1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
| | ;;; rx.el --- S-exp notation for regexps --*- lexical-binding: t -*-
;; Copyright (C) 2001-2019 Free Software Foundation, Inc.
;; This file is part of GNU Emacs.
;; GNU Emacs is free software: you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation, either version 3 of the License, or
;; (at your option) any later version.
;; GNU Emacs is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;; You should have received a copy of the GNU General Public License
;; along with GNU Emacs. If not, see <https://www.gnu.org/licenses/>.
;;; Commentary:
;; This facility allows writing regexps in a sexp-based language
;; instead of strings. Regexps in the `rx' notation are easier to
;; read, write and maintain; they can be indented and commented in a
;; natural way, and are easily composed by program code.
;; The translation to string regexp is done by a macro and does not
;; incur any extra processing during run time. Example:
;;
;; (rx bos (or (not (any "^"))
;; (seq "^" (or " *" "["))))
;;
;; => "\\`\\(?:[^^]\\|\\^\\(?: \\*\\|\\[\\)\\)"
;;
;; The notation is much influenced by and retains some compatibility with
;; Olin Shivers's SRE, with concessions to Emacs regexp peculiarities,
;; and the older Emacs package Sregex.
;;; Code:
;; The `rx--translate...' functions below return (REGEXP . PRECEDENCE),
;; where REGEXP is a list of string expressions that will be
;; concatenated into a regexp, and PRECEDENCE is one of
;;
;; t -- can be used as argument to postfix operators (eg. "a")
;; seq -- can be concatenated in sequence with other seq or higher (eg. "ab")
;; lseq -- can be concatenated to the left of rseq or higher (eg. "^a")
;; rseq -- can be concatenated to the right of lseq or higher (eg. "a$")
;; nil -- can only be used in alternatives (eg. "a\\|b")
;;
;; They form a lattice:
;;
;; t highest precedence
;; |
;; seq
;; / \
;; lseq rseq
;; \ /
;; nil lowest precedence
(defconst rx--char-classes
'((digit . digit)
(numeric . digit)
(num . digit)
(control . cntrl)
(cntrl . cntrl)
(hex-digit . xdigit)
(hex . xdigit)
(xdigit . xdigit)
(blank . blank)
(graphic . graph)
(graph . graph)
(printing . print)
(print . print)
(alphanumeric . alnum)
(alnum . alnum)
(letter . alpha)
(alphabetic . alpha)
(alpha . alpha)
(ascii . ascii)
(nonascii . nonascii)
(lower . lower)
(lower-case . lower)
(punctuation . punct)
(punct . punct)
(space . space)
(whitespace . space)
(white . space)
(upper . upper)
(upper-case . upper)
(word . word)
(wordchar . word)
(unibyte . unibyte)
(multibyte . multibyte))
"Alist mapping rx symbols to character classes.
Most of the names are from SRE.")
(defvar rx-constituents nil
"Alist of old-style rx extensions, for compatibility.
For new code, use `rx-define', `rx-let' or `rx-let-eval'.
Each element is (SYMBOL . DEF).
If DEF is a symbol, then SYMBOL is an alias of DEF.
If DEF is a string, then SYMBOL is a plain rx symbol defined as the
regexp string DEF.
If DEF is a list on the form (FUN MIN-ARGS MAX-ARGS PRED), then
SYMBOL is an rx form with at least MIN-ARGS and at most
MAX-ARGS arguments. If MAX-ARGS is nil, then there is no upper limit.
FUN is a function taking the entire rx form as single argument
and returning the translated regexp string.
If PRED is non-nil, it is a predicate that all actual arguments must
satisfy.")
(defvar rx--local-definitions nil
"Alist of dynamic local rx definitions.
Each entry is:
(NAME DEF) -- NAME is an rx symbol defined as the rx form DEF.
(NAME ARGS DEF) -- NAME is an rx form with arglist ARGS, defined
as the rx form DEF (which can contain members of ARGS).")
(defsubst rx--lookup-def (name)
(or (cdr (assq name rx--local-definitions))
(get name 'rx-definition)))
(defun rx--translate-symbol (sym)
"Translate an rx symbol. Return (REGEXP . PRECEDENCE)."
(pcase sym
;; Use `list' instead of a quoted list to wrap the strings here,
;; since the return value may be mutated.
((or 'nonl 'not-newline 'any) (cons (list ".") t))
((or 'anychar 'anything) (cons (list "[^z-a]") t))
('unmatchable (rx--empty))
((or 'bol 'line-start) (cons (list "^") 'lseq))
((or 'eol 'line-end) (cons (list "$") 'rseq))
((or 'bos 'string-start 'bot 'buffer-start) (cons (list "\\`") t))
((or 'eos 'string-end 'eot 'buffer-end) (cons (list "\\'") t))
('point (cons (list "\\=") t))
((or 'bow 'word-start) (cons (list "\\<") t))
((or 'eow 'word-end) (cons (list "\\>") t))
('word-boundary (cons (list "\\b") t))
('not-word-boundary (cons (list "\\B") t))
('symbol-start (cons (list "\\_<") t))
('symbol-end (cons (list "\\_>") t))
('not-wordchar (cons (list "\\W") t))
(_
(cond
((let ((class (cdr (assq sym rx--char-classes))))
(and class (cons (list (concat "[[:" (symbol-name class) ":]]")) t))))
((let ((definition (rx--lookup-def sym)))
(and definition
(if (cdr definition)
(error "Not an `rx' symbol definition: %s" sym)
(rx--translate (nth 0 definition))))))
;; For compatibility with old rx.
((let ((entry (assq sym rx-constituents)))
(and (progn
(while (and entry (not (stringp (cdr entry))))
(setq entry
(if (symbolp (cdr entry))
;; Alias for another entry.
(assq (cdr entry) rx-constituents)
;; Wrong type, try further down the list.
