNED && size % LISP_ALIGNMENT == 0)
    {
      void *p = aligned_alloc (LISP_ALIGNMENT, size);
      if (clearit && p)
	memclear (p, size);
      return p;
    }
#endif

  while (true)
    {
      void *p = clearit ? calloc (1, size) : malloc (size);
      if (laligned (p, size))
	return p;
      free (p);
      size_t bigger = size + LISP_ALIGNMENT;
      if (size < bigger)
	size = bigger;
    }
}

static void *
lrealloc (void *p, size_t size)
{
  while (true)
    {
      p = realloc (p, size);
      if (laligned (p, size))
	return p;
      size_t bigger = size + LISP_ALIGNMENT;
      if (size < bigger)
	size = bigger;
    }
}

\f
/***********************************************************************
			 Interval Allocation
 ***********************************************************************/

/* Number of intervals allocated in an interval_block structure.  */

enum { INTERVAL_BLOCK_SIZE
         = ((MALLOC_SIZE_NEAR (1024) - sizeof (struct interval_block *))
	    / sizeof (struct interval)) };

/* Intervals are allocated in chunks in the form of an interval_block
   structure.  */

struct interval_block
{
  /* Place `intervals' first, to preserve alignment.  */
  struct interval intervals[INTERVAL_BLOCK_SIZE];
  struct interval_block *next;
};

/* Current interval block.  Its `next' pointer points to older
   blocks.  */

static struct interval_block *interval_block;

/* Index in interval_block above of the next unused interval
   structure.  */

static int interval_block_index = INTERVAL_BLOCK_SIZE;

/* List of free intervals.  */

static INTERVAL interval_free_list;

/* Return a new interval.  */

INTERVAL
make_interval (void)
{
  INTERVAL val;

  MALLOC_BLOCK_INPUT;

  if (interval_free_list)
    {
      val = interval_free_list;
      interval_free_list = INTERVAL_PARENT (interval_free_list);
    }
  else
    {
      if (interval_block_index == INTERVAL_BLOCK_SIZE)
	{
	  struct interval_block *newi
	    = lisp_malloc (sizeof *newi, false, MEM_TYPE_NON_LISP);

	  newi->next = interval_block;
	  interval_block = newi;
	  interval_block_index = 0;
	}
      val = &interval_block->intervals[interval_block_index++];
    }

  MALLOC_UNBLOCK_INPUT;

  tally_consing (sizeof (struct interval));
  intervals_consed++;
  RESET_INTERVAL (val);
  val->gcmarkbit = 0;
  return val;
}


/* Mark Lisp objects in interval I.  */

static void
mark_interval_tree_1 (INTERVAL i, void *dummy)
{
  /* Intervals should never be shared.  So, if extra internal checking is
     enabled, GC aborts if it seems to have visited an interval twice.  */
  eassert (!interval_marked_p (i));
  set_interval_marked (i);
  mark_object (i->plist);
}

/* Mark the interval tree rooted in I.  */

static void
mark_interval_tree (INTERVAL i)
{
  if (i && !interval_marked_p (i))
    traverse_intervals_noorder (i, mark_interval_tree_1, NULL);
}

/***********************************************************************
			  String Allocation
 ***********************************************************************/

/* Lisp_Strings are allocated in string_block structures.  When a new
   string_block is allocated, all the Lisp_Strings it contains are
   added to a free-list string_free_list.  When a new Lisp_String is
   needed, it is taken from that list.  During the sweep phase of GC,
   string_blocks that are entirely free are freed, except two which
   we keep.

   String data is allocated from sblock structures.  Strings larger
   than LARGE_STRING_BYTES, get their own sblock, data for smaller
   strings is sub-allocated out of sblocks of size SBLOCK_SIZE.

   Sblocks consist internally of sdata structures, one for each
   Lisp_String.  The sdata structure points to the Lisp_String it
   belongs to.  The Lisp_String points back to the `u.data' member of
   its sdata structure.

   When a Lisp_String is freed during GC, it is put back on
   string_free_list, and its `data' member and its sdata's `string'
   pointer is set to null.  The size of the string is recorded in the
   `n.nbytes' member of the sdata.  So, sdata structures that are no
   longer used, can be easily recognized, and it's easy to compact the
   sblocks of small strings which we do in compact_small_strings.  */

/* Size in bytes of an sblock structure used for small strings.  */

enum { SBLOCK_SIZE = MALLOC_SIZE_NEAR (8192) };

/* Strings larger than this are considered large strings.  String data
   for large strings is allocated from individual sblocks.  */

#define LARGE_STRING_BYTES 1024

/* The layout of a nonnull string.  */

struct sdata
{
  /* Back-pointer to the string this sdata belongs to.  If null, this
     structure is free, and NBYTES (in this structure or in the union below)
     contains the string's byte size (the same value that STRING_BYTES
     would return if STRING were non-null).  If non-null, STRING_BYTES
     (STRING) is the size of the data, and DATA contains the string's
     contents.  */
  struct Lisp_String *string;

#ifdef GC_CHECK_STRING_BYTES
  ptrdiff_t nbytes;
#endif

  unsigned char data[FLEXIBLE_ARRAY_MEMBER];
};

/* A union describing string memory sub-allocated from an sblock.
   This is where the contents of Lisp strings are stored.  */

typedef union
{
  struct Lisp_String *string;

  /* When STRING is nonnull, this union is actually of type 'struct sdata',
     which has a flexible array member.  However, if implemented by
     giving this union a member of type 'struct sdata', the union
     could not be the last (flexible) member of 'struct sblock',
     because C99 prohibits a flexible array member from having a type
     that is itself a flexible array.  So, comment this member out here,
     but remember that the option's there when using this union.  */
#if 0
  struct sdata u;
#endif

  /* When STRING is null.  */
  struct
  {
    struct Lisp_String *string;
    ptrdiff_t nbytes;
  } n;
} sdata;

#define SDATA_NBYTES(S)	(S)->n.nbytes
#define SDATA_DATA(S)	((struct sdata *) (S))->data

enum { SDATA_DATA_OFFSET = offsetof (struct sdata, data) };

/* Structure describing a block of memory which is sub-allocated to
   obtain string data memory for strings.  Blocks for small strings
   are of fixed size SBLOCK_SIZE.  Blocks for large strings are made
   as large as needed.  */

struct sblock
{
  /* Next in list.  */
  struct sblock *next;

  /* Pointer to the next free sdata block.  This points past the end
     of the sblock if there isn't any space left in this block.  */
  sdata *next_free;

  /* String data.  */
  sdata data[FLEXIBLE_ARRAY_MEMBER];
};

/* Number of Lisp strings in a string_block structure.  */

enum { STRING_BLOCK_SIZE
         = ((MALLOC_SIZE_NEAR (1024) - sizeof (struct string_block *))
	    / sizeof (struct Lisp_String)) };

/* Structure describing a block from which Lisp_String structures
   are allocated.  */

struct string_block
{
  /* Place `strings' first, to preserve alignment.  */
  struct Lisp_String strings[STRING_BLOCK_SIZE];
  struct string_block *next;
};

/* Head and tail of the list of sblock structures holding Lisp string
   data.  We always allocate from current_sblock.  The NEXT pointers
   in the sblock structures go from oldest_sblock to current_sblock.  */

static struct sblock *oldest_sblock, *current_sblock;

/* List of sblocks for large strings.  */

static struct sblock *large_sblocks;

/* List of string_block structures.  */

static struct string_block *string_blocks;

/* Free-list of Lisp_Strings.  */

static struct Lisp_String *string_free_list;

/* Given a pointer to a Lisp_String S which is on the free-list
   string_free_list, return a pointer to its successor in the
   free-list.  */

#define NEXT_FREE_LISP_STRING(S) ((S)->u.next)

/* Return a pointer to the sdata structure belonging to Lisp string S.
   S must be live, i.e. S->data must not be null.  S->data is actually
   a pointer to the `u.data' member of its sdata structure; the
   structure starts at a constant offset in front of that.  */

#define SDATA_OF_STRING(S) ((sdata *) ptr_bounds_init ((S)->u.s.data \
						       - SDATA_DATA_OFFSET))


#ifdef GC_CHECK_STRING_OVERRUN

/* Check for overrun in string data blocks by appending a small
   "cookie" after each allocated string data block, and check for the
   presence of this cookie during GC.  */
# define GC_STRING_OVERRUN_COOKIE_SIZE ROUNDUP (4, alignof (sdata))
static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
  { '\xde', '\xad', '\xbe', '\xef', /* Perhaps some zeros here.  */ };

#else
# define GC_STRING_OVERRUN_COOKIE_SIZE 0
#endif

/* Return the size of an sdata structure large enough to hold N bytes
   of string data.  This counts the sdata structure, the N bytes, a
   terminating NUL byte, and alignment padding.  */

static ptrdiff_t
sdata_size (ptrdiff_t n)
{
  /* Reserve space for the nbytes union member even when N + 1 is less
     than the size of that member.  */
  ptrdiff_t unaligned_size = max (SDATA_DATA_OFFSET + n + 1,
				  sizeof (sdata));
  int sdata_align = max (FLEXALIGNOF (struct sdata), alignof (sdata));
  return (unaligned_size + sdata_align - 1) & ~(sdata_align - 1);
}

/* Extra bytes to allocate for each string.  */
#define GC_STRING_EXTRA GC_STRING_OVERRUN_COOKIE_SIZE

/* Exact bound on the number of bytes in a string, not counting the
   terminating NUL.  A string cannot contain more bytes than
   STRING_BYTES_BOUND, nor can it be so long that the size_t
   arithmetic in allocate_string_data would overflow while it is
   calculating a value to be passed to malloc.  */
static ptrdiff_t const STRING_BYTES_MAX =
  min (STRING_BYTES_BOUND,
       ((SIZE_MAX
	 - GC_STRING_EXTRA
	 - offsetof (struct sblock, data)
	 - SDATA_DATA_OFFSET)
	& ~(sizeof (EMACS_INT) - 1)));

/* Initialize string allocation.  Called from init_alloc_once.  */

static void
init_strings (void)
{
  empty_unibyte_string = make_pure_string ("", 0, 0, 0);
  staticpro (&empty_unibyte_string);
  empty_multibyte_string = make_pure_string ("", 0, 0, 1);
  staticpro (&empty_multibyte_string);
}


#ifdef GC_CHECK_STRING_BYTES

static int check_string_bytes_count;

/* Like STRING_BYTES, but with debugging check.  Can be
   called during GC, so pay attention to the mark bit.  */

ptrdiff_t
string_bytes (struct Lisp_String *s)
{
  ptrdiff_t nbytes =
    (s->u.s.size_byte < 0 ? s->u.s.size & ~ARRAY_MARK_FLAG : s->u.s.size_byte);

  if (!PURE_P (s) && !pdumper_object_p (s) && s->u.s.data
      && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
    emacs_abort ();
  return nbytes;
}

/* Check validity of Lisp strings' string_bytes member in B.  */

static void
check_sblock (struct sblock *b)
{
  sdata *end = b->next_free;

  for (sdata *from = b->data; from < end; )
    {
      ptrdiff_t nbytes = sdata_size (from->string
				     ? string_bytes (from->string)
				     : SDATA_NBYTES (from));
      from = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
    }
}


/* Check validity of Lisp strings' string_bytes member.  ALL_P
   means check all strings, otherwise check only most
   recently allocated strings.  Used for hunting a bug.  */

static void
check_string_bytes (bool all_p)
{
  if (all_p)
    {
      struct sblock *b;

      for (b = large_sblocks; b; b = b->next)
	{
	  struct Lisp_String *s = b->data[0].string;
	  if (s)
	    string_bytes (s);
	}

      for (b = oldest_sblock; b; b = b->next)
	check_sblock (b);
    }
  else if (current_sblock)
    check_sblock (current_sblock);
}

#else /* not GC_CHECK_STRING_BYTES */

#define check_string_bytes(all) ((void) 0)

#endif /* GC_CHECK_STRING_BYTES */

#ifdef GC_CHECK_STRING_FREE_LIST

/* Walk through the string free list looking for bogus next pointers.
   This may catch buffer overrun from a previous string.  */

static void
check_string_free_list (void)
{
  struct Lisp_String *s;

  /* Pop a Lisp_String off the free-list.  */
  s = string_free_list;
  while (s != NULL)
    {
      if ((uintptr_t) s < 1024)
	emacs_abort ();
      s = NEXT_FREE_LISP_STRING (s);
    }
}
#else
#define check_string_free_list()
#endif

/* Return a new Lisp_String.  */

static struct Lisp_String *
allocate_string (void)
{
  struct Lisp_String *s;

  MALLOC_BLOCK_INPUT;

  /* If the free-list is empty, allocate a new string_block, and
     add all the Lisp_Strings in it to the free-list.  */
  if (string_free_list == NULL)
    {
      struct string_block *b = lisp_malloc (sizeof *b, false, MEM_TYPE_STRING);
      int i;

      b->next = string_blocks;
      string_blocks = b;

      for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
	{
	  s = b->strings + i;
	  /* Every string on a free list should have NULL data pointer.  */
	  s->u.s.data = NULL;
	  NEXT_FREE_LISP_STRING (s) = string_free_list;
	  string_free_list = ptr_bounds_clip (s, sizeof *s);
	}
    }

  check_string_free_list ();

  /* Pop a Lisp_String off the free-list.  */
  s = string_free_list;
  string_free_list = NEXT_FREE_LISP_STRING (s);

  MALLOC_UNBLOCK_INPUT;

  ++strings_consed;
  tally_consing (sizeof *s);

#ifdef GC_CHECK_STRING_BYTES
  if (!noninteractive)
    {
      if (++check_string_bytes_count == 200)
	{
	  check_string_bytes_count = 0;
	  check_string_bytes (1);
	}
      else
	check_string_bytes (0);
    }
#endif /* GC_CHECK_STRING_BYTES */

  return s;
}


/* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
   plus a NUL byte at the end.  Allocate an sdata structure DATA for
   S, and set S->u.s.data to SDATA->u.data.  Store a NUL byte at the
   end of S->u.s.data.  Set S->u.s.size to NCHARS and S->u.s.size_byte
   to NBYTES.  Free S->u.s.data if it was initially non-null.

   If CLEARIT, also clear the other bytes of S->u.s.data.  */

static void
allocate_string_data (struct Lisp_String *s,
		      EMACS_INT nchars, EMACS_INT nbytes, bool clearit)
{
  sdata *data;
  struct sblock *b;

  if (STRING_BYTES_MAX < nbytes)
    string_overflow ();

  /* Determine the number of bytes needed to store NBYTES bytes
     of string data.  */
  ptrdiff_t needed = sdata_size (nbytes);

  MALLOC_BLOCK_INPUT;

  if (nbytes > LARGE_STRING_BYTES)
    {
      size_t size = FLEXSIZEOF (struct sblock, data, needed);

#ifdef DOUG_LEA_MALLOC
      if (!mmap_lisp_allowed_p ())
        mallopt (M_MMAP_MAX, 0);
#endif

      b = lisp_malloc (size + GC_STRING_EXTRA, clearit, MEM_TYPE_NON_LISP);

#ifdef DOUG_LEA_MALLOC
      if (!mmap_lisp_allowed_p ())
        mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
#endif

      data = b->data;
      b->next = large_sblocks;
      b->next_free = data;
      large_sblocks = b;
    }
  else
    {
      b = current_sblock;

      if (b == NULL
	  || (SBLOCK_SIZE - GC_STRING_EXTRA
	      < (char *) b->next_free - (char *) b + needed))
	{
	  /* Not enough room in the current sblock.  */
	  b = lisp_malloc (SBLOCK_SIZE, false, MEM_TYPE_NON_LISP);
	  data = b->data;
	  b->next = NULL;
	  b->next_free = data;

	  if (current_sblock)
	    current_sblock->next = b;
	  else
	    oldest_sblock = b;
	  current_sblock = b;
	}

      data = b->next_free;
      if (clearit)
	memset (SDATA_DATA (data), 0, nbytes);
    }

  data->string = s;
  b->next_free = (sdata *) ((char *) data + needed + GC_STRING_EXTRA);
  eassert ((uintptr_t) b->next_free % alignof (sdata) == 0);

  MALLOC_UNBLOCK_INPUT;

  s->u.s.data = ptr_bounds_clip (SDATA_DATA (data), nbytes + 1);
#ifdef GC_CHECK_STRING_BYTES
  SDATA_NBYTES (data) = nbytes;
#endif
  s->u.s.size = nchars;
  s->u.s.size_byte = nbytes;
  s->u.s.data[nbytes] = '\0';
#ifdef GC_CHECK_STRING_OVERRUN
  memcpy ((char *) data + needed, string_overrun_cookie,
	  GC_STRING_OVERRUN_COOKIE_SIZE);
#endif

  tally_consing (needed);
}

/* Reallocate multibyte STRING data when a single character is replaced.
   The character is at byte offset CIDX_BYTE in the string.
   The character being replaced is CLEN bytes long,
   and the character that will replace it is NEW_CLEN bytes long.
   Return the address of where the caller should store the
   the new character.  */

unsigned char *
resize_string_data (Lisp_Object string, ptrdiff_t cidx_byte,
		    int clen, int new_clen)
{
  eassume (STRING_MULTIBYTE (string));
  sdata *old_sdata = SDATA_OF_STRING (XSTRING (string));
  ptrdiff_t nchars = SCHARS (string);
  ptrdiff_t nbytes = SBYTES (string);
  ptrdiff_t new_nbytes = nbytes + (new_clen - clen);
  unsigned char *data = SDATA (string);
  unsigned char *new_charaddr;

  if (sdata_size (nbytes) == sdata_size (new_nbytes))
    {
      /* No need to reallocate, as the size change falls within the
	 alignment slop.  */
      XSTRING (string)->u.s.size_byte = new_nbytes;
      new_charaddr = data + cidx_byte;
      memmove (new_charaddr + new_clen, new_charaddr + clen,
	       nbytes - (cidx_byte + (clen - 1)));
    }
  else
    {
      allocate_string_data (XSTRING (string), nchars, new_nbytes, false);
      unsigned char *new_data = SDATA (string);
      new_charaddr = new_data + cidx_byte;
      memcpy (new_charaddr + new_clen, data + cidx_byte + clen,
	      nbytes - (cidx_byte + clen));
      memcpy (new_data, data, cidx_byte);

      /* Mark old string data as free by setting its string back-pointer
	 to null, and record the size of the data in it.  */
      SDATA_NBYTES (old_sdata) = nbytes;
      old_sdata->string = NULL;
    }

  clear_string_char_byte_cache ();

  return new_charaddr;
}


/* Sweep and compact strings.  */

NO_INLINE /* For better stack traces */
static void
sweep_strings (void)
{
  struct string_block *b, *next;
  struct string_block *live_blocks = NULL;

  string_free_list = NULL;
  gcstat.total_strings = gcstat.total_free_strings = 0;
  gcstat.total_string_bytes = 0;

  /* Scan strings_blocks, free Lisp_Strings that aren't marked.  */
  for (b = string_blocks; b; b = next)
    {
      int i, nfree = 0;
      struct Lisp_String *free_list_before = string_free_list;

      next = b->next;

      for (i = 0; i < STRING_BLOCK_SIZE; ++i)
	{
	  struct Lisp_String *s = b->strings + i;

	  if (s->u.s.data)
	    {
	      /* String was not on free-list before.  */
	      if (XSTRING_MARKED_P (s))
		{
		  /* String is live; unmark it and its intervals.  */
		  XUNMARK_STRING (s);

		  /* Do not use string_(set|get)_intervals here.  */
		  s->u.s.intervals = balance_intervals (s->u.s.intervals);

		  gcstat.total_strings++;
		  gcstat.total_string_bytes += STRING_BYTES (s);
		}
	      else
		{
		  /* String is dead.  Put it on the free-list.  */
		  sdata *data = SDATA_OF_STRING (s);

		  /* Save the size of S in its sdata so that we know
		     how large that is.  Reset the sdata's string
		     back-pointer so that we know it's free.  */
#ifdef GC_CHECK_STRING_BYTES
		  if (string_bytes (s) != SDATA_NBYTES (data))
		    emacs_abort ();
#else
		  data->n.nbytes = STRING_BYTES (s);
#endif
		  data->string = NULL;

		  /* Reset the strings's `data' member so that we
		     know it's free.  */
		  s->u.s.data = NULL;

		  /* Put the string on the free-list.  */
		  NEXT_FREE_LISP_STRING (s) = string_free_list;
		  string_free_list = ptr_bounds_clip (s, sizeof *s);
		  ++nfree;
		}
	    }
	  else
	    {
	      /* S was on the free-list before.  Put it there again.  */
	      NEXT_FREE_LISP_STRING (s) = string_free_list;
	      string_free_list = ptr_bounds_clip (s, sizeof *s);
	      ++nfree;
	    }
	}

      /* Free blocks that contain free Lisp_Strings only, except
	 the first two of them.  */
      if (nfree == STRING_BLOCK_SIZE
	  && gcstat.total_free_strings > STRING_BLOCK_SIZE)
	{
	  lisp_free (b);
	  string_free_list = free_list_before;
	}
      else
	{
	  gcstat.total_free_strings += nfree;
	  b->next = live_blocks;
	  live_blocks = b;
	}
    }

  check_string_free_list ();

  string_blocks = live_blocks;
  free_large_strings ();
  compact_small_strings ();

  check_string_free_list ();
}


/* Free dead large strings.  */

static void
free_large_strings (void)
{
  struct sblock *b, *next;
  struct sblock *live_blocks = NULL;

  for (b = large_sblocks; b; b = next)
    {
      next = b->next;

      if (b->data[0].string == NULL)
	lisp_free (b);
      else
	{
	  b->next = live_blocks;
	  live_blocks = b;
	}
    }

  large_sblocks = live_blocks;
}


/* Compact data of small strings.  Free sblocks that don't contain
   data of live strings after compaction.  */

static void
compact_small_strings (void)
{
  /* TB is the sblock we copy to, TO is the sdata within TB we copy
     to, and TB_END is the end of TB.  */
  struct sblock *tb = oldest_sblock;
  if (tb)
    {
      sdata *tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
      sdata *to = tb->data;

      /* Step through the blocks from the oldest to the youngest.  We
	 expect that old blocks will stabilize over time, so that less
	 copying will happen this way.  */
      struct sblock *b = tb;
      do
	{
	  sdata *end = b->next_free;
	  eassert ((char *) end <= (char *) b + SBLOCK_SIZE);

	  for (sdata *from = b->data; from < end; )
	    {
	      /* Compute the next FROM here because copying below may
		 overwrite data we need to compute it.  */
	      ptrdiff_t nbytes;
	      struct Lisp_String *s = from->string;

#ifdef GC_CHECK_STRING_BYTES
	      /* Check that the string size recorded in the string is the
		 same as the one recorded in the sdata structure.  */
	      if (s && string_bytes (s) != SDATA_NBYTES (from))
		emacs_abort ();
#endif /* GC_CHECK_STRING_BYTES */

	      nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
	      eassert (nbytes <= LARGE_STRING_BYTES);

	      ptrdiff_t size = sdata_size (nbytes);
	      sdata *from_end = (sdata *) ((char *) from
					   + size + GC_STRING_EXTRA);

#ifdef GC_CHECK_STRING_OVERRUN
	      if (memcmp (string_overrun_cookie,
			  (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
			  GC_STRING_OVERRUN_COOKIE_SIZE))
		emacs_abort ();
#endif

