/* Updating of data structures for redisplay. Copyright (C) 1985-1988, 1993-1995, 1997-2024 Free Software Foundation, Inc. This file is part of GNU Emacs. GNU Emacs is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. GNU Emacs is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU Emacs. If not, see . */ #include #include "sysstdio.h" #include #include #include "lisp.h" #include "termchar.h" /* cm.h must come after dispextern.h on Windows. */ #include "dispextern.h" #include "cm.h" #include "buffer.h" #include "keyboard.h" #include "frame.h" #include "termhooks.h" #include "window.h" #include "commands.h" #include "disptab.h" #include "blockinput.h" #include "syssignal.h" #include "systime.h" #include "tparam.h" #include "xwidget.h" #include "pdumper.h" #include "disptab.h" #include "cm.h" #ifdef HAVE_ANDROID #include "android.h" #endif #ifdef HAVE_WINDOW_SYSTEM #include TERM_HEADER #endif /* HAVE_WINDOW_SYSTEM */ #include #include #ifdef WINDOWSNT #include "w32.h" #endif /* Structure to pass dimensions around. Used for character bounding boxes, glyph matrix dimensions and alike. */ struct dim { int width; int height; }; /* Function prototypes. */ static void write_row (struct frame *f, int vpos, bool updating_menu_p); static int required_matrix_height (struct window *); static int required_matrix_width (struct window *); static void increment_row_positions (struct glyph_row *, ptrdiff_t, ptrdiff_t); static void build_frame_matrix_from_window_tree (struct glyph_matrix *, struct window *); static void build_frame_matrix_from_leaf_window (struct glyph_matrix *, struct window *); static void adjust_decode_mode_spec_buffer (struct frame *); static void fill_up_glyph_row_with_spaces (struct frame *, struct glyph_row *); static void clear_window_matrices (struct window *, bool); static void fill_up_glyph_row_area_with_spaces (struct frame *, struct glyph_row *, int); static int scrolling_window (struct window *, int); static bool update_window_line (struct window *, int, bool *); static void mirror_make_current (struct window *, int); #ifdef GLYPH_DEBUG static void check_matrix_pointers (struct glyph_matrix *, struct glyph_matrix *); #endif static void mirror_line_dance (struct window *, int, int, int *, char *); static bool update_window_tree (struct window *, bool); static bool update_window (struct window *, bool); static bool write_matrix (struct frame *, bool, bool, bool, bool); static bool scrolling (struct frame *); static void set_window_cursor_after_update (struct window *); static void adjust_frame_glyphs_for_window_redisplay (struct frame *); static void adjust_frame_glyphs_for_frame_redisplay (struct frame *); static void set_window_update_flags (struct window *w, bool on_p); /* True means last display completed. False means it was preempted. */ bool display_completed; /* True means SIGWINCH happened when not safe. */ static bool delayed_size_change; /* A glyph for a space. */ struct glyph space_glyph; #if defined GLYPH_DEBUG && defined ENABLE_CHECKING /* Counts of allocated structures. These counts serve to diagnose memory leaks and double frees. */ static int glyph_matrix_count; static int glyph_pool_count; #endif /* GLYPH_DEBUG and ENABLE_CHECKING */ /* Convert vpos and hpos from frame to window and vice versa. This may only be used for terminal frames. */ #ifdef GLYPH_DEBUG static int window_to_frame_vpos (struct window *, int); static int window_to_frame_hpos (struct window *, int); #define WINDOW_TO_FRAME_VPOS(W, VPOS) window_to_frame_vpos (W, VPOS) #define WINDOW_TO_FRAME_HPOS(W, HPOS) window_to_frame_hpos (W, HPOS) /* One element of the ring buffer containing redisplay history information. */ struct redisplay_history { char trace[512 + 100]; }; /* The size of the history buffer. */ #define REDISPLAY_HISTORY_SIZE 30 /* The redisplay history buffer. */ static struct redisplay_history redisplay_history[REDISPLAY_HISTORY_SIZE]; /* Next free entry in redisplay_history. */ static int history_idx; /* A tick that's incremented each time something is added to the history. */ static uintmax_t history_tick; /* Add to the redisplay history how window W has been displayed. MSG is a trace containing the information how W's glyph matrix has been constructed. PAUSED_P means that the update has been interrupted for pending input. */ static void add_window_display_history (struct window *w, const char *msg, bool paused_p) { char *buf; void *ptr = w; if (history_idx >= REDISPLAY_HISTORY_SIZE) history_idx = 0; buf = redisplay_history[history_idx].trace; ++history_idx; snprintf (buf, sizeof redisplay_history[0].trace, "%"PRIuMAX": window %p (%s)%s\n%s", history_tick++, ptr, ((BUFFERP (w->contents) && STRINGP (BVAR (XBUFFER (w->contents), name))) ? SSDATA (BVAR (XBUFFER (w->contents), name)) : "???"), paused_p ? " ***paused***" : "", msg); } /* Add to the redisplay history that frame F has been displayed. PAUSED_P means that the update has been interrupted for pending input. */ static void add_frame_display_history (struct frame *f, bool paused_p) { char *buf; void *ptr = f; if (history_idx >= REDISPLAY_HISTORY_SIZE) history_idx = 0; buf = redisplay_history[history_idx].trace; ++history_idx; sprintf (buf, "%"PRIuMAX": update frame %p%s", history_tick++, ptr, paused_p ? " ***paused***" : ""); } DEFUN ("dump-redisplay-history", Fdump_redisplay_history, Sdump_redisplay_history, 0, 0, "", doc: /* Dump redisplay history to stderr. */) (void) { int i; for (i = history_idx - 1; i != history_idx; --i) { if (i < 0) i = REDISPLAY_HISTORY_SIZE - 1; fprintf (stderr, "%s\n", redisplay_history[i].trace); } return Qnil; } #else /* not GLYPH_DEBUG */ #define WINDOW_TO_FRAME_VPOS(W, VPOS) ((VPOS) + WINDOW_TOP_EDGE_LINE (W)) #define WINDOW_TO_FRAME_HPOS(W, HPOS) ((HPOS) + WINDOW_LEFT_EDGE_COL (W)) #endif /* GLYPH_DEBUG */ #if defined PROFILING && !HAVE___EXECUTABLE_START /* This function comes first in the Emacs executable and is used only to estimate the text start for profiling. */ void __executable_start (void) { emacs_abort (); } #endif /*********************************************************************** Glyph Matrices ***********************************************************************/ /* Allocate and return a glyph_matrix structure. POOL is the glyph pool from which memory for the matrix should be allocated, or null for window-based redisplay where no glyph pools are used. The member `pool' of the glyph matrix structure returned is set to POOL, the structure is otherwise zeroed. */ static struct glyph_matrix * new_glyph_matrix (struct glyph_pool *pool) { struct glyph_matrix *result = xzalloc (sizeof *result); #if defined GLYPH_DEBUG && defined ENABLE_CHECKING /* Increment number of allocated matrices. This count is used to detect memory leaks. */ ++glyph_matrix_count; #endif /* Set pool and return. */ result->pool = pool; return result; } /* Free glyph matrix MATRIX. Passing in a null MATRIX is allowed. If GLYPH_DEBUG and ENABLE_CHECKING are in effect, the global counter glyph_matrix_count is decremented when a matrix is freed. If the count gets negative, more structures were freed than allocated, i.e. one matrix was freed more than once or a bogus pointer was passed to this function. If MATRIX->pool is null, this means that the matrix manages its own glyph memory---this is done for matrices on X frames. Freeing the matrix also frees the glyph memory in this case. */ static void free_glyph_matrix (struct glyph_matrix *matrix) { if (matrix) { int i; #if defined GLYPH_DEBUG && defined ENABLE_CHECKING /* Detect the case that more matrices are freed than were allocated. */ --glyph_matrix_count; eassert (glyph_matrix_count >= 0); #endif /* Free glyph memory if MATRIX owns it. */ if (matrix->pool == NULL) for (i = 0; i < matrix->rows_allocated; ++i) xfree (matrix->rows[i].glyphs[LEFT_MARGIN_AREA]); /* Free row structures and the matrix itself. */ xfree (matrix->rows); xfree (matrix); } } /* Return the number of glyphs to reserve for a marginal area of window W. TOTAL_GLYPHS is the number of glyphs in a complete display line of window W. MARGIN gives the width of the marginal area in canonical character units. */ static int margin_glyphs_to_reserve (struct window *w, int total_glyphs, int margin) { if (margin > 0) { int width = w->total_cols; double d = max (0, margin); d = min (width / 2 - 1, d); /* Since MARGIN is positive, we cannot possibly have less than one glyph for the marginal area. */ return max (1, (int) ((double) total_glyphs / width * d)); } return 0; } /* Return true if ROW's hash value is correct. Optimized away if ENABLE_CHECKING is not defined. */ static bool verify_row_hash (struct glyph_row *row) { return row->hash == row_hash (row); } /* Adjust glyph matrix MATRIX on window W or on a frame to changed window sizes. W is null if the function is called for a frame glyph matrix. Otherwise it is the window MATRIX is a member of. X and Y are the indices of the first column and row of MATRIX within the frame matrix, if such a matrix exists. They are zero for purely window-based redisplay. DIM is the needed size of the matrix. In window-based redisplay, where no frame matrices exist, glyph matrices manage their own glyph storage. Otherwise, they allocate storage from a common frame glyph pool which can be found in MATRIX->pool. The reason for this memory management strategy is to avoid complete frame redraws if possible. When we allocate from a common pool, a change of the location or size of a sub-matrix within the pool requires a complete redisplay of the frame because we cannot easily make sure that the current matrices of all windows still agree with what is displayed on the screen. While this is usually fast, it leads to screen flickering. */ static void adjust_glyph_matrix (struct window *w, struct glyph_matrix *matrix, int x, int y, struct dim dim) { int i; int new_rows; bool marginal_areas_changed_p = 0; bool tab_line_changed_p = 0; bool tab_line_p = 0; bool header_line_changed_p = 0; bool header_line_p = 0; int left = -1, right = -1; int window_width = -1, window_height = -1; /* See if W had a header line that has disappeared now, or vice versa. Get W's size. */ if (w) { window_box (w, ANY_AREA, 0, 0, &window_width, &window_height); tab_line_p = window_wants_tab_line (w); tab_line_changed_p = tab_line_p != matrix->tab_line_p; header_line_p = window_wants_header_line (w); header_line_changed_p = header_line_p != matrix->header_line_p; } matrix->tab_line_p = tab_line_p; matrix->header_line_p = header_line_p; /* If POOL is null, MATRIX is a window matrix for window-based redisplay. Do nothing if MATRIX' size, position, vscroll, and marginal areas haven't changed. This optimization is important because preserving the matrix means preventing redisplay. */ eassume (w != NULL || matrix->pool != NULL); if (matrix->pool == NULL) { left = margin_glyphs_to_reserve (w, dim.width, w->left_margin_cols); right = margin_glyphs_to_reserve (w, dim.width, w->right_margin_cols); eassert (left >= 0 && right >= 0); marginal_areas_changed_p = (left != matrix->left_margin_glyphs || right != matrix->right_margin_glyphs); if (!marginal_areas_changed_p && !XFRAME (w->frame)->fonts_changed && !tab_line_changed_p && !header_line_changed_p && matrix->window_pixel_left == WINDOW_LEFT_PIXEL_EDGE (w) && matrix->window_pixel_top == WINDOW_TOP_PIXEL_EDGE (w) && matrix->window_height == window_height && matrix->window_vscroll == w->vscroll && matrix->window_width == window_width) return; } /* Enlarge MATRIX->rows if necessary. New rows are cleared. */ if (matrix->rows_allocated < dim.height) { int old_alloc = matrix->rows_allocated; new_rows = dim.height - matrix->rows_allocated; matrix->rows = xpalloc (matrix->rows, &matrix->rows_allocated, new_rows, INT_MAX, sizeof *matrix->rows); memset (matrix->rows + old_alloc, 0, (matrix->rows_allocated - old_alloc) * sizeof *matrix->rows); } else new_rows = 0; /* If POOL is not null, MATRIX is a frame matrix or a window matrix on a frame not using window-based redisplay. Set up pointers for each row into the glyph pool. */ if (matrix->pool) { eassert (matrix->pool->glyphs); if (w) { left = margin_glyphs_to_reserve (w, dim.width, w->left_margin_cols); right = margin_glyphs_to_reserve (w, dim.width, w->right_margin_cols); } else left = right = 0; for (i = 0; i < dim.height; ++i) { struct glyph_row *row = &matrix->rows[i]; row->glyphs[LEFT_MARGIN_AREA] = (matrix->pool->glyphs + (y + i) * matrix->pool->ncolumns + x); if (w == NULL || (row == matrix->rows + dim.height - 1 && window_wants_mode_line (w)) || (row == matrix->rows && matrix->tab_line_p) || (row == matrix->rows && !matrix->tab_line_p && matrix->header_line_p) || (row == (matrix->rows + 1) && matrix->tab_line_p && matrix->header_line_p)) { row->glyphs[TEXT_AREA] = row->glyphs[LEFT_MARGIN_AREA]; row->glyphs[RIGHT_MARGIN_AREA] = row->glyphs[TEXT_AREA] + dim.width; row->glyphs[LAST_AREA] = row->glyphs[RIGHT_MARGIN_AREA]; } else { row->glyphs[TEXT_AREA] = row->glyphs[LEFT_MARGIN_AREA] + left; row->glyphs[RIGHT_MARGIN_AREA] = row->glyphs[TEXT_AREA] + dim.width - left - right; /* Leave room for a border glyph. */ if (!FRAME_WINDOW_P (XFRAME (w->frame)) && !WINDOW_RIGHTMOST_P (w) && right > 0) row->glyphs[RIGHT_MARGIN_AREA] -= 1; row->glyphs[LAST_AREA] = row->glyphs[LEFT_MARGIN_AREA] + dim.width; } } matrix->left_margin_glyphs = left; matrix->right_margin_glyphs = right; } else { /* If MATRIX->pool is null, MATRIX is responsible for managing its own memory. It is a window matrix for window-based redisplay. Allocate glyph memory from the heap. */ if (dim.width > matrix->matrix_w || new_rows || tab_line_changed_p || header_line_changed_p || marginal_areas_changed_p) { struct glyph_row *row = matrix->rows; struct glyph_row *end = row + matrix->rows_allocated; while (row < end) { row->glyphs[LEFT_MARGIN_AREA] = xnrealloc (row->glyphs[LEFT_MARGIN_AREA], dim.width, sizeof (struct glyph)); /* The mode line, if displayed, never has marginal areas. */ if ((row == matrix->rows + dim.height - 1 && !(w && window_wants_mode_line (w))) || (row == matrix->rows && matrix->tab_line_p) || (row == matrix->rows && !matrix->tab_line_p && matrix->header_line_p) || (row == (matrix->rows + 1) && matrix->tab_line_p && matrix->header_line_p)) { row->glyphs[TEXT_AREA] = row->glyphs[LEFT_MARGIN_AREA]; row->glyphs[RIGHT_MARGIN_AREA] = row->glyphs[TEXT_AREA] + dim.width; row->glyphs[LAST_AREA] = row->glyphs[RIGHT_MARGIN_AREA]; } else { row->glyphs[TEXT_AREA] = row->glyphs[LEFT_MARGIN_AREA] + left; row->glyphs[RIGHT_MARGIN_AREA] = row->glyphs[TEXT_AREA] + dim.width - left - right; row->glyphs[LAST_AREA] = row->glyphs[LEFT_MARGIN_AREA] + dim.width; } ++row; } } eassert (left >= 0 && right >= 0); matrix->left_margin_glyphs = left; matrix->right_margin_glyphs = right; /* If we are resizing a window, make sure the previous mode-line row of the window's current matrix is no longer marked as such. */ if (w && matrix == w->current_matrix && matrix->nrows > 0 && dim.height != matrix->nrows && matrix->nrows <= matrix->rows_allocated) MATRIX_MODE_LINE_ROW (matrix)->mode_line_p = false; } /* Number of rows to be used by MATRIX. */ matrix->nrows = dim.height; eassert (matrix->nrows >= 0); if (w) { if (matrix == w->current_matrix) { /* Mark rows in a current matrix of a window as not having valid contents. It's important to not do this for desired matrices. When Emacs starts, it may already be building desired matrices when this function runs. */ if (window_width < 0) window_width = window_box_width (w, -1); /* Optimize the case that only the height has changed (C-x 2, upper window). Invalidate all rows that are no longer part of the window. */ if (!marginal_areas_changed_p && !tab_line_changed_p && !header_line_changed_p && new_rows == 0 && dim.width == matrix->matrix_w && matrix->window_pixel_left == WINDOW_LEFT_PIXEL_EDGE (w) && matrix->window_pixel_top == WINDOW_TOP_PIXEL_EDGE (w) && matrix->window_width == window_width) { /* Find the last row in the window. */ for (i = 0; i < matrix->nrows && matrix->rows[i].enabled_p; ++i) if (MATRIX_ROW_BOTTOM_Y (matrix->rows + i) >= window_height) { ++i; break; } /* Window end is invalid, if inside of the rows that are invalidated below. */ if (w->window_end_vpos >= i) w->window_end_valid = 0; while (i < matrix->nrows) matrix->rows[i++].enabled_p = false; } else { for (i = 0; i < matrix->nrows; ++i) matrix->rows[i].enabled_p = false; } /* We've disabled the mode-line row, so force redrawing of the mode line, if any, since otherwise it will remain disabled in the current matrix, and expose events won't redraw it. */ if (window_wants_mode_line (w)) w->update_mode_line = 1; } else if (matrix == w->desired_matrix) { /* Rows in desired matrices always have to be cleared; redisplay expects this is the case when it runs, so it had better be the case when we adjust matrices between redisplays. */ for (i = 0; i < matrix->nrows; ++i) matrix->rows[i].enabled_p = false; } } /* Remember last values to be able to optimize frame redraws. */ matrix->matrix_x = x; matrix->matrix_y = y; matrix->matrix_w = dim.width; matrix->matrix_h = dim.height; /* Record the top y location and height of W at the time the matrix was last adjusted. This is used to optimize redisplay above. */ if (w) { matrix->window_pixel_left = WINDOW_LEFT_PIXEL_EDGE (w); matrix->window_pixel_top = WINDOW_TOP_PIXEL_EDGE (w); matrix->window_height = window_height; matrix->window_width = window_width; matrix->window_vscroll = w->vscroll; } } /* Reverse the contents of rows in MATRIX between START and END. The contents of the row at END - 1 end up at START, END - 2 at START + 1 etc. This is part of the implementation of rotate_matrix (see below). */ static void reverse_rows (struct glyph_matrix *matrix, int start, int end) { int i, j; for (i = start, j = end - 1; i < j; ++i, --j) { /* Non-ISO HP/UX compiler doesn't like auto struct initialization. */ struct glyph_row temp; temp = matrix->rows[i]; matrix->rows[i] = matrix->rows[j]; matrix->rows[j] = temp; } } /* Rotate the contents of rows in MATRIX in the range FIRST .. LAST - 1 by BY positions. BY < 0 means rotate left, i.e. towards lower indices. (Note: this does not copy glyphs, only glyph pointers in row structures are moved around). The algorithm used for rotating the vector was, I believe, first described by Kernighan. See the vector R as consisting of two sub-vectors AB, where A has length BY for BY >= 0. The result after rotating is then BA. Reverse both sub-vectors to get ArBr and reverse the result to get (ArBr)r which is BA. Similar for rotating right. */ void rotate_matrix (struct glyph_matrix *matrix, int first, int last, int by) { if (by < 0) { /* Up (rotate left, i.e. towards lower indices). */ by = -by; reverse_rows (matrix, first, first + by); reverse_rows (matrix, first + by, last); reverse_rows (matrix, first, last); } else if (by > 0) { /* Down (rotate right, i.e. towards higher indices). */ reverse_rows (matrix, last - by, last); reverse_rows (matrix, first, last - by); reverse_rows (matrix, first, last); } } /* Increment buffer positions in glyph rows of MATRIX. Do it for rows with indices START <= index < END. Increment positions by DELTA/ DELTA_BYTES. */ void increment_matrix_positions (struct glyph_matrix *matrix, int start, int end, ptrdiff_t delta, ptrdiff_t delta_bytes) { /* Check that START and END are reasonable values. */ eassert (start >= 0 && start <= matrix->nrows); eassert (end >= 0 && end <= matrix->nrows); eassert (start <= end); for (; start < end; ++start) increment_row_positions (matrix->rows + start, delta, delta_bytes); } /* Clear the enable_p flags in a range of rows in glyph matrix MATRIX. START and END are the row indices of the first and last + 1 row to clear. */ void clear_glyph_matrix_rows (struct glyph_matrix *matrix, int start, int end) { eassert (start <= end); eassert (start >= 0 && (start < matrix->nrows /* matrix->nrows can be 0 for the initial frame. */ || (matrix->nrows == 0))); eassert (end >= 0 && end <= matrix->nrows); for (; start < end; ++start) matrix->rows[start].enabled_p = false; } /* Clear MATRIX. Empty all rows in MATRIX by clearing their enabled_p flags. The function prepare_desired_row will eventually really clear a row when it sees one with a false enabled_p flag. Reset update hints to default values. The only update hint currently present is the flag MATRIX->no_scrolling_p. */ void clear_glyph_matrix (struct glyph_matrix *matrix) { if (matrix) { clear_glyph_matrix_rows (matrix, 0, matrix->nrows); matrix->no_scrolling_p = 0; } } /* Shift part of the glyph matrix MATRIX of window W up or down. Increment y-positions in glyph rows between START and END by DY, and recompute their visible height. */ void shift_glyph_matrix (struct window *w, struct glyph_matrix *matrix, int start, int end, int dy) { int min_y, max_y; eassert (start <= end); eassert (start >= 0 && start < matrix->nrows); eassert (end >= 0 && end <= matrix->nrows); min_y = WINDOW_TAB_LINE_HEIGHT (w) + WINDOW_HEADER_LINE_HEIGHT (w); max_y = WINDOW_BOX_HEIGHT_NO_MODE_LINE (w); for (; start < end; ++start) { struct glyph_row *row = &matrix->rows[start]; row->y += dy; row->visible_height = row->height; if (row->y < min_y) row->visible_height -= min_y - row->y; if (row->y + row->height > max_y) row->visible_height -= row->y + row->height - max_y; if (row->fringe_bitmap_periodic_p) row->redraw_fringe_bitmaps_p = 1; } } /* Mark all rows in current matrices of frame F as invalid. Marking invalid is done by setting enabled_p to zero for all rows in a current matrix. */ void clear_current_matrices (register struct frame *f) { /* Clear frame current matrix, if we have one. */ if (f->current_matrix) clear_glyph_matrix (f->current_matrix); #if defined HAVE_WINDOW_SYSTEM && !defined HAVE_EXT_MENU_BAR /* Clear the matrix of the menu bar window, if such a window exists. The menu bar window is currently used to display menus on X when no toolkit support is compiled in. */ if (WINDOWP (f->menu_bar_window)) clear_glyph_matrix (XWINDOW (f->menu_bar_window)->current_matrix); #endif #if defined (HAVE_WINDOW_SYSTEM) /* Clear the matrix of the tab-bar window, if any. */ if (WINDOWP (f->tab_bar_window)) clear_glyph_matrix (XWINDOW (f->tab_bar_window)->current_matrix); #endif #if defined (HAVE_WINDOW_SYSTEM) && ! defined (HAVE_EXT_TOOL_BAR) /* Clear the matrix of the tool-bar window, if any. */ if (WINDOWP (f->tool_bar_window)) clear_glyph_matrix (XWINDOW (f->tool_bar_window)->current_matrix); #endif /* Clear current window matrices. */ eassert (WINDOWP (FRAME_ROOT_WINDOW (f))); clear_window_matrices (XWINDOW (FRAME_ROOT_WINDOW (f)), 0); } /* Clear out all display lines of F for a coming redisplay. */ void clear_desired_matrices (register struct frame *f) { if (f->desired_matrix) clear_glyph_matrix (f->desired_matrix); #if defined HAVE_WINDOW_SYSTEM && !defined HAVE_EXT_MENU_BAR if (WINDOWP (f->menu_bar_window)) clear_glyph_matrix (XWINDOW (f->menu_bar_window)->desired_matrix); #endif #if defined (HAVE_WINDOW_SYSTEM) if (WINDOWP (f->tab_bar_window)) clear_glyph_matrix (XWINDOW (f->tab_bar_window)->desired_matrix); #endif #if defined (HAVE_WINDOW_SYSTEM) && ! defined (HAVE_EXT_TOOL_BAR) if (WINDOWP (f->tool_bar_window)) clear_glyph_matrix (XWINDOW (f->tool_bar_window)->desired_matrix); #endif /* Do it for window matrices. */ eassert (WINDOWP (FRAME_ROOT_WINDOW (f))); clear_window_matrices (XWINDOW (FRAME_ROOT_WINDOW (f)), 1); } /* Clear matrices in window tree rooted in W. If DESIRED_P, clear desired matrices, otherwise clear current matrices. */ static void clear_window_matrices (struct window *w, bool desired_p) { while (w) { if (WINDOWP (w->contents)) clear_window_matrices (XWINDOW (w->contents), desired_p); else { if (desired_p) clear_glyph_matrix (w->desired_matrix); else { clear_glyph_matrix (w->current_matrix); w->window_end_valid = 0; } } w = NILP (w->next) ? 0 : XWINDOW (w->next); } } /*********************************************************************** Glyph Rows See dispextern.h for an overall explanation of glyph rows. ***********************************************************************/ /* Clear glyph row ROW. NOTE: this code relies on the current layout of `glyphs' and `used' fields of `struct glyph_row'. */ void clear_glyph_row (struct glyph_row *row) { enum { off = offsetof (struct glyph_row, used) }; /* Zero everything except pointers in `glyphs'. */ memset ((char *) row + off, 0, sizeof *row - off); } /* Make ROW an empty, enabled row of canonical character height, in window W starting at y-position Y. */ void blank_row (struct window *w, struct glyph_row *row, int y) { int min_y, max_y; min_y = WINDOW_TAB_LINE_HEIGHT (w) + WINDOW_HEADER_LINE_HEIGHT (w); max_y = WINDOW_BOX_HEIGHT_NO_MODE_LINE (w); clear_glyph_row (row); row->y = y; row->ascent = row->phys_ascent = 0; row->height = row->phys_height = FRAME_LINE_HEIGHT (XFRAME (w->frame)); row->visible_height = row->height; if (row->y < min_y) row->visible_height -= min_y - row->y; if (row->y + row->height > max_y) row->visible_height -= row->y + row->height - max_y; row->enabled_p = true; } /* Increment buffer positions in glyph row ROW. DELTA and DELTA_BYTES are the amounts by which to change positions. Note that the first glyph of the text area of a row can have a buffer position even if the used count of the text area is zero. Such rows display line ends. */ static void increment_row_positions (struct glyph_row *row, ptrdiff_t delta, ptrdiff_t delta_bytes) { int area, i; /* Increment start and end positions. */ MATRIX_ROW_START_CHARPOS (row) += delta; MATRIX_ROW_START_BYTEPOS (row) += delta_bytes; MATRIX_ROW_END_CHARPOS (row) += delta; MATRIX_ROW_END_BYTEPOS (row) += delta_bytes; CHARPOS (row->start.pos) += delta; BYTEPOS (row->start.pos) += delta_bytes; CHARPOS (row->end.pos) += delta; BYTEPOS (row->end.pos) += delta_bytes; if (!row->enabled_p) return; /* Increment positions in glyphs. */ for (area = 0; area < LAST_AREA; ++area) for (i = 0; i < row->used[area]; ++i) if (BUFFERP (row->glyphs[area][i].object) && row->glyphs[area][i].charpos > 0) row->glyphs[area][i].charpos += delta; /* Capture the case of rows displaying a line end. */ if (row->used[TEXT_AREA] == 0 && MATRIX_ROW_DISPLAYS_TEXT_P (row)) row->glyphs[TEXT_AREA]->charpos += delta; } #if 0 /* Swap glyphs between two glyph rows A and B. This exchanges glyph contents, i.e. glyph structure contents are exchanged between A and B without changing glyph pointers in A and B. */ static void swap_glyphs_in_rows (struct glyph_row *a, struct glyph_row *b) { int area; for (area = 0; area < LAST_AREA; ++area) { /* Number of glyphs to swap. */ int max_used = max (a->used[area], b->used[area]); /* Start of glyphs in area of row A. */ struct glyph *glyph_a = a->glyphs[area]; /* End + 1 of glyphs in area of row A. */ struct glyph *glyph_a_end = a->glyphs[max_used]; /* Start of glyphs in area of row B. */ struct glyph *glyph_b = b->glyphs[area]; while (glyph_a < glyph_a_end) { /* Non-ISO HP/UX compiler doesn't like auto struct initialization. */ struct glyph temp; temp = *glyph_a; *glyph_a = *glyph_b; *glyph_b = temp; ++glyph_a; ++glyph_b; } } } #endif /* 0 */ /* Exchange pointers to glyph memory between glyph rows A and B. Also exchange the used[] array and the hash values of the rows, because these should all go together for the row's hash value to be correct. */ static void swap_glyph_pointers (struct glyph_row *a, struct glyph_row *b) { int i; unsigned hash_tem = a->hash; for (i = 0; i < LAST_AREA + 1; ++i) { struct glyph *temp = a->glyphs[i]; a->glyphs[i] = b->glyphs[i]; b->glyphs[i] = temp; if (i < LAST_AREA) { short used_tem = a->used[i]; a->used[i] = b->used[i]; b->used[i] = used_tem; } } a->hash = b->hash; b->hash = hash_tem; } /* Copy glyph row structure FROM to glyph row structure TO, except that glyph pointers, the `used' counts, and the hash values in the structures are left unchanged. NOTE: this code relies on the current layout of `glyphs', `used', `hash' and `x' fields of `struct glyph_row'. */ static void copy_row_except_pointers (struct glyph_row *to, struct glyph_row *from) { enum { off = offsetof (struct glyph_row, x) }; memcpy ((char *) to + off, (char *) from + off, sizeof *to - off); } /* Assign glyph row FROM to glyph row TO. This works like a structure assignment TO = FROM, except that glyph pointers are not copied but exchanged between TO and FROM. Pointers must be exchanged to avoid a memory leak. */ static void assign_row (struct glyph_row *to, struct glyph_row *from) { swap_glyph_pointers (to, from); copy_row_except_pointers (to, from); } /* Test whether the glyph memory of the glyph row WINDOW_ROW, which is a row in a window matrix, is a slice of the glyph memory of the glyph row FRAME_ROW which is a row in a frame glyph matrix. Value is true if the glyph memory of WINDOW_ROW is part of the glyph memory of FRAME_ROW. */ #ifdef GLYPH_DEBUG static bool glyph_row_slice_p (struct glyph_row *window_row, struct glyph_row *frame_row) { struct glyph *window_glyph_start = window_row->glyphs[0]; struct glyph *frame_glyph_start = frame_row->glyphs[0]; struct glyph *frame_glyph_end = frame_row->glyphs[LAST_AREA]; return (frame_glyph_start <= window_glyph_start && window_glyph_start < frame_glyph_end); } #endif /* GLYPH_DEBUG */ #if 0 /* Find the row in the window glyph matrix WINDOW_MATRIX