(assq (car entry)
(cdr (memq entry rx-constituents))))))
entry)
(cons (list (cdr entry)) nil))))
(t (error "Unknown rx symbol `%s'" sym))))))
(defun rx--enclose (left-str rexp right-str)
"Bracket REXP by LEFT-STR and RIGHT-STR."
(append (list left-str) rexp (list right-str)))
(defun rx--bracket (rexp)
(rx--enclose "\\(?:" rexp "\\)"))
(defun rx--sequence (left right)
"Return the sequence (concatenation) of two translated items,
each on the form (REGEXP . PRECEDENCE), returning (REGEXP . PRECEDENCE)."
;; Concatenation rules:
;; seq ++ seq -> seq
;; lseq ++ seq -> lseq
;; seq ++ rseq -> rseq
;; lseq ++ rseq -> nil
(cond ((not (car left)) right)
((not (car right)) left)
(t
(let ((l (if (memq (cdr left) '(nil rseq))
(cons (rx--bracket (car left)) t)
left))
(r (if (memq (cdr right) '(nil lseq))
(cons (rx--bracket (car right)) t)
right)))
(cons (append (car l) (car r))
(if (eq (cdr l) 'lseq)
(if (eq (cdr r) 'rseq)
nil ; lseq ++ rseq
'lseq) ; lseq ++ seq
(if (eq (cdr r) 'rseq)
'rseq ; seq ++ rseq
'seq))))))) ; seq ++ seq
(defun rx--translate-seq (body)
"Translate a sequence of one or more rx items. Return (REGEXP . PRECEDENCE)."
(if body
(let* ((items (mapcar #'rx--translate body))
(result (car items)))
(dolist (item (cdr items))
(setq result (rx--sequence result item)))
result)
(cons nil 'seq)))
(defun rx--empty ()
"Regexp that never matches anything."
(cons (list regexp-unmatchable) 'seq))
;; `cl-every' replacement to avoid bootstrapping problems.
(defun rx--every (pred list)
"Whether PRED is true for every element of LIST."
(while (and list (funcall pred (car list)))
(setq list (cdr list)))
(null list))
(defun rx--translate-or (body unordered)
"Translate an or-pattern of one of more rx items.
If UNORDERED, then matching order is unspecified.
Return (REGEXP . PRECEDENCE)."
;; FIXME: Possible improvements:
;;
;; - Turn single characters to strings: (or ?a ?b) -> (or "a" "b"),
;; so that they can be candidates for regexp-opt.
;;
;; - Translate compile-time strings (`eval' forms), again for regexp-opt.
;;
;; - Flatten sub-patterns first: (or (or A B) (or C D)) -> (or A B C D)
;; in order to improve effectiveness of regexp-opt.
;; This would also help composability.
;;
;; - Use associativity to run regexp-opt on contiguous subsets of arguments
;; if not all of them are strings. Example:
;; (or (+ digit) "CHARLIE" "CHAN" (+ blank))
;; -> (or (+ digit) (or "CHARLIE" "CHAN") (+ blank))
;;
;; - Fuse patterns into a single character alternative if they fit.
;; regexp-opt will do that if all are strings, but we want to do that for:
;; * symbols that expand to classes: space, alpha, ...
;; * character alternatives: (any ...)
;; * (syntax S), for some S (whitespace, word)
;; so that (or "@" "%" digit (any "A-Z" space) (syntax word))
;; -> (any "@" "%" digit "A-Z" space word)
;; -> "[A-Z@%[:digit:][:space:][:word:]]"
;;
;; Problem: If a subpattern is carefully written to to be
;; optimisable by regexp-opt, how do we prevent the transforms
;; above from destroying that property?
;; Example: (or "a" (or "abc" "abd" "abe"))
(cond
((null body) ; No items: a never-matching regexp.
(rx--empty))
((null (cdr body)) ; Single item.
(rx--translate (car body)))
((rx--every #'stringp body) ; All strings.
(cons (list (regexp-opt body nil (not unordered)))
t))
(t
(cons (append (car (rx--translate (car body)))
(mapcan (lambda (item)
(cons "\\|" (car (rx--translate item))))
(cdr body)))
nil))))
(defun rx--string-to-intervals (str)
"Decode STR as intervals: A-Z becomes (?A . ?Z), and the single
character X becomes (?X . ?X). Return the intervals in a list."
;; We could just do string-to-multibyte on the string and work with
;; that instead of this `decode-char' workaround.
(let ((decode-char
(if (multibyte-string-p str)
#'identity
#'unibyte-char-to-multibyte))
(len (length str))
(i 0)
(intervals nil))
(while (< i len)
(cond ((and (< i (- len 2))
(= (aref str (1+ i)) ?-))
;; Range.
(let ((start (funcall decode-char (aref str i)))
(end (funcall decode-char (aref str (+ i 2)))))
(cond ((and (<= start #x7f) (>= end #x3fff80))
;; Ranges between ASCII and raw bytes are split to
;; avoid having them absorb Unicode characters
;; caught in-between.
(push (cons start #x7f) intervals)
(push (cons #x3fff80 end) intervals))
((<= start end)
(push (cons start end) intervals))
(t
(error "Invalid rx `any' range: %s"
(substring str i 3))))
(setq i (+ i 3))))
(t
;; Single character.
(let ((char (funcall decode-char (aref str i))))
(push (cons char char) intervals))
(setq i (+ i 1)))))
intervals))
(defun rx--condense-intervals (intervals)
"Merge adjacent and overlapping intervals by mutation, preserving the order.
INTERVALS is a list of (START . END) with START ≤ END, sorted by START."
(let ((tail intervals)
d)
(while (setq d (cdr tail))
(if (>= (cdar tail) (1- (caar d)))
(progn
(setcdr (car tail) (max (cdar tail) (cdar d)))
(setcdr tail (cdr d)))
(setq tail d)))
intervals))
;; FIXME: Consider expanding definitions inside (any ...) and (not ...),
;; and perhaps allow (any ...) inside (any ...).