	      /* Non-NULL S means it's alive.  Copy its data.  */
	      if (s)
		{
		  /* If TB is full, proceed with the next sblock.  */
		  sdata *to_end = (sdata *) ((char *) to
					     + size + GC_STRING_EXTRA);
		  if (to_end > tb_end)
		    {
		      tb->next_free = to;
		      tb = tb->next;
		      tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
		      to = tb->data;
		      to_end = (sdata *) ((char *) to + size + GC_STRING_EXTRA);
		    }

		  /* Copy, and update the string's `data' pointer.  */
		  if (from != to)
		    {
		      eassert (tb != b || to < from);
		      memmove (to, from, size + GC_STRING_EXTRA);
		      to->string->u.s.data
			= ptr_bounds_clip (SDATA_DATA (to), nbytes + 1);
		    }

		  /* Advance past the sdata we copied to.  */
		  to = to_end;
		}
	      from = from_end;
	    }
	  b = b->next;
	}
      while (b);

      /* The rest of the sblocks following TB don't contain live data, so
	 we can free them.  */
      for (b = tb->next; b; )
	{
	  struct sblock *next = b->next;
	  lisp_free (b);
	  b = next;
	}

      tb->next_free = to;
      tb->next = NULL;
    }

  current_sblock = tb;
}

void
string_overflow (void)
{
  error ("Maximum string size exceeded");
}

static Lisp_Object make_clear_string (EMACS_INT, bool);
static Lisp_Object make_clear_multibyte_string (EMACS_INT, EMACS_INT, bool);

DEFUN ("make-string", Fmake_string, Smake_string, 2, 3, 0,
       doc: /* Return a newly created string of length LENGTH, with INIT in each element.
LENGTH must be an integer.
INIT must be an integer that represents a character.
If optional argument MULTIBYTE is non-nil, the result will be
a multibyte string even if INIT is an ASCII character.  */)
  (Lisp_Object length, Lisp_Object init, Lisp_Object multibyte)
{
  Lisp_Object val;
  EMACS_INT nbytes;

  CHECK_FIXNAT (length);
  CHECK_CHARACTER (init);

  int c = XFIXNAT (init);
  bool clearit = !c;

  if (ASCII_CHAR_P (c) && NILP (multibyte))
    {
      nbytes = XFIXNUM (length);
      val = make_clear_string (nbytes, clearit);
      if (nbytes && !clearit)
	{
	  memset (SDATA (val), c, nbytes);
	  SDATA (val)[nbytes] = 0;
	}
    }
  else
    {
      unsigned char str[MAX_MULTIBYTE_LENGTH];
      ptrdiff_t len = CHAR_STRING (c, str);
      EMACS_INT string_len = XFIXNUM (length);

      if (INT_MULTIPLY_WRAPV (len, string_len, &nbytes))
	string_overflow ();
      val = make_clear_multibyte_string (string_len, nbytes, clearit);
      if (!clearit)
	{
	  unsigned char *beg = SDATA (val), *end = beg + nbytes;
	  for (unsigned char *p = beg; p < end; p += len)
	    {
	      /* First time we just copy STR to the data of VAL.  */
	      if (p == beg)
		memcpy (p, str, len);
	      else
		{
		  /* Next time we copy largest possible chunk from
		     initialized to uninitialized part of VAL.  */
		  len = min (p - beg, end - p);
		  memcpy (p, beg, len);
		}
	    }
	}
    }

  return val;
}

/* Fill A with 1 bits if INIT is non-nil, and with 0 bits otherwise.
   Return A.  */

Lisp_Object
bool_vector_fill (Lisp_Object a, Lisp_Object init)
{
  EMACS_INT nbits = bool_vector_size (a);
  if (0 < nbits)
    {
      unsigned char *data = bool_vector_uchar_data (a);
      int pattern = NILP (init) ? 0 : (1 << BOOL_VECTOR_BITS_PER_CHAR) - 1;
      ptrdiff_t nbytes = bool_vector_bytes (nbits);
      int last_mask = ~ (~0u << ((nbits - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1));
      memset (data, pattern, nbytes - 1);
      data[nbytes - 1] = pattern & last_mask;
    }
  return a;
}

/* Return a newly allocated, uninitialized bool vector of size NBITS.  */

Lisp_Object
make_uninit_bool_vector (EMACS_INT nbits)
{
  Lisp_Object val;
  EMACS_INT words = bool_vector_words (nbits);
  EMACS_INT word_bytes = words * sizeof (bits_word);
  EMACS_INT needed_elements = ((bool_header_size - header_size + word_bytes
				+ word_size - 1)
			       / word_size);
  if (PTRDIFF_MAX < needed_elements)
    memory_full (SIZE_MAX);
  struct Lisp_Bool_Vector *p
    = (struct Lisp_Bool_Vector *) allocate_vector (needed_elements);
  XSETVECTOR (val, p);
  XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0, 0);
  p->size = nbits;

  /* Clear padding at the end.  */
  if (words)
    p->data[words - 1] = 0;

  return val;
}

DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
       doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
LENGTH must be a number.  INIT matters only in whether it is t or nil.  */)
  (Lisp_Object length, Lisp_Object init)
{
  Lisp_Object val;

  CHECK_FIXNAT (length);
  val = make_uninit_bool_vector (XFIXNAT (length));
  return bool_vector_fill (val, init);
}

DEFUN ("bool-vector", Fbool_vector, Sbool_vector, 0, MANY, 0,
       doc: /* Return a new bool-vector with specified arguments as elements.
Allows any number of arguments, including zero.
usage: (bool-vector &rest OBJECTS)  */)
  (ptrdiff_t nargs, Lisp_Object *args)
{
  ptrdiff_t i;
  Lisp_Object vector;

  vector = make_uninit_bool_vector (nargs);
  for (i = 0; i < nargs; i++)
    bool_vector_set (vector, i, !NILP (args[i]));

  return vector;
}

/* Make a string from NBYTES bytes at CONTENTS, and compute the number
   of characters from the contents.  This string may be unibyte or
   multibyte, depending on the contents.  */

Lisp_Object
make_string (const char *contents, ptrdiff_t nbytes)
{
  register Lisp_Object val;
  ptrdiff_t nchars, multibyte_nbytes;

  parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
			  &nchars, &multibyte_nbytes);
  if (nbytes == nchars || nbytes != multibyte_nbytes)
    /* CONTENTS contains no multibyte sequences or contains an invalid
       multibyte sequence.  We must make unibyte string.  */
    val = make_unibyte_string (contents, nbytes);
  else
    val = make_multibyte_string (contents, nchars, nbytes);
  return val;
}

/* Make a unibyte string from LENGTH bytes at CONTENTS.  */

Lisp_Object
make_unibyte_string (const char *contents, ptrdiff_t length)
{
  register Lisp_Object val;
  val = make_uninit_string (length);
  memcpy (SDATA (val), contents, length);
  return val;
}


/* Make a multibyte string from NCHARS characters occupying NBYTES
   bytes at CONTENTS.  */

Lisp_Object
make_multibyte_string (const char *contents,
		       ptrdiff_t nchars, ptrdiff_t nbytes)
{
  register Lisp_Object val;
  val = make_uninit_multibyte_string (nchars, nbytes);
  memcpy (SDATA (val), contents, nbytes);
  return val;
}


/* Make a string from NCHARS characters occupying NBYTES bytes at
   CONTENTS.  It is a multibyte string if NBYTES != NCHARS.  */

Lisp_Object
make_string_from_bytes (const char *contents,
			ptrdiff_t nchars, ptrdiff_t nbytes)
{
  register Lisp_Object val;
  val = make_uninit_multibyte_string (nchars, nbytes);
  memcpy (SDATA (val), contents, nbytes);
  if (SBYTES (val) == SCHARS (val))
    STRING_SET_UNIBYTE (val);
  return val;
}


/* Make a string from NCHARS characters occupying NBYTES bytes at
   CONTENTS.  The argument MULTIBYTE controls whether to label the
   string as multibyte.  If NCHARS is negative, it counts the number of
   characters by itself.  */

Lisp_Object
make_specified_string (const char *contents,
		       ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
{
  Lisp_Object val;

  if (nchars < 0)
    {
      if (multibyte)
	nchars = multibyte_chars_in_text ((const unsigned char *) contents,
					  nbytes);
      else
	nchars = nbytes;
    }
  val = make_uninit_multibyte_string (nchars, nbytes);
  memcpy (SDATA (val), contents, nbytes);
  if (!multibyte)
    STRING_SET_UNIBYTE (val);
  return val;
}


/* Return a unibyte Lisp_String set up to hold LENGTH characters
   occupying LENGTH bytes.  If CLEARIT, clear its contents to null
   bytes; otherwise, the contents are uninitialized.  */

static Lisp_Object
make_clear_string (EMACS_INT length, bool clearit)
{
  Lisp_Object val;

  if (!length)
    return empty_unibyte_string;
  val = make_clear_multibyte_string (length, length, clearit);
  STRING_SET_UNIBYTE (val);
  return val;
}

/* Return a unibyte Lisp_String set up to hold LENGTH characters
   occupying LENGTH bytes.  */

Lisp_Object
make_uninit_string (EMACS_INT length)
{
  return make_clear_string (length, false);
}


/* Return a multibyte Lisp_String set up to hold NCHARS characters
   which occupy NBYTES bytes.  If CLEARIT, clear its contents to null
   bytes; otherwise, the contents are uninitialized.  */

static Lisp_Object
make_clear_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes, bool clearit)
{
  Lisp_Object string;
  struct Lisp_String *s;

  if (nchars < 0)
    emacs_abort ();
  if (!nbytes)
    return empty_multibyte_string;

  s = allocate_string ();
  s->u.s.intervals = NULL;
  allocate_string_data (s, nchars, nbytes, clearit);
  XSETSTRING (string, s);
  string_chars_consed += nbytes;
  return string;
}

/* Return a multibyte Lisp_String set up to hold NCHARS characters
   which occupy NBYTES bytes.  */

Lisp_Object
make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
{
  return make_clear_multibyte_string (nchars, nbytes, false);
}

/* Print arguments to BUF according to a FORMAT, then return
   a Lisp_String initialized with the data from BUF.  */

Lisp_Object
make_formatted_string (char *buf, const char *format, ...)
{
  va_list ap;
  int length;

  va_start (ap, format);
  length = vsprintf (buf, format, ap);
  va_end (ap);
  return make_string (buf, length);
}

\f
/***********************************************************************
			   Float Allocation
 ***********************************************************************/

/* We store float cells inside of float_blocks, allocating a new
   float_block with malloc whenever necessary.  Float cells reclaimed
   by GC are put on a free list to be reallocated before allocating
   any new float cells from the latest float_block.  */

#define FLOAT_BLOCK_SIZE					\
  (((BLOCK_BYTES - sizeof (struct float_block *)		\
     /* The compiler might add padding at the end.  */		\
     - (sizeof (struct Lisp_Float) - sizeof (bits_word))) * CHAR_BIT) \
   / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))

#define GETMARKBIT(block,n)				\
  (((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD]	\
    >> ((n) % BITS_PER_BITS_WORD))			\
   & 1)

#define SETMARKBIT(block,n)				\
  ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD]	\
   |= (bits_word) 1 << ((n) % BITS_PER_BITS_WORD))

#define UNSETMARKBIT(block,n)				\
  ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD]	\
   &= ~((bits_word) 1 << ((n) % BITS_PER_BITS_WORD)))

#define FLOAT_BLOCK(fptr) \
  (eassert (!pdumper_object_p (fptr)),                                  \
   ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1))))

#define FLOAT_INDEX(fptr) \
  ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))

struct float_block
{
  /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job.  */
  struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
  bits_word gcmarkbits[1 + FLOAT_BLOCK_SIZE / BITS_PER_BITS_WORD];
  struct float_block *next;
};

#define XFLOAT_MARKED_P(fptr) \
  GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))

#define XFLOAT_MARK(fptr) \
  SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))

#define XFLOAT_UNMARK(fptr) \
  UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))

/* Current float_block.  */

static struct float_block *float_block;

/* Index of first unused Lisp_Float in the current float_block.  */

static int float_block_index = FLOAT_BLOCK_SIZE;

/* Free-list of Lisp_Floats.  */

static struct Lisp_Float *float_free_list;

/* Return a new float object with value FLOAT_VALUE.  */

Lisp_Object
make_float (double float_value)
{
  register Lisp_Object val;

  MALLOC_BLOCK_INPUT;

  if (float_free_list)
    {
      XSETFLOAT (val, float_free_list);
      float_free_list = float_free_list->u.chain;
    }
  else
    {
      if (float_block_index == FLOAT_BLOCK_SIZE)
	{
	  struct float_block *new
	    = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
	  new->next = float_block;
	  memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
	  float_block = new;
	  float_block_index = 0;
	}
      XSETFLOAT (val, &float_block->floats[float_block_index]);
      float_block_index++;
    }

  MALLOC_UNBLOCK_INPUT;

  XFLOAT_INIT (val, float_value);
  eassert (!XFLOAT_MARKED_P (XFLOAT (val)));
  tally_consing (sizeof (struct Lisp_Float));
  floats_consed++;
  return val;
}


\f
/***********************************************************************
			   Cons Allocation
 ***********************************************************************/

/* We store cons cells inside of cons_blocks, allocating a new
   cons_block with malloc whenever necessary.  Cons cells reclaimed by
   GC are put on a free list to be reallocated before allocating
   any new cons cells from the latest cons_block.  */

#define CONS_BLOCK_SIZE						\
  (((BLOCK_BYTES - sizeof (struct cons_block *)			\
     /* The compiler might add padding at the end.  */		\
     - (sizeof (struct Lisp_Cons) - sizeof (bits_word))) * CHAR_BIT)	\
   / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))

#define CONS_BLOCK(fptr) \
  (eassert (!pdumper_object_p (fptr)),                                  \
   ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1))))

#define CONS_INDEX(fptr) \
  (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))

struct cons_block
{
  /* Place `conses' at the beginning, to ease up CONS_INDEX's job.  */
  struct Lisp_Cons conses[CONS_BLOCK_SIZE];
  bits_word gcmarkbits[1 + CONS_BLOCK_SIZE / BITS_PER_BITS_WORD];
  struct cons_block *next;
};

#define XCONS_MARKED_P(fptr) \
  GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))

#define XMARK_CONS(fptr) \
  SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))

#define XUNMARK_CONS(fptr) \
  UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))

/* Minimum number of bytes of consing since GC before next GC,
   when memory is full.  */

enum { memory_full_cons_threshold = sizeof (struct cons_block) };

/* Current cons_block.  */

static struct cons_block *cons_block;

/* Index of first unused Lisp_Cons in the current block.  */

static int cons_block_index = CONS_BLOCK_SIZE;

/* Free-list of Lisp_Cons structures.  */

static struct Lisp_Cons *cons_free_list;

/* Explicitly free a cons cell by putting it on the free-list.  */

void
free_cons (struct Lisp_Cons *ptr)
{
  ptr->u.s.u.chain = cons_free_list;
  ptr->u.s.car = dead_object ();
  cons_free_list = ptr;
  ptrdiff_t nbytes = sizeof *ptr;
  tally_consing (-nbytes);
}

DEFUN ("cons", Fcons, Scons, 2, 2, 0,
       doc: /* Create a new cons, give it CAR and CDR as components, and return it.  */)
  (Lisp_Object car, Lisp_Object cdr)
{
  register Lisp_Object val;

  MALLOC_BLOCK_INPUT;

  if (cons_free_list)
    {
      XSETCONS (val, cons_free_list);
      cons_free_list = cons_free_list->u.s.u.chain;
    }
  else
    {
      if (cons_block_index == CONS_BLOCK_SIZE)
	{
	  struct cons_block *new
	    = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
	  memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
	  new->next = cons_block;
	  cons_block = new;
	  cons_block_index = 0;
	}
      XSETCONS (val, &cons_block->conses[cons_block_index]);
      cons_block_index++;
    }

  MALLOC_UNBLOCK_INPUT;

  XSETCAR (val, car);
  XSETCDR (val, cdr);
  eassert (!XCONS_MARKED_P (XCONS (val)));
  consing_until_gc -= sizeof (struct Lisp_Cons);
  cons_cells_consed++;
  return val;
}

/* Make a list of 1, 2, 3, 4 or 5 specified objects.  */

Lisp_Object
list1 (Lisp_Object arg1)
{
  return Fcons (arg1, Qnil);
}

Lisp_Object
list2 (Lisp_Object arg1, Lisp_Object arg2)
{
  return Fcons (arg1, Fcons (arg2, Qnil));
}


Lisp_Object
list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
{
  return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
}

Lisp_Object
list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
{
  return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
}

Lisp_Object
list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4,
       Lisp_Object arg5)
{
  return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
						       Fcons (arg5, Qnil)))));
}

/* Make a list of COUNT Lisp_Objects, where ARG is the first one.
   Use CONS to construct the pairs.  AP has any remaining args.  */
static Lisp_Object
cons_listn (ptrdiff_t count, Lisp_Object arg,
	    Lisp_Object (*cons) (Lisp_Object, Lisp_Object), va_list ap)
{
  eassume (0 < count);
  Lisp_Object val = cons (arg, Qnil);
  Lisp_Object tail = val;
  for (ptrdiff_t i = 1; i < count; i++)
    {
      Lisp_Object elem = cons (va_arg (ap, Lisp_Object), Qnil);
      XSETCDR (tail, elem);
      tail = elem;
    }
  return val;
}

/* Make a list of COUNT Lisp_Objects, where ARG1 is the first one.  */
Lisp_Object
listn (ptrdiff_t count, Lisp_Object arg1, ...)
{
  va_list ap;
  va_start (ap, arg1);
  Lisp_Object val = cons_listn (count, arg1, Fcons, ap);
  va_end (ap);
  return val;
}

/* Make a pure list of COUNT Lisp_Objects, where ARG1 is the first one.  */
Lisp_Object
pure_listn (ptrdiff_t count, Lisp_Object arg1, ...)
{
  va_list ap;
  va_start (ap, arg1);
  Lisp_Object val = cons_listn (count, arg1, pure_cons, ap);
  va_end (ap);
  return val;
}

DEFUN ("list", Flist, Slist, 0, MANY, 0,
       doc: /* Return a newly created list with specified arguments as elements.
Allows any number of arguments, including zero.
usage: (list &rest OBJECTS)  */)
  (ptrdiff_t nargs, Lisp_Object *args)
{
  register Lisp_Object val;
  val = Qnil;

  while (nargs > 0)
    {
      nargs--;
      val = Fcons (args[nargs], val);
    }
  return val;
}


DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
       doc: /* Return a newly created list of length LENGTH, with each element being INIT.  */)
  (Lisp_Object length, Lisp_Object init)
{
  Lisp_Object val = Qnil;
  CHECK_FIXNAT (length);

  for (EMACS_INT size = XFIXNAT (length); 0 < size; size--)
    {
      val = Fcons (init, val);
      rarely_quit (size);
    }

  return val;
}


\f
/***********************************************************************
			   Vector Allocation
 ***********************************************************************/

/* Sometimes a vector's contents are merely a pointer internally used
   in vector allocation code.  On the rare platforms where a null
   pointer cannot be tagged, represent it with a Lisp 0.
   Usually you don't want to touch this.  */

static struct Lisp_Vector *
next_vector (struct Lisp_Vector *v)
{
  return XUNTAG (v->contents[0], Lisp_Int0, struct Lisp_Vector);
}

static void
set_next_vector (struct Lisp_Vector *v, struct Lisp_Vector *p)
{
  v->contents[0] = make_lisp_ptr (p, Lisp_Int0);
}

/* This value is balanced well enough to avoid too much internal overhead
   for the most common cases; it's not required to be a power of two, but
   it's expected to be a mult-of-ROUNDUP_SIZE (see below).  */

enum { VECTOR_BLOCK_SIZE = 4096 };

/* Vector size requests are a multiple of this.  */
enum { roundup_size = COMMON_MULTIPLE (LISP_ALIGNMENT, word_size) };

/* Verify assumptions described above.  */
verify (VECTOR_BLOCK_SIZE % roundup_size == 0);
verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));

/* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at compile time.  */
#define vroundup_ct(x) ROUNDUP (x, roundup_size)
/* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at runtime.  */
#define vroundup(x) (eassume ((x) >= 0), vroundup_ct (x))

/* Rounding helps to maintain alignment constraints if USE_LSB_TAG.  */

enum {VECTOR_BLOCK_BYTES = VECTOR_BLOCK_SIZE - vroundup_ct (sizeof (void *))};

/* Size of the minimal vector allocated from block.  */

enum { VBLOCK_BYTES_MIN = vroundup_ct (header_size + sizeof (Lisp_Object)) };

/* Size of the largest vector allocated from block.  */

enum { VBLOCK_BYTES_MAX = vroundup_ct ((VECTOR_BLOCK_BYTES / 2) - word_size) };

/* We maintain one free list for each possible block-allocated
   vector size, and this is the number of free lists we have.  */

enum { VECTOR_MAX_FREE_LIST_INDEX =
       (VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1 };

/* Common shortcut to advance vector pointer over a block data.  */

static struct Lisp_Vector *
ADVANCE (struct Lisp_Vector *v, ptrdiff_t nbytes)
{
  void *vv = v;
  char *cv = vv;
  void *p = cv + nbytes;
  return p;
}

/* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS.  */

static ptrdiff_t
VINDEX (ptrdiff_t nbytes)
{
  eassume (VBLOCK_BYTES_MIN <= nbytes);
  return (nbytes - VBLOCK_BYTES_MIN) / roundup_size;
}

/* This internal type is used to maintain the list of large vectors
   which are allocated at their own, e.g. outside of vector blocks.

   struct large_vector itself cannot contain a struct Lisp_Vector, as
   the latter contains a flexible array member and C99 does not allow
   such structs to be nested.  Instead, each struct large_vector
   object LV is followed by a struct Lisp_Vector, which is at offset
   large_vector_offset from LV, and whose address is therefore
   large_vector_vec (&LV).  */

struct large_vector
{
  struct large_vector *next;
};

enum
{
  large_vector_offset = ROUNDUP (sizeof (struct large_vector), LISP_ALIGNMENT)
};

static struct Lisp_Vector *
large_vector_vec (struct large_vector *p)
{
  return (struct Lisp_Vector *) ((char *) p + large_vector_offset);
}

/* This internal type is used to maintain an underlying storage
   for small vectors.  */

struct vector_block
{
  char data[VECTOR_BLOCK_BYTES];
  struct vector_block *next;
};

/* Chain of vector blocks.  */

static struct vector_block *vector_blocks;

/* Vector free lists, where NTH item points to a chain of free
   vectors of the same NBYTES size, so NTH == VINDEX (NBYTES).  */

static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];

/* Singly-linked list of large vectors.  */

static struct large_vector *large_vectors;

/* The only vector with 0 slots, allocated from pure space.  */

Lisp_Object zero_vector;

/* Common shortcut to setup vector on a free list.  */

static void
setup_on_free_list (struct Lisp_Vector *v, ptrdiff_t nbytes)
{
  v = ptr_bounds_clip (v, nbytes);
  eassume (header_size <= nbytes);
  ptrdiff_t nwords = (nbytes - header_size) / word_size;
  XSETPVECTYPESIZE (v, PVEC_FREE, 0, nwords);
  eassert (nbytes % roundup_size == 0);
  ptrdiff_t vindex = VINDEX (nbytes);
  eassert (vindex < VECTOR_MAX_FREE_LIST_INDEX);
  set_next_vector (v, vector_free_lists[vindex]);
  vector_free_lists[vindex] = v;
}

/* Get a new vector block.  */

static struct vector_block *
allocate_vector_block (void)
{
  struct vector_block *block = xmalloc (sizeof *block);