being a slice of ROW in the frame matrix FRAME_MATRIX. Value is null if no row in WINDOW_MATRIX is found satisfying the condition. */ static struct glyph_row * find_glyph_row_slice (struct glyph_matrix *window_matrix, struct glyph_matrix *frame_matrix, int row) { int i; eassert (row >= 0 && row < frame_matrix->nrows); for (i = 0; i < window_matrix->nrows; ++i) if (glyph_row_slice_p (window_matrix->rows + i, frame_matrix->rows + row)) break; return i < window_matrix->nrows ? window_matrix->rows + i : 0; } #endif /* 0 */ /* Prepare ROW for display in windows W. Desired rows are cleared lazily, i.e. they are only marked as to be cleared by setting their enabled_p flag to zero. When a row is to be displayed, a prior call to this function really clears it. In addition, this function makes sure the marginal areas of ROW are in sync with the window's display margins. MODE_LINE_P non-zero means we are preparing a glyph row for tab/header line or mode line. */ void prepare_desired_row (struct window *w, struct glyph_row *row, bool mode_line_p) { if (!row->enabled_p) { bool rp = row->reversed_p; clear_glyph_row (row); row->enabled_p = true; row->reversed_p = rp; } if (mode_line_p) { /* Mode and header/tab lines, if displayed, never have marginal areas. If we are called with MODE_LINE_P non-zero, we are displaying the mode/header/tab line in this window, and so the marginal areas of this glyph row should be eliminated. This is needed when the mode/header/tab line is switched on in a window that has display margins. */ if (w->left_margin_cols > 0) row->glyphs[TEXT_AREA] = row->glyphs[LEFT_MARGIN_AREA]; if (w->right_margin_cols > 0) row->glyphs[RIGHT_MARGIN_AREA] = row->glyphs[LAST_AREA]; } else { /* The real number of glyphs reserved for the margins is recorded in the glyph matrix, and can be different from window's left_margin_cols and right_margin_cols; see margin_glyphs_to_reserve for when that happens. */ int left = w->desired_matrix->left_margin_glyphs; int right = w->desired_matrix->right_margin_glyphs; /* Make sure the marginal areas of this row are in sync with what the window wants, when the row actually displays text and not tab/header/mode line. */ if (w->left_margin_cols > 0 && (left != row->glyphs[TEXT_AREA] - row->glyphs[LEFT_MARGIN_AREA])) row->glyphs[TEXT_AREA] = row->glyphs[LEFT_MARGIN_AREA] + left; if (w->right_margin_cols > 0 && (right != row->glyphs[LAST_AREA] - row->glyphs[RIGHT_MARGIN_AREA])) { row->glyphs[RIGHT_MARGIN_AREA] = row->glyphs[LAST_AREA] - right; /* Leave room for a border glyph. */ if (!FRAME_WINDOW_P (XFRAME (w->frame)) && !WINDOW_RIGHTMOST_P (w) && right > 0) row->glyphs[RIGHT_MARGIN_AREA] -= 1; } } } #ifndef HAVE_ANDROID /* Return a hash code for glyph row ROW, which may be from current or desired matrix of frame F. */ static unsigned line_hash_code (struct frame *f, struct glyph_row *row) { unsigned hash = 0; if (row->enabled_p) { struct glyph *glyph = row->glyphs[TEXT_AREA]; struct glyph *end = glyph + row->used[TEXT_AREA]; while (glyph < end) { int c = glyph->u.ch; unsigned int face_id = glyph->face_id; /* Struct frame can move with igc, and so on. But we need something that takes different frames into account. Use the face_cache pointer for that which is malloc'd. */ if (glyph->frame && glyph->frame != f) face_id += (uintptr_t) glyph->frame->face_cache; if (FRAME_MUST_WRITE_SPACES (f)) c -= SPACEGLYPH; hash = (((hash << 4) + (hash >> 24)) & 0x0fffffff) + c; hash = (((hash << 4) + (hash >> 24)) & 0x0fffffff) + face_id; ++glyph; } if (hash == 0) hash = 1; } return hash; } /* Return the cost of drawing line VPOS in MATRIX, which may be current or desired matrix of frame F. The cost equals the number of characters in the line. If must_write_spaces is zero, leading and trailing spaces are ignored. */ static int line_draw_cost (struct frame *f, struct glyph_matrix *matrix, int vpos) { struct glyph_row *row = matrix->rows + vpos; struct glyph *beg = row->glyphs[TEXT_AREA]; struct glyph *end = beg + row->used[TEXT_AREA]; int len; Lisp_Object *glyph_table_base = GLYPH_TABLE_BASE; ptrdiff_t glyph_table_len = GLYPH_TABLE_LENGTH; /* Ignore trailing and leading spaces if we can. */ if (!FRAME_MUST_WRITE_SPACES (f)) { /* Skip from the end over trailing spaces. */ while (end > beg && CHAR_GLYPH_SPACE_P (f, *(end - 1))) --end; /* All blank line. */ if (end == beg) return 0; /* Skip over leading spaces. */ while (CHAR_GLYPH_SPACE_P (f, *beg)) ++beg; } /* If we don't have a glyph-table, each glyph is one character, so return the number of glyphs. */ if (glyph_table_base == 0) len = end - beg; else { /* Otherwise, scan the glyphs and accumulate their total length in LEN. */ len = 0; while (beg < end) { GLYPH g; SET_GLYPH_FROM_CHAR_GLYPH (g, *beg); if (GLYPH_INVALID_P (g) || GLYPH_SIMPLE_P (glyph_table_base, glyph_table_len, g)) len += 1; else len += GLYPH_LENGTH (glyph_table_base, g); ++beg; } } return len; } #endif /* Return true if the glyph rows A and B have equal contents. MOUSE_FACE_P means compare the mouse_face_p flags of A and B, too. */ static bool row_equal_p (struct glyph_row *a, struct glyph_row *b, bool mouse_face_p) { eassert (verify_row_hash (a)); eassert (verify_row_hash (b)); if (a == b) return 1; else if (a->hash != b->hash) return 0; else { struct glyph *a_glyph, *b_glyph, *a_end; int area; if (mouse_face_p && a->mouse_face_p != b->mouse_face_p) return 0; /* Compare glyphs. */ for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area) { if (a->used[area] != b->used[area]) return 0; a_glyph = a->glyphs[area]; a_end = a_glyph + a->used[area]; b_glyph = b->glyphs[area]; while (a_glyph < a_end && GLYPH_EQUAL_P (a_glyph, b_glyph)) ++a_glyph, ++b_glyph; if (a_glyph != a_end) return 0; } if (a->fill_line_p != b->fill_line_p || a->cursor_in_fringe_p != b->cursor_in_fringe_p || a->left_fringe_bitmap != b->left_fringe_bitmap || a->left_fringe_face_id != b->left_fringe_face_id || a->left_fringe_offset != b->left_fringe_offset || a->right_fringe_bitmap != b->right_fringe_bitmap || a->right_fringe_face_id != b->right_fringe_face_id || a->right_fringe_offset != b->right_fringe_offset || a->fringe_bitmap_periodic_p != b->fringe_bitmap_periodic_p || a->overlay_arrow_bitmap != b->overlay_arrow_bitmap || a->exact_window_width_line_p != b->exact_window_width_line_p || a->overlapped_p != b->overlapped_p || (MATRIX_ROW_CONTINUATION_LINE_P (a) != MATRIX_ROW_CONTINUATION_LINE_P (b)) || a->reversed_p != b->reversed_p /* Different partially visible characters on left margin. */ || a->x != b->x /* Different height. */ || a->ascent != b->ascent || a->phys_ascent != b->phys_ascent || a->phys_height != b->phys_height || a->visible_height != b->visible_height) return 0; } return 1; } /*********************************************************************** Glyph Pool See dispextern.h for an overall explanation of glyph pools. ***********************************************************************/ /* Allocate a glyph_pool structure. The structure returned is initialized with zeros. If GLYPH_DEBUG and ENABLE_CHECKING are in effect, the global variable glyph_pool_count is incremented for each pool allocated. */ static struct glyph_pool * ATTRIBUTE_MALLOC new_glyph_pool (void) { struct glyph_pool *result = xzalloc (sizeof *result); #if defined GLYPH_DEBUG && defined ENABLE_CHECKING /* For memory leak and double deletion checking. */ ++glyph_pool_count; #endif return result; } /* Free a glyph_pool structure POOL. The function may be called with a null POOL pointer. If GLYPH_DEBUG and ENABLE_CHECKING are in effect, global variable glyph_pool_count is decremented with every pool structure freed. If this count gets negative, more structures were freed than allocated, i.e. one structure must have been freed more than once or a bogus pointer was passed to free_glyph_pool. */ static void free_glyph_pool (struct glyph_pool *pool) { if (pool) { #if defined GLYPH_DEBUG && defined ENABLE_CHECKING /* More freed than allocated? */ --glyph_pool_count; eassert (glyph_pool_count >= 0); #endif xfree (pool->glyphs); xfree (pool); } } /* Enlarge a glyph pool POOL. MATRIX_DIM gives the number of rows and columns we need. This function never shrinks a pool. The only case in which this would make sense, would be when a frame's size is changed from a large value to a smaller one. But, if someone does it once, we can expect that he will do it again. Return true if the pool changed in a way which makes re-adjusting window glyph matrices necessary. */ static bool realloc_glyph_pool (struct glyph_pool *pool, struct dim matrix_dim) { ptrdiff_t needed; bool changed_p; changed_p = (pool->glyphs == 0 || matrix_dim.height != pool->nrows || matrix_dim.width != pool->ncolumns); /* Enlarge the glyph pool. */ if (ckd_mul (&needed, matrix_dim.height, matrix_dim.width)) memory_full (SIZE_MAX); if (needed > pool->nglyphs) { ptrdiff_t old_nglyphs = pool->nglyphs; pool->glyphs = xpalloc (pool->glyphs, &pool->nglyphs, needed - old_nglyphs, -1, sizeof *pool->glyphs); memclear (pool->glyphs + old_nglyphs, (pool->nglyphs - old_nglyphs) * sizeof *pool->glyphs); } /* Remember the number of rows and columns because (a) we use them to do sanity checks, and (b) the number of columns determines where rows in the frame matrix start---this must be available to determine pointers to rows of window sub-matrices. */ pool->nrows = matrix_dim.height; pool->ncolumns = matrix_dim.width; return changed_p; } /*********************************************************************** Debug Code ***********************************************************************/ #ifdef GLYPH_DEBUG /* Flush standard output. This is sometimes useful to call from the debugger. XXX Maybe this should be changed to flush the current terminal instead of stdout. */ void flush_stdout (void) EXTERNALLY_VISIBLE; void flush_stdout (void) { fflush (stdout); } /* Check that no glyph pointers have been lost in MATRIX. If a pointer has been lost, e.g. by using a structure assignment between rows, at least one pointer must occur more than once in the rows of MATRIX. */ void check_matrix_pointer_lossage (struct glyph_matrix *matrix) { int i, j; for (i = 0; i < matrix->nrows; ++i) for (j = 0; j < matrix->nrows; ++j) eassert (i == j || (matrix->rows[i].glyphs[TEXT_AREA] != matrix->rows[j].glyphs[TEXT_AREA])); } /* Get a pointer to glyph row ROW in MATRIX, with bounds checks. */ struct glyph_row * matrix_row (struct glyph_matrix *matrix, int row) { eassert (matrix && matrix->rows); eassert (row >= 0 && row < matrix->nrows); /* That's really too slow for normal testing because this function is called almost everywhere. Although---it's still astonishingly fast, so it is valuable to have for debugging purposes. */ #if 0 check_matrix_pointer_lossage (matrix); #endif return matrix->rows + row; } #if 0 /* This function makes invalid assumptions when text is partially invisible. But it might come handy for debugging nevertheless. */ /* Check invariants that must hold for an up to date current matrix of window W. */ static void check_matrix_invariants (struct window *w) { struct glyph_matrix *matrix = w->current_matrix; int yb = window_text_bottom_y (w); struct glyph_row *row = matrix->rows; struct glyph_row *last_text_row = NULL; struct buffer *saved = current_buffer; struct buffer *buffer = XBUFFER (w->contents); int c; /* This can sometimes happen for a fresh window. */ if (matrix->nrows < 2) return; set_buffer_temp (buffer); /* Note: last row is always reserved for the mode line. */ while (MATRIX_ROW_DISPLAYS_TEXT_P (row) && MATRIX_ROW_BOTTOM_Y (row) < yb) { struct glyph_row *next = row + 1; if (MATRIX_ROW_DISPLAYS_TEXT_P (row)) last_text_row = row; /* Check that character and byte positions are in sync. */ eassert (MATRIX_ROW_START_BYTEPOS (row) == CHAR_TO_BYTE (MATRIX_ROW_START_CHARPOS (row))); eassert (BYTEPOS (row->start.pos) == CHAR_TO_BYTE (CHARPOS (row->start.pos))); /* CHAR_TO_BYTE aborts when invoked for a position > Z. We can have such a position temporarily in case of a minibuffer displaying something like `[Sole completion]' at its end. */ if (MATRIX_ROW_END_CHARPOS (row) < BUF_ZV (current_buffer)) { eassert (MATRIX_ROW_END_BYTEPOS (row) == CHAR_TO_BYTE (MATRIX_ROW_END_CHARPOS (row))); eassert (BYTEPOS (row->end.pos) == CHAR_TO_BYTE (CHARPOS (row->end.pos))); } /* Check that end position of `row' is equal to start position of next row. */ if (next->enabled_p && MATRIX_ROW_DISPLAYS_TEXT_P (next)) { eassert (MATRIX_ROW_END_CHARPOS (row) == MATRIX_ROW_START_CHARPOS (next)); eassert (MATRIX_ROW_END_BYTEPOS (row) == MATRIX_ROW_START_BYTEPOS (next)); eassert (CHARPOS (row->end.pos) == CHARPOS (next->start.pos)); eassert (BYTEPOS (row->end.pos) == BYTEPOS (next->start.pos)); } row = next; } eassert (w->current_matrix->nrows == w->desired_matrix->nrows); eassert (w->desired_matrix->rows != NULL); set_buffer_temp (saved); } #endif /* 0 */ #endif /* GLYPH_DEBUG */ /********************************************************************** Allocating/ Adjusting Glyph Matrices **********************************************************************/ /* Allocate glyph matrices over a window tree for a frame-based redisplay X and Y are column/row within the frame glyph matrix where sub-matrices for the window tree rooted at WINDOW must be allocated. DIM_ONLY_P means that the caller of this function is only interested in the result matrix dimension, and matrix adjustments should not be performed. The function returns the total width/height of the sub-matrices of the window tree. If called on a frame root window, the computation will take the mini-buffer window into account. *WINDOW_CHANGE_FLAGS is set to a bit mask with bits NEW_LEAF_MATRIX set if any window in the tree did not have a glyph matrices yet, and CHANGED_LEAF_MATRIX set if the dimension or location of a matrix of any window in the tree will be changed or have been changed (see DIM_ONLY_P) *WINDOW_CHANGE_FLAGS must be initialized by the caller of this function. Windows are arranged into chains of windows on the same level through the next fields of window structures. Such a level can be either a sequence of horizontally adjacent windows from left to right, or a sequence of vertically adjacent windows from top to bottom. Each window in a horizontal sequence can be either a leaf window or a vertical sequence; a window in a vertical sequence can be either a leaf or a horizontal sequence. All windows in a horizontal sequence have the same height, and all windows in a vertical sequence have the same width. This function uses, for historical reasons, a more general algorithm to determine glyph matrix dimensions that would be necessary. The matrix height of a horizontal sequence is determined by the maximum height of any matrix in the sequence. The matrix width of a horizontal sequence is computed by adding up matrix widths of windows in the sequence. |<------- result width ------->| +---------+----------+---------+ --- | | | | | | | | | +---------+ | | result height | +---------+ | | | +----------+ --- The matrix width of a vertical sequence is the maximum matrix width of any window in the sequence. Its height is computed by adding up matrix heights of windows in the sequence. |<---- result width -->| +---------+ --- | | | | | | +---------+--+ | | | | | | result height | | +------------+---------+ | | | | | | | +------------+---------+ --- */ /* Bit indicating that a new matrix will be allocated or has been allocated. */ #define NEW_LEAF_MATRIX (1 << 0) /* Bit indicating that a matrix will or has changed its location or size. */ #define CHANGED_LEAF_MATRIX (1 << 1) static struct dim allocate_matrices_for_frame_redisplay (Lisp_Object window, int x, int y, bool dim_only_p, int *window_change_flags) { struct frame *f = XFRAME (WINDOW_FRAME (XWINDOW (window))); int x0 = x, y0 = y; int wmax = 0, hmax = 0; struct dim total; struct dim dim; struct window *w; bool in_horz_combination_p; /* What combination is WINDOW part of? Compute this once since the result is the same for all windows in the `next' chain. The special case of a root window (parent equal to nil) is treated like a vertical combination because a root window's `next' points to the mini-buffer window, if any, which is arranged vertically below other windows. */ in_horz_combination_p = (!NILP (XWINDOW (window)->parent) && WINDOW_HORIZONTAL_COMBINATION_P (XWINDOW (XWINDOW (window)->parent))); /* For WINDOW and all windows on the same level. */ do { w = XWINDOW (window); /* Get the dimension of the window sub-matrix for W, depending on whether this is a combination or a leaf window. */ if (WINDOWP (w->contents)) dim = allocate_matrices_for_frame_redisplay (w->contents, x, y, dim_only_p, window_change_flags); else { /* If not already done, allocate sub-matrix structures. */ if (w->desired_matrix == NULL) { w->desired_matrix = new_glyph_matrix (f->desired_pool); w->current_matrix = new_glyph_matrix (f->current_pool); *window_change_flags |= NEW_LEAF_MATRIX; } /* Width and height MUST be chosen so that there are no holes in the frame matrix. */ dim.width = required_matrix_width (w); dim.height = required_matrix_height (w); /* Will matrix be re-allocated? */ if (x != w->desired_matrix->matrix_x || y != w->desired_matrix->matrix_y || dim.width != w->desired_matrix->matrix_w || dim.height != w->desired_matrix->matrix_h || (margin_glyphs_to_reserve (w, dim.width, w->left_margin_cols) != w->desired_matrix->left_margin_glyphs) || (margin_glyphs_to_reserve (w, dim.width, w->right_margin_cols) != w->desired_matrix->right_margin_glyphs)) *window_change_flags |= CHANGED_LEAF_MATRIX; /* Actually change matrices, if allowed. Do not consider CHANGED_LEAF_MATRIX computed above here because the pool may have been changed which we don't know here. We trust that we only will be called with DIM_ONLY_P when necessary. */ if (!dim_only_p) { adjust_glyph_matrix (w, w->desired_matrix, x, y, dim); adjust_glyph_matrix (w, w->current_matrix, x, y, dim); } } /* If we are part of a horizontal combination, advance x for windows to the right of W; otherwise advance y for windows below W. */ if (in_horz_combination_p) x += dim.width; else y += dim.height; /* Remember maximum glyph matrix dimensions. */ wmax = max (wmax, dim.width); hmax = max (hmax, dim.height); /* Next window on same level. */ window = w->next; } while (!NILP (window)); /* Set `total' to the total glyph matrix dimension of this window level. In a vertical combination, the width is the width of the widest window; the height is the y we finally reached, corrected by the y we started with. In a horizontal combination, the total height is the height of the tallest window, and the width is the x we finally reached, corrected by the x we started with. */ if (in_horz_combination_p) { total.width = x - x0; total.height = hmax; } else { total.width = wmax; total.height = y - y0; } return total; } /* Return the required height of glyph matrices for window W. */ static int required_matrix_height (struct window *w) { #ifdef HAVE_WINDOW_SYSTEM struct frame *f = XFRAME (w->frame); if (FRAME_WINDOW_P (f)) { /* https://lists.gnu.org/r/emacs-devel/2015-11/msg00194.html */ int ch_height = max (FRAME_SMALLEST_FONT_HEIGHT (f), 1); int window_pixel_height = window_box_height (w) + eabs (w->vscroll); return (((window_pixel_height + ch_height - 1) / ch_height) * w->nrows_scale_factor /* One partially visible line at the top and bottom of the window. */ + 2 /* 3 for tab, header and mode line. */ + 3); } #endif /* HAVE_WINDOW_SYSTEM */ return WINDOW_TOTAL_LINES (w); } /* Return