;; It would be benefit composability (build a character alternative by pieces)
;; and be handy for obtaining the complement of a defined set of
;; characters. (See, for example, python.el:421, `not-simple-operator'.)
;; (Expansion in other non-rx positions is probably not a good idea:
;; syntax, category, backref, and the integer parameters of group-n,
;; =, >=, **, repeat)
;; Similar effect could be attained by ensuring that
;; (or (any X) (any Y)) -> (any X Y), and find a way to compose negative
;; sets. `and' is taken, but we could add
;; (intersection (not (any X)) (not (any Y))) -> (not (any X Y)).
(defun rx--translate-any (negated body)
"Translate an (any ...) construct. Return (REGEXP . PRECEDENCE).
If NEGATED, negate the sense."
(let ((classes nil)
(strings nil)
(conses nil))
;; Collect strings, conses and characters, and classes in separate bins.
(dolist (arg body)
(cond ((stringp arg)
(push arg strings))
((and (consp arg)
(characterp (car arg))
(characterp (cdr arg))
(<= (car arg) (cdr arg)))
;; Copy the cons, in case we need to modify it.
(push (cons (car arg) (cdr arg)) conses))
((characterp arg)
(push (cons arg arg) conses))
((and (symbolp arg)
(let ((class (cdr (assq arg rx--char-classes))))
(and class (push class classes)))))
(t (error "Invalid rx `any' argument: %s" arg))))
(let ((items
;; Translate strings and conses into nonoverlapping intervals,
;; and add classes as symbols at the end.
(append
(rx--condense-intervals
(sort (append conses
(mapcan #'rx--string-to-intervals strings))
#'car-less-than-car))
(reverse classes))))
;; Move lone ] and range ]-x to the start.
(let ((rbrac-l (assq ?\] items)))
(when rbrac-l
(setq items (cons rbrac-l (delq rbrac-l items)))))
;; Split x-] and move the lone ] to the start.
(let ((rbrac-r (rassq ?\] items)))
(when (and rbrac-r (not (eq (car rbrac-r) ?\])))
(setcdr rbrac-r ?\\)
(setq items (cons '(?\] . ?\]) items))))
;; Split ,-- (which would end up as ,- otherwise).
(let ((dash-r (rassq ?- items)))
(when (eq (car dash-r) ?,)
(setcdr dash-r ?,)
(setq items (nconc items '((?- . ?-))))))
;; Remove - (lone or at start of interval)
(let ((dash-l (assq ?- items)))
(when dash-l
(if (eq (cdr dash-l) ?-)
(setq items (delq dash-l items)) ; Remove lone -
(setcar dash-l ?.)) ; Reduce --x to .-x
(setq items (nconc items '((?- . ?-))))))
;; Deal with leading ^ and range ^-x.
(when (and (consp (car items))
(eq (caar items) ?^)
(cdr items))
;; Move ^ and ^-x to second place.
(setq items (cons (cadr items)
(cons (car items) (cddr items)))))
(cond
;; Empty set: if negated, any char, otherwise match-nothing.
((null items)
(if negated
(rx--translate-symbol 'anything)
(rx--empty)))
;; Single non-negated character.
((and (null (cdr items))
(consp (car items))
(eq (caar items) (cdar items))
(not negated))
(cons (list (regexp-quote (char-to-string (caar items))))
t))
;; At least one character or class, possibly negated.
(t
(cons
(list
(concat
"["
(and negated "^")
(mapconcat (lambda (item)
(cond ((symbolp item)
(format "[:%s:]" item))
((eq (car item) (cdr item))
(char-to-string (car item)))
((eq (1+ (car item)) (cdr item))
(string (car item) (cdr item)))
(t
(string (car item) ?- (cdr item)))))
items nil)
"]"))
t))))))
(defun rx--translate-not (negated body)
"Translate a (not ...) construct. Return (REGEXP . PRECEDENCE).
If NEGATED, negate the sense (thus making it positive)."
(unless (and body (null (cdr body)))
(error "rx `not' form takes exactly one argument"))
(let ((arg (car body)))
(cond
((consp arg)
(pcase (car arg)
((or 'any 'in 'char) (rx--translate-any (not negated) (cdr arg)))
('syntax (rx--translate-syntax (not negated) (cdr arg)))
('category (rx--translate-category (not negated) (cdr arg)))
('not (rx--translate-not (not negated) (cdr arg)))
(_ (error "Illegal argument to rx `not': %S" arg))))
((eq arg 'word-boundary)
(rx--translate-symbol
(if negated 'word-boundary 'not-word-boundary)))
(t
(let ((class (cdr (assq arg rx--char-classes))))
(if class
(rx--translate-any (not negated) (list class))
(error "Illegal argument to rx `not': %s" arg)))))))
(defun rx--atomic-regexp (item)
"ITEM is (REGEXP . PRECEDENCE); return a regexp of precedence t."
(if (eq (cdr item) t)
(car item)
(rx--bracket (car item))))
(defun rx--translate-counted-repetition (min-count max-count body)
(let ((operand (rx--translate-seq body)))
(if (car operand)
(cons (append
(rx--atomic-regexp operand)
(list (concat "\\{"
(number-to-string min-count)
(cond ((null max-count) ",")
((< min-count max-count)
(concat "," (number-to-string max-count))))
"\\}")))
t)
operand)))
(defun rx--check-repeat-arg (name min-args body)
(unless (>= (length body) min-args)
(error "rx `%s' requires at least %d argument%s"
name min-args (if (= min-args 1) "" "s")))
;; There seems to be no reason to disallow zero counts.