#ifndef GC_MALLOC_CHECK
  mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
	      MEM_TYPE_VECTOR_BLOCK);
#endif

  block->next = vector_blocks;
  vector_blocks = block;
  return block;
}

/* Called once to initialize vector allocation.  */

static void
init_vectors (void)
{
  zero_vector = make_pure_vector (0);
  staticpro (&zero_vector);
}

/* Allocate vector from a vector block.  */

static struct Lisp_Vector *
allocate_vector_from_block (ptrdiff_t nbytes)
{
  struct Lisp_Vector *vector;
  struct vector_block *block;
  size_t index, restbytes;

  eassume (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
  eassume (nbytes % roundup_size == 0);

  /* First, try to allocate from a free list
     containing vectors of the requested size.  */
  index = VINDEX (nbytes);
  if (vector_free_lists[index])
    {
      vector = vector_free_lists[index];
      vector_free_lists[index] = next_vector (vector);
      return vector;
    }

  /* Next, check free lists containing larger vectors.  Since
     we will split the result, we should have remaining space
     large enough to use for one-slot vector at least.  */
  for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
       index < VECTOR_MAX_FREE_LIST_INDEX; index++)
    if (vector_free_lists[index])
      {
	/* This vector is larger than requested.  */
	vector = vector_free_lists[index];
	vector_free_lists[index] = next_vector (vector);

	/* Excess bytes are used for the smaller vector,
	   which should be set on an appropriate free list.  */
	restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
	eassert (restbytes % roundup_size == 0);
	setup_on_free_list (ADVANCE (vector, nbytes), restbytes);
	return vector;
      }

  /* Finally, need a new vector block.  */
  block = allocate_vector_block ();

  /* New vector will be at the beginning of this block.  */
  vector = (struct Lisp_Vector *) block->data;

  /* If the rest of space from this block is large enough
     for one-slot vector at least, set up it on a free list.  */
  restbytes = VECTOR_BLOCK_BYTES - nbytes;
  if (restbytes >= VBLOCK_BYTES_MIN)
    {
      eassert (restbytes % roundup_size == 0);
      setup_on_free_list (ADVANCE (vector, nbytes), restbytes);
    }
  return vector;
}

/* Nonzero if VECTOR pointer is valid pointer inside BLOCK.  */

#define VECTOR_IN_BLOCK(vector, block)		\
  ((char *) (vector) <= (block)->data		\
   + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)

/* Return the memory footprint of V in bytes.  */

ptrdiff_t
vectorlike_nbytes (const union vectorlike_header *hdr)
{
  ptrdiff_t size = hdr->size & ~ARRAY_MARK_FLAG;
  ptrdiff_t nwords;

  if (size & PSEUDOVECTOR_FLAG)
    {
      if (PSEUDOVECTOR_TYPEP (hdr, PVEC_BOOL_VECTOR))
        {
          struct Lisp_Bool_Vector *bv = (struct Lisp_Bool_Vector *) hdr;
	  ptrdiff_t word_bytes = (bool_vector_words (bv->size)
				  * sizeof (bits_word));
	  ptrdiff_t boolvec_bytes = bool_header_size + word_bytes;
	  verify (header_size <= bool_header_size);
	  nwords = (boolvec_bytes - header_size + word_size - 1) / word_size;
        }
      else
	nwords = ((size & PSEUDOVECTOR_SIZE_MASK)
		  + ((size & PSEUDOVECTOR_REST_MASK)
		     >> PSEUDOVECTOR_SIZE_BITS));
    }
  else
    nwords = size;
  return vroundup (header_size + word_size * nwords);
}

/* Convert a pseudovector pointer P to its underlying struct T pointer.
   Verify that the struct is small, since cleanup_vector is called
   only on small vector-like objects.  */

#define PSEUDOVEC_STRUCT(p, t) \
  verify_expr ((header_size + VECSIZE (struct t) * word_size \
		<= VBLOCK_BYTES_MAX), \
	       (struct t *) (p))

/* Release extra resources still in use by VECTOR, which may be any
   small vector-like object.  */

static void
cleanup_vector (struct Lisp_Vector *vector)
{
  detect_suspicious_free (vector);

  if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BIGNUM))
    mpz_clear (PSEUDOVEC_STRUCT (vector, Lisp_Bignum)->value);
  else if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FINALIZER))
    unchain_finalizer (PSEUDOVEC_STRUCT (vector, Lisp_Finalizer));
  else if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FONT))
    {
      if ((vector->header.size & PSEUDOVECTOR_SIZE_MASK) == FONT_OBJECT_MAX)
	{
	  struct font *font = PSEUDOVEC_STRUCT (vector, font);
	  struct font_driver const *drv = font->driver;

	  /* The font driver might sometimes be NULL, e.g. if Emacs was
	     interrupted before it had time to set it up.  */
	  if (drv)
	    {
	      /* Attempt to catch subtle bugs like Bug#16140.  */
	      eassert (valid_font_driver (drv));
	      drv->close_font (font);
	    }
	}
    }
  else if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_THREAD))
    finalize_one_thread (PSEUDOVEC_STRUCT (vector, thread_state));
  else if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_MUTEX))
    finalize_one_mutex (PSEUDOVEC_STRUCT (vector, Lisp_Mutex));
  else if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_CONDVAR))
    finalize_one_condvar (PSEUDOVEC_STRUCT (vector, Lisp_CondVar));
  else if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_MARKER))
    {
      /* sweep_buffer should already have unchained this from its buffer.  */
      eassert (! PSEUDOVEC_STRUCT (vector, Lisp_Marker)->buffer);
    }
  else if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_USER_PTR))
    {
      struct Lisp_User_Ptr *uptr = PSEUDOVEC_STRUCT (vector, Lisp_User_Ptr);
      if (uptr->finalizer)
	uptr->finalizer (uptr->p);
    }
#ifdef HAVE_MODULES
  else if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_MODULE_FUNCTION))
    {
      ATTRIBUTE_MAY_ALIAS struct Lisp_Module_Function *function
        = (struct Lisp_Module_Function *) vector;
      module_finalize_function (function);
    }
#endif
#ifdef HAVE_GTK4
  else if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_EMBEDDED_WIDGET))
    {
      struct embedded_widget *widget = (struct embedded_widget *) vector;
      g_object_unref (G_OBJECT (widget->actual_widget));
      g_object_unref (G_OBJECT (widget->controller));
      g_object_unref (G_OBJECT (widget->controller_2));
    }
#endif
}

/* Reclaim space used by unmarked vectors.  */

NO_INLINE /* For better stack traces */
static void
sweep_vectors (void)
{
  struct vector_block *block, **bprev = &vector_blocks;
  struct large_vector *lv, **lvprev = &large_vectors;
  struct Lisp_Vector *vector, *next;

  gcstat.total_vectors = 0;
  gcstat.total_vector_slots = gcstat.total_free_vector_slots = 0;
  memset (vector_free_lists, 0, sizeof (vector_free_lists));

  /* Looking through vector blocks.  */

  for (block = vector_blocks; block; block = *bprev)
    {
      bool free_this_block = false;

      for (vector = (struct Lisp_Vector *) block->data;
	   VECTOR_IN_BLOCK (vector, block); vector = next)
	{
	  if (XVECTOR_MARKED_P (vector))
	    {
	      XUNMARK_VECTOR (vector);
	      gcstat.total_vectors++;
	      ptrdiff_t nbytes = vector_nbytes (vector);
	      gcstat.total_vector_slots += nbytes / word_size;
	      next = ADVANCE (vector, nbytes);
	    }
	  else
	    {
	      ptrdiff_t total_bytes = 0;

	      /* While NEXT is not marked, try to coalesce with VECTOR,
		 thus making VECTOR of the largest possible size.  */

	      next = vector;
	      do
		{
		  cleanup_vector (next);
		  ptrdiff_t nbytes = vector_nbytes (next);
		  total_bytes += nbytes;
		  next = ADVANCE (next, nbytes);
		}
	      while (VECTOR_IN_BLOCK (next, block) && !vector_marked_p (next));

	      eassert (total_bytes % roundup_size == 0);

	      if (vector == (struct Lisp_Vector *) block->data
		  && !VECTOR_IN_BLOCK (next, block))
		/* This block should be freed because all of its
		   space was coalesced into the only free vector.  */
		free_this_block = true;
	      else
		{
		  setup_on_free_list (vector, total_bytes);
		  gcstat.total_free_vector_slots += total_bytes / word_size;
		}
	    }
	}

      if (free_this_block)
	{
	  *bprev = block->next;
#ifndef GC_MALLOC_CHECK
	  mem_delete (mem_find (block->data));
#endif
	  xfree (block);
	}
      else
	bprev = &block->next;
    }

  /* Sweep large vectors.  */

  for (lv = large_vectors; lv; lv = *lvprev)
    {
      vector = large_vector_vec (lv);
      if (XVECTOR_MARKED_P (vector))
	{
	  XUNMARK_VECTOR (vector);
	  gcstat.total_vectors++;
	  gcstat.total_vector_slots
	    += (vector->header.size & PSEUDOVECTOR_FLAG
		? vector_nbytes (vector) / word_size
		: header_size / word_size + vector->header.size);
	  lvprev = &lv->next;
	}
      else
	{
	  *lvprev = lv->next;
	  lisp_free (lv);
	}
    }
}

/* Maximum number of elements in a vector.  This is a macro so that it
   can be used in an integer constant expression.  */

#define VECTOR_ELTS_MAX \
  ((ptrdiff_t) \
   min (((min (PTRDIFF_MAX, SIZE_MAX) - header_size - large_vector_offset) \
	 / word_size), \
	MOST_POSITIVE_FIXNUM))

/* Value is a pointer to a newly allocated Lisp_Vector structure
   with room for LEN Lisp_Objects.  LEN must be positive and
   at most VECTOR_ELTS_MAX.  */

static struct Lisp_Vector *
allocate_vectorlike (ptrdiff_t len, bool clearit)
{
  eassert (0 < len && len <= VECTOR_ELTS_MAX);
  ptrdiff_t nbytes = header_size + len * word_size;
  struct Lisp_Vector *p;

  MALLOC_BLOCK_INPUT;

#ifdef DOUG_LEA_MALLOC
  if (!mmap_lisp_allowed_p ())
    mallopt (M_MMAP_MAX, 0);
#endif

  if (nbytes <= VBLOCK_BYTES_MAX)
    {
      p = allocate_vector_from_block (vroundup (nbytes));
      if (clearit)
	memclear (p, nbytes);
    }
  else
    {
      struct large_vector *lv = lisp_malloc (large_vector_offset + nbytes,
					     clearit, MEM_TYPE_VECTORLIKE);
      lv->next = large_vectors;
      large_vectors = lv;
      p = large_vector_vec (lv);
    }

#ifdef DOUG_LEA_MALLOC
  if (!mmap_lisp_allowed_p ())
    mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
#endif

  if (find_suspicious_object_in_range (p, (char *) p + nbytes))
    emacs_abort ();

  tally_consing (nbytes);
  vector_cells_consed += len;

  MALLOC_UNBLOCK_INPUT;

  return ptr_bounds_clip (p, nbytes);
}


/* Allocate a vector with LEN slots.  If CLEARIT, clear its slots;
   otherwise the vector's slots are uninitialized.  */

static struct Lisp_Vector *
allocate_clear_vector (ptrdiff_t len, bool clearit)
{
  if (len == 0)
    return XVECTOR (zero_vector);
  if (VECTOR_ELTS_MAX < len)
    memory_full (SIZE_MAX);
  struct Lisp_Vector *v = allocate_vectorlike (len, clearit);
  v->header.size = len;
  return v;
}

/* Allocate a vector with LEN uninitialized slots.  */

struct Lisp_Vector *
allocate_vector (ptrdiff_t len)
{
  return allocate_clear_vector (len, false);
}

/* Allocate a vector with LEN nil slots.  */

struct Lisp_Vector *
allocate_nil_vector (ptrdiff_t len)
{
  return allocate_clear_vector (len, true);
}


/* Allocate other vector-like structures.  */

struct Lisp_Vector *
allocate_pseudovector (int memlen, int lisplen,
		       int zerolen, enum pvec_type tag)
{
  /* Catch bogus values.  */
  enum { size_max = (1 << PSEUDOVECTOR_SIZE_BITS) - 1 };
  enum { rest_max = (1 << PSEUDOVECTOR_REST_BITS) - 1 };
  verify (size_max + rest_max <= VECTOR_ELTS_MAX);
  eassert (0 <= tag && tag <= PVEC_FONT);
  eassert (0 <= lisplen && lisplen <= zerolen && zerolen <= memlen);
  eassert (lisplen <= size_max);
  eassert (memlen <= size_max + rest_max);

  struct Lisp_Vector *v = allocate_vectorlike (memlen, false);
  /* Only the first LISPLEN slots will be traced normally by the GC.  */
  memclear (v->contents, zerolen * word_size);
  XSETPVECTYPESIZE (v, tag, lisplen, memlen - lisplen);
  return v;
}

struct buffer *
allocate_buffer (void)
{
  struct buffer *b
    = ALLOCATE_PSEUDOVECTOR (struct buffer, cursor_in_non_selected_windows_,
			     PVEC_BUFFER);
  BUFFER_PVEC_INIT (b);
  /* Note that the rest fields of B are not initialized.  */
  return b;
}


/* Allocate a record with COUNT slots.  COUNT must be positive, and
   includes the type slot.  */

static struct Lisp_Vector *
allocate_record (EMACS_INT count)
{
  if (count > PSEUDOVECTOR_SIZE_MASK)
    error ("Attempt to allocate a record of %"pI"d slots; max is %d",
	   count, PSEUDOVECTOR_SIZE_MASK);
  struct Lisp_Vector *p = allocate_vectorlike (count, false);
  p->header.size = count;
  XSETPVECTYPE (p, PVEC_RECORD);
  return p;
}


DEFUN ("make-record", Fmake_record, Smake_record, 3, 3, 0,
       doc: /* Create a new record.
TYPE is its type as returned by `type-of'; it should be either a
symbol or a type descriptor.  SLOTS is the number of non-type slots,
each initialized to INIT.  */)
  (Lisp_Object type, Lisp_Object slots, Lisp_Object init)
{
  CHECK_FIXNAT (slots);
  EMACS_INT size = XFIXNAT (slots) + 1;
  struct Lisp_Vector *p = allocate_record (size);
  p->contents[0] = type;
  for (ptrdiff_t i = 1; i < size; i++)
    p->contents[i] = init;
  return make_lisp_ptr (p, Lisp_Vectorlike);
}


DEFUN ("record", Frecord, Srecord, 1, MANY, 0,
       doc: /* Create a new record.
TYPE is its type as returned by `type-of'; it should be either a
symbol or a type descriptor.  SLOTS is used to initialize the record
slots with shallow copies of the arguments.
usage: (record TYPE &rest SLOTS) */)
  (ptrdiff_t nargs, Lisp_Object *args)
{
  struct Lisp_Vector *p = allocate_record (nargs);
  memcpy (p->contents, args, nargs * sizeof *args);
  return make_lisp_ptr (p, Lisp_Vectorlike);
}


DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
       doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
See also the function `vector'.  */)
  (Lisp_Object length, Lisp_Object init)
{
  CHECK_TYPE (FIXNATP (length) && XFIXNAT (length) <= PTRDIFF_MAX,
	      Qwholenump, length);
  return make_vector (XFIXNAT (length), init);
}

/* Return a new vector of length LENGTH with each element being INIT.  */

Lisp_Object
make_vector (ptrdiff_t length, Lisp_Object init)
{
  bool clearit = NIL_IS_ZERO && NILP (init);
  struct Lisp_Vector *p = allocate_clear_vector (length, clearit);
  if (!clearit)
    for (ptrdiff_t i = 0; i < length; i++)
      p->contents[i] = init;
  return make_lisp_ptr (p, Lisp_Vectorlike);
}

DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
       doc: /* Return a newly created vector with specified arguments as elements.
Allows any number of arguments, including zero.
usage: (vector &rest OBJECTS)  */)
  (ptrdiff_t nargs, Lisp_Object *args)
{
  Lisp_Object val = make_uninit_vector (nargs);
  struct Lisp_Vector *p = XVECTOR (val);
  memcpy (p->contents, args, nargs * sizeof *args);
  return val;
}

void
make_byte_code (struct Lisp_Vector *v)
{
  /* Don't allow the global zero_vector to become a byte code object.  */
  eassert (0 < v->header.size);

  if (v->header.size > 1 && STRINGP (v->contents[1])
      && STRING_MULTIBYTE (v->contents[1]))
    /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
       earlier because they produced a raw 8-bit string for byte-code
       and now such a byte-code string is loaded as multibyte while
       raw 8-bit characters converted to multibyte form.  Thus, now we
       must convert them back to the original unibyte form.  */
    v->contents[1] = Fstring_as_unibyte (v->contents[1]);
  XSETPVECTYPE (v, PVEC_COMPILED);
}

DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
       doc: /* Create a byte-code object with specified arguments as elements.
The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
and (optional) INTERACTIVE-SPEC.
The first four arguments are required; at most six have any
significance.
The ARGLIST can be either like the one of `lambda', in which case the arguments
will be dynamically bound before executing the byte code, or it can be an
integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
argument to catch the left-over arguments.  If such an integer is used, the
arguments will not be dynamically bound but will be instead pushed on the
stack before executing the byte-code.
usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS)  */)
  (ptrdiff_t nargs, Lisp_Object *args)
{
  Lisp_Object val = make_uninit_vector (nargs);
  struct Lisp_Vector *p = XVECTOR (val);

  /* We used to purecopy everything here, if purify-flag was set.  This worked
     OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
     dangerous, since make-byte-code is used during execution to build
     closures, so any closure built during the preload phase would end up
     copied into pure space, including its free variables, which is sometimes
     just wasteful and other times plainly wrong (e.g. those free vars may want
     to be setcar'd).  */

  memcpy (p->contents, args, nargs * sizeof *args);
  make_byte_code (p);
  XSETCOMPILED (val, p);
  return val;
}


\f
/***********************************************************************
			   Symbol Allocation
 ***********************************************************************/

/* Each symbol_block is just under 1020 bytes long, since malloc
   really allocates in units of powers of two and uses 4 bytes for its
   own overhead.  */

#define SYMBOL_BLOCK_SIZE \
  ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))

struct symbol_block
{
  /* Place `symbols' first, to preserve alignment.  */
  struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
  struct symbol_block *next;
};

/* Current symbol block and index of first unused Lisp_Symbol
   structure in it.  */

static struct symbol_block *symbol_block;
static int symbol_block_index = SYMBOL_BLOCK_SIZE;
/* Pointer to the first symbol_block that contains pinned symbols.
   Tests for 24.4 showed that at dump-time, Emacs contains about 15K symbols,
   10K of which are pinned (and all but 250 of them are interned in obarray),
   whereas a "typical session" has in the order of 30K symbols.
   `symbol_block_pinned' lets mark_pinned_symbols scan only 15K symbols rather
   than 30K to find the 10K symbols we need to mark.  */
static struct symbol_block *symbol_block_pinned;

/* List of free symbols.  */

static struct Lisp_Symbol *symbol_free_list;

static void
set_symbol_name (Lisp_Object sym, Lisp_Object name)
{
  XSYMBOL (sym)->u.s.name = name;
}

void
init_symbol (Lisp_Object val, Lisp_Object name)
{
  struct Lisp_Symbol *p = XSYMBOL (val);
  set_symbol_name (val, name);
  set_symbol_plist (val, Qnil);
  p->u.s.redirect = SYMBOL_PLAINVAL;
  SET_SYMBOL_VAL (p, Qunbound);
  set_symbol_function (val, Qnil);
  set_symbol_next (val, NULL);
  p->u.s.gcmarkbit = false;
  p->u.s.interned = SYMBOL_UNINTERNED;
  p->u.s.trapped_write = SYMBOL_UNTRAPPED_WRITE;
  p->u.s.declared_special = false;
  p->u.s.pinned = false;
}

DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
       doc: /* Return a newly allocated uninterned symbol whose name is NAME.
Its value is void, and its function definition and property list are nil.  */)
  (Lisp_Object name)
{
  Lisp_Object val;

  CHECK_STRING (name);

  MALLOC_BLOCK_INPUT;

  if (symbol_free_list)
    {
      XSETSYMBOL (val, symbol_free_list);
      symbol_free_list = symbol_free_list->u.s.next;
    }
  else
    {
      if (symbol_block_index == SYMBOL_BLOCK_SIZE)
	{
	  struct symbol_block *new
	    = lisp_malloc (sizeof *new, false, MEM_TYPE_SYMBOL);
	  new->next = symbol_block;
	  symbol_block = new;
	  symbol_block_index = 0;
	}
      XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
      symbol_block_index++;
    }

  MALLOC_UNBLOCK_INPUT;

  init_symbol (val, name);
  tally_consing (sizeof (struct Lisp_Symbol));
  symbols_consed++;
  return val;
}


\f
Lisp_Object
make_misc_ptr (void *a)
{
  struct Lisp_Misc_Ptr *p = ALLOCATE_PLAIN_PSEUDOVECTOR (struct Lisp_Misc_Ptr,
							 PVEC_MISC_PTR);
  p->pointer = a;
  return make_lisp_ptr (p, Lisp_Vectorlike);
}

/* Return a new overlay with specified START, END and PLIST.  */

Lisp_Object
build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
{
  struct Lisp_Overlay *p = ALLOCATE_PSEUDOVECTOR (struct Lisp_Overlay, plist,
						  PVEC_OVERLAY);
  Lisp_Object overlay = make_lisp_ptr (p, Lisp_Vectorlike);
  OVERLAY_START (overlay) = start;
  OVERLAY_END (overlay) = end;
  set_overlay_plist (overlay, plist);
  p->next = NULL;
  return overlay;
}

DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
       doc: /* Return a newly allocated marker which does not point at any place.  */)
  (void)
{
  struct Lisp_Marker *p = ALLOCATE_PLAIN_PSEUDOVECTOR (struct Lisp_Marker,
						       PVEC_MARKER);
  p->buffer = 0;
  p->bytepos = 0;
  p->charpos = 0;
  p->next = NULL;
  p->insertion_type = 0;
  p->need_adjustment = 0;
  return make_lisp_ptr (p, Lisp_Vectorlike);
}

/* Return a newly allocated marker which points into BUF
   at character position CHARPOS and byte position BYTEPOS.  */

Lisp_Object
build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
{
  /* No dead buffers here.  */
  eassert (BUFFER_LIVE_P (buf));

  /* Every character is at least one byte.  */
  eassert (charpos <= bytepos);

  struct Lisp_Marker *m = ALLOCATE_PLAIN_PSEUDOVECTOR (struct Lisp_Marker,
						       PVEC_MARKER);
  m->buffer = buf;
  m->charpos = charpos;
  m->bytepos = bytepos;
  m->insertion_type = 0;
  m->need_adjustment = 0;
  m->next = BUF_MARKERS (buf);
  BUF_MARKERS (buf) = m;
  return make_lisp_ptr (m, Lisp_Vectorlike);
}

\f
/* Return a newly created vector or string with specified arguments as
   elements.  If all the arguments are characters that can fit
   in a string of events, make a string; otherwise, make a vector.