the required width of glyph matrices for window W. */ static int required_matrix_width (struct window *w) { #ifdef HAVE_WINDOW_SYSTEM struct frame *f = XFRAME (w->frame); if (FRAME_WINDOW_P (f)) { /* https://lists.gnu.org/r/emacs-devel/2015-11/msg00194.html */ int ch_width = max (FRAME_SMALLEST_CHAR_WIDTH (f), 1); /* Compute number of glyphs needed in a glyph row. */ return (((WINDOW_PIXEL_WIDTH (w) + ch_width - 1) / ch_width) * w->ncols_scale_factor /* 2 partially visible columns in the text area. */ + 2 /* One partially visible column at the right edge of each marginal area. */ + 1 + 1); } #endif /* HAVE_WINDOW_SYSTEM */ return w->total_cols; } /* Allocate window matrices for window-based redisplay. W is the window whose matrices must be allocated/reallocated. */ static void allocate_matrices_for_window_redisplay (struct window *w) { while (w) { if (WINDOWP (w->contents)) allocate_matrices_for_window_redisplay (XWINDOW (w->contents)); else { /* W is a leaf window. */ struct dim dim; /* If matrices are not yet allocated, allocate them now. */ if (w->desired_matrix == NULL) { w->desired_matrix = new_glyph_matrix (NULL); eassert (w->current_matrix == NULL); } if (w->current_matrix == NULL) w->current_matrix = new_glyph_matrix (NULL); dim.width = required_matrix_width (w); dim.height = required_matrix_height (w); adjust_glyph_matrix (w, w->desired_matrix, 0, 0, dim); adjust_glyph_matrix (w, w->current_matrix, 0, 0, dim); } w = NILP (w->next) ? NULL : XWINDOW (w->next); } } /* Allocate/reallocate glyph matrices of a single frame F. This function must be called when a new frame is created, its size changes, or its window configuration changes. */ void adjust_frame_glyphs (struct frame *f) { /* Block input so that expose events and other events that access glyph matrices are not processed while we are changing them. */ block_input (); if (FRAME_WINDOW_P (f)) adjust_frame_glyphs_for_window_redisplay (f); else { adjust_frame_glyphs_for_frame_redisplay (f); eassert (FRAME_INITIAL_P (f) || noninteractive || !initialized || !f->terminal->name /* frame is being deleted */ || (f->current_matrix && f->current_matrix->nrows > 0 && f->current_matrix->rows && f->desired_matrix && f->desired_matrix->nrows > 0 && f->desired_matrix->rows)); } /* Don't forget the buffer for decode_mode_spec. */ adjust_decode_mode_spec_buffer (f); f->glyphs_initialized_p = true; unblock_input (); } /* Return true if any window in the tree has nonzero window margins. See the hack at the end of adjust_frame_glyphs_for_frame_redisplay. */ static bool showing_window_margins_p (struct window *w) { while (w) { if (WINDOWP (w->contents)) { if (showing_window_margins_p (XWINDOW (w->contents))) return 1; } else if (w->left_margin_cols > 0 || w->right_margin_cols > 0) return 1; w = NILP (w->next) ? 0 : XWINDOW (w->next); } return 0; } /* In the window tree with root W, build current matrices of leaf windows from the frame's current matrix. */ static void fake_current_matrices (Lisp_Object window) { struct window *w; for (; !NILP (window); window = w->next) { w = XWINDOW (window); if (WINDOWP (w->contents)) fake_current_matrices (w->contents); else { int i; struct frame *f = XFRAME (w->frame); struct glyph_matrix *m = w->current_matrix; struct glyph_matrix *fm = f->current_matrix; eassert (m->matrix_h == WINDOW_TOTAL_LINES (w)); eassert (m->matrix_w == WINDOW_TOTAL_COLS (w)); for (i = 0; i < m->matrix_h; ++i) { struct glyph_row *r = m->rows + i; struct glyph_row *fr = fm->rows + i + WINDOW_TOP_EDGE_LINE (w); eassert (r->glyphs[TEXT_AREA] >= fr->glyphs[TEXT_AREA] && r->glyphs[LAST_AREA] <= fr->glyphs[LAST_AREA]); r->enabled_p = fr->enabled_p; if (r->enabled_p) { r->used[LEFT_MARGIN_AREA] = m->left_margin_glyphs; r->used[RIGHT_MARGIN_AREA] = m->right_margin_glyphs; r->used[TEXT_AREA] = (m->matrix_w - r->used[LEFT_MARGIN_AREA] - r->used[RIGHT_MARGIN_AREA]); r->mode_line_p = 0; r->tab_line_p = 0; } } } } } /* Save away the contents of frame F's current frame matrix. Value is a glyph matrix holding the contents of F's current frame matrix. */ static struct glyph_matrix * save_current_matrix (struct frame *f) { int i; struct glyph_matrix *saved = xzalloc (sizeof *saved); saved->nrows = f->current_matrix->nrows; saved->rows = xzalloc (saved->nrows * sizeof *saved->rows); for (i = 0; i < saved->nrows; ++i) { struct glyph_row *from = f->current_matrix->rows + i; struct glyph_row *to = saved->rows + i; ptrdiff_t nbytes = from->used[TEXT_AREA] * sizeof (struct glyph); to->glyphs[TEXT_AREA] = xmalloc (nbytes); memcpy (to->glyphs[TEXT_AREA], from->glyphs[TEXT_AREA], nbytes); to->used[TEXT_AREA] = from->used[TEXT_AREA]; to->enabled_p = from->enabled_p; to->hash = from->hash; if (from->used[LEFT_MARGIN_AREA]) { nbytes = from->used[LEFT_MARGIN_AREA] * sizeof (struct glyph); to->glyphs[LEFT_MARGIN_AREA] = xmalloc (nbytes); memcpy (to->glyphs[LEFT_MARGIN_AREA], from->glyphs[LEFT_MARGIN_AREA], nbytes); to->used[LEFT_MARGIN_AREA] = from->used[LEFT_MARGIN_AREA]; } if (from->used[RIGHT_MARGIN_AREA]) { nbytes = from->used[RIGHT_MARGIN_AREA] * sizeof (struct glyph); to->glyphs[RIGHT_MARGIN_AREA] = xmalloc (nbytes); memcpy (to->glyphs[RIGHT_MARGIN_AREA], from->glyphs[RIGHT_MARGIN_AREA], nbytes); to->used[RIGHT_MARGIN_AREA] = from->used[RIGHT_MARGIN_AREA]; } } return saved; } /* Restore the contents of frame F's current frame matrix from SAVED, and free memory associated with SAVED. */ static void restore_current_matrix (struct frame *f, struct glyph_matrix *saved) { int i; for (i = 0; i < saved->nrows; ++i) { struct glyph_row *from = saved->rows + i; struct glyph_row *to = f->current_matrix->rows + i; ptrdiff_t nbytes = from->used[TEXT_AREA] * sizeof (struct glyph); memcpy (to->glyphs[TEXT_AREA], from->glyphs[TEXT_AREA], nbytes); to->used[TEXT_AREA] = from->used[TEXT_AREA]; xfree (from->glyphs[TEXT_AREA]); nbytes = from->used[LEFT_MARGIN_AREA] * sizeof (struct glyph); if (nbytes) { memcpy (to->glyphs[LEFT_MARGIN_AREA], from->glyphs[LEFT_MARGIN_AREA], nbytes); to->used[LEFT_MARGIN_AREA] = from->used[LEFT_MARGIN_AREA]; xfree (from->glyphs[LEFT_MARGIN_AREA]); } else to->used[LEFT_MARGIN_AREA] = 0; nbytes = from->used[RIGHT_MARGIN_AREA] * sizeof (struct glyph); if (nbytes) { memcpy (to->glyphs[RIGHT_MARGIN_AREA], from->glyphs[RIGHT_MARGIN_AREA], nbytes); to->used[RIGHT_MARGIN_AREA] = from->used[RIGHT_MARGIN_AREA]; xfree (from->glyphs[RIGHT_MARGIN_AREA]); } else to->used[RIGHT_MARGIN_AREA] = 0; } xfree (saved->rows); xfree (saved); } /* Allocate/reallocate glyph matrices of a single frame F for frame-based redisplay. */ static void adjust_frame_glyphs_for_frame_redisplay (struct frame *f) { struct dim matrix_dim; bool pool_changed_p; int window_change_flags; int top_window_y; if (!FRAME_LIVE_P (f)) return; top_window_y = FRAME_TOP_MARGIN (f); /* Allocate glyph pool structures if not already done. */ if (f->desired_pool == NULL) { f->desired_pool = new_glyph_pool (); f->current_pool = new_glyph_pool (); } /* Allocate frames matrix structures if needed. */ if (f->desired_matrix == NULL) { f->desired_matrix = new_glyph_matrix (f->desired_pool); f->current_matrix = new_glyph_matrix (f->current_pool); } /* Compute window glyph matrices. (This takes the mini-buffer window into account). The result is the size of the frame glyph matrix needed. The variable window_change_flags is set to a bit mask indicating whether new matrices will be allocated or existing matrices change their size or location within the frame matrix. */ window_change_flags = 0; matrix_dim = allocate_matrices_for_frame_redisplay (FRAME_ROOT_WINDOW (f), 0, top_window_y, 1, &window_change_flags); /* Add in menu bar lines, if any. */ matrix_dim.height += top_window_y; /* Enlarge pools as necessary. */ pool_changed_p = realloc_glyph_pool (f->desired_pool, matrix_dim); realloc_glyph_pool (f->current_pool, matrix_dim); /* Set up glyph pointers within window matrices. Do this only if absolutely necessary since it requires a frame redraw. */ if (pool_changed_p || window_change_flags) { /* Do it for window matrices. */ allocate_matrices_for_frame_redisplay (FRAME_ROOT_WINDOW (f), 0, top_window_y, 0, &window_change_flags); /* Size of frame matrices must equal size of frame. Note that we are called for X frames with window widths NOT equal to the frame width (from CHANGE_FRAME_SIZE_1). */ if (matrix_dim.width != FRAME_TOTAL_COLS (f) || matrix_dim.height != FRAME_TOTAL_LINES (f)) { /* We have reallocated the frame's glyph pools, but didn't update the glyph pointers in the frame's glyph matrices to use the reallocated pools (that happens below, in the call to adjust_glyph_matrix). Set the frame's garbaged flag, so that when we are called again from redisplay_internal, we don't erroneously call save_current_matrix, because it will use the wrong glyph pointers, and will most probably crash. */ if (!FRAME_WINDOW_P (f) && pool_changed_p) SET_FRAME_GARBAGED (f); return; } eassert (matrix_dim.width == FRAME_TOTAL_COLS (f) && matrix_dim.height == FRAME_TOTAL_LINES (f)); /* Pointers to glyph memory in glyph rows are exchanged during the update phase of redisplay, which means in general that a frame's current matrix consists of pointers into both the desired and current glyph pool of the frame. Adjusting a matrix sets the frame matrix up so that pointers are all into the same pool. If we want to preserve glyph contents of the current matrix over a call to adjust_glyph_matrix, we must make a copy of the current glyphs, and restore the current matrix' contents from that copy. */ if (display_completed && !FRAME_GARBAGED_P (f) && matrix_dim.width == f->current_matrix->matrix_w && matrix_dim.height == f->current_matrix->matrix_h /* For some reason, the frame glyph matrix gets corrupted if any of the windows contain margins. I haven't been