(unless (natnump (car body))
(error "rx `%s' first argument must be nonnegative" name)))
(defun rx--translate-bounded-repetition (name body)
(let ((min-count (car body))
(max-count (cadr body))
(items (cddr body)))
(unless (and (natnump min-count)
(natnump max-count)
(<= min-count max-count))
(error "rx `%s' range error" name))
(rx--translate-counted-repetition min-count max-count items)))
(defun rx--translate-repeat (body)
(rx--check-repeat-arg 'repeat 2 body)
(if (= (length body) 2)
(rx--translate-counted-repetition (car body) (car body) (cdr body))
(rx--translate-bounded-repetition 'repeat body)))
(defun rx--translate-** (body)
(rx--check-repeat-arg '** 2 body)
(rx--translate-bounded-repetition '** body))
(defun rx--translate->= (body)
(rx--check-repeat-arg '>= 1 body)
(rx--translate-counted-repetition (car body) nil (cdr body)))
(defun rx--translate-= (body)
(rx--check-repeat-arg '= 1 body)
(rx--translate-counted-repetition (car body) (car body) (cdr body)))
(defvar rx--greedy t)
(defun rx--translate-rep (op-string greedy body)
"Translate a repetition; OP-STRING is one of \"*\", \"+\" or \"?\".
GREEDY is a boolean. Return (REGEXP . PRECEDENCE)."
(let ((operand (rx--translate-seq body)))
(if (car operand)
(cons (append (rx--atomic-regexp operand)
(list (concat op-string (unless greedy "?"))))
;; The result has precedence seq to avoid (? (* "a")) -> "a*?"
'seq)
operand)))
(defun rx--control-greedy (greedy body)
"Translate the sequence BODY with greediness GREEDY.
Return (REGEXP . PRECEDENCE)."
(let ((rx--greedy greedy))
(rx--translate-seq body)))
(defun rx--translate-group (body)
"Translate the `group' form. Return (REGEXP . PRECEDENCE)."
(cons (rx--enclose "\\("
(car (rx--translate-seq body))
"\\)")
t))
(defun rx--translate-group-n (body)
"Translate the `group-n' form. Return (REGEXP . PRECEDENCE)."
(unless (and (integerp (car body)) (> (car body) 0))
(error "rx `group-n' requires a positive number as first argument"))
(cons (rx--enclose (concat "\\(?" (number-to-string (car body)) ":")
(car (rx--translate-seq (cdr body)))
"\\)")
t))
(defun rx--translate-backref (body)
"Translate the `backref' form. Return (REGEXP . PRECEDENCE)."
(unless (and (= (length body) 1) (integerp (car body)) (<= 1 (car body) 9))
(error "rx `backref' requires an argument in the range 1..9"))
(cons (list "\\" (number-to-string (car body))) t))
(defconst rx--syntax-codes
'((whitespace . ?-) ; SPC also accepted
(punctuation . ?.)
(word . ?w) ; W also accepted
(symbol . ?_)
(open-parenthesis . ?\()
(close-parenthesis . ?\))
(expression-prefix . ?\')
(string-quote . ?\")
(paired-delimiter . ?$)
(escape . ?\\)
(character-quote . ?/)
(comment-start . ?<)
(comment-end . ?>)
(string-delimiter . ?|)
(comment-delimiter . ?!)))
(defun rx--translate-syntax (negated body)
"Translate the `syntax' form. Return (REGEXP . PRECEDENCE)."
(unless (and body (null (cdr body)))
(error "rx `syntax' form takes exactly one argument"))
(let* ((sym (car body))
(syntax (cdr (assq sym rx--syntax-codes))))
(unless syntax
(cond
;; Syntax character directly (sregex compatibility)
((and (characterp sym) (rassq sym rx--syntax-codes))
(setq syntax sym))
;; Syntax character as symbol (sregex compatibility)
((symbolp sym)
(let ((name (symbol-name sym)))
(when (= (length name) 1)
(let ((char (string-to-char name)))
(when (rassq char rx--syntax-codes)
(setq syntax char)))))))
(unless syntax
(error "Unknown rx syntax name `%s'" sym)))
(cons (list (string ?\\ (if negated ?S ?s) syntax))
t)))
(defconst rx--categories
'((space-for-indent . ?\s)
(base . ?.)
(consonant . ?0)
(base-vowel . ?1)
(upper-diacritical-mark . ?2)
(lower-diacritical-mark . ?3)
(tone-mark . ?4)
(symbol . ?5)
(digit . ?6)
(vowel-modifying-diacritical-mark . ?7)
(vowel-sign . ?8)
(semivowel-lower . ?9)
(not-at-end-of-line . ?<)
(not-at-beginning-of-line . ?>)
(alpha-numeric-two-byte . ?A)
(chinese-two-byte . ?C)
(chinse-two-byte . ?C) ; A typo in Emacs 21.1-24.3.
(greek-two-byte . ?G)
(japanese-hiragana-two-byte . ?H)
(indian-two-byte . ?I)
(japanese-katakana-two-byte . ?K)
(strong-left-to-right . ?L)
(korean-hangul-two-byte . ?N)
(strong-right-to-left . ?R)
(cyrillic-two-byte . ?Y)
(combining-diacritic . ?^)
(ascii . ?a)
(arabic . ?b)
(chinese . ?c)
(ethiopic . ?e)
(greek . ?g)
(korean . ?h)
(indian . ?i)
(japanese . ?j)
(japanese-katakana . ?k)
(latin . ?l)
(lao . ?o)
(tibetan . ?q)
(japanese-roman . ?r)
(thai . ?t)
(vietnamese . ?v)
(hebrew . ?w)
(cyrillic . ?y)
(can-break . ?|)))
(defun rx--translate-category (negated body)
"Translate the `category' form. Return (REGEXP . PRECEDENCE)."
(unless (and body (null (cdr body)))
(error "rx `category' form takes exactly one argument"))
(let* ((arg (car body))
(category
(cond ((symbolp arg)
(let ((cat (assq arg rx--categories)))
(unless cat
(error "Unknown rx category `%s'" arg))
(cdr cat)))
((characterp arg) arg)
(t (error "Invalid rx `category' argument `%s'" arg)))))
(cons (list (string ?\\ (if negated ?C ?c) category))
t)))
(defvar rx--delayed-evaluation nil
"Whether to allow certain forms to be evaluated at runtime.")