   Allows any number of arguments, including zero.  */

Lisp_Object
make_event_array (ptrdiff_t nargs, Lisp_Object *args)
{
  ptrdiff_t i;

  for (i = 0; i < nargs; i++)
    /* The things that fit in a string
       are characters that are in 0...127,
       after discarding the meta bit and all the bits above it.  */
    if (!FIXNUMP (args[i])
	|| (XFIXNUM (args[i]) & ~(-CHAR_META)) >= 0200)
      return Fvector (nargs, args);

  /* Since the loop exited, we know that all the things in it are
     characters, so we can make a string.  */
  {
    Lisp_Object result;

    result = Fmake_string (make_fixnum (nargs), make_fixnum (0), Qnil);
    for (i = 0; i < nargs; i++)
      {
	SSET (result, i, XFIXNUM (args[i]));
	/* Move the meta bit to the right place for a string char.  */
	if (XFIXNUM (args[i]) & CHAR_META)
	  SSET (result, i, SREF (result, i) | 0x80);
      }

    return result;
  }
}

#ifdef HAVE_MODULES
/* Create a new module user ptr object.  */
Lisp_Object
make_user_ptr (void (*finalizer) (void *), void *p)
{
  struct Lisp_User_Ptr *uptr
    = ALLOCATE_PLAIN_PSEUDOVECTOR (struct Lisp_User_Ptr, PVEC_USER_PTR);
  uptr->finalizer = finalizer;
  uptr->p = p;
  return make_lisp_ptr (uptr, Lisp_Vectorlike);
}
#endif

static void
init_finalizer_list (struct Lisp_Finalizer *head)
{
  head->prev = head->next = head;
}

/* Insert FINALIZER before ELEMENT.  */

static void
finalizer_insert (struct Lisp_Finalizer *element,
                  struct Lisp_Finalizer *finalizer)
{
  eassert (finalizer->prev == NULL);
  eassert (finalizer->next == NULL);
  finalizer->next = element;
  finalizer->prev = element->prev;
  finalizer->prev->next = finalizer;
  element->prev = finalizer;
}

static void
unchain_finalizer (struct Lisp_Finalizer *finalizer)
{
  if (finalizer->prev != NULL)
    {
      eassert (finalizer->next != NULL);
      finalizer->prev->next = finalizer->next;
      finalizer->next->prev = finalizer->prev;
      finalizer->prev = finalizer->next = NULL;
    }
}

static void
mark_finalizer_list (struct Lisp_Finalizer *head)
{
  for (struct Lisp_Finalizer *finalizer = head->next;
       finalizer != head;
       finalizer = finalizer->next)
    {
      set_vectorlike_marked (&finalizer->header);
      mark_object (finalizer->function);
    }
}

/* Move doomed finalizers to list DEST from list SRC.  A doomed
   finalizer is one that is not GC-reachable and whose
   finalizer->function is non-nil.  */

static void
queue_doomed_finalizers (struct Lisp_Finalizer *dest,
                         struct Lisp_Finalizer *src)
{
  struct Lisp_Finalizer *finalizer = src->next;
  while (finalizer != src)
    {
      struct Lisp_Finalizer *next = finalizer->next;
      if (!vectorlike_marked_p (&finalizer->header)
          && !NILP (finalizer->function))
        {
          unchain_finalizer (finalizer);
          finalizer_insert (dest, finalizer);
        }

      finalizer = next;
    }
}

static Lisp_Object
run_finalizer_handler (Lisp_Object args)
{
  add_to_log ("finalizer failed: %S", args);
  return Qnil;
}

static void
run_finalizer_function (Lisp_Object function)
{
  ptrdiff_t count = SPECPDL_INDEX ();
#ifdef HAVE_PDUMPER
  ++number_finalizers_run;
#endif

  specbind (Qinhibit_quit, Qt);
  internal_condition_case_1 (call0, function, Qt, run_finalizer_handler);
  unbind_to (count, Qnil);
}

static void
run_finalizers (struct Lisp_Finalizer *finalizers)
{
  struct Lisp_Finalizer *finalizer;
  Lisp_Object function;

  while (finalizers->next != finalizers)
    {
      finalizer = finalizers->next;
      unchain_finalizer (finalizer);
      function = finalizer->function;
      if (!NILP (function))
	{
	  finalizer->function = Qnil;
	  run_finalizer_function (function);
	}
    }
}

DEFUN ("make-finalizer", Fmake_finalizer, Smake_finalizer, 1, 1, 0,
       doc: /* Make a finalizer that will run FUNCTION.
FUNCTION will be called after garbage collection when the returned
finalizer object becomes unreachable.  If the finalizer object is
reachable only through references from finalizer objects, it does not
count as reachable for the purpose of deciding whether to run
FUNCTION.  FUNCTION will be run once per finalizer object.  */)
  (Lisp_Object function)
{
  struct Lisp_Finalizer *finalizer
    = ALLOCATE_PSEUDOVECTOR (struct Lisp_Finalizer, function, PVEC_FINALIZER);
  finalizer->function = function;
  finalizer->prev = finalizer->next = NULL;
  finalizer_insert (&finalizers, finalizer);
  return make_lisp_ptr (finalizer, Lisp_Vectorlike);
}

\f
/************************************************************************
                         Mark bit access functions
 ************************************************************************/

/* With the rare exception of functions implementing block-based
   allocation of various types, you should not directly test or set GC
   mark bits on objects.  Some objects might live in special memory
   regions (e.g., a dump image) and might store their mark bits
   elsewhere.  */

static bool
vector_marked_p (const struct Lisp_Vector *v)
{
  if (pdumper_object_p (v))
    {
      /* Look at cold_start first so that we don't have to fault in
         the vector header just to tell that it's a bool vector.  */
      if (pdumper_cold_object_p (v))
        {
          eassert (PSEUDOVECTOR_TYPE (v) == PVEC_BOOL_VECTOR);
          return true;
        }
      return pdumper_marked_p (v);
    }
  return XVECTOR_MARKED_P (v);
}

static void
set_vector_marked (struct Lisp_Vector *v)
{
  if (pdumper_object_p (v))
    {
      eassert (PSEUDOVECTOR_TYPE (v) != PVEC_BOOL_VECTOR);
      pdumper_set_marked (v);
    }
  else
    XMARK_VECTOR (v);
}

static bool
vectorlike_marked_p (const union vectorlike_header *header)
{
  return vector_marked_p ((const struct Lisp_Vector *) header);
}

static void
set_vectorlike_marked (union vectorlike_header *header)
{
  set_vector_marked ((struct Lisp_Vector *) header);
}

static bool
cons_marked_p (const struct Lisp_Cons *c)
{
  return pdumper_object_p (c)
    ? pdumper_marked_p (c)
    : XCONS_MARKED_P (c);
}

static void
set_cons_marked (struct Lisp_Cons *c)
{
  if (pdumper_object_p (c))
    pdumper_set_marked (c);
  else
    XMARK_CONS (c);
}

static bool
string_marked_p (const struct Lisp_String *s)
{
  return pdumper_object_p (s)
    ? pdumper_marked_p (s)
    : XSTRING_MARKED_P (s);
}

static void
set_string_marked (struct Lisp_String *s)
{
  if (pdumper_object_p (s))
    pdumper_set_marked (s);
  else
    XMARK_STRING (s);
}

static bool
symbol_marked_p (const struct Lisp_Symbol *s)
{
  return pdumper_object_p (s)
    ? pdumper_marked_p (s)
    : s->u.s.gcmarkbit;
}

static void
set_symbol_marked (struct Lisp_Symbol *s)
{
  if (pdumper_object_p (s))
    pdumper_set_marked (s);
  else
    s->u.s.gcmarkbit = true;
}

static bool
interval_marked_p (INTERVAL i)
{
  return pdumper_object_p (i)
    ? pdumper_marked_p (i)
    : i->gcmarkbit;
}

static void
set_interval_marked (INTERVAL i)
{
  if (pdumper_object_p (i))
    pdumper_set_marked (i);
  else
    i->gcmarkbit = true;
}

\f
/************************************************************************
			   Memory Full Handling
 ************************************************************************/


/* Called if malloc (NBYTES) returns zero.  If NBYTES == SIZE_MAX,
   there may have been size_t overflow so that malloc was never
   called, or perhaps malloc was invoked successfully but the
   resulting pointer had problems fitting into a tagged EMACS_INT.  In
   either case this counts as memory being full even though malloc did
   not fail.  */

void
memory_full (size_t nbytes)
{
  if (!initialized)
    fatal ("memory exhausted");

  /* Do not go into hysterics merely because a large request failed.  */
  bool enough_free_memory = false;
  if (SPARE_MEMORY < nbytes)
    {
      void *p;

      MALLOC_BLOCK_INPUT;
      p = malloc (SPARE_MEMORY);
      if (p)
	{
	  free (p);
	  enough_free_memory = true;
	}
      MALLOC_UNBLOCK_INPUT;
    }

  if (! enough_free_memory)
    {
      Vmemory_full = Qt;
      consing_until_gc = min (consing_until_gc, memory_full_cons_threshold);

      /* The first time we get here, free the spare memory.  */
      for (int i = 0; i < ARRAYELTS (spare_memory); i++)
	if (spare_memory[i])
	  {
	    if (i == 0)
	      free (spare_memory[i]);
	    else if (i >= 1 && i <= 4)
	      lisp_align_free (spare_memory[i]);
	    else
	      lisp_free (spare_memory[i]);
	    spare_memory[i] = 0;
	  }
    }

  /* This used to call error, but if we've run out of memory, we could
     get infinite recursion trying to build the string.  */
  xsignal (Qnil, Vmemory_signal_data);
}

/* If we released our reserve (due to running out of memory),
   and we have a fair amount free once again,
   try to set aside another reserve in case we run out once more.

   This is called when a relocatable block is freed in ralloc.c,
   and also directly from this file, in case we're not using ralloc.c.  */

void
refill_memory_reserve (void)
{
#if !defined SYSTEM_MALLOC && !defined HYBRID_MALLOC
  if (spare_memory[0] == 0)
    spare_memory[0] = malloc (SPARE_MEMORY);
  if (spare_memory[1] == 0)
    spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
						  MEM_TYPE_SPARE);
  if (spare_memory[2] == 0)
    spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
					 MEM_TYPE_SPARE);
  if (spare_memory[3] == 0)
    spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
					 MEM_TYPE_SPARE);
  if (spare_memory[4] == 0)
    spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
					 MEM_TYPE_SPARE);
  if (spare_memory[5] == 0)
    spare_memory[5] = lisp_malloc (sizeof (struct string_block),
				   false, MEM_TYPE_SPARE);
  if (spare_memory[6] == 0)
    spare_memory[6] = lisp_malloc (sizeof (struct string_block),
				   false, MEM_TYPE_SPARE);
  if (spare_memory[0] && spare_memory[1] && spare_memory[5])
    Vmemory_full = Qnil;
#endif
}
\f
/************************************************************************
			   C Stack Marking
 ************************************************************************/

/* Conservative C stack marking requires a method to identify possibly
   live Lisp objects given a pointer value.  We do this by keeping
   track of blocks of Lisp data that are allocated in a red-black tree
   (see also the comment of mem_node which is the type of nodes in
   that tree).  Function lisp_malloc adds information for an allocated
   block to the red-black tree with calls to mem_insert, and function
   lisp_free removes it with mem_delete.  Functions live_string_p etc
   call mem_find to lookup information about a given pointer in the
   tree, and use that to determine if the pointer points into a Lisp
   object or not.  */

/* Initialize this part of alloc.c.  */

static void
mem_init (void)
{
  mem_z.left = mem_z.right = MEM_NIL;
  mem_z.parent = NULL;
  mem_z.color = MEM_BLACK;
  mem_z.start = mem_z.end = NULL;
  mem_root = MEM_NIL;
}


/* Value is a pointer to the mem_node containing START.  Value is
   MEM_NIL if there is no node in the tree containing START.  */

static struct mem_node *
mem_find (void *start)
{
  struct mem_node *p;

  if (start < min_heap_address || start > max_heap_address)
    return MEM_NIL;

  /* Make the search always successful to speed up the loop below.  */
  mem_z.start = start;
  mem_z.end = (char *) start + 1;

  p = mem_root;
  while (start < p->start || start >= p->end)
    p = start < p->start ? p->left : p->right;
  return p;
}


/* Insert a new node into the tree for a block of memory with start
   address START, end address END, and type TYPE.  Value is a
   pointer to the node that was inserted.  */

static struct mem_node *
mem_insert (void *start, void *end, enum mem_type type)
{
  struct mem_node *c, *parent, *x;

  if (min_heap_address == NULL || start < min_heap_address)
    min_heap_address = start;
  if (max_heap_address == NULL || end > max_heap_address)
    max_heap_address = end;

  /* See where in the tree a node for START belongs.  In this
     particular application, it shouldn't happen that a node is already
     present.  For debugging purposes, let's check that.  */
  c = mem_root;
  parent = NULL;

  while (c != MEM_NIL)
    {
      parent = c;
      c = start < c->start ? c->left : c->right;
    }

  /* Create a new node.  */
#ifdef GC_MALLOC_CHECK
  x = malloc (sizeof *x);
  if (x == NULL)
    emacs_abort ();
#else
  x = xmalloc (sizeof *x);
#endif
  x->start = start;
  x->end = end;
  x->type = type;
  x->parent = parent;
  x->left = x->right = MEM_NIL;
  x->color = MEM_RED;

  /* Insert it as child of PARENT or install it as root.  */
  if (parent)
    {
      if (start < parent->start)
	parent->left = x;
      else
	parent->right = x;
    }
  else
    mem_root = x;

  /* Re-establish red-black tree properties.  */
  mem_insert_fixup (x);

  return x;
}


/* Re-establish the red-black properties of the tree, and thereby
   balance the tree, after node X has been inserted; X is always red.  */

static void
mem_insert_fixup (struct mem_node *x)
{
  while (x != mem_root && x->parent->color == MEM_RED)
    {
      /* X is red and its parent is red.  This is a violation of
	 red-black tree property #3.  */

      if (x->parent == x->parent->parent->left)
	{
	  /* We're on the left side of our grandparent, and Y is our
	     "uncle".  */
	  struct mem_node *y = x->parent->parent->right;

	  if (y->color == MEM_RED)
	    {
	      /* Uncle and parent are red but should be black because
		 X is red.  Change the colors accordingly and proceed
		 with the grandparent.  */
	      x->parent->color = MEM_BLACK;
	      y->color = MEM_BLACK;
	      x->parent->parent->color = MEM_RED;
	      x = x->parent->parent;
            }
	  else
	    {
	      /* Parent and uncle have different colors; parent is
		 red, uncle is black.  */
	      if (x == x->parent->right)
		{
		  x = x->parent;
		  mem_rotate_left (x);
                }

	      x->parent->color = MEM_BLACK;
	      x->parent->parent->color = MEM_RED;
	      mem_rotate_right (x->parent->parent);
            }
        }
      else
	{
	  /* This is the symmetrical case of above.  */
	  struct mem_node *y = x->parent->parent->left;

	  if (y->color == MEM_RED)
	    {
	      x->parent->color = MEM_BLACK;
	      y->color = MEM_BLACK;
	      x->parent->parent->color = MEM_RED;
	      x = x->parent->parent;
            }
	  else
	    {
	      if (x == x->parent->left)
		{
		  x = x->parent;
		  mem_rotate_right (x);
		}

	      x->parent->color = MEM_BLACK;
	      x->parent->parent->color = MEM_RED;
	      mem_rotate_left (x->parent->parent);
            }
        }
    }

  /* The root may have been changed to red due to the algorithm.  Set
     it to black so that property #5 is satisfied.  */
  mem_root->color = MEM_BLACK;
}


/*   (x)                   (y)
     / \                   / \
    a   (y)      ===>    (x)  c
        / \              / \
       b   c            a   b  */

static void
mem_rotate_left (struct mem_node *x)
{
  struct mem_node *y;

  /* Turn y's left sub-tree into x's right sub-tree.  */
  y = x->right;
  x->right = y->left;
  if (y->left != MEM_NIL)
    y->left->parent = x;

  /* Y's parent was x's parent.  */
  if (y != MEM_NIL)
    y->parent = x->parent;

  /* Get the parent to point to y instead of x.  */
  if (x->parent)
    {
      if (x == x->parent->left)
	x->parent->left = y;
      else
	x->parent->right = y;
    }
  else
    mem_root = y;

  /* Put x on y's left.  */
  y->left = x;
  if (x != MEM_NIL)
    x->parent = y;
}


/*     (x)                (Y)
       / \                / \
     (y)  c      ===>    a  (x)
     / \                    / \
    a   b                  b   c  */

static void
mem_rotate_right (struct mem_node *x)
{
  struct mem_node *y = x->left;

  x->left = y->right;
  if (y->right != MEM_NIL)
    y->right->parent = x;

  if (y != MEM_NIL)
    y->parent = x->parent;
  if (x->parent)
    {
      if (x == x->parent->right)
	x->parent->right = y;
      else
	x->parent->left = y;
    }
  else
    mem_root = y;

  y->right = x;
  if (x != MEM_NIL)
    x->parent = y;
}


/* Delete node Z from the tree.  If Z is null or MEM_NIL, do nothing.  */

static void
mem_delete (struct mem_node *z)
{
  struct mem_node *x, *y;

  if (!z || z == MEM_NIL)
    return;

  if (z->left == MEM_NIL || z->right == MEM_NIL)
    y = z;
  else
    {
      y = z->right;
      while (y->left != MEM_NIL)
	y = y->left;
    }

  if (y->left != MEM_NIL)
    x = y->left;
  else
    x = y->right;

  x->parent = y->parent;
  if (y->parent)
    {
      if (y == y->parent->left)
	y->parent->left = x;
      else
	y->parent->right = x;
    }
  else
    mem_root = x;

  if (y != z)
    {
      z->start = y->start;
      z->end = y->end;
      z->type = y->type;
    }

  if (y->color == MEM_BLACK)
    mem_delete_fixup (x);

#ifdef GC_MALLOC_CHECK
  free (y);
#else
  xfree (y);
#endif
}


/* Re-establish the red-black properties of the tree, after a
   deletion.  */

static void
mem_delete_fixup (struct mem_node *x)
{
  while (x != mem_root && x->color == MEM_BLACK)
    {
      if (x == x->parent->left)
	{
	  struct mem_node *w = x->parent->right;

	  if (w->color == MEM_RED)
	    {
	      w->color = MEM_BLACK;
	      x->parent->color = MEM_RED;
	      mem_rotate_left (x->parent);
	      w = x->parent->right;
            }

	  if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
	    {
	      w->color = MEM_RED;
	      x = x->parent;
            }
	  else
	    {
	      if (w->right->color == MEM_BLACK)
		{
		  w->left->color = MEM_BLACK;
		  w->color = MEM_RED;
		  mem_rotate_right (w);
		  w = x->parent->right;
                }
	      w->color = x->parent->color;
	      x->parent->color = MEM_BLACK;
	      w->right->color = MEM_BLACK;
	      mem_rotate_left (x->parent);
	      x = mem_root;
            }
        }
      else
	{
	  struct mem_node *w = x->parent->left;

	  if (w->color == MEM_RED)
	    {
	      w->color = MEM_BLACK;
	      x->parent->color = MEM_RED;
	      mem_rotate_right (x->parent);
	      w = x->parent->left;
            }

	  if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
	    {
	      w->color = MEM_RED;
	      x = x->parent;
            }
	  else
	    {
	      if (w->left->color == MEM_BLACK)
		{
		  w->right->color = MEM_BLACK;
		  w->color = MEM_RED;
		  mem_rotate_left (w);
		  w = x->parent->left;
                }

	      w->color = x->parent->color;
	      x->parent->color = MEM_BLACK;
	      w->left->color = MEM_BLACK;
	      mem_rotate_right (x->parent);
	      x = mem_root;
            }
        }
    }

  x->color = MEM_BLACK;
}


/* If P is a pointer into a live Lisp string object on the heap,
   return the object.  Otherwise, return nil.  M is a pointer to the
   mem_block for P.

   This and other *_holding functions look for a pointer anywhere into
   the object, not merely for a pointer to the start of the object,
   because some compilers sometimes optimize away the latter.  See
   Bug#28213.  */

static Lisp_Object
live_string_holding (struct mem_node *m, void *p)
{
  if (m->type == MEM_TYPE_STRING)
    {
      struct string_block *b = m->start;
      char *cp = p;
      ptrdiff_t offset = cp - (char *) &b->strings[0];

      /* P must point into a Lisp_String structure, and it
	 must not be on the free-list.  */
      if (0 <= offset && offset < STRING_BLOCK_SIZE * sizeof b->strings[0])
	{
	  cp = ptr_bounds_copy (cp, b);
	  struct Lisp_String *s = p = cp -= offset % sizeof b->strings[0];
	  if (s->u.s.data)
	    return make_lisp_ptr (s, Lisp_String);
	}
    }
  return Qnil;
}

static bool
live_string_p (struct mem_node *m, void *p)
{
  return !NILP (live_string_holding (m, p));
}

/* If P is a pointer into a live Lisp cons object on the heap, return
   the object.  Otherwise, return nil.  M is a pointer to the
   mem_block for P.  */

static Lisp_Object
live_cons_holding (struct mem_node *m, void *p)
{
  if (m->type == MEM_TYPE_CONS)
    {
      struct cons_block *b = m->start;
      char *cp = p;
      ptrdiff_t offset = cp - (char *) &b->conses[0];

      /* P must point into a Lisp_Cons, not be
	 one of the unused cells in the current cons block,
	 and not be on the free-list.  */
      if (0 <= offset && offset < CONS_BLOCK_SIZE * sizeof b->conses[0]
	  && (b != cons_block
	      || offset / sizeof b->conses[0] < cons_block_index))
	{
	  cp = ptr_bounds_copy (cp, b);
	  struct Lisp_Cons *s = p = cp -= offset % sizeof b->conses[0];
	  if (!deadp (s->u.s.car))
	    return make_lisp_ptr (s, Lisp_Cons);
	}
    }
  return Qnil;
}

static bool
live_cons_p (struct mem_node *m, void *p)
{
  return !NILP (live_cons_holding (m, p));
}


/* If P is a pointer into a live Lisp symbol object on the heap,
   return the object.  Otherwise, return nil.  M is a pointer to the
   mem_block for P.  */

static Lisp_Object
live_symbol_holding (struct mem_node *m, void *p)
{
  if (m->type == MEM_TYPE_SYMBOL)
    {
      struct symbol_block *b = m->start;
      char *cp = p;
      ptrdiff_t offset = cp - (char *) &b->symbols[0];

      /* P must point into the Lisp_Symbol, not be
	 one of the unused cells in the current symbol block,
	 and not be on the free-list.  */
      if (0 <= offset && offset < SYMBOL_BLOCK_SIZE * sizeof b->symbols[0]
	  && (b != symbol_block
	      || offset / sizeof b->symbols[0] < symbol_block_index))
	{
	  cp = ptr_bounds_copy (cp, b);
	  struct Lisp_Symbol *s = p = cp -= offset % sizeof b->symbols[0];
	  if (!deadp (s->u.s.function))
	    return make_lisp_symbol (s);
	}
    }
  return Qnil;
}

static bool
live_symbol_p (struct mem_node *m, void *p)
{
  return !NILP (live_symbol_holding (m, p));
}


/* Return true if P is a pointer to a live Lisp float on
   the heap.  M is a pointer to the mem_block for P.  */

static bool
live_float_p (struct mem_node *m, void *p)
{
  if (m->type == MEM_TYPE_FLOAT)
    {
      struct float_block *b = m->start;
      char *cp = p;
      ptrdiff_t offset = cp - (char *) &b->floats[0];

      /* P must point to the start of a Lisp_Float and not be
	 one of the unused cells in the current float block.  */
      return (offset >= 0
	      && offset % sizeof b->floats[0] == 0
	      && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
	      && (b != float_block
		  || offset / sizeof b->floats[0] < float_block_index));
    }
  else
    return 0;
}

/* If P is a pointer to a live vector-like object, return the object.
   Otherwise, return nil.
   M is a pointer to the mem_block for P.  */

static Lisp_Object
live_vector_holding (struct mem_node *m, void *p)
{
  struct Lisp_Vector *vp = p;

  if (m->type == MEM_TYPE_VECTOR_BLOCK)
    {
      /* This memory node corresponds to a vector block.  */
      struct vector_block *block = m->start;
      struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;