able to hunt down the reason, but for the moment this prevents the problem from manifesting. -- cyd */ && !showing_window_margins_p (XWINDOW (FRAME_ROOT_WINDOW (f)))) { struct glyph_matrix *copy = save_current_matrix (f); adjust_glyph_matrix (NULL, f->desired_matrix, 0, 0, matrix_dim); adjust_glyph_matrix (NULL, f->current_matrix, 0, 0, matrix_dim); restore_current_matrix (f, copy); fake_current_matrices (FRAME_ROOT_WINDOW (f)); } else { adjust_glyph_matrix (NULL, f->desired_matrix, 0, 0, matrix_dim); adjust_glyph_matrix (NULL, f->current_matrix, 0, 0, matrix_dim); SET_FRAME_GARBAGED (f); } } else if (!FRAME_INITIAL_P (f) && !noninteractive && initialized) { if (!f->desired_matrix->nrows || !f->desired_matrix->rows) { adjust_glyph_matrix (NULL, f->desired_matrix, 0, 0, matrix_dim); SET_FRAME_GARBAGED (f); } if (!f->current_matrix->nrows || !f->current_matrix->rows) { adjust_glyph_matrix (NULL, f->current_matrix, 0, 0, matrix_dim); SET_FRAME_GARBAGED (f); } } } /* Allocate/reallocate glyph matrices of a single frame F for window-based redisplay. */ static void adjust_frame_glyphs_for_window_redisplay (struct frame *f) { eassert (FRAME_WINDOW_P (f) && FRAME_LIVE_P (f)); /* Allocate/reallocate window matrices. */ allocate_matrices_for_window_redisplay (XWINDOW (FRAME_ROOT_WINDOW (f))); #if defined HAVE_WINDOW_SYSTEM && !defined HAVE_EXT_MENU_BAR /* Allocate/ reallocate matrices of the dummy window used to display the menu bar under X when no X toolkit support is available. */ { /* Allocate a dummy window if not already done. */ struct window *w; if (NILP (f->menu_bar_window)) { Lisp_Object frame; fset_menu_bar_window (f, make_window ()); w = XWINDOW (f->menu_bar_window); XSETFRAME (frame, f); wset_frame (w, frame); w->pseudo_window_p = 1; } else w = XWINDOW (f->menu_bar_window); /* Set window dimensions to frame dimensions and allocate or adjust glyph matrices of W. */ w->pixel_left = 0; w->left_col = 0; w->pixel_top = 0; w->top_line = 0; w->pixel_width = (FRAME_PIXEL_WIDTH (f) - 2 * FRAME_INTERNAL_BORDER_WIDTH (f)); w->total_cols = FRAME_TOTAL_COLS (f); w->pixel_height = FRAME_MENU_BAR_HEIGHT (f); w->total_lines = FRAME_MENU_BAR_LINES (f); allocate_matrices_for_window_redisplay (w); } #endif #if defined (HAVE_WINDOW_SYSTEM) { /* Allocate/ reallocate matrices of the tab bar window. If we don't have a tab bar window yet, make one. */ struct window *w; if (NILP (f->tab_bar_window)) { Lisp_Object frame; fset_tab_bar_window (f, make_window ()); w = XWINDOW (f->tab_bar_window); XSETFRAME (frame, f); wset_frame (w, frame); w->pseudo_window_p = 1; } else w = XWINDOW (f->tab_bar_window); w->pixel_left = 0; w->left_col = 0; /* Note that tab and tool bar windows appear above the internal border, as enforced by WINDOW_TOP_EDGE_Y. */ w->pixel_top = (FRAME_MENU_BAR_HEIGHT (f) + (!NILP (Vtab_bar_position) ? FRAME_TOOL_BAR_TOP_HEIGHT (f) : 0)); w->top_line = (FRAME_MENU_BAR_LINES (f) + (!NILP (Vtab_bar_position) ? FRAME_TOOL_BAR_TOP_LINES (f) : 0)); w->total_cols = FRAME_TOTAL_COLS (f); w->pixel_width = (FRAME_PIXEL_WIDTH (f) - 2 * FRAME_INTERNAL_BORDER_WIDTH (f)); w->total_lines = FRAME_TAB_BAR_LINES (f); w->pixel_height = FRAME_TAB_BAR_HEIGHT (f); allocate_matrices_for_window_redisplay (w); } #endif #if defined (HAVE_WINDOW_SYSTEM) && ! defined (HAVE_EXT_TOOL_BAR) { /* Allocate/ reallocate matrices of the tool bar window. If we don't have a tool bar window yet, make one. */ struct window *w; if (NILP (f->tool_bar_window)) { Lisp_Object frame; fset_tool_bar_window (f, make_window ()); w = XWINDOW (f->tool_bar_window); XSETFRAME (frame, f); wset_frame (w, frame); w->pseudo_window_p = 1; } else w = XWINDOW (f->tool_bar_window); w->pixel_left = 0; w->left_col = 0; /* If the tool bar should be placed at the bottom of the frame, place it there instead, outside the internal border. */ if (EQ (FRAME_TOOL_BAR_POSITION (f), Qbottom)) { w->pixel_top = (FRAME_PIXEL_HEIGHT (f) - FRAME_TOOL_BAR_HEIGHT (f)); w->top_line = (FRAME_LINES (f) - FRAME_TOOL_BAR_LINES (f)); } else { /* Otherwise, place the window at the top of the frame. */ w->pixel_top = (FRAME_MENU_BAR_HEIGHT (f) + (NILP (Vtab_bar_position) ? FRAME_TAB_BAR_HEIGHT (f) : 0)); w->top_line = (FRAME_MENU_BAR_LINES (f) + (NILP (Vtab_bar_position) ? FRAME_TAB_BAR_LINES (f) : 0)); } w->total_cols = FRAME_TOTAL_COLS (f); w->pixel_width = (FRAME_PIXEL_WIDTH (f) - 2 * FRAME_INTERNAL_BORDER_WIDTH (f)); w->total_lines = FRAME_TOOL_BAR_LINES (f); w->pixel_height = FRAME_TOOL_BAR_HEIGHT (f); allocate_matrices_for_window_redisplay (w); } #endif } /* Re-allocate buffer for decode_mode_spec on frame F. */ static void adjust_decode_mode_spec_buffer (struct frame *f) { int frame_message_buf_size = FRAME_MESSAGE_BUF_SIZE (f); eassert (frame_message_buf_size >= 0); f->decode_mode_spec_buffer = xrealloc (f->decode_mode_spec_buffer, frame_message_buf_size + 1); } /********************************************************************** Freeing Glyph Matrices **********************************************************************/ /* Free glyph memory for a frame F. F may be null. This function can be called for the same frame more than once. The root window of F may be nil when this function is called. This is the case when the function is called when F is destroyed. */ void free_glyphs (struct frame *f) { if (f && f->glyphs_initialized_p) { /* Block interrupt input so that we don't get surprised by an X event while we're in an inconsistent state. */ block_input (); f->glyphs_initialized_p = false; /* Release window sub-matrices. */ if (!NILP (f->root_window)) free_window_matrices (XWINDOW (f->root_window)); #if defined HAVE_WINDOW_SYSTEM && !defined HAVE_EXT_MENU_BAR /* Free the dummy window for menu bars without X toolkit and its glyph matrices. */ if (!NILP (f->menu_bar_window)) { struct window *w = XWINDOW (f->menu_bar_window); free_glyph_matrix (w->desired_matrix); free_glyph_matrix (w->current_matrix); w->desired_matrix = w->current_matrix = NULL; fset_menu_bar_window (f, Qnil); } #endif #if defined (HAVE_WINDOW_SYSTEM) /* Free the tab bar window and its glyph matrices. */ if (!NILP (f->tab_bar_window)) { struct window *w = XWINDOW (f->tab_bar_window); free_glyph_matrix (w->desired_matrix); free_glyph_matrix (w->current_matrix); w->desired_matrix = w->current_matrix = NULL; fset_tab_bar_window (f, Qnil); } #endif #if defined (HAVE_WINDOW_SYSTEM) && ! defined (HAVE_EXT_TOOL_BAR) /* Free the tool bar window and its glyph matrices. */ if (!NILP (f->tool_bar_window)) { struct window *w = XWINDOW (f->tool_bar_window); free_glyph_matrix (w->desired_matrix); free_glyph_matrix (w->current_matrix); w->desired_matrix = w->current_matrix = NULL; fset_tool_bar_window (f, Qnil); } #endif /* Release frame glyph matrices. Reset fields to zero in case we are called a second time. */ if (f->desired_matrix) { free_glyph_matrix (f->desired_matrix); free_glyph_matrix (f->current_matrix); f->desired_matrix = f->current_matrix = NULL; } /* Release glyph pools. */ if (f->desired_pool) { free_glyph_pool (f->desired_pool); free_glyph_pool (f->current_pool); f->desired_pool = f->current_pool = NULL; } unblock_input (); } } /* Free glyph sub-matrices in the window tree rooted at W. This function may be called with a null pointer, and it may be called on the same tree more than once. */ void free_window_matrices (struct window *w) { while (w) { if (WINDOWP (w->contents)) free_window_matrices (XWINDOW (w->contents)); else { /* This is a leaf window. Free its memory and reset fields to zero in case this function is called a second time for W. */ free_glyph_matrix (w->current_matrix); free_glyph_matrix (w->desired_matrix); w->current_matrix = w->desired_matrix = NULL; } /* Next window on same level. */ w = NILP (w->next) ? 0 : XWINDOW (w->next); } } /* Check glyph memory leaks. This function is called from shut_down_emacs. Note that frames are not destroyed when Emacs exits. We therefore free all glyph memory for all active frames explicitly and check that nothing is left allocated. */ void check_glyph_memory (void) { Lisp_Object tail, frame; /* Free glyph memory for all frames. */ FOR_EACH_FRAME (tail, frame) free_glyphs (XFRAME (frame)); #if defined GLYPH_DEBUG && defined ENABLE_CHECKING /* Check that nothing is left allocated. */ eassert (glyph_matrix_count == 0); eassert (glyph_pool_count == 0); #endif } /********************************************************************** Building a Frame Matrix **********************************************************************/ /* Most of the redisplay code works on glyph matrices attached to windows. This is a good solution most of the time, but it is not suitable for terminal code. Terminal output functions cannot rely on being able to set an arbitrary terminal window. Instead they must be provided with a view of the whole frame, i.e. the whole screen. We build such a view by constructing a frame matrix from window matrices in this section. Windows that must be updated have their must_be_updated_p flag set. For all such windows, their desired matrix is made part of the desired frame matrix. For other windows, their current matrix is made part of the desired frame matrix. +-----------------+----------------+ | desired | desired | | | | +-----------------+----------------+ | current | | | +----------------------------------+ Desired window matrices can be made part of the frame matrix in a cheap way: We exploit the fact that the desired frame matrix and desired window matrices share their glyph memory. This is not possible for current window matrices. Their glyphs are copied to the desired frame matrix. The latter is equivalent to preserve_other_columns in the old redisplay. Used glyphs counters for frame matrix rows are the result of adding up glyph lengths of the window matrices. A line in the frame matrix is enabled, if a corresponding line in a window matrix is enabled. After building the desired frame matrix, it will be passed to terminal code, which will manipulate both the desired and current frame matrix. Changes applied to the frame's current matrix have to be visible in current window matrices afterwards, of course. This problem is solved like this: 1. Window and frame matrices share glyphs. Window matrices are constructed in a way that their glyph contents ARE the glyph contents needed in a frame matrix. Thus, any modification of glyphs done in terminal code will be reflected in window matrices automatically. 