(defun rx--translate-literal (body)
"Translate the `literal' form. Return (REGEXP . PRECEDENCE)."
(unless (and body (null (cdr body)))
(error "rx `literal' form takes exactly one argument"))
(let ((arg (car body)))
(cond ((stringp arg)
(cons (list (regexp-quote arg)) (if (= (length arg) 1) t 'seq)))
(rx--delayed-evaluation
(cons (list (list 'regexp-quote arg)) 'seq))
(t (error "rx `literal' form with non-string argument")))))
(defun rx--translate-eval (body)
"Translate the `eval' form. Return (REGEXP . PRECEDENCE)."
(unless (and body (null (cdr body)))
(error "rx `eval' form takes exactly one argument"))
(rx--translate (eval (car body))))
(defvar rx--regexp-atomic-regexp nil)
(defun rx--translate-regexp (body)
"Translate the `regexp' form. Return (REGEXP . PRECEDENCE)."
(unless (and body (null (cdr body)))
(error "rx `regexp' form takes exactly one argument"))
(let ((arg (car body)))
(cond ((stringp arg)
;; Generate the regexp when needed, since rx isn't
;; necessarily present in the byte-compilation environment.
(unless rx--regexp-atomic-regexp
(setq rx--regexp-atomic-regexp
;; Match atomic (precedence t) regexps: may give
;; false negatives but no false positives, assuming
;; the target string is syntactically correct.
(rx-to-string
'(seq
bos
(or (seq "["
(opt "^")
(opt "]")
(* (or (seq "[:" (+ (any "a-z")) ":]")
(not (any "]"))))
"]")
anything
(seq "\\"
(or anything
(seq (any "sScC_") anything)
(seq "("
(* (or (not (any "\\"))
(seq "\\" (not (any ")")))))
"\\)"))))
eos)
t)))
(cons (list arg)
(if (string-match-p rx--regexp-atomic-regexp arg) t nil)))
(rx--delayed-evaluation
(cons (list arg) nil))
(t (error "rx `regexp' form with non-string argument")))))
(defun rx--translate-compat-form (def form)
"Translate a compatibility form from `rx-constituents'.
DEF is the definition tuple. Return (REGEXP . PRECEDENCE)."
(let* ((fn (nth 0 def))
(min-args (nth 1 def))
(max-args (nth 2 def))
(predicate (nth 3 def))
(nargs (1- (length form))))
(when (< nargs min-args)
(error "The `%s' form takes at least %d argument(s)"
(car form) min-args))
(when (and max-args (> nargs max-args))
(error "The `%s' form takes at most %d argument(s)"
(car form) max-args))
(when (and predicate (not (rx--every predicate (cdr form))))
(error "The `%s' form requires arguments satisfying `%s'"
(car form) predicate))
(let ((regexp (funcall fn form)))
(unless (stringp regexp)
(error "The `%s' form did not expand to a string" (car form)))
(cons (list regexp) nil))))
(defun rx--substitute (bindings form)
"Substitute BINDINGS in FORM. BINDINGS is an alist of (NAME . VALUES)
where VALUES is a list to splice into FORM wherever NAME occurs.
Return the substitution result wrapped in a list, since a single value
can expand to any number of values."
(cond ((symbolp form)
(let ((binding (assq form bindings)))
(if binding
(cdr binding)
(list form))))
((consp form)
(if (listp (cdr form))
;; Proper list. We substitute variables even in the head
;; position -- who knows, might be handy one day.
(list (mapcan (lambda (x) (copy-sequence
(rx--substitute bindings x)))
form))
;; Cons pair (presumably an interval).
(let ((first (rx--substitute bindings (car form)))
(second (rx--substitute bindings (cdr form))))
(if (and first (not (cdr first))
second (not (cdr second)))
(list (cons (car first) (car second)))
(error
"Cannot substitute a &rest parameter into a dotted pair")))))
(t (list form))))
;; FIXME: Consider adding extensions in Lisp macro style, where
;; arguments are passed unevaluated to code that returns the rx form
;; to use. Example:
;;
;; (rx-let ((radix-digit (radix)
;; :lisp (list 'any (cons ?0 (+ ?0 (eval radix) -1)))))
;; (rx (radix-digit (+ 5 3))))
;; =>
;; "[0-7]"
;;
;; While this would permit more powerful extensions, it's unclear just
;; how often they would be used in practice. Let's wait until there is
;; demand for it.
;; FIXME: An alternative binding syntax would be
;;
;; (NAME RXs...)
;; and
;; ((NAME ARGS...) RXs...)
;;
;; which would have two minor advantages: multiple RXs with implicit
;; `seq' in the definition, and the arglist is no longer an optional
;; element in the middle of the list. On the other hand, it's less
;; like traditional lisp arglist constructs (defun, defmacro).
;; Since it's a Scheme-like syntax, &rest parameters could be done using
;; dotted lists:
;; (rx-let (((name arg1 arg2 . rest) ...definition...)) ...)
(defun rx--expand-template (op values arglist template)
"Return TEMPLATE with variables in ARGLIST replaced with VALUES."
(let ((bindings nil)
(value-tail values)
(formals arglist))
(while formals
(pcase (car formals)
('&rest
(unless (cdr formals)
(error
"Expanding rx def `%s': missing &rest parameter name" op))
(push (cons (cadr formals) value-tail) bindings)
(setq formals nil)
(setq value-tail nil))
(name
(unless value-tail
(error
"Expanding rx def `%s': too few arguments (got %d, need %s%d)"
op (length values)
(if (memq '&rest arglist) "at least " "")
(- (length arglist) (length (memq '&rest arglist)))))
(push (cons name (list (car value-tail))) bindings)
(setq value-tail (cdr value-tail))))
(setq formals (cdr formals)))
(when value-tail
(error
"Expanding rx def `%s': too many arguments (got %d, need %d)"
op (length values) (length arglist)))
(let ((subst (rx--substitute bindings template)))
(if (and subst (not (cdr subst)))
(car subst)
(error "Expanding rx def `%s': must result in a single value" op)))))
(defun rx--translate-form (form)
"Translate an rx form (list structure). Return (REGEXP . PRECEDENCE)."