      /* P is in the block's allocation range.  Scan the block
	 up to P and see whether P points to the start of some
	 vector which is not on a free list.  FIXME: check whether
	 some allocation patterns (probably a lot of short vectors)
	 may cause a substantial overhead of this loop.  */
      while (VECTOR_IN_BLOCK (vector, block) && vector <= vp)
	{
	  struct Lisp_Vector *next = ADVANCE (vector, vector_nbytes (vector));
	  if (vp < next && !PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE))
	    return make_lisp_ptr (vector, Lisp_Vectorlike);
	  vector = next;
	}
    }
  else if (m->type == MEM_TYPE_VECTORLIKE)
    {
      /* This memory node corresponds to a large vector.  */
      struct Lisp_Vector *vector = large_vector_vec (m->start);
      struct Lisp_Vector *next = ADVANCE (vector, vector_nbytes (vector));
      if (vector <= vp && vp < next)
	return make_lisp_ptr (vector, Lisp_Vectorlike);
    }
  return Qnil;
}

static bool
live_vector_p (struct mem_node *m, void *p)
{
  return !NILP (live_vector_holding (m, p));
}

/* Mark OBJ if we can prove it's a Lisp_Object.  */

static void
mark_maybe_object (Lisp_Object obj)
{
#if USE_VALGRIND
  VALGRIND_MAKE_MEM_DEFINED (&obj, sizeof (obj));
#endif

  if (FIXNUMP (obj))
    return;

  void *po = XPNTR (obj);

  /* If the pointer is in the dump image and the dump has a record
     of the object starting at the place where the pointer points, we
     definitely have an object.  If the pointer is in the dump image
     and the dump has no idea what the pointer is pointing at, we
     definitely _don't_ have an object.  */
  if (pdumper_object_p (po))
    {
      /* Don't use pdumper_object_p_precise here! It doesn't check the
         tag bits. OBJ here might be complete garbage, so we need to
         verify both the pointer and the tag.  */
      if (XTYPE (obj) == pdumper_find_object_type (po))
        mark_object (obj);
      return;
    }

  struct mem_node *m = mem_find (po);

  if (m != MEM_NIL)
    {
      bool mark_p = false;

      switch (XTYPE (obj))
	{
	case Lisp_String:
	  mark_p = EQ (obj, live_string_holding (m, po));
	  break;

	case Lisp_Cons:
	  mark_p = EQ (obj, live_cons_holding (m, po));
	  break;

	case Lisp_Symbol:
	  mark_p = EQ (obj, live_symbol_holding (m, po));
	  break;

	case Lisp_Float:
	  mark_p = live_float_p (m, po);
	  break;

	case Lisp_Vectorlike:
	  mark_p = (EQ (obj, live_vector_holding (m, po)));
	  break;

	default:
	  break;
	}

      if (mark_p)
	mark_object (obj);
    }
}

void
mark_maybe_objects (Lisp_Object const *array, ptrdiff_t nelts)
{
  for (Lisp_Object const *lim = array + nelts; array < lim; array++)
    mark_maybe_object (*array);
}

/* Return true if P might point to Lisp data that can be garbage
   collected, and false otherwise (i.e., false if it is easy to see
   that P cannot point to Lisp data that can be garbage collected).
   Symbols are implemented via offsets not pointers, but the offsets
   are also multiples of LISP_ALIGNMENT.  */

static bool
maybe_lisp_pointer (void *p)
{
  return (uintptr_t) p % LISP_ALIGNMENT == 0;
}

/* If P points to Lisp data, mark that as live if it isn't already
   marked.  */

static void
mark_maybe_pointer (void *p)
{
  struct mem_node *m;

#ifdef USE_VALGRIND
  VALGRIND_MAKE_MEM_DEFINED (&p, sizeof (p));
#endif

  if (!maybe_lisp_pointer (p))
    return;

  if (pdumper_object_p (p))
    {
      int type = pdumper_find_object_type (p);
      if (pdumper_valid_object_type_p (type))
        mark_object (type == Lisp_Symbol
                     ? make_lisp_symbol (p)
                     : make_lisp_ptr (p, type));
      /* See mark_maybe_object for why we can confidently return.  */
      return;
    }

  m = mem_find (p);
  if (m != MEM_NIL)
    {
      Lisp_Object obj = Qnil;

      switch (m->type)
	{
	case MEM_TYPE_NON_LISP:
	case MEM_TYPE_SPARE:
	  /* Nothing to do; not a pointer to Lisp memory.  */
	  break;

	case MEM_TYPE_CONS:
	  obj = live_cons_holding (m, p);
	  break;

	case MEM_TYPE_STRING:
	  obj = live_string_holding (m, p);
	  break;

	case MEM_TYPE_SYMBOL:
	  obj = live_symbol_holding (m, p);
	  break;

	case MEM_TYPE_FLOAT:
	  if (live_float_p (m, p))
	    obj = make_lisp_ptr (p, Lisp_Float);
	  break;

	case MEM_TYPE_VECTORLIKE:
	case MEM_TYPE_VECTOR_BLOCK:
	  obj = live_vector_holding (m, p);
	  break;

	default:
	  emacs_abort ();
	}

      if (!NILP (obj))
	mark_object (obj);
    }
}


/* Alignment of pointer values.  Use alignof, as it sometimes returns
   a smaller alignment than GCC's __alignof__ and mark_memory might
   miss objects if __alignof__ were used.  */
#define GC_POINTER_ALIGNMENT alignof (void *)

/* Mark Lisp objects referenced from the address range START+OFFSET..END
   or END+OFFSET..START.  */

static void ATTRIBUTE_NO_SANITIZE_ADDRESS
mark_memory (void const *start, void const *end)
{
  char const *pp;

  /* Make START the pointer to the start of the memory region,
     if it isn't already.  */
  if (end < start)
    {
      void const *tem = start;
      start = end;
      end = tem;
    }

  eassert (((uintptr_t) start) % GC_POINTER_ALIGNMENT == 0);

  /* Mark Lisp data pointed to.  This is necessary because, in some
     situations, the C compiler optimizes Lisp objects away, so that
     only a pointer to them remains.  Example:

     DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
     ()
     {
       Lisp_Object obj = build_string ("test");
       struct Lisp_String *s = XSTRING (obj);
       garbage_collect ();
       fprintf (stderr, "test '%s'\n", s->u.s.data);
       return Qnil;
     }

     Here, `obj' isn't really used, and the compiler optimizes it
     away.  The only reference to the life string is through the
     pointer `s'.  */

  for (pp = start; (void const *) pp < end; pp += GC_POINTER_ALIGNMENT)
    {
      mark_maybe_pointer (*(void *const *) pp);

      verify (alignof (Lisp_Object) % GC_POINTER_ALIGNMENT == 0);
      if (alignof (Lisp_Object) == GC_POINTER_ALIGNMENT
	  || (uintptr_t) pp % alignof (Lisp_Object) == 0)
	mark_maybe_object (*(Lisp_Object const *) pp);
    }
}

#ifndef HAVE___BUILTIN_UNWIND_INIT

# ifdef GC_SETJMP_WORKS
static void
test_setjmp (void)
{
}
# else

static bool setjmp_tested_p;
static int longjmps_done;

#  define SETJMP_WILL_LIKELY_WORK "\
\n\
Emacs garbage collector has been changed to use conservative stack\n\
marking.  Emacs has determined that the method it uses to do the\n\
marking will likely work on your system, but this isn't sure.\n\
\n\
If you are a system-programmer, or can get the help of a local wizard\n\
who is, please take a look at the function mark_stack in alloc.c, and\n\
verify that the methods used are appropriate for your system.\n\
\n\
Please mail the result to <emacs-devel@gnu.org>.\n\
"

#  define SETJMP_WILL_NOT_WORK "\
\n\
Emacs garbage collector has been changed to use conservative stack\n\
marking.  Emacs has determined that the default method it uses to do the\n\
marking will not work on your system.  We will need a system-dependent\n\
solution for your system.\n\
\n\
Please take a look at the function mark_stack in alloc.c, and\n\
try to find a way to make it work on your system.\n\
\n\
Note that you may get false negatives, depending on the compiler.\n\
In particular, you need to use -O with GCC for this test.\n\
\n\
Please mail the result to <emacs-devel@gnu.org>.\n\
"


/* Perform a quick check if it looks like setjmp saves registers in a
   jmp_buf.  Print a message to stderr saying so.  When this test
   succeeds, this is _not_ a proof that setjmp is sufficient for
   conservative stack marking.  Only the sources or a disassembly
   can prove that.  */

static void
test_setjmp (void)
{
  if (setjmp_tested_p)
    return;
  setjmp_tested_p = true;
  char buf[10];
  register int x;
  sys_jmp_buf jbuf;

  /* Arrange for X to be put in a register.  */
  sprintf (buf, "1");
  x = strlen (buf);
  x = 2 * x - 1;

  sys_setjmp (jbuf);
  if (longjmps_done == 1)
    {
      /* Came here after the longjmp at the end of the function.

         If x == 1, the longjmp has restored the register to its
         value before the setjmp, and we can hope that setjmp
         saves all such registers in the jmp_buf, although that
	 isn't sure.

         For other values of X, either something really strange is
         taking place, or the setjmp just didn't save the register.  */

      if (x == 1)
	fputs (SETJMP_WILL_LIKELY_WORK, stderr);
      else
	{
	  fputs (SETJMP_WILL_NOT_WORK, stderr);
	  exit (1);
	}
    }

  ++longjmps_done;
  x = 2;
  if (longjmps_done == 1)
    sys_longjmp (jbuf, 1);
}
# endif /* ! GC_SETJMP_WORKS */
#endif /* ! HAVE___BUILTIN_UNWIND_INIT */

/* The type of an object near the stack top, whose address can be used
   as a stack scan limit.  */
typedef union
{
  /* Align the stack top properly.  Even if !HAVE___BUILTIN_UNWIND_INIT,
     jmp_buf may not be aligned enough on darwin-ppc64.  */
  max_align_t o;
#ifndef HAVE___BUILTIN_UNWIND_INIT
  sys_jmp_buf j;
  char c;
#endif
} stacktop_sentry;

/* Force callee-saved registers and register windows onto the stack.
   Use the platform-defined __builtin_unwind_init if available,
   obviating the need for machine dependent methods.  */
#ifndef HAVE___BUILTIN_UNWIND_INIT
# ifdef __sparc__
   /* This trick flushes the register windows so that all the state of
      the process is contained in the stack.
      FreeBSD does not have a ta 3 handler, so handle it specially.
      FIXME: Code in the Boehm GC suggests flushing (with 'flushrs') is
      needed on ia64 too.  See mach_dep.c, where it also says inline
      assembler doesn't work with relevant proprietary compilers.  */
#  if defined __sparc64__ && defined __FreeBSD__
#   define __builtin_unwind_init() asm ("flushw")
#  else
#   define __builtin_unwind_init() asm ("ta 3")
#  endif
# else
#  define __builtin_unwind_init() ((void) 0)
# endif
#endif

/* Yield an address close enough to the top of the stack that the
   garbage collector need not scan above it.  Callers should be
   declared NO_INLINE.  */
#ifdef HAVE___BUILTIN_FRAME_ADDRESS
# define NEAR_STACK_TOP(addr) ((void) (addr), __builtin_frame_address (0))
#else
# define NEAR_STACK_TOP(addr) (addr)
#endif

/* Set *P to the address of the top of the stack.  This must be a
   macro, not a function, so that it is executed in the caller's
   environment.  It is not inside a do-while so that its storage
   survives the macro.  Callers should be declared NO_INLINE.  */
#ifdef HAVE___BUILTIN_UNWIND_INIT
# define SET_STACK_TOP_ADDRESS(p)	\
   stacktop_sentry sentry;		\
   __builtin_unwind_init ();		\
   *(p) = NEAR_STACK_TOP (&sentry)
#else
# define SET_STACK_TOP_ADDRESS(p)		\
   stacktop_sentry sentry;			\
   __builtin_unwind_init ();			\
   test_setjmp ();				\
   sys_setjmp (sentry.j);			\
   *(p) = NEAR_STACK_TOP (&sentry + (stack_bottom < &sentry.c))
#endif

/* Mark live Lisp objects on the C stack.

   There are several system-dependent problems to consider when
   porting this to new architectures:

   Processor Registers

   We have to mark Lisp objects in CPU registers that can hold local
   variables or are used to pass parameters.

   This code assumes that calling setjmp saves registers we need
   to see in a jmp_buf which itself lies on the stack.  This doesn't
   have to be true!  It must be verified for each system, possibly
   by taking a look at the source code of setjmp.

   If __builtin_unwind_init is available (defined by GCC >= 2.8) we
   can use it as a machine independent method to store all registers
   to the stack.  In this case the macros described in the previous
   two paragraphs are not used.

   Stack Layout

   Architectures differ in the way their processor stack is organized.
   For example, the stack might look like this

     +----------------+
     |  Lisp_Object   |  size = 4
     +----------------+
     | something else |  size = 2
     +----------------+
     |  Lisp_Object   |  size = 4
     +----------------+
     |	...	      |

   In such a case, not every Lisp_Object will be aligned equally.  To
   find all Lisp_Object on the stack it won't be sufficient to walk
   the stack in steps of 4 bytes.  Instead, two passes will be
   necessary, one starting at the start of the stack, and a second
   pass starting at the start of the stack + 2.  Likewise, if the
   minimal alignment of Lisp_Objects on the stack is 1, four passes
   would be necessary, each one starting with one byte more offset
   from the stack start.  */

void
mark_stack (char const *bottom, char const *end)
{
  /* This assumes that the stack is a contiguous region in memory.  If
     that's not the case, something has to be done here to iterate
     over the stack segments.  */
  mark_memory (bottom, end);

  /* Allow for marking a secondary stack, like the register stack on the
     ia64.  */
#ifdef GC_MARK_SECONDARY_STACK
  GC_MARK_SECONDARY_STACK ();
#endif
}

/* This is a trampoline function that flushes registers to the stack,
   and then calls FUNC.  ARG is passed through to FUNC verbatim.

   This function must be called whenever Emacs is about to release the
   global interpreter lock.  This lets the garbage collector easily
   find roots in registers on threads that are not actively running
   Lisp.

   It is invalid to run any Lisp code or to allocate any GC memory
   from FUNC.  */

NO_INLINE void
flush_stack_call_func (void (*func) (void *arg), void *arg)
{
  void *end;
  struct thread_state *self = current_thread;
  SET_STACK_TOP_ADDRESS (&end);
  self->stack_top = end;
  func (arg);
  eassert (current_thread == self);
}

/* Determine whether it is safe to access memory at address P.  */
static int
valid_pointer_p (void *p)
{
#ifdef WINDOWSNT
  return w32_valid_pointer_p (p, 16);
#else

  if (ADDRESS_SANITIZER)
    return p ? -1 : 0;

  int fd[2];
  static int under_rr_state;

  if (!under_rr_state)
    under_rr_state = getenv ("RUNNING_UNDER_RR") ? -1 : 1;
  if (under_rr_state < 0)
    return under_rr_state;

  /* Obviously, we cannot just access it (we would SEGV trying), so we
     trick the o/s to tell us whether p is a valid pointer.
     Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
     not validate p in that case.  */

  if (emacs_pipe (fd) == 0)
    {
      bool valid = emacs_write (fd[1], p, 16) == 16;
      emacs_close (fd[1]);
      emacs_close (fd[0]);
      return valid;
    }

  return -1;
#endif
}

/* Return 2 if OBJ is a killed or special buffer object, 1 if OBJ is a
   valid lisp object, 0 if OBJ is NOT a valid lisp object, or -1 if we
   cannot validate OBJ.  This function can be quite slow, and is used
   only in debugging.  */

int
valid_lisp_object_p (Lisp_Object obj)
{
  if (FIXNUMP (obj))
    return 1;

  void *p = XPNTR (obj);
  if (PURE_P (p))
    return 1;

  if (SYMBOLP (obj) && c_symbol_p (p))
    return ((char *) p - (char *) lispsym) % sizeof lispsym[0] == 0;

  if (p == &buffer_defaults || p == &buffer_local_symbols)
    return 2;

  if (pdumper_object_p (p))
    return pdumper_object_p_precise (p) ? 1 : 0;

  struct mem_node *m = mem_find (p);

  if (m == MEM_NIL)
    {
      int valid = valid_pointer_p (p);
      if (valid <= 0)
	return valid;

      if (SUBRP (obj))
	return 1;

      return 0;
    }

  switch (m->type)
    {
    case MEM_TYPE_NON_LISP:
    case MEM_TYPE_SPARE:
      return 0;

    case MEM_TYPE_CONS:
      return live_cons_p (m, p);

    case MEM_TYPE_STRING:
      return live_string_p (m, p);

    case MEM_TYPE_SYMBOL:
      return live_symbol_p (m, p);

    case MEM_TYPE_FLOAT:
      return live_float_p (m, p);

    case MEM_TYPE_VECTORLIKE:
    case MEM_TYPE_VECTOR_BLOCK:
      return live_vector_p (m, p);

    default:
      break;
    }

  return 0;
}

/***********************************************************************
		       Pure Storage Management
 ***********************************************************************/

/* Allocate room for SIZE bytes from pure Lisp storage and return a
   pointer to it.  TYPE is the Lisp type for which the memory is
   allocated.  TYPE < 0 means it's not used for a Lisp object,
   and that the result should have an alignment of -TYPE.

   The bytes are initially zero.

   If pure space is exhausted, allocate space from the heap.  This is
   merely an expedient to let Emacs warn that pure space was exhausted
   and that Emacs should be rebuilt with a larger pure space.  */

static void *
pure_alloc (size_t size, int type)
{
  void *result;

 again:
  if (type >= 0)
    {
      /* Allocate space for a Lisp object from the beginning of the free
	 space with taking account of alignment.  */
      result = pointer_align (purebeg + pure_bytes_used_lisp, LISP_ALIGNMENT);
      pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
    }
  else
    {
      /* Allocate space for a non-Lisp object from the end of the free
	 space.  */
      ptrdiff_t unaligned_non_lisp = pure_bytes_used_non_lisp + size;
      char *unaligned = purebeg + pure_size - unaligned_non_lisp;
      int decr = (intptr_t) unaligned & (-1 - type);
      pure_bytes_used_non_lisp = unaligned_non_lisp + decr;
      result = unaligned - decr;
    }
  pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;

  if (pure_bytes_used <= pure_size)
    return ptr_bounds_clip (result, size);

  /* Don't allocate a large amount here,
     because it might get mmap'd and then its address
     might not be usable.  */
  int small_amount = 10000;
  eassert (size <= small_amount - LISP_ALIGNMENT);
  purebeg = xzalloc (small_amount);
  pure_size = small_amount;
  pure_bytes_used_before_overflow += pure_bytes_used - size;
  pure_bytes_used = 0;
  pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;

  /* Can't GC if pure storage overflowed because we can't determine
     if something is a pure object or not.  */
  garbage_collection_inhibited++;
  goto again;
}


#ifdef HAVE_UNEXEC

/* Print a warning if PURESIZE is too small.  */

void
check_pure_size (void)
{
  if (pure_bytes_used_before_overflow)
    message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
	      " bytes needed)"),
	     pure_bytes_used + pure_bytes_used_before_overflow);
}
#endif


/* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
   the non-Lisp data pool of the pure storage, and return its start
   address.  Return NULL if not found.  */

static char *
find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
{
  int i;
  ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
  const unsigned char *p;
  char *non_lisp_beg;

  if (pure_bytes_used_non_lisp <= nbytes)
    return NULL;

  /* Set up the Boyer-Moore table.  */
  skip = nbytes + 1;
  for (i = 0; i < 256; i++)
    bm_skip[i] = skip;

  p = (const unsigned char *) data;
  while (--skip > 0)
    bm_skip[*p++] = skip;

  last_char_skip = bm_skip['\0'];

  non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
  start_max = pure_bytes_used_non_lisp - (nbytes + 1);

  /* See the comments in the function `boyer_moore' (search.c) for the
     use of `infinity'.  */
  infinity = pure_bytes_used_non_lisp + 1;
  bm_skip['\0'] = infinity;

  p = (const unsigned char *) non_lisp_beg + nbytes;
  start = 0;
  do
    {
      /* Check the last character (== '\0').  */
      do
	{
	  start += bm_skip[*(p + start)];
	}
      while (start <= start_max);

      if (start < infinity)
	/* Couldn't find the last character.  */
	return NULL;

      /* No less than `infinity' means we could find the last
	 character at `p[start - infinity]'.  */
      start -= infinity;

      /* Check the remaining characters.  */
      if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
	/* Found.  */
	return ptr_bounds_clip (non_lisp_beg + start, nbytes + 1);

      start += last_char_skip;
    }
  while (start <= start_max);

  return NULL;
}


/* Return a string allocated in pure space.  DATA is a buffer holding
   NCHARS characters, and NBYTES bytes of string data.  MULTIBYTE
   means make the result string multibyte.

   Must get an error if pure storage is full, since if it cannot hold
   a large string it may be able to hold conses that point to that
   string; then the string is not protected from gc.  */

Lisp_Object
make_pure_string (const char *data,
		  ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
{
  Lisp_Object string;
  struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
  s->u.s.data = (unsigned char *) find_string_data_in_pure (data, nbytes);
  if (s->u.s.data == NULL)
    {
      s->u.s.data = pure_alloc (nbytes + 1, -1);
      memcpy (s->u.s.data, data, nbytes);
      s->u.s.data[nbytes] = '\0';
    }
  s->u.s.size = nchars;
  s->u.s.size_byte = multibyte ? nbytes : -1;
  s->u.s.intervals = NULL;
  XSETSTRING (string, s);
  return string;
}

/* Return a string allocated in pure space.  Do not
   allocate the string data, just point to DATA.  */

Lisp_Object
make_pure_c_string (const char *data, ptrdiff_t nchars)
{
  Lisp_Object string;
  struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
  s->u.s.size = nchars;
  s->u.s.size_byte = -2;
  s->u.s.data = (unsigned char *) data;
  s->u.s.intervals = NULL;
  XSETSTRING (string, s);
  return string;
}

static Lisp_Object purecopy (Lisp_Object obj);

/* Return a cons allocated from pure space.  Give it pure copies
   of CAR as car and CDR as cdr.  */

Lisp_Object
pure_cons (Lisp_Object car, Lisp_Object cdr)
{
  Lisp_Object new;
  struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
  XSETCONS (new, p);
  XSETCAR (new, purecopy (car));
  XSETCDR (new, purecopy (cdr));
  return new;
}


/* Value is a float object with value NUM allocated from pure space.  */

static Lisp_Object
make_pure_float (double num)
{
  Lisp_Object new;
  struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
  XSETFLOAT (new, p);
  XFLOAT_INIT (new, num);
  return new;
}

/* Value is a bignum object with value VALUE allocated from pure
   space.  */

static Lisp_Object
make_pure_bignum (Lisp_Object value)
{
  mpz_t const *n = xbignum_val (value);
  size_t i, nlimbs = mpz_size (*n);
  size_t nbytes = nlimbs * sizeof (mp_limb_t);
  mp_limb_t *pure_limbs;
  mp_size_t new_size;

  struct Lisp_Bignum *b = pure_alloc (sizeof *b, Lisp_Vectorlike);
  XSETPVECTYPESIZE (b, PVEC_BIGNUM, 0, VECSIZE (struct Lisp_Bignum));

  int limb_alignment = alignof (mp_limb_t);
  pure_limbs = pure_alloc (nbytes, - limb_alignment);
  for (i = 0; i < nlimbs; ++i)
    pure_limbs[i] = mpz_getlimbn (*n, i);

  new_size = nlimbs;
  if (mpz_sgn (*n) < 0)
    new_size = -new_size;

  mpz_roinit_n (b->value, pure_limbs, new_size);

  return make_lisp_ptr (b, Lisp_Vectorlike);
}

/* Return a vector with room for LEN Lisp_Objects allocated from
   pure space.  */

static Lisp_Object
make_pure_vector (ptrdiff_t len)
{
  Lisp_Object new;
  size_t size = header_size + len * word_size;
  struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
  XSETVECTOR (new, p);
  XVECTOR (new)->header.size = len;
  return new;
}

/* Copy all contents and parameters of TABLE to a new table allocated
   from pure space, return the purified table.  */
static struct Lisp_Hash_Table *
purecopy_hash_table (struct Lisp_Hash_Table *table)
{
  eassert (NILP (table->weak));
  eassert (table->purecopy);

  struct Lisp_Hash_Table *pure = pure_alloc (sizeof *pure, Lisp_Vectorlike);
  struct hash_table_test pure_test = table->test;

  /* Purecopy the hash table test.  */
  pure_test.name = purecopy (table->test.name);
  pure_test.user_hash_function = purecopy (table->test.user_hash_function);
  pure_test.user_cmp_function = purecopy (table->test.user_cmp_function);

  pure->header = table->header;
  pure->weak = purecopy (Qnil);
  pure->hash = purecopy (table->hash);
  pure->next = purecopy (table->next);
  pure->index = purecopy (table->index);
  pure->count = table->count;
  pure->next_free = table->next_free;
  pure->purecopy = table->purecopy;
  eassert (!pure->mutable);
  pure->rehash_threshold = table->rehash_threshold;
  pure->rehash_size = table->rehash_size;
  pure->key_and_value = purecopy (table->key_and_value);
  pure->test = pure_test;

  return pure;
}

DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
       doc: /* Make a copy of object OBJ in pure storage.
Recursively copies contents of vectors and cons cells.
Does not copy symbols.  Copies strings without text properties.  */)
  (register Lisp_Object obj)
{
  if (NILP (Vpurify_flag))
    return obj;
  else if (MARKERP (obj) || OVERLAYP (obj) || SYMBOLP (obj))
    /* Can't purify those.  */
    return obj;
  else
    return purecopy (obj);
}

/* Pinned objects are marked before every GC cycle.  */
static struct pinned_object
{
  Lisp_Object object;
  struct pinned_object *next;
} *pinned_objects;

static Lisp_Object
purecopy (Lisp_Object obj)
{
  if (FIXNUMP (obj)
      || (! SYMBOLP (obj) && PURE_P (XPNTR (obj)))
      || SUBRP (obj))
    return obj;    /* Already pure.  */

  if (STRINGP (obj) && XSTRING (obj)->u.s.intervals)
    message_with_string ("Dropping text-properties while making string `%s' pure",
			 obj, true);

  if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing.  */
    {
      Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
      if (!NILP (tmp))
	return tmp;
    }

  if (CONSP (obj))
    obj = pure_cons (XCAR (obj), XCDR (obj));
  else if (FLOATP (obj))
    obj = make_pure_float (XFLOAT_DATA (obj));
  else if (STRINGP (obj))
    obj = make_pure_string (SSDATA (obj), SCHARS (obj),
			    SBYTES (obj),
			    STRING_MULTIBYTE (obj));
  else if (HASH_TABLE_P (obj))
    {
      struct Lisp_Hash_Table *table = XHASH_TABLE (obj);
      /* Do not purify hash tables which haven't been defined with
         :purecopy as non-nil or are weak - they aren't guaranteed to
         not change.  */
      if (!NILP (table->weak) || !table->purecopy)
        {
          /* Instead, add the hash table to the list of pinned objects,
             so that it will be marked during GC.  */
          struct pinned_object *o = xmalloc (sizeof *o);
          o->object = obj;
          o->next = pinned_objects;
          pinned_objects = o;
          return obj; /* Don't hash cons it.  */
        }

      struct Lisp_Hash_Table *h = purecopy_hash_table (table);
      XSET_HASH_TABLE (obj, h);
    }
  else if (COMPILEDP (obj) || VECTORP (obj) || RECORDP (obj))
    {
      struct Lisp_Vector *objp = XVECTOR (obj);
      ptrdiff_t nbytes = vector_nbytes (objp);
      struct Lisp_Vector *vec = pure_alloc (nbytes, Lisp_Vectorlike);
      register ptrdiff_t i;
      ptrdiff_t size = ASIZE (obj);
      if (size & PSEUDOVECTOR_FLAG)
	size &= PSEUDOVECTOR_SIZE_MASK;
      memcpy (vec, objp, nbytes);
      for (i = 0; i < size; i++)
	vec->contents[i] = purecopy (vec->contents[i]);
      XSETVECTOR (obj, vec);
    }
  else if (SYMBOLP (obj))
    {
      if (!XSYMBOL (obj)->u.s.pinned && !c_symbol_p (XSYMBOL (obj)))
	{ /* We can't purify them, but they appear in many pure objects.
	     Mark them as `pinned' so we know to mark them at every GC cycle.  */
	  XSYMBOL (obj)->u.s.pinned = true;
	  symbol_block_pinned = symbol_block;
	}
      /* Don't hash-cons it.  */
      return obj;
    }
  else if (BIGNUMP (obj))
    obj = make_pure_bignum (obj);
  else
    {
      AUTO_STRING (fmt, "Don't know how to purify: %S");
      Fsignal (Qerror, list1 (CALLN (Fformat, fmt, obj)));
    }

  if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing.  */
    Fputhash (obj, obj, Vpurify_flag);

  return obj;
}


\f
/***********************************************************************
			  Protection from GC
 ***********************************************************************/

/* Put an entry in staticvec, pointing at the variable with address
   VARADDRESS.  */

void
staticpro (Lisp_Object const *varaddress)
{
  for (int i = 0; i < staticidx; i++)
    eassert (staticvec[i] != varaddress);
  if (staticidx >= NSTATICS)
    fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
  staticvec[staticidx++] = varaddress;
}

\f
/***********************************************************************
			  Protection from GC
 ***********************************************************************/

/* Temporarily prevent garbage collection.  Temporarily bump
   consing_until_gc to speed up maybe_gc when GC is inhibited.  */

static void
allow_garbage_collection (intmax_t consing)
{
  consing_until_gc = consing - (HI_THRESHOLD - consing_until_gc);
  garbage_collection_inhibited--;
}

ptrdiff_t
inhibit_garbage_collection (void)
{
  ptrdiff_t count = SPECPDL_INDEX ();
  record_unwind_protect_intmax (allow_garbage_collection, consing_until_gc);
  garbage_collection_inhibited++;
  consing_until_gc = HI_THRESHOLD;
  return count;
}

/* Return the number of bytes in N objects each of size S, guarding
   against overflow if size_t is narrower than byte_ct.  */

static byte_ct
object_bytes (object_ct n, size_t s)
{
  byte_ct b = s;
  return n * b;
}

/* Calculate total bytes of live objects.  */

static byte_ct
total_bytes_of_live_objects (void)
{
  byte_ct tot = 0;
  tot += object_bytes (gcstat.total_conses, sizeof (struct Lisp_Cons));
  tot += object_bytes (gcstat.total_symbols, sizeof (struct Lisp_Symbol));
  tot += gcstat.total_string_bytes;
  tot += object_bytes (gcstat.total_vector_slots, word_size);
  tot += object_bytes (gcstat.total_floats, sizeof (struct Lisp_Float));
  tot += object_bytes (gcstat.total_intervals, sizeof (struct interval));
  tot += object_bytes (gcstat.total_strings, sizeof (struct Lisp_String));
  return tot;
}

#ifdef HAVE_WINDOW_SYSTEM

/* Remove unmarked font-spec and font-entity objects from ENTRY, which is
   (DRIVER-TYPE NUM-FRAMES FONT-CACHE-DATA ...), and return changed entry.  */

static Lisp_Object
compact_font_cache_entry (Lisp_Object entry)
{
  Lisp_Object tail, *prev = &entry;

  for (tail = entry; CONSP (tail); tail = XCDR (tail))
    {
      bool drop = 0;
      Lisp_Object obj = XCAR (tail);

      /* Consider OBJ if it is (font-spec . [font-entity font-entity ...]).  */
      if (CONSP (obj) && GC_FONT_SPEC_P (XCAR (obj))
	  && !vectorlike_marked_p (&GC_XFONT_SPEC (XCAR (obj))->header)
	  /* Don't use VECTORP here, as that calls ASIZE, which could
	     hit assertion violation during GC.  */
	  && (VECTORLIKEP (XCDR (obj))
	      && ! (gc_asize (XCDR (obj)) & PSEUDOVECTOR_FLAG)))
	{
	  ptrdiff_t i, size = gc_asize (XCDR (obj));
	  Lisp_Object obj_cdr = XCDR (obj);

	  /* If font-spec is not marked, most likely all font-entities
	     are not marked too.  But we must be sure that nothing is
	     marked within OBJ before we really drop it.  */
	  for (i = 0; i < size; i++)
            {
              Lisp_Object objlist;

              if (vectorlike_marked_p (
                    &GC_XFONT_ENTITY (AREF (obj_cdr, i))->header))
                break;

              objlist = AREF (AREF (obj_cdr, i), FONT_OBJLIST_INDEX);
              for (; CONSP (objlist); objlist = XCDR (objlist))
                {
                  Lisp_Object val = XCAR (objlist);
                  struct font *font = GC_XFONT_OBJECT (val);

                  if (!NILP (AREF (val, FONT_TYPE_INDEX))
                      && vectorlike_marked_p(&font->header))
                    break;
                }
              if (CONSP (objlist))
		{
		  /* Found a marked font, bail out.  */
		  break;
		}
            }

	  if (i == size)
	    {
	      /* No marked fonts were found, so this entire font
		 entity can be dropped.  */
	      drop = 1;
	    }
	}
      if (drop)
	*prev = XCDR (tail);
      else
	prev = xcdr_addr (tail);
    }
  return entry;
}

/* Compact font caches on all terminals and mark
   everything which is still here after compaction.  */

static void
compact_font_caches (void)
{
  struct terminal *t;

  for (t = terminal_list; t; t = t->next_terminal)
    {
      Lisp_Object cache = TERMINAL_FONT_CACHE (t);
      /* Inhibit compacting the caches if the user so wishes.  Some of
	 the users don't mind a larger memory footprint, but do mind
	 slower redisplay.  */
      if (!inhibit_compacting_font_caches
	  && CONSP (cache))
	{
	  Lisp_Object entry;

	  for (entry = XCDR (cache); CONSP (entry); entry = XCDR (entry))
	    XSETCAR (entry, compact_font_cache_entry (XCAR (entry)));
	}
      mark_object (cache);
    }
}

#else /* not HAVE_WINDOW_SYSTEM */

#define compact_font_caches() (void)(0)

#endif /* HAVE_WINDOW_SYSTEM */

/* Remove (MARKER . DATA) entries with unmarked MARKER
   from buffer undo LIST and return changed list.  */

static Lisp_Object
compact_undo_list (Lisp_Object list)
{
  Lisp_Object tail, *prev = &list;

  for (tail = list; CONSP (tail); tail = XCDR (tail))
    {
      if (CONSP (XCAR (tail))
	  && MARKERP (XCAR (XCAR (tail)))
	  && !vectorlike_marked_p (&XMARKER (XCAR (XCAR (tail)))->header))
	*prev = XCDR (tail);
      else
	prev = xcdr_addr (tail);
    }
  return list;
}

static void
mark_pinned_objects (void)
{
  for (struct pinned_object *pobj = pinned_objects; pobj; pobj = pobj->next)
    mark_object (pobj->object);
}

static void
mark_pinned_symbols (void)
{
  struct symbol_block *sblk;
  int lim = (symbol_block_pinned == symbol_block
	     ? symbol_block_index : SYMBOL_BLOCK_SIZE);

  for (sblk = symbol_block_pinned; sblk; sblk = sblk->next)
    {
      struct Lisp_Symbol *sym = sblk->symbols, *end = sym + lim;
      for (; sym < end; ++sym)
	if (sym->u.s.pinned)
	  mark_object (make_lisp_symbol (sym));

      lim = SYMBOL_BLOCK_SIZE;
    }
}

static void
visit_vectorlike_root (struct gc_root_visitor visitor,
                       struct Lisp_Vector *ptr,
                       enum gc_root_type type)
{
  ptrdiff_t size = ptr->header.size;
  ptrdiff_t i;

  if (size & PSEUDOVECTOR_FLAG)
    size &= PSEUDOVECTOR_SIZE_MASK;
  for (i = 0; i < size; i++)
    visitor.visit (&ptr->contents[i], type, visitor.data);
}

static void
visit_buffer_root (struct gc_root_visitor visitor,
                   struct buffer *buffer,
                   enum gc_root_type type)
{
  /* Buffers that are roots don't have intervals, an undo list, or
     other constructs that real buffers have.  */
  eassert (buffer->base_buffer == NULL);
  eassert (buffer->overlays_before == NULL);
  eassert (buffer->overlays_after == NULL);

  /* Visit the buffer-locals.  */
  visit_vectorlike_root (visitor, (struct Lisp_Vector *) buffer, type);
}

/* Visit GC roots stored in the Emacs data section.  Used by both core
   GC and by the portable dumping code.

   There are other GC roots of course, but these roots are dynamic
   runtime data structures that pdump doesn't care about and so we can
   continue to mark those directly in garbage_collect.  */
void
visit_static_gc_roots (struct gc_root_visitor visitor)
{
  visit_buffer_root (visitor,
                     &buffer_defaults,
                     GC_ROOT_BUFFER_LOCAL_DEFAULT);
  visit_buffer_root (visitor,
                     &buffer_local_symbols,
                     GC_ROOT_BUFFER_LOCAL_NAME);

  for (int i = 0; i < ARRAYELTS (lispsym); i++)
    {
      Lisp_Object sptr = builtin_lisp_symbol (i);
      visitor.visit (&sptr, GC_ROOT_C_SYMBOL, visitor.data);
    }

  for (int i = 0; i < staticidx; i++)
    visitor.visit (staticvec[i], GC_ROOT_STATICPRO, visitor.data);
}

static void
mark_object_root_visitor (Lisp_Object const *root_ptr,
                          enum gc_root_type type,
                          void *data)
{
  mark_object (*root_ptr);
}

/* List of weak hash tables we found during marking the Lisp heap.
   NULL on entry to garbage_collect and after it returns.  */
static struct Lisp_Hash_Table *weak_hash_tables;

NO_INLINE /* For better stack traces */
static void
mark_and_sweep_weak_table_contents (void)
{
  struct Lisp_Hash_Table *h;
  bool marked;

  /* Mark all keys and values that are in use.  Keep on marking until
     there is no more change.  This is necessary for cases like
     value-weak table A containing an entry X -> Y, where Y is used in a
     key-weak table B, Z -> Y.  If B comes after A in the list of weak
     tables, X -> Y might be removed from A, although when looking at B
     one finds that it shouldn't.  */
  do
    {
      marked = false;
      for (h = weak_hash_tables; h; h = h->next_weak)
        marked |= sweep_weak_table (h, false);
    }
  while (marked);

  /* Remove hash table entries that aren't used.  */
  while (weak_hash_tables)
    {
      h = weak_hash_tables;
      weak_hash_tables = h->next_weak;
      h->next_weak = NULL;
      sweep_weak_table (h, true);
    }
}

/* Return the number of bytes to cons between GCs, given THRESHOLD and
   PERCENTAGE.  When calculating a threshold based on PERCENTAGE,
   assume SINCE_GC bytes have been allocated since the most recent GC.
   The returned value is positive and no greater than HI_THRESHOLD.  */
static EMACS_INT
consing_threshold (intmax_t threshold, Lisp_Object percentage,
		   intmax_t since_gc)
{
  if (!NILP (Vmemory_full))
    return memory_full_cons_threshold;
  else
    {
      threshold = max (threshold, GC_DEFAULT_THRESHOLD / 10);
      if (FLOATP (percentage))
	{
	  double tot = (XFLOAT_DATA (percentage)
			* (total_bytes_of_live_objects () + since_gc));
	  if (threshold < tot)
	    {
	      if (tot < HI_THRESHOLD)
		return tot;
	      else
		return HI_THRESHOLD;
	    }
	}
      return min (threshold, HI_THRESHOLD);
    }
}

/* Adjust consing_until_gc and gc_threshold, given THRESHOLD and PERCENTAGE.
   Return the updated consing_until_gc.  */

static EMACS_INT
bump_consing_until_gc (intmax_t threshold, Lisp_Object percentage)
{
  /* Guesstimate that half the bytes allocated since the most
     recent GC are still in use.  */
  EMACS_INT since_gc = (gc_threshold - consing_until_gc) >> 1;
  EMACS_INT new_gc_threshold = consing_threshold (threshold, percentage,
						  since_gc);
  consing_until_gc += new_gc_threshold - gc_threshold;
  gc_threshold = new_gc_threshold;
  return consing_until_gc;
}

/* Watch changes to gc-cons-threshold.  */
static Lisp_Object
watch_gc_cons_threshold (Lisp_Object symbol, Lisp_Object newval,
			 Lisp_Object operation, Lisp_Object where)
{
  intmax_t threshold;
  if (! (INTEGERP (newval) && integer_to_intmax (newval, &threshold)))
    return Qnil;
  bump_consing_until_gc (threshold, Vgc_cons_percentage);
  return Qnil;
}

/* Watch changes to gc-cons-percentage.  */
static Lisp_Object
watch_gc_cons_percentage (Lisp_Object symbol, Lisp_Object newval,
			  Lisp_Object operation, Lisp_Object where)
{
  bump_consing_until_gc (gc_cons_threshold, newval);
  return Qnil;
}

/* It may be time to collect garbage.  Recalculate consing_until_gc,
   since it might depend on current usage, and do the garbage
   collection if the recalculation says so.  */
void
maybe_garbage_collect (void)
{
  if (bump_consing_until_gc (gc_cons_threshold, Vgc_cons_percentage) < 0)
    garbage_collect ();
}

/* Subroutine of Fgarbage_collect that does most of the work.  */
void
garbage_collect (void)
{
  Lisp_Object tail, buffer;
  char stack_top_variable;
  bool message_p;
  ptrdiff_t count = SPECPDL_INDEX ();
  struct timespec start;

  eassert (weak_hash_tables == NULL);

  if (garbage_collection_inhibited)
    return;

  /* Record this function, so it appears on the profiler's backtraces.  */
  record_in_backtrace (QAutomatic_GC, 0, 0);

  /* Don't keep undo information around forever.
     Do this early on, so it is no problem if the user quits.  */
  FOR_EACH_LIVE_BUFFER (tail, buffer)
    compact_buffer (XBUFFER (buffer));

  byte_ct tot_before = (profiler_memory_running
			? total_bytes_of_live_objects ()
			: (byte_ct) -1);

  start = current_timespec ();

  /* In case user calls debug_print during GC,
     don't let that cause a recursive GC.  */
  consing_until_gc = HI_THRESHOLD;

  /* Save what's currently displayed in the echo area.  Don't do that
     if we are GC'ing because we've run out of memory, since
     push_message will cons, and we might have no memory for that.  */
  if (NILP (Vmemory_full))
    {
      message_p = push_message ();
      record_unwind_protect_void (pop_message_unwind);
    }
  else
    message_p = false;

  /* Save a copy of the contents of the stack, for debugging.  */
#if MAX_SAVE_STACK > 0
  if (NILP (Vpurify_flag))
    {
      char const *stack;
      ptrdiff_t stack_size;
      if (&stack_top_variable < stack_bottom)
	{
	  stack = &stack_top_variable;
	  stack_size = stack_bottom - &stack_top_variable;
	}
      else
	{
	  stack = stack_bottom;
	  stack_size = &stack_top_variable - stack_bottom;
	}
      if (stack_size <= MAX_SAVE_STACK)
	{
	  if (stack_copy_size < stack_size)
	    {
	      stack_copy = xrealloc (stack_copy, stack_size);
	      stack_copy_size = stack_size;
	    }
	  stack = ptr_bounds_set (stack, stack_size);
	  no_sanitize_memcpy (stack_copy, stack, stack_size);
	}
    }
#endif /* MAX_SAVE_STACK > 0 */

  if (garbage_collection_messages)
    message1_nolog ("Garbage collecting...");

  block_input ();

  shrink_regexp_cache ();

  gc_in_progress = 1;

  /* Mark all the special slots that serve as the roots of accessibility.  */

  struct gc_root_visitor visitor = { .visit = mark_object_root_visitor };
  visit_static_gc_roots (visitor);

  mark_pinned_objects ();
  mark_pinned_symbols ();
  mark_terminals ();
  mark_kboards ();
  mark_threads ();
#ifdef HAVE_PGTK
  mark_pgtkterm ();
#endif

#if defined (USE_GTK) && !defined (HAVE_GTK4)
  xg_mark_data ();
#elif defined (HAVE_GTK4)
  egtk_mark_data ();
#endif

#ifdef HAVE_WINDOW_SYSTEM
  mark_fringe_data ();
#endif

#ifdef HAVE_MODULES
  mark_modules ();
#endif

  /* Everything is now marked, except for the data in font caches,
     undo lists, and finalizers.  The first two are compacted by
     removing an items which aren't reachable otherwise.  */

  compact_font_caches ();

  FOR_EACH_LIVE_BUFFER (tail, buffer)
    {
      struct buffer *nextb = XBUFFER (buffer);
      if (!EQ (BVAR (nextb, undo_list), Qt))
	bset_undo_list (nextb, compact_undo_list (BVAR (nextb, undo_list)));
      /* Now that we have stripped the elements that need not be
	 in the undo_list any more, we can finally mark the list.  */
      mark_object (BVAR (nextb, undo_list));
    }

  /* Now pre-sweep finalizers.  Here, we add any unmarked finalizers
     to doomed_finalizers so we can run their associated functions
     after GC.  It's important to scan finalizers at this stage so
     that we can be sure that unmarked finalizers are really
     unreachable except for references from their associated functions
     and from other finalizers.  */

  queue_doomed_finalizers (&doomed_finalizers, &finalizers);
  mark_finalizer_list (&doomed_finalizers);

  /* Must happen after all other marking and before gc_sweep.  */
  mark_and_sweep_weak_table_contents ();
  eassert (weak_hash_tables == NULL);

  gc_sweep ();

  unmark_main_thread ();

  gc_in_progress = 0;

  unblock_input ();

  consing_until_gc = gc_threshold
    = consing_threshold (gc_cons_threshold, Vgc_cons_percentage, 0);

  if (garbage_collection_messages && NILP (Vmemory_full))
    {
      if (message_p || minibuf_level > 0)
	restore_message ();
      else
	message1_nolog ("Garbage collecting...done");
    }

  unbind_to (count, Qnil);

  /* GC is complete: now we can run our finalizer callbacks.  */
  run_finalizers (&doomed_finalizers);

  if (!NILP (Vpost_gc_hook))
    {
      ptrdiff_t gc_count = inhibit_garbage_collection ();
      safe_run_hooks (Qpost_gc_hook);
      unbind_to (gc_count, Qnil);
    }

  /* Accumulate statistics.  */
  if (FLOATP (Vgc_elapsed))
    {
      static struct timespec gc_elapsed;
      gc_elapsed = timespec_add (gc_elapsed,
				 timespec_sub (current_timespec (), start));
      Vgc_elapsed = make_float (timespectod (gc_elapsed));
    }

  gcs_done++;