(let ((body (cdr form)))
(pcase (car form)
((or 'seq : 'and 'sequence) (rx--translate-seq body))
((or 'or '|) (rx--translate-or body nil))
((or 'unordered-or) (rx--translate-or body t))
((or 'any 'in 'char) (rx--translate-any nil body))
('not-char (rx--translate-any t body))
('not (rx--translate-not nil body))
('repeat (rx--translate-repeat body))
('= (rx--translate-= body))
('>= (rx--translate->= body))
('** (rx--translate-** body))
((or 'zero-or-more '0+) (rx--translate-rep "*" rx--greedy body))
((or 'one-or-more '1+) (rx--translate-rep "+" rx--greedy body))
((or 'zero-or-one 'opt 'optional) (rx--translate-rep "?" rx--greedy body))
('* (rx--translate-rep "*" t body))
('+ (rx--translate-rep "+" t body))
((or '\? ?\s) (rx--translate-rep "?" t body))
('*? (rx--translate-rep "*" nil body))
('+? (rx--translate-rep "+" nil body))
((or '\?? ??) (rx--translate-rep "?" nil body))
('minimal-match (rx--control-greedy nil body))
('maximal-match (rx--control-greedy t body))
((or 'group 'submatch) (rx--translate-group body))
((or 'group-n 'submatch-n) (rx--translate-group-n body))
('backref (rx--translate-backref body))
('syntax (rx--translate-syntax nil body))
('not-syntax (rx--translate-syntax t body))
('category (rx--translate-category nil body))
('literal (rx--translate-literal body))
('eval (rx--translate-eval body))
((or 'regexp 'regex) (rx--translate-regexp body))
(op
(unless (symbolp op)
(error "Bad rx operator `%S'" op))
(let ((definition (rx--lookup-def op)))
(if definition
(if (cdr definition)
(rx--translate
(rx--expand-template
op body (nth 0 definition) (nth 1 definition)))
(error "Not an `rx' form definition: %s" op))
;; For compatibility with old rx.
(let ((entry (assq op rx-constituents)))
(if (progn
(while (and entry (not (consp (cdr entry))))
(setq entry
(if (symbolp (cdr entry))
;; Alias for another entry.
(assq (cdr entry) rx-constituents)
;; Wrong type, try further down the list.
(assq (car entry)
(cdr (memq entry rx-constituents))))))
entry)
(rx--translate-compat-form (cdr entry) form)
(error "Unknown rx form `%s'" op)))))))))
(defconst rx--builtin-forms
'(seq sequence : and or | unordered-or any in char not-char not
repeat = >= **
zero-or-more 0+ *
one-or-more 1+ +
zero-or-one opt optional \?
*? +? \??
minimal-match maximal-match
group submatch group-n submatch-n backref
syntax not-syntax category
literal eval regexp regex)
"List of built-in rx function-like symbols.")
(defconst rx--builtin-symbols
(append '(nonl not-newline any anychar anything unmatchable
bol eol line-start line-end
bos eos string-start string-end
bow eow word-start word-end
symbol-start symbol-end
point word-boundary not-word-boundary not-wordchar)
(mapcar #'car rx--char-classes))
"List of built-in rx variable-like symbols.")
(defconst rx--builtin-names
(append rx--builtin-forms rx--builtin-symbols)
"List of built-in rx names. These cannot be redefined by the user.")
(defun rx--translate (item)
"Translate the rx-expression ITEM. Return (REGEXP . PRECEDENCE)."
(cond
((stringp item)
(if (= (length item) 0)
(cons nil 'seq)
(cons (list (regexp-quote item)) (if (= (length item) 1) t 'seq))))
((characterp item)
(cons (list (regexp-quote (char-to-string item))) t))
((symbolp item)
(rx--translate-symbol item))
((consp item)
(rx--translate-form item))
(t (error "Bad rx expression: %S" item))))
;;;###autoload
(defun rx-to-string (form &optional no-group)
"Translate FORM from `rx' sexp syntax into a string regexp.
The arguments to `literal' and `regexp' forms inside FORM must be
constant strings.
If NO-GROUP is non-nil, don't bracket the result in a non-capturing
group.
For extending the `rx' notation in FORM, use `rx-define' or `rx-let-eval'."
(let* ((item (rx--translate form))
(exprs (if no-group
(car item)
(rx--atomic-regexp item))))
(apply #'concat exprs)))
(defun rx--to-expr (form)
"Translate the rx-expression FORM to a Lisp expression yielding a regexp."
(let* ((rx--delayed-evaluation t)
(elems (car (rx--translate form)))
(args nil))
;; Merge adjacent strings.
(while elems
(let ((strings nil))
(while (and elems (stringp (car elems)))
(push (car elems) strings)
(setq elems (cdr elems)))
(let ((s (apply #'concat (nreverse strings))))
(unless (zerop (length s))
(push s args))))
(when elems
(push (car elems) args)
(setq elems (cdr elems))))
(cond ((null args) "") ; 0 args
((cdr args) (cons 'concat (nreverse args))) ; ≥2 args
(t (car args))))) ; 1 arg
;;;###autoload
(defmacro rx (&rest regexps)
"Translate regular expressions REGEXPS in sexp form to a regexp string.
Each argument is one of the forms below; RX is a subform, and RX... stands
for one or more RXs. For details, see Info node `(elisp) Rx Notation'.
See `rx-to-string' for the corresponding function.
STRING Match a literal string.
CHAR Match a literal character.
(seq RX...) Match the RXs in sequence. Alias: :, sequence, and.
(or RX...) Match one of the RXs. Alias: |.