  /* Collect profiling data.  */
  if (tot_before != (byte_ct) -1)
    {
      byte_ct tot_after = total_bytes_of_live_objects ();
      if (tot_after < tot_before)
	malloc_probe (min (tot_before - tot_after, SIZE_MAX));
    }
}

DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
       doc: /* Reclaim storage for Lisp objects no longer needed.
Garbage collection happens automatically if you cons more than
`gc-cons-threshold' bytes of Lisp data since previous garbage collection.
`garbage-collect' normally returns a list with info on amount of space in use,
where each entry has the form (NAME SIZE USED FREE), where:
- NAME is a symbol describing the kind of objects this entry represents,
- SIZE is the number of bytes used by each one,
- USED is the number of those objects that were found live in the heap,
- FREE is the number of those objects that are not live but that Emacs
  keeps around for future allocations (maybe because it does not know how
  to return them to the OS).
However, if there was overflow in pure space, and Emacs was dumped
using the 'unexec' method, `garbage-collect' returns nil, because
real GC can't be done.
See Info node `(elisp)Garbage Collection'.  */)
  (void)
{
  if (garbage_collection_inhibited)
    return Qnil;

  garbage_collect ();
  struct gcstat gcst = gcstat;

  Lisp_Object total[] = {
    list4 (Qconses, make_fixnum (sizeof (struct Lisp_Cons)),
	   make_int (gcst.total_conses),
	   make_int (gcst.total_free_conses)),
    list4 (Qsymbols, make_fixnum (sizeof (struct Lisp_Symbol)),
	   make_int (gcst.total_symbols),
	   make_int (gcst.total_free_symbols)),
    list4 (Qstrings, make_fixnum (sizeof (struct Lisp_String)),
	   make_int (gcst.total_strings),
	   make_int (gcst.total_free_strings)),
    list3 (Qstring_bytes, make_fixnum (1),
	   make_int (gcst.total_string_bytes)),
    list3 (Qvectors,
	   make_fixnum (header_size + sizeof (Lisp_Object)),
	   make_int (gcst.total_vectors)),
    list4 (Qvector_slots, make_fixnum (word_size),
	   make_int (gcst.total_vector_slots),
	   make_int (gcst.total_free_vector_slots)),
    list4 (Qfloats, make_fixnum (sizeof (struct Lisp_Float)),
	   make_int (gcst.total_floats),
	   make_int (gcst.total_free_floats)),
    list4 (Qintervals, make_fixnum (sizeof (struct interval)),
	   make_int (gcst.total_intervals),
	   make_int (gcst.total_free_intervals)),
    list3 (Qbuffers, make_fixnum (sizeof (struct buffer)),
	   make_int (gcst.total_buffers)),

#ifdef DOUG_LEA_MALLOC
    list4 (Qheap, make_fixnum (1024),
	   make_int ((mallinfo ().uordblks + 1023) >> 10),
	   make_int ((mallinfo ().fordblks + 1023) >> 10)),
#endif
  };
  return CALLMANY (Flist, total);
}

/* Mark Lisp objects in glyph matrix MATRIX.  Currently the
   only interesting objects referenced from glyphs are strings.  */

static void
mark_glyph_matrix (struct glyph_matrix *matrix)
{
  struct glyph_row *row = matrix->rows;
  struct glyph_row *end = row + matrix->nrows;

  for (; row < end; ++row)
    if (row->enabled_p)
      {
	int area;
	for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
	  {
	    struct glyph *glyph = row->glyphs[area];
	    struct glyph *end_glyph = glyph + row->used[area];

	    for (; glyph < end_glyph; ++glyph)
	      if (STRINGP (glyph->object)
		  && !string_marked_p (XSTRING (glyph->object)))
		mark_object (glyph->object);
	  }
      }
}

enum { LAST_MARKED_SIZE = 1 << 9 }; /* Must be a power of 2.  */
Lisp_Object last_marked[LAST_MARKED_SIZE] EXTERNALLY_VISIBLE;
static int last_marked_index;

/* For debugging--call abort when we cdr down this many
   links of a list, in mark_object.  In debugging,
   the call to abort will hit a breakpoint.
   Normally this is zero and the check never goes off.  */
ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;

static void
mark_vectorlike (union vectorlike_header *header)
{
  struct Lisp_Vector *ptr = (struct Lisp_Vector *) header;
  ptrdiff_t size = ptr->header.size;
  ptrdiff_t i;

  eassert (!vector_marked_p (ptr));

  /* Bool vectors have a different case in mark_object.  */
  eassert (PSEUDOVECTOR_TYPE (ptr) != PVEC_BOOL_VECTOR);

  set_vector_marked (ptr); /* Else mark it.  */
  if (size & PSEUDOVECTOR_FLAG)
    size &= PSEUDOVECTOR_SIZE_MASK;

  /* Note that this size is not the memory-footprint size, but only
     the number of Lisp_Object fields that we should trace.
     The distinction is used e.g. by Lisp_Process which places extra
     non-Lisp_Object fields at the end of the structure...  */
  for (i = 0; i < size; i++) /* ...and then mark its elements.  */
    mark_object (ptr->contents[i]);
}

/* Like mark_vectorlike but optimized for char-tables (and
   sub-char-tables) assuming that the contents are mostly integers or
   symbols.  */

static void
mark_char_table (struct Lisp_Vector *ptr, enum pvec_type pvectype)
{
  int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
  /* Consult the Lisp_Sub_Char_Table layout before changing this.  */
  int i, idx = (pvectype == PVEC_SUB_CHAR_TABLE ? SUB_CHAR_TABLE_OFFSET : 0);

  eassert (!vector_marked_p (ptr));
  set_vector_marked (ptr);
  for (i = idx; i < size; i++)
    {
      Lisp_Object val = ptr->contents[i];

      if (FIXNUMP (val) ||
          (SYMBOLP (val) && symbol_marked_p (XSYMBOL (val))))
	continue;
      if (SUB_CHAR_TABLE_P (val))
	{
	  if (! vector_marked_p (XVECTOR (val)))
	    mark_char_table (XVECTOR (val), PVEC_SUB_CHAR_TABLE);
	}
      else
	mark_object (val);
    }
}

NO_INLINE /* To reduce stack depth in mark_object.  */
static Lisp_Object
mark_compiled (struct Lisp_Vector *ptr)
{
  int i, size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;

  set_vector_marked (ptr);
  for (i = 0; i < size; i++)
    if (i != COMPILED_CONSTANTS)
      mark_object (ptr->contents[i]);
  return size > COMPILED_CONSTANTS ? ptr->contents[COMPILED_CONSTANTS] : Qnil;
}

/* Mark the chain of overlays starting at PTR.  */

static void
mark_overlay (struct Lisp_Overlay *ptr)
{
  for (; ptr && !vectorlike_marked_p (&ptr->header); ptr = ptr->next)
    {
      set_vectorlike_marked (&ptr->header);
      /* These two are always markers and can be marked fast.  */
      set_vectorlike_marked (&XMARKER (ptr->start)->header);
      set_vectorlike_marked (&XMARKER (ptr->end)->header);
      mark_object (ptr->plist);
    }
}

/* Mark Lisp_Objects and special pointers in BUFFER.  */

static void
mark_buffer (struct buffer *buffer)
{
  /* This is handled much like other pseudovectors...  */
  mark_vectorlike (&buffer->header);

  /* ...but there are some buffer-specific things.  */

  mark_interval_tree (buffer_intervals (buffer));

  /* For now, we just don't mark the undo_list.  It's done later in
     a special way just before the sweep phase, and after stripping
     some of its elements that are not needed any more.
     Note: this later processing is only done for live buffers, so
     for dead buffers, the undo_list should be nil (set by Fkill_buffer),
     but just to be on the safe side, we mark it here.  */
  if (!BUFFER_LIVE_P (buffer))
      mark_object (BVAR (buffer, undo_list));

  mark_overlay (buffer->overlays_before);
  mark_overlay (buffer->overlays_after);

  /* If this is an indirect buffer, mark its base buffer.  */
  if (buffer->base_buffer &&
      !vectorlike_marked_p (&buffer->base_buffer->header))
    mark_buffer (buffer->base_buffer);
}

/* Mark Lisp faces in the face cache C.  */

NO_INLINE /* To reduce stack depth in mark_object.  */
static void
mark_face_cache (struct face_cache *c)
{
  if (c)
    {
      int i, j;
      for (i = 0; i < c->used; ++i)
	{
	  struct face *face = FACE_FROM_ID_OR_NULL (c->f, i);

	  if (face)
	    {
	      if (face->font && !vectorlike_marked_p (&face->font->header))
		mark_vectorlike (&face->font->header);

	      for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
		mark_object (face->lface[j]);
	    }
	}
    }
}

NO_INLINE /* To reduce stack depth in mark_object.  */
static void
mark_localized_symbol (struct Lisp_Symbol *ptr)
{
  struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
  Lisp_Object where = blv->where;
  /* If the value is set up for a killed buffer restore its global binding.  */
  if ((BUFFERP (where) && !BUFFER_LIVE_P (XBUFFER (where))))
    swap_in_global_binding (ptr);
  mark_object (blv->where);
  mark_object (blv->valcell);
  mark_object (blv->defcell);
}

/* Remove killed buffers or items whose car is a killed buffer from
   LIST, and mark other items.  Return changed LIST, which is marked.  */

static Lisp_Object
mark_discard_killed_buffers (Lisp_Object list)
{
  Lisp_Object tail, *prev = &list;

  for (tail = list; CONSP (tail) && !cons_marked_p (XCONS (tail));
       tail = XCDR (tail))
    {
      Lisp_Object tem = XCAR (tail);
      if (CONSP (tem))
	tem = XCAR (tem);
      if (BUFFERP (tem) && !BUFFER_LIVE_P (XBUFFER (tem)))
	*prev = XCDR (tail);
      else
	{
	  set_cons_marked (XCONS (tail));
	  mark_object (XCAR (tail));
	  prev = xcdr_addr (tail);
	}
    }
  mark_object (tail);
  return list;
}

static void
mark_frame (struct Lisp_Vector *ptr)
{
  struct frame *f = (struct frame *) ptr;
  mark_vectorlike (&ptr->header);
  mark_face_cache (f->face_cache);
#ifdef HAVE_WINDOW_SYSTEM
  if (FRAME_WINDOW_P (f) && FRAME_OUTPUT_DATA (f))
    {
      struct font *font = FRAME_FONT (f);

      if (font && !vectorlike_marked_p (&font->header))
        mark_vectorlike (&font->header);
    }
#endif
}

static void
mark_window (struct Lisp_Vector *ptr)
{
  struct window *w = (struct window *) ptr;

  mark_vectorlike (&ptr->header);

  /* Mark glyph matrices, if any.  Marking window
     matrices is sufficient because frame matrices
     use the same glyph memory.  */
  if (w->current_matrix)
    {
      mark_glyph_matrix (w->current_matrix);
      mark_glyph_matrix (w->desired_matrix);
    }

  /* Filter out killed buffers from both buffer lists
     in attempt to help GC to reclaim killed buffers faster.
     We can do it elsewhere for live windows, but this is the
     best place to do it for dead windows.  */
  wset_prev_buffers
    (w, mark_discard_killed_buffers (w->prev_buffers));
  wset_next_buffers
    (w, mark_discard_killed_buffers (w->next_buffers));
}

static void
mark_hash_table (struct Lisp_Vector *ptr)
{
  struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;

  mark_vectorlike (&h->header);
  mark_object (h->test.name);
  mark_object (h->test.user_hash_function);
  mark_object (h->test.user_cmp_function);
  /* If hash table is not weak, mark all keys and values.  For weak
     tables, mark only the vector and not its contents --- that's what
     makes it weak.  */
  if (NILP (h->weak))
    mark_object (h->key_and_value);
  else
    {
      eassert (h->next_weak == NULL);
      h->next_weak = weak_hash_tables;
      weak_hash_tables = h;
      set_vector_marked (XVECTOR (h->key_and_value));
    }
}

/* Determine type of generic Lisp_Object and mark it accordingly.

   This function implements a straightforward depth-first marking
   algorithm and so the recursion depth may be very high (a few
   tens of thousands is not uncommon).  To minimize stack usage,
   a few cold paths are moved out to NO_INLINE functions above.
   In general, inlining them doesn't help you to gain more speed.  */

void
mark_object (Lisp_Object arg)
{
  register Lisp_Object obj;
  void *po;
#if GC_CHECK_MARKED_OBJECTS
  struct mem_node *m = NULL;
#endif
  ptrdiff_t cdr_count = 0;

  obj = arg;
 loop:

  po = XPNTR (obj);
  if (PURE_P (po))
    return;

  last_marked[last_marked_index++] = obj;
  last_marked_index &= LAST_MARKED_SIZE - 1;

  /* Perform some sanity checks on the objects marked here.  Abort if
     we encounter an object we know is bogus.  This increases GC time
     by ~80%.  */
#if GC_CHECK_MARKED_OBJECTS

  /* Check that the object pointed to by PO is known to be a Lisp
     structure allocated from the heap.  */
#define CHECK_ALLOCATED()			\
  do {						\
    if (pdumper_object_p(po))                   \
      {                                         \
        if (!pdumper_object_p_precise (po))     \
          emacs_abort ();                       \
        break;                                  \
      }                                         \
    m = mem_find (po);				\
    if (m == MEM_NIL)				\
      emacs_abort ();				\
  } while (0)

  /* Check that the object pointed to by PO is live, using predicate
     function LIVEP.  */
#define CHECK_LIVE(LIVEP)			\
  do {						\
    if (pdumper_object_p(po))                   \
      break;                                    \
    if (!LIVEP (m, po))				\
      emacs_abort ();				\
  } while (0)

  /* Check both of the above conditions, for non-symbols.  */
#define CHECK_ALLOCATED_AND_LIVE(LIVEP)		\
  do {						\
    CHECK_ALLOCATED ();				\
    CHECK_LIVE (LIVEP);				\
  } while (false)

  /* Check both of the above conditions, for symbols.  */
#define CHECK_ALLOCATED_AND_LIVE_SYMBOL()	\
  do {						\
    if (!c_symbol_p (ptr))			\
      {						\
	CHECK_ALLOCATED ();			\
	CHECK_LIVE (live_symbol_p);		\
      }						\
  } while (false)

#else /* not GC_CHECK_MARKED_OBJECTS */

#define CHECK_LIVE(LIVEP)			((void) 0)
#define CHECK_ALLOCATED_AND_LIVE(LIVEP)		((void) 0)
#define CHECK_ALLOCATED_AND_LIVE_SYMBOL()	((void) 0)

#endif /* not GC_CHECK_MARKED_OBJECTS */

  switch (XTYPE (obj))
    {
    case Lisp_String:
      {
	register struct Lisp_String *ptr = XSTRING (obj);
        if (string_marked_p (ptr))
          break;
	CHECK_ALLOCATED_AND_LIVE (live_string_p);
        set_string_marked (ptr);
        mark_interval_tree (ptr->u.s.intervals);
#ifdef GC_CHECK_STRING_BYTES
	/* Check that the string size recorded in the string is the
	   same as the one recorded in the sdata structure.  */
	string_bytes (ptr);
#endif /* GC_CHECK_STRING_BYTES */
      }
      break;

    case Lisp_Vectorlike:
      {
	register struct Lisp_Vector *ptr = XVECTOR (obj);

	if (vector_marked_p (ptr))
	  break;

#ifdef GC_CHECK_MARKED_OBJECTS
        if (!pdumper_object_p(po))
          {
	    m = mem_find (po);
            if (m == MEM_NIL && !SUBRP (obj) && !main_thread_p (po))
	      emacs_abort ();
          }
#endif /* GC_CHECK_MARKED_OBJECTS */

        enum pvec_type pvectype
          = PSEUDOVECTOR_TYPE (ptr);

        if (pvectype != PVEC_SUBR &&
            !main_thread_p (po))
          CHECK_LIVE (live_vector_p);

	switch (pvectype)
	  {
	  case PVEC_BUFFER:
	    mark_buffer ((struct buffer *) ptr);
            break;

          case PVEC_COMPILED:
            /* Although we could treat this just like a vector, mark_compiled
               returns the COMPILED_CONSTANTS element, which is marked at the
               next iteration of goto-loop here.  This is done to avoid a few
               recursive calls to mark_object.  */
            obj = mark_compiled (ptr);
            if (!NILP (obj))
              goto loop;
            break;

          case PVEC_FRAME:
            mark_frame (ptr);
            break;

          case PVEC_WINDOW:
            mark_window (ptr);
            break;

	  case PVEC_HASH_TABLE:
            mark_hash_table (ptr);
	    break;

	  case PVEC_CHAR_TABLE:
	  case PVEC_SUB_CHAR_TABLE:
	    mark_char_table (ptr, (enum pvec_type) pvectype);
	    break;

          case PVEC_BOOL_VECTOR:
            /* bool vectors in a dump are permanently "marked", since
               they're in the old section and don't have mark bits.
               If we're looking at a dumped bool vector, we should
               have aborted above when we called vector_marked_p(), so
               we should never get here.  */
            eassert (!pdumper_object_p (ptr));
            set_vector_marked (ptr);
            break;

          case PVEC_OVERLAY:
	    mark_overlay (XOVERLAY (obj));
	    break;

	  case PVEC_SUBR:
	    break;

	  case PVEC_FREE:
	    emacs_abort ();

	  default:
	    /* A regular vector, or a pseudovector needing no special
	       treatment.  */
	    mark_vectorlike (&ptr->header);
	  }
      }
      break;

    case Lisp_Symbol:
      {
	struct Lisp_Symbol *ptr = XSYMBOL (obj);
      nextsym:
        if (symbol_marked_p (ptr))
          break;
        CHECK_ALLOCATED_AND_LIVE_SYMBOL ();
        set_symbol_marked(ptr);
	/* Attempt to catch bogus objects.  */
	eassert (valid_lisp_object_p (ptr->u.s.function));
	mark_object (ptr->u.s.function);
	mark_object (ptr->u.s.plist);
	switch (ptr->u.s.redirect)
	  {
	  case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
	  case SYMBOL_VARALIAS:
	    {
	      Lisp_Object tem;
	      XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
	      mark_object (tem);
	      break;
	    }
	  case SYMBOL_LOCALIZED:
	    mark_localized_symbol (ptr);
	    break;
	  case SYMBOL_FORWARDED:
	    /* If the value is forwarded to a buffer or keyboard field,
	       these are marked when we see the corresponding object.
	       And if it's forwarded to a C variable, either it's not
	       a Lisp_Object var, or it's staticpro'd already.  */
	    break;
	  default: emacs_abort ();
	  }
	if (!PURE_P (XSTRING (ptr->u.s.name)))
          set_string_marked (XSTRING (ptr->u.s.name));
        mark_interval_tree (string_intervals (ptr->u.s.name));
	/* Inner loop to mark next symbol in this bucket, if any.  */
	po = ptr = ptr->u.s.next;
	if (ptr)
	  goto nextsym;
      }
      break;

    case Lisp_Cons:
      {
	struct Lisp_Cons *ptr = XCONS (obj);
	if (cons_marked_p (ptr))
	  break;
	CHECK_ALLOCATED_AND_LIVE (live_cons_p);
        set_cons_marked (ptr);
	/* If the cdr is nil, avoid recursion for the car.  */
	if (NILP (ptr->u.s.u.cdr))
	  {
	    obj = ptr->u.s.car;
	    cdr_count = 0;
	    goto loop;
	  }
	mark_object (ptr->u.s.car);
	obj = ptr->u.s.u.cdr;
	cdr_count++;
	if (cdr_count == mark_object_loop_halt)
	  emacs_abort ();
	goto loop;
      }

    case Lisp_Float:
      CHECK_ALLOCATED_AND_LIVE (live_float_p);
      /* Do not mark floats stored in a dump image: these floats are
         "cold" and do not have mark bits.  */
      if (pdumper_object_p (XFLOAT (obj)))
        eassert (pdumper_cold_object_p (XFLOAT (obj)));
      else if (!XFLOAT_MARKED_P (XFLOAT (obj)))
        XFLOAT_MARK (XFLOAT (obj));
      break;

    case_Lisp_Int:
      break;

    default:
      emacs_abort ();
    }

#undef CHECK_LIVE
#undef CHECK_ALLOCATED
#undef CHECK_ALLOCATED_AND_LIVE
}

/* Mark the Lisp pointers in the terminal objects.
   Called by Fgarbage_collect.  */

static void
mark_terminals (void)
{
  struct terminal *t;
  for (t = terminal_list; t; t = t->next_terminal)
    {
      eassert (t->name != NULL);
#ifdef HAVE_WINDOW_SYSTEM
      /* If a terminal object is reachable from a stacpro'ed object,
	 it might have been marked already.  Make sure the image cache
	 gets marked.  */
      mark_image_cache (t->image_cache);
#endif /* HAVE_WINDOW_SYSTEM */
      if (!vectorlike_marked_p (&t->header))
	mark_vectorlike (&t->header);
    }
}

/* Value is non-zero if OBJ will survive the current GC because it's
   either marked or does not need to be marked to survive.  */

bool
survives_gc_p (Lisp_Object obj)
{
  bool survives_p;

  switch (XTYPE (obj))
    {
    case_Lisp_Int:
      survives_p = true;
      break;

    case Lisp_Symbol:
      survives_p = symbol_marked_p (XSYMBOL (obj));
      break;

    case Lisp_String:
      survives_p = string_marked_p (XSTRING (obj));
      break;

    case Lisp_Vectorlike:
      survives_p =
	(SUBRP (obj)) ||
	vector_marked_p (XVECTOR (obj));
      break;

    case Lisp_Cons:
      survives_p = cons_marked_p (XCONS (obj));
      break;

    case Lisp_Float:
      survives_p =
        XFLOAT_MARKED_P (XFLOAT (obj)) ||
        pdumper_object_p (XFLOAT (obj));
      break;

    default:
      emacs_abort ();
    }

  return survives_p || PURE_P (XPNTR (obj));
}


\f

NO_INLINE /* For better stack traces */
static void
sweep_conses (void)
{
  struct cons_block **cprev = &cons_block;
  int lim = cons_block_index;
  object_ct num_free = 0, num_used = 0;

  cons_free_list = 0;

  for (struct cons_block *cblk; (cblk = *cprev); )
    {
      int i = 0;
      int this_free = 0;
      int ilim = (lim + BITS_PER_BITS_WORD - 1) / BITS_PER_BITS_WORD;

      /* Scan the mark bits an int at a time.  */
      for (i = 0; i < ilim; i++)
        {
          if (cblk->gcmarkbits[i] == BITS_WORD_MAX)
            {
              /* Fast path - all cons cells for this int are marked.  */
              cblk->gcmarkbits[i] = 0;
              num_used += BITS_PER_BITS_WORD;
            }
          else
            {
              /* Some cons cells for this int are not marked.
                 Find which ones, and free them.  */
              int start, pos, stop;

              start = i * BITS_PER_BITS_WORD;
              stop = lim - start;
              if (stop > BITS_PER_BITS_WORD)
                stop = BITS_PER_BITS_WORD;
              stop += start;

              for (pos = start; pos < stop; pos++)
                {
		  struct Lisp_Cons *acons
		    = ptr_bounds_copy (&cblk->conses[pos], cblk);
		  if (!XCONS_MARKED_P (acons))
                    {
                      this_free++;
                      cblk->conses[pos].u.s.u.chain = cons_free_list;
                      cons_free_list = &cblk->conses[pos];
                      cons_free_list->u.s.car = dead_object ();
                    }
                  else
                    {
                      num_used++;
		      XUNMARK_CONS (acons);
                    }
                }
            }
        }

      lim = CONS_BLOCK_SIZE;
      /* If this block contains only free conses and we have already
         seen more than two blocks worth of free conses then deallocate
         this block.  */
      if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
        {
          *cprev = cblk->next;
          /* Unhook from the free list.  */
          cons_free_list = cblk->conses[0].u.s.u.chain;
          lisp_align_free (cblk);
        }
      else
        {
          num_free += this_free;
          cprev = &cblk->next;
        }
    }
  gcstat.total_conses = num_used;
  gcstat.total_free_conses = num_free;
}