(unordered-or RX...) Match one of the RXs, in unspecified order.
(zero-or-more RX...) Match RXs zero or more times. Alias: 0+.
(one-or-more RX...) Match RXs one or more times. Alias: 1+.
(zero-or-one RX...) Match RXs or the empty string. Alias: opt, optional.
(* RX...) Match RXs zero or more times; greedy.
(+ RX...) Match RXs one or more times; greedy.
(? RX...) Match RXs or the empty string; greedy.
(*? RX...) Match RXs zero or more times; non-greedy.
(+? RX...) Match RXs one or more times; non-greedy.
(?? RX...) Match RXs or the empty string; non-greedy.
(= N RX...) Match RXs exactly N times.
(>= N RX...) Match RXs N or more times.
(** N M RX...) Match RXs N to M times. Alias: repeat.
(minimal-match RX) Match RX, with zero-or-more, one-or-more, zero-or-one
and aliases using non-greedy matching.
(maximal-match RX) Match RX, with zero-or-more, one-or-more, zero-or-one
and aliases using greedy matching, which is the default.
(any SET...) Match a character from one of the SETs. Each SET is a
character, a string, a range as string \"A-Z\" or cons
(?A . ?Z), or a character class (see below). Alias: in, char.
(not CHARSPEC) Match one character not matched by CHARSPEC. CHARSPEC
can be (any ...), (syntax ...), (category ...),
or a character class.
not-newline Match any character except a newline. Alias: nonl.
anychar Match any character. Alias: anything.
unmatchable Never match anything at all.
CHARCLASS Match a character from a character class. One of:
alpha, alphabetic, letter Alphabetic characters (defined by Unicode).
alnum, alphanumeric Alphabetic or decimal digit chars (Unicode).
digit numeric, num 0-9.
xdigit, hex-digit, hex 0-9, A-F, a-f.
cntrl, control ASCII codes 0-31.
blank Horizontal whitespace (Unicode).
space, whitespace, white Chars with whitespace syntax.
lower, lower-case Lower-case chars, from current case table.
upper, upper-case Upper-case chars, from current case table.
graph, graphic Graphic characters (Unicode).
print, printing Whitespace or graphic (Unicode).
punct, punctuation Not control, space, letter or digit (ASCII);
not word syntax (non-ASCII).
word, wordchar Characters with word syntax.
ascii ASCII characters (codes 0-127).
nonascii Non-ASCII characters (but not raw bytes).
(syntax SYNTAX) Match a character with syntax SYNTAX, being one of:
whitespace, punctuation, word, symbol, open-parenthesis,
close-parenthesis, expression-prefix, string-quote,
paired-delimiter, escape, character-quote, comment-start,
comment-end, string-delimiter, comment-delimiter
(category CAT) Match a character in category CAT, being one of:
space-for-indent, base, consonant, base-vowel,
upper-diacritical-mark, lower-diacritical-mark, tone-mark, symbol,
digit, vowel-modifying-diacritical-mark, vowel-sign,
semivowel-lower, not-at-end-of-line, not-at-beginning-of-line,
alpha-numeric-two-byte, chinese-two-byte, greek-two-byte,
japanese-hiragana-two-byte, indian-two-byte,
japanese-katakana-two-byte, strong-left-to-right,
korean-hangul-two-byte, strong-right-to-left, cyrillic-two-byte,
combining-diacritic, ascii, arabic, chinese, ethiopic, greek,
korean, indian, japanese, japanese-katakana, latin, lao,
tibetan, japanese-roman, thai, vietnamese, hebrew, cyrillic,
can-break
Zero-width assertions: these all match the empty string in specific places.
line-start At the beginning of a line. Alias: bol.
line-end At the end of a line. Alias: eol.
string-start At the start of the string or buffer.
Alias: buffer-start, bos, bot.
string-end At the end of the string or buffer.
Alias: buffer-end, eos, eot.
point At point.
word-start At the beginning of a word.
word-end At the end of a word.
word-boundary At the beginning or end of a word.
not-word-boundary Not at the beginning or end of a word.
symbol-start At the beginning of a symbol.
symbol-end At the end of a symbol.
(group RX...) Match RXs and define a capture group. Alias: submatch.
(group-n N RX...) Match RXs and define capture group N. Alias: submatch-n.
(backref N) Match the text that capture group N matched.
(literal EXPR) Match the literal string from evaluating EXPR at run time.
(regexp EXPR) Match the string regexp from evaluating EXPR at run time.
(eval EXPR) Match the rx sexp from evaluating EXPR at compile time.
Additional constructs can be defined using `rx-define' and `rx-let',
which see.
\(fn REGEXPS...)"
;; Retrieve local definitions from the macroexpansion environment.
;; (It's unclear whether the previous value of `rx--local-definitions'
;; should be included, and if so, in which order.)
(let ((rx--local-definitions
(cdr (assq :rx-locals macroexpand-all-environment))))
(rx--to-expr (cons 'seq regexps))))
(defun rx--make-binding (name tail)
"Make a definitions entry out of TAIL.
TAIL is on the form ([ARGLIST] DEFINITION)."
(unless (symbolp name)
(error "Bad `rx' definition name: %S" name))
;; FIXME: Consider using a hash table or symbol property, for speed.
(when (memq name rx--builtin-names)
(error "Cannot redefine built-in rx name `%s'" name))
(pcase tail
(`(,def)
(list def))
(`(,args ,def)
(unless (and (listp args) (rx--every #'symbolp args))
(error "Bad argument list for `rx' definition %s: %S" name args))
(list args def))
(_ (error "Bad `rx' definition of %s: %S" name tail))))
(defun rx--make-named-binding (bindspec)
"Make a definitions entry out of BINDSPEC.
BINDSPEC is on the form (NAME [ARGLIST] DEFINITION)."