NO_INLINE /* For better stack traces */
static void
sweep_floats (void)
{
  struct float_block **fprev = &float_block;
  int lim = float_block_index;
  object_ct num_free = 0, num_used = 0;

  float_free_list = 0;

  for (struct float_block *fblk; (fblk = *fprev); )
    {
      int this_free = 0;
      for (int i = 0; i < lim; i++)
	{
	  struct Lisp_Float *afloat = ptr_bounds_copy (&fblk->floats[i], fblk);
	  if (!XFLOAT_MARKED_P (afloat))
	    {
	      this_free++;
	      fblk->floats[i].u.chain = float_free_list;
	      float_free_list = &fblk->floats[i];
	    }
	  else
	    {
	      num_used++;
	      XFLOAT_UNMARK (afloat);
	    }
	}
      lim = FLOAT_BLOCK_SIZE;
      /* If this block contains only free floats and we have already
         seen more than two blocks worth of free floats then deallocate
         this block.  */
      if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
        {
          *fprev = fblk->next;
          /* Unhook from the free list.  */
          float_free_list = fblk->floats[0].u.chain;
          lisp_align_free (fblk);
        }
      else
        {
          num_free += this_free;
          fprev = &fblk->next;
        }
    }
  gcstat.total_floats = num_used;
  gcstat.total_free_floats = num_free;
}

NO_INLINE /* For better stack traces */
static void
sweep_intervals (void)
{
  struct interval_block **iprev = &interval_block;
  int lim = interval_block_index;
  object_ct num_free = 0, num_used = 0;

  interval_free_list = 0;

  for (struct interval_block *iblk; (iblk = *iprev); )
    {
      int this_free = 0;

      for (int i = 0; i < lim; i++)
        {
          if (!iblk->intervals[i].gcmarkbit)
            {
              set_interval_parent (&iblk->intervals[i], interval_free_list);
              interval_free_list = &iblk->intervals[i];
              this_free++;
            }
          else
            {
              num_used++;
              iblk->intervals[i].gcmarkbit = 0;
            }
        }
      lim = INTERVAL_BLOCK_SIZE;
      /* If this block contains only free intervals and we have already
         seen more than two blocks worth of free intervals then
         deallocate this block.  */
      if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
        {
          *iprev = iblk->next;
          /* Unhook from the free list.  */
          interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
          lisp_free (iblk);
        }
      else
        {
          num_free += this_free;
          iprev = &iblk->next;
        }
    }
  gcstat.total_intervals = num_used;
  gcstat.total_free_intervals = num_free;
}

NO_INLINE /* For better stack traces */
static void
sweep_symbols (void)
{
  struct symbol_block *sblk;
  struct symbol_block **sprev = &symbol_block;
  int lim = symbol_block_index;
  object_ct num_free = 0, num_used = ARRAYELTS (lispsym);

  symbol_free_list = NULL;

  for (int i = 0; i < ARRAYELTS (lispsym); i++)
    lispsym[i].u.s.gcmarkbit = 0;

  for (sblk = symbol_block; sblk; sblk = *sprev)
    {
      int this_free = 0;
      struct Lisp_Symbol *sym = sblk->symbols;
      struct Lisp_Symbol *end = sym + lim;

      for (; sym < end; ++sym)
        {
          if (!sym->u.s.gcmarkbit)
            {
              if (sym->u.s.redirect == SYMBOL_LOCALIZED)
		{
                  xfree (SYMBOL_BLV (sym));
                  /* At every GC we sweep all symbol_blocks and rebuild the
                     symbol_free_list, so those symbols which stayed unused
                     between the two will be re-swept.
                     So we have to make sure we don't re-free this blv next
                     time we sweep this symbol_block (bug#29066).  */
                  sym->u.s.redirect = SYMBOL_PLAINVAL;
                }
              sym->u.s.next = symbol_free_list;
              symbol_free_list = sym;
              symbol_free_list->u.s.function = dead_object ();
              ++this_free;
            }
          else
            {
              ++num_used;
              sym->u.s.gcmarkbit = 0;
              /* Attempt to catch bogus objects.  */
              eassert (valid_lisp_object_p (sym->u.s.function));
            }
        }

      lim = SYMBOL_BLOCK_SIZE;
      /* If this block contains only free symbols and we have already
         seen more than two blocks worth of free symbols then deallocate
         this block.  */
      if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
        {
          *sprev = sblk->next;
          /* Unhook from the free list.  */
          symbol_free_list = sblk->symbols[0].u.s.next;
          lisp_free (sblk);
        }
      else
        {
          num_free += this_free;
          sprev = &sblk->next;
        }
    }
  gcstat.total_symbols = num_used;
  gcstat.total_free_symbols = num_free;
}

/* Remove BUFFER's markers that are due to be swept.  This is needed since
   we treat BUF_MARKERS and markers's `next' field as weak pointers.  */
static void
unchain_dead_markers (struct buffer *buffer)
{
  struct Lisp_Marker *this, **prev = &BUF_MARKERS (buffer);

  while ((this = *prev))
    if (vectorlike_marked_p (&this->header))
      prev = &this->next;
    else
      {
        this->buffer = NULL;
        *prev = this->next;
      }
}

NO_INLINE /* For better stack traces */
static void
sweep_buffers (void)
{
  Lisp_Object tail, buf;

  gcstat.total_buffers = 0;
  FOR_EACH_LIVE_BUFFER (tail, buf)
    {
      struct buffer *buffer = XBUFFER (buf);
      /* Do not use buffer_(set|get)_intervals here.  */
      buffer->text->intervals = balance_intervals (buffer->text->intervals);
      unchain_dead_markers (buffer);
      gcstat.total_buffers++;
    }
}

/* Sweep: find all structures not marked, and free them.  */
static void
gc_sweep (void)
{
  sweep_strings ();
  check_string_bytes (!noninteractive);
  sweep_conses ();
  sweep_floats ();
  sweep_intervals ();
  sweep_symbols ();
  sweep_buffers ();
  sweep_vectors ();
  pdumper_clear_marks ();
  check_string_bytes (!noninteractive);
}

DEFUN ("memory-info", Fmemory_info, Smemory_info, 0, 0, 0,
       doc: /* Return a list of (TOTAL-RAM FREE-RAM TOTAL-SWAP FREE-SWAP).
All values are in Kbytes.  If there is no swap space,
last two values are zero.  If the system is not supported
or memory information can't be obtained, return nil.  */)
  (void)
{
#if defined HAVE_LINUX_SYSINFO
  struct sysinfo si;
  uintmax_t units;

  if (sysinfo (&si))
    return Qnil;
#ifdef LINUX_SYSINFO_UNIT
  units = si.mem_unit;
#else
  units = 1;
#endif
  return list4i ((uintmax_t) si.totalram * units / 1024,
		 (uintmax_t) si.freeram * units / 1024,
		 (uintmax_t) si.totalswap * units / 1024,
		 (uintmax_t) si.freeswap * units / 1024);
#elif defined WINDOWSNT
  unsigned long long totalram, freeram, totalswap, freeswap;

  if (w32_memory_info (&totalram, &freeram, &totalswap, &freeswap) == 0)
    return list4i ((uintmax_t) totalram / 1024,
		   (uintmax_t) freeram / 1024,
		   (uintmax_t) totalswap / 1024,
		   (uintmax_t) freeswap / 1024);
  else
    return Qnil;
#elif defined MSDOS
  unsigned long totalram, freeram, totalswap, freeswap;

  if (dos_memory_info (&totalram, &freeram, &totalswap, &freeswap) == 0)
    return list4i ((uintmax_t) totalram / 1024,
		   (uintmax_t) freeram / 1024,
		   (uintmax_t) totalswap / 1024,
		   (uintmax_t) freeswap / 1024);
  else
    return Qnil;
#else /* not HAVE_LINUX_SYSINFO, not WINDOWSNT, not MSDOS */
  /* FIXME: add more systems.  */
  return Qnil;
#endif /* HAVE_LINUX_SYSINFO, not WINDOWSNT, not MSDOS */
}

/* Debugging aids.  */

DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
       doc: /* Return a list of counters that measure how much consing there has been.
Each of these counters increments for a certain kind of object.
The counters wrap around from the largest positive integer to zero.
Garbage collection does not decrease them.
The elements of the value are as follows:
  (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS INTERVALS STRINGS)
All are in units of 1 = one object consed
except for VECTOR-CELLS and STRING-CHARS, which count the total length of
objects consed.
Frames, windows, buffers, and subprocesses count as vectors
  (but the contents of a buffer's text do not count here).  */)
  (void)
{
  return  list (make_int (cons_cells_consed),
		make_int (floats_consed),
		make_int (vector_cells_consed),
		make_int (symbols_consed),
		make_int (string_chars_consed),
		make_int (intervals_consed),
		make_int (strings_consed));
}

static bool
symbol_uses_obj (Lisp_Object symbol, Lisp_Object obj)
{
  struct Lisp_Symbol *sym = XSYMBOL (symbol);
  Lisp_Object val = find_symbol_value (symbol);
  return (EQ (val, obj)
	  || EQ (sym->u.s.function, obj)
	  || (!NILP (sym->u.s.function)
	      && COMPILEDP (sym->u.s.function)
	      && EQ (AREF (sym->u.s.function, COMPILED_BYTECODE), obj))
	  || (!NILP (val)
	      && COMPILEDP (val)
	      && EQ (AREF (val, COMPILED_BYTECODE), obj)));
}

/* Find at most FIND_MAX symbols which have OBJ as their value or
   function.  This is used in gdbinit's `xwhichsymbols' command.  */

Lisp_Object
which_symbols (Lisp_Object obj, EMACS_INT find_max)
{
   struct symbol_block *sblk;
   ptrdiff_t gc_count = inhibit_garbage_collection ();
   Lisp_Object found = Qnil;

   if (! deadp (obj))
     {
       for (int i = 0; i < ARRAYELTS (lispsym); i++)
	 {
	   Lisp_Object sym = builtin_lisp_symbol (i);
	   if (symbol_uses_obj (sym, obj))
	     {
	       found = Fcons (sym, found);
	       if (--find_max == 0)
		 goto out;
	     }
	 }

       for (sblk = symbol_block; sblk; sblk = sblk->next)
	 {
	   struct Lisp_Symbol *asym = sblk->symbols;
	   int bn;

	   for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, asym++)
	     {
	       if (sblk == symbol_block && bn >= symbol_block_index)
		 break;

	       Lisp_Object sym = make_lisp_symbol (asym);
	       if (symbol_uses_obj (sym, obj))
		 {
		   found = Fcons (sym, found);
		   if (--find_max == 0)
		     goto out;
		 }
	     }
	 }
     }

  out:
   return unbind_to (gc_count, found);
}

#ifdef SUSPICIOUS_OBJECT_CHECKING

static void *
find_suspicious_object_in_range (void *begin, void *end)
{
  char *begin_a = begin;
  char *end_a = end;
  int i;

  for (i = 0; i < ARRAYELTS (suspicious_objects); ++i)
    {
      char *suspicious_object = suspicious_objects[i];
      if (begin_a <= suspicious_object && suspicious_object < end_a)
	return suspicious_object;
    }

  return NULL;
}

static void
note_suspicious_free (void *ptr)
{
  struct suspicious_free_record *rec;

  rec = &suspicious_free_history[suspicious_free_history_index++];
  if (suspicious_free_history_index ==
      ARRAYELTS (suspicious_free_history))
    {
      suspicious_free_history_index = 0;
    }

  memset (rec, 0, sizeof (*rec));
  rec->suspicious_object = ptr;
  backtrace (&rec->backtrace[0], ARRAYELTS (rec->backtrace));
}

static void
detect_suspicious_free (void *ptr)
{
  int i;

  eassert (ptr != NULL);

  for (i = 0; i < ARRAYELTS (suspicious_objects); ++i)
    if (suspicious_objects[i] == ptr)
      {
        note_suspicious_free (ptr);
        suspicious_objects[i] = NULL;
      }
}

#endif /* SUSPICIOUS_OBJECT_CHECKING */

DEFUN ("suspicious-object", Fsuspicious_object, Ssuspicious_object, 1, 1, 0,
       doc: /* Return OBJ, maybe marking it for extra scrutiny.
If Emacs is compiled with suspicious object checking, capture
a stack trace when OBJ is freed in order to help track down
garbage collection bugs.  Otherwise, do nothing and return OBJ.   */)
   (Lisp_Object obj)
{
#ifdef SUSPICIOUS_OBJECT_CHECKING
  /* Right now, we care only about vectors.  */
  if (VECTORLIKEP (obj))
    {
      suspicious_objects[suspicious_object_index++] = XVECTOR (obj);
      if (suspicious_object_index == ARRAYELTS (suspicious_objects))
	suspicious_object_index = 0;
    }
#endif
  return obj;
}

#ifdef ENABLE_CHECKING

bool suppress_checking;

void
die (const char *msg, const char *file, int line)
{
  fprintf (stderr, "\r\n%s:%d: Emacs fatal error: assertion failed: %s\r\n",
	   file, line, msg);
  terminate_due_to_signal (SIGABRT, INT_MAX);
}

#endif /* ENABLE_CHECKING */

#if defined (ENABLE_CHECKING) && USE_STACK_LISP_OBJECTS

/* Stress alloca with inconveniently sized requests and check
   whether all allocated areas may be used for Lisp_Object.  */

NO_INLINE static void
verify_alloca (void)
{
  int i;
  enum { ALLOCA_CHECK_MAX = 256 };
  /* Start from size of the smallest Lisp object.  */
  for (i = sizeof (struct Lisp_Cons); i <= ALLOCA_CHECK_MAX; i++)
    {
      void *ptr = alloca (i);
      make_lisp_ptr (ptr, Lisp_Cons);
    }
}

#else /* not ENABLE_CHECKING && USE_STACK_LISP_OBJECTS */

#define verify_alloca() ((void) 0)

#endif /* ENABLE_CHECKING && USE_STACK_LISP_OBJECTS */

/* Initialization.  */

static void init_alloc_once_for_pdumper (void);

void
init_alloc_once (void)
{
  gc_cons_threshold = GC_DEFAULT_THRESHOLD;
  /* Even though Qt's contents are not set up, its address is known.  */
  Vpurify_flag = Qt;

  PDUMPER_REMEMBER_SCALAR (buffer_defaults.header);
  PDUMPER_REMEMBER_SCALAR (buffer_local_symbols.header);

  /* Call init_alloc_once_for_pdumper now so we run mem_init early.
     Keep in mind that when we reload from a dump, we'll run _only_
     init_alloc_once_for_pdumper and not init_alloc_once at all.  */
  pdumper_do_now_and_after_load (init_alloc_once_for_pdumper);

  verify_alloca ();

  init_strings ();
  init_vectors ();
}

static void
init_alloc_once_for_pdumper (void)
{
  purebeg = PUREBEG;
  pure_size = PURESIZE;
  mem_init ();

#ifdef DOUG_LEA_MALLOC
  mallopt (M_TRIM_THRESHOLD, 128 * 1024); /* Trim threshold.  */
  mallopt (M_MMAP_THRESHOLD, 64 * 1024);  /* Mmap threshold.  */
  mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);   /* Max. number of mmap'ed areas.  */
#endif


  init_finalizer_list (&finalizers);
  init_finalizer_list (&doomed_finalizers);
  refill_memory_reserve ();
}

void
init_alloc (void)
{
  Vgc_elapsed = make_float (0.0);
  gcs_done = 0;
}

void
syms_of_alloc (void)
{
  DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
	      doc: /* Number of bytes of consing between garbage collections.
Garbage collection can happen automatically once this many bytes have been
allocated since the last garbage collection.  All data types count.

Garbage collection happens automatically only when `eval' is called.

By binding this temporarily to a large number, you can effectively
prevent garbage collection during a part of the program.
See also `gc-cons-percentage'.  */);

  DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
	       doc: /* Portion of the heap used for allocation.
Garbage collection can happen automatically once this portion of the heap
has been allocated since the last garbage collection.
If this portion is smaller than `gc-cons-threshold', this is ignored.  */);
  Vgc_cons_percentage = make_float (0.1);

  DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
	      doc: /* Number of bytes of shareable Lisp data allocated so far.  */);

  DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
	      doc: /* Number of cons cells that have been consed so far.  */);

  DEFVAR_INT ("floats-consed", floats_consed,
	      doc: /* Number of floats that have been consed so far.  */);

  DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
	      doc: /* Number of vector cells that have been consed so far.  */);

  DEFVAR_INT ("symbols-consed", symbols_consed,
	      doc: /* Number of symbols that have been consed so far.  */);
  symbols_consed += ARRAYELTS (lispsym);

  DEFVAR_INT ("string-chars-consed", string_chars_consed,
	      doc: /* Number of string characters that have been consed so far.  */);

  DEFVAR_INT ("intervals-consed", intervals_consed,
	      doc: /* Number of intervals that have been consed so far.  */);

  DEFVAR_INT ("strings-consed", strings_consed,
	      doc: /* Number of strings that have been consed so far.  */);

  DEFVAR_LISP ("purify-flag", Vpurify_flag,
	       doc: /* Non-nil means loading Lisp code in order to dump an executable.
This means that certain objects should be allocated in shared (pure) space.
It can also be set to a hash-table, in which case this table is used to
do hash-consing of the objects allocated to pure space.  */);

  DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
	       doc: /* Non-nil means display messages at start and end of garbage collection.  */);
  garbage_collection_messages = 0;

  DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
	       doc: /* Hook run after garbage collection has finished.  */);
  Vpost_gc_hook = Qnil;
  DEFSYM (Qpost_gc_hook, "post-gc-hook");

  DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
	       doc: /* Precomputed `signal' argument for memory-full error.  */);
  /* We build this in advance because if we wait until we need it, we might
     not be able to allocate the memory to hold it.  */
  Vmemory_signal_data
    = pure_list (Qerror,
		 build_pure_c_string ("Memory exhausted--use"
				      " M-x save-some-buffers then"
				      " exit and restart Emacs"));

  DEFVAR_LISP ("memory-full", Vmemory_full,
	       doc: /* Non-nil means Emacs cannot get much more Lisp memory.  */);
  Vmemory_full = Qnil;

  DEFSYM (Qconses, "conses");
  DEFSYM (Qsymbols, "symbols");
  DEFSYM (Qstrings, "strings");
  DEFSYM (Qvectors, "vectors");
  DEFSYM (Qfloats, "floats");
  DEFSYM (Qintervals, "intervals");
  DEFSYM (Qbuffers, "buffers");
  DEFSYM (Qstring_bytes, "string-bytes");
  DEFSYM (Qvector_slots, "vector-slots");
  DEFSYM (Qheap, "heap");
  DEFSYM (QAutomatic_GC, "Automatic GC");

  DEFSYM (Qgc_cons_percentage, "gc-cons-percentage");
  DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
  DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");

  DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
	       doc: /* Accumulated time elapsed in garbage collections.
The time is in seconds as a floating point value.  */);
  DEFVAR_INT ("gcs-done", gcs_done,
              doc: /* Accumulated number of garbage collections done.  */);

  DEFVAR_INT ("integer-width", integer_width,
	      doc: /* Maximum number N of bits in safely-calculated integers.
Integers with absolute values less than 2**N do not signal a range error.
N should be nonnegative.  */);

  defsubr (&Scons);
  defsubr (&Slist);
  defsubr (&Svector);
  defsubr (&Srecord);
  defsubr (&Sbool_vector);
  defsubr (&Smake_byte_code);
  defsubr (&Smake_list);
  defsubr (&Smake_vector);
  defsubr (&Smake_record);
  defsubr (&Smake_string);
  defsubr (&Smake_bool_vector);
  defsubr (&Smake_symbol);
  defsubr (&Smake_marker);
  defsubr (&Smake_finalizer);
  defsubr (&Spurecopy);
  defsubr (&Sgarbage_collect);
  defsubr (&Smemory_info);
  defsubr (&Smemory_use_counts);
  defsubr (&Ssuspicious_object);

  Lisp_Object watcher;

  static union Aligned_Lisp_Subr Swatch_gc_cons_threshold =
     {{{ PSEUDOVECTOR_FLAG | (PVEC_SUBR << PSEUDOVECTOR_AREA_BITS) },
       { .a4 = watch_gc_cons_threshold },
       4, 4, "watch_gc_cons_threshold", 0, 0}};
  XSETSUBR (watcher, &Swatch_gc_cons_threshold.s);
  Fadd_variable_watcher (Qgc_cons_threshold, watcher);

  static union Aligned_Lisp_Subr Swatch_gc_cons_percentage =
     {{{ PSEUDOVECTOR_FLAG | (PVEC_SUBR << PSEUDOVECTOR_AREA_BITS) },
       { .a4 = watch_gc_cons_percentage },
       4, 4, "watch_gc_cons_percentage", 0, 0}};
  XSETSUBR (watcher, &Swatch_gc_cons_percentage.s);
  Fadd_variable_watcher (Qgc_cons_percentage, watcher);
}

#ifdef HAVE_X_WINDOWS
enum defined_HAVE_X_WINDOWS { defined_HAVE_X_WINDOWS = true };
#else
enum defined_HAVE_X_WINDOWS { defined_HAVE_X_WINDOWS = false };
#endif

/* When compiled with GCC, GDB might say "No enum type named
   pvec_type" if we don't have at least one symbol with that type, and
   then xbacktrace could fail.  Similarly for the other enums and
   their values.  Some non-GCC compilers don't like these constructs.  */
#ifdef __GNUC__
union
{
  enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
  enum char_table_specials char_table_specials;
  enum char_bits char_bits;
  enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
  enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
  enum Lisp_Bits Lisp_Bits;
  enum Lisp_Compiled Lisp_Compiled;
  enum maxargs maxargs;
  enum MAX_ALLOCA MAX_ALLOCA;
  enum More_Lisp_Bits More_Lisp_Bits;
  enum pvec_type pvec_type;
  enum defined_HAVE_X_WINDOWS defined_HAVE_X_WINDOWS;
} const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};
#endif	/* __GNUC__ */

debug log:

solving 4769a54e70 ...
found 4769a54e70 in https://yhetil.org/emacs/87zhaxjpea.fsf@yahoo.com/
found cc9ba8dbf5 in https://git.savannah.gnu.org/cgit/emacs.git
preparing index
index prepared:
100644 cc9ba8dbf50902dc39f20e6c2863ebcbc4e849dd	src/alloc.c

applying [1/1] https://yhetil.org/emacs/87zhaxjpea.fsf@yahoo.com/
diff --git a/src/alloc.c b/src/alloc.c
index cc9ba8dbf5..4769a54e70 100644

Checking patch src/alloc.c...
Applied patch src/alloc.c cleanly.

index at:
100644 4769a54e708a6c48351767d6098a39c1f3da77fb	src/alloc.c

(*) Git path names are given by the tree(s) the blob belongs to.
    Blobs themselves have no identifier aside from the hash of its contents.^

Code repositories for project(s) associated with this external index

	https://git.savannah.gnu.org/cgit/emacs.git
	https://git.savannah.gnu.org/cgit/emacs/org-mode.git

This is an external index of several public inboxes,
see mirroring instructions on how to clone and mirror
all data and code used by this external index.