(unless (consp bindspec)
(error "Bad `rx-let' binding: %S" bindspec))
(cons (car bindspec)
(rx--make-binding (car bindspec) (cdr bindspec))))
(defun rx--extend-local-defs (bindspecs)
(append (mapcar #'rx--make-named-binding bindspecs)
rx--local-definitions))
;;;###autoload
(defmacro rx-let-eval (bindings &rest body)
"Evaluate BODY with local BINDINGS for `rx-to-string'.
BINDINGS, after evaluation, is a list of definitions each on the form
(NAME [(ARGS...)] RX), in effect for calls to `rx-to-string'
in BODY.
For bindings without an ARGS list, NAME is defined as an alias
for the `rx' expression RX. Where ARGS is supplied, NAME is
defined as an `rx' form with ARGS as argument list. The
parameters are bound from the values in the (NAME ...) form and
are substituted in RX. ARGS can contain `&rest' parameters,
whose values are spliced into RX where the parameter name occurs.
Any previous definitions with the same names are shadowed during
the expansion of BODY only.
For extensions when using the `rx' macro, use `rx-let'.
To make global rx extensions, use `rx-define'.
For more details, see Info node `(elisp) Extending Rx'.
\(fn BINDINGS BODY...)"
(declare (indent 1) (debug (form body)))
;; FIXME: this way, `rx--extend-local-defs' may need to be autoloaded.
`(let ((rx--local-definitions (rx--extend-local-defs ,bindings)))
,@body))
;;;###autoload
(defmacro rx-let (bindings &rest body)
"Evaluate BODY with local BINDINGS for `rx'.
BINDINGS is an unevaluated list of bindings each on the form
(NAME [(ARGS...)] RX).
They are bound lexically and are available in `rx' expressions in
BODY only.
For bindings without an ARGS list, NAME is defined as an alias
for the `rx' expression RX. Where ARGS is supplied, NAME is
defined as an `rx' form with ARGS as argument list. The
parameters are bound from the values in the (NAME ...) form and
are substituted in RX. ARGS can contain `&rest' parameters,
whose values are spliced into RX where the parameter name occurs.
Any previous definitions with the same names are shadowed during
the expansion of BODY only.
For local extensions to `rx-to-string', use `rx-let-eval'.
To make global rx extensions, use `rx-define'.
For more details, see Info node `(elisp) Extending Rx'.
\(fn BINDINGS BODY...)"
(declare (indent 1) (debug (sexp body)))
(let ((prev-locals (cdr (assq :rx-locals macroexpand-all-environment)))
(new-locals (mapcar #'rx--make-named-binding bindings)))
(macroexpand-all (cons 'progn body)
(cons (cons :rx-locals (append new-locals prev-locals))
macroexpand-all-environment))))
;;;###autoload
(defmacro rx-define (name &rest definition)
"Define NAME as a global `rx' definition.
If the ARGS list is omitted, define NAME as an alias for the `rx'
expression RX.
If the ARGS list is supplied, define NAME as an `rx' form with
ARGS as argument list. The parameters are bound from the values
in the (NAME ...) form and are substituted in RX.
ARGS can contain `&rest' parameters, whose values are spliced
into RX where the parameter name occurs.
Any previous global definition of NAME is overwritten with the new one.
To make local rx extensions, use `rx-let' for `rx',
`rx-let-eval' for `rx-to-string'.
For more details, see Info node `(elisp) Extending Rx'.
\(fn NAME [(ARGS...)] RX)"
(declare (indent 1))
`(eval-and-compile
(put ',name 'rx-definition ',(rx--make-binding name definition))
',name))
;; During `rx--pcase-transform', list of defined variables in right-to-left
;; order.
(defvar rx--pcase-vars)
;; FIXME: The rewriting strategy for pcase works so-so with extensions;
;; definitions cannot expand to `let' or named `backref'. If this ever
;; becomes a problem, we can handle those forms in the ordinary parser,
;; using a dynamic variable for activating the augmented forms.
(defun rx--pcase-transform (rx)
"Transform RX, an rx-expression augmented with `let' and named `backref',
into a plain rx-expression, collecting names into `rx--pcase-vars'."
(pcase rx
(`(let ,name . ,body)
(let* ((index (length (memq name rx--pcase-vars)))
(i (if (zerop index)
(length (push name rx--pcase-vars))
index)))
`(group-n ,i ,(rx--pcase-transform (cons 'seq body)))))
((and `(backref ,ref)
(guard (symbolp ref)))
(let ((index (length (memq ref rx--pcase-vars))))
(when (zerop index)
(error "rx `backref' variable must be one of: %s"
(mapconcat #'symbol-name rx--pcase-vars " ")))
`(backref ,index)))
((and `(,head . ,rest)
(guard (and (symbolp head)
(not (memq head '(literal regexp regex eval))))))
(cons head (mapcar #'rx--pcase-transform rest)))
(_ rx)))
(pcase-defmacro rx (&rest regexps)
"A pattern that matches strings against `rx' REGEXPS in sexp form.
REGEXPS are interpreted as in `rx'. The pattern matches any
string that is a match for REGEXPS, as if by `string-match'.
In addition to the usual `rx' syntax, REGEXPS can contain the
following constructs:
(let REF RX...) binds the symbol REF to a submatch that matches
the regular expressions RX. REF is bound in
CODE to the string of the submatch or nil, but
can also be used in `backref'.
(backref REF) matches whatever the submatch REF matched.
REF can be a number, as usual, or a name
introduced by a previous (let REF ...)
construct."
(let* ((rx--pcase-vars nil)
(regexp (rx--to-expr (rx--pcase-transform (cons 'seq regexps)))))
`(and (pred (string-match ,regexp))
,@(let ((i 0))
(mapcar (lambda (name)
(setq i (1+ i))
`(app (match-string ,i) ,name))
(reverse rx--pcase-vars))))))
;; Obsolete internal symbol, used in old versions of the `flycheck' package.
(define-obsolete-function-alias 'rx-submatch-n 'rx-to-string "27.1")
(provide 'rx)
;;; rx.el ends here
|