2. Exchanges of rows in a frame matrix done by terminal code are intercepted by hook functions so that corresponding row operations on window matrices can be performed. This is necessary because we use pointers to glyphs in glyph row structures. To satisfy the assumption of point 1 above that glyphs are updated implicitly in window matrices when they are manipulated via the frame matrix, window and frame matrix must of course agree where to find the glyphs for their rows. Possible manipulations that must be mirrored are assignments of rows of the desired frame matrix to the current frame matrix and scrolling the current frame matrix. */ /* Build frame F's desired matrix from window matrices. Only windows which have the flag must_be_updated_p set have to be updated. Menu bar lines of a frame are not covered by window matrices, so make sure not to touch them in this function. */ static void build_frame_matrix (struct frame *f) { int i; /* F must have a frame matrix when this function is called. */ eassert (!FRAME_WINDOW_P (f)); /* Clear all rows in the frame matrix covered by window matrices. Menu bar lines are not covered by windows. */ for (i = FRAME_TOP_MARGIN (f); i < f->desired_matrix->nrows; ++i) clear_glyph_row (MATRIX_ROW (f->desired_matrix, i)); /* Build the matrix by walking the window tree. */ build_frame_matrix_from_window_tree (f->desired_matrix, XWINDOW (FRAME_ROOT_WINDOW (f))); } /* Walk a window tree, building a frame matrix MATRIX from window matrices. W is the root of a window tree. */ static void build_frame_matrix_from_window_tree (struct glyph_matrix *matrix, struct window *w) { while (w) { if (WINDOWP (w->contents)) build_frame_matrix_from_window_tree (matrix, XWINDOW (w->contents)); else build_frame_matrix_from_leaf_window (matrix, w); w = NILP (w->next) ? 0 : XWINDOW (w->next); } } /* Add a window's matrix to a frame matrix. FRAME_MATRIX is the desired frame matrix built. W is a leaf window whose desired or current matrix is to be added to FRAME_MATRIX. W's flag must_be_updated_p determines which matrix it contributes to FRAME_MATRIX. If W->must_be_updated_p, W's desired matrix is added to FRAME_MATRIX, otherwise W's current matrix is added. Adding a desired matrix means setting up used counters and such in frame rows, while adding a current window matrix to FRAME_MATRIX means copying glyphs. The latter case corresponds to preserve_other_columns in the old redisplay. */ static void build_frame_matrix_from_leaf_window (struct glyph_matrix *frame_matrix, struct window *w) { struct glyph_matrix *window_matrix; int window_y, frame_y; /* If non-zero, a glyph to insert at the right border of W. */ GLYPH right_border_glyph; struct frame *f = XFRAME (w->frame); SET_GLYPH_FROM_CHAR (right_border_glyph, 0); /* Set window_matrix to the matrix we have to add to FRAME_MATRIX. */ if (w->must_be_updated_p) { window_matrix = w->desired_matrix; /* Decide whether we want to add a vertical border glyph. */ if (!WINDOW_RIGHTMOST_P (w)) { struct Lisp_Char_Table *dp = window_display_table (w); Lisp_Object gc; SET_GLYPH_FROM_CHAR (right_border_glyph, '|'); if (dp && (gc = DISP_BORDER_GLYPH (dp), GLYPH_CODE_P (gc))) { SET_GLYPH_FROM_GLYPH_CODE (right_border_glyph, gc); spec_glyph_lookup_face (w, &right_border_glyph); } if (GLYPH_FACE (right_border_glyph) <= 0) SET_GLYPH_FACE (right_border_glyph, VERTICAL_BORDER_FACE_ID); } } else window_matrix = w->current_matrix; /* For all rows in the window matrix and corresponding rows in the frame matrix. */ window_y = 0; frame_y = window_matrix->matrix_y; while (window_y < window_matrix->nrows) { struct glyph_row *frame_row = frame_matrix->rows + frame_y; struct glyph_row *window_row = window_matrix->rows + window_y; bool current_row_p = window_matrix == w->current_matrix; /* Fill up the frame row with spaces up to the left margin of the window row. */ fill_up_frame_row_with_spaces (f, frame_row, window_matrix->matrix_x); /* Fill up areas in the window matrix row with spaces. */ fill_up_glyph_row_with_spaces (f, window_row); /* If only part of W's desired matrix has been built, and window_row wasn't displayed, use the corresponding current row instead. */ if (window_matrix == w->desired_matrix && !window_row->enabled_p) { window_row = w->current_matrix->rows + window_y; current_row_p = 1; } if (current_row_p) { /* Copy window row to frame row. */ memcpy (frame_row->glyphs[TEXT_AREA] + window_matrix->matrix_x, window_row->glyphs[0], window_matrix->matrix_w * sizeof (struct glyph)); } else { eassert (window_row->enabled_p); /* Only when a desired row has been displayed, we want the corresponding frame row to be updated. */ frame_row->enabled_p = true; /* Maybe insert a vertical border between horizontally adjacent windows. */ if (GLYPH_CHAR (right_border_glyph) != 0) { struct glyph *border = window_row->glyphs[LAST_AREA] - 1; /* It's a subtle bug if we are overwriting some non-char glyph with the vertical border glyph. */ eassert (border->type == CHAR_GLYPH); border->type = CHAR_GLYPH; SET_CHAR_GLYPH_FROM_GLYPH (f, *border, right_border_glyph); } #ifdef GLYPH_DEBUG /* Window row window_y must be a slice of frame row frame_y. */ eassert (frame_size_change_delayed (XFRAME (w->frame)) || glyph_row_slice_p (window_row, frame_row)); /* If rows are in sync, we don't have to copy glyphs because frame and window share glyphs. */ strcpy (w->current_matrix->method, w->desired_matrix->method); add_window_display_history (w, w->current_matrix->method, 0); #endif } /* Set number of used glyphs in the frame matrix. Since we fill up with spaces, and visit leaf windows from left to right it can be done simply. */ frame_row->used[TEXT_AREA] = window_matrix->matrix_x + window_matrix->matrix_w; /* Next row. */ ++window_y; ++frame_y; } } /* Given a user-specified glyph, possibly including a Lisp-level face ID, return a glyph that has a realized face ID. This is used for glyphs displayed specially and not part of the text; for instance, vertical separators, truncation markers, etc. */ void spec_glyph_lookup_face (struct window *w, GLYPH *glyph) { int lface_id = GLYPH_FACE (*glyph); /* Convert the glyph's specified face to a realized (cache) face. */ if (lface_id > 0) { int face_id = merge_faces (w, Qt, lface_id, DEFAULT_FACE_ID); SET_GLYPH_FACE (*glyph, face_id); } } /* Add spaces to a glyph row ROW in a window matrix. Each row has the form: +---------+-----------------------------+------------+ | left | text | right | +---------+-----------------------------+------------+ Left and right marginal areas are optional. This function adds spaces to areas so that there are no empty holes between areas. In other words: If the right area is not empty, the text area is filled up with spaces up to the right area. If the text area is not empty, the left area is filled up. To be called for frame-based redisplay, only. */ static void fill_up_glyph_row_with_spaces (struct frame *f, struct glyph_row *row) { fill_up_glyph_row_area_with_spaces (f, row, LEFT_MARGIN_AREA); fill_up_glyph_row_area_with_spaces (f, row, TEXT_AREA); fill_up_glyph_row_area_with_spaces (f, row, RIGHT_MARGIN_AREA); } /* Fill area AREA of glyph row ROW with spaces. To be called for frame-based redisplay only. */ static void fill_up_glyph_row_area_with_spaces (struct frame *f, struct glyph_row *row, int area) { if (row->glyphs[area] < row->glyphs[area + 1]) { struct glyph *end = row->glyphs[area + 1]; struct glyph *text = row->glyphs[area] + row->used[area]; for (; text < end; ++text) { *text = space_glyph; text->frame = f; } row->used[area] = text - row->glyphs[area]; } } /* Add spaces to the end of ROW in a frame matrix until index UPTO is reached. In frame matrices only one area, TEXT_AREA, is used. */ void fill_up_frame_row_with_spaces (struct frame *f, struct glyph_row *row, int upto) { int i = row->used[TEXT_AREA]; struct glyph *glyph = row->glyphs[TEXT_AREA]; for (; i < upto; ++i) { glyph[i] = space_glyph; glyph[i].frame = f; } row->used[TEXT_AREA] = i; } /********************************************************************** Mirroring operations on frame matrices in window matrices **********************************************************************/ /* Make sure glyph row ROW in CURRENT_MATRIX is up to date. DESIRED_MATRIX is the desired matrix corresponding to CURRENT_MATRIX. The update is done by exchanging glyph pointers between rows in CURRENT_MATRIX and DESIRED_MATRIX. If frame_matrix_frame is non-null, this indicates that the exchange is done in frame matrices, and that we have to perform analogous operations in window matrices of frame_matrix_frame. */ static void make_current (struct frame *f, struct window *w, int row) { struct glyph_matrix *desired_matrix = f ? f->desired_matrix : w->desired_matrix; struct glyph_matrix *current_matrix = f ? f->current_matrix : w->current_matrix; struct glyph_row *current_row = MATRIX_ROW (current_matrix, row); struct glyph_row *desired_row = MATRIX_ROW (desired_matrix, row); bool mouse_face_p = current_row->mouse_face_p; /* If we aborted redisplay of this window, a row in the desired matrix might not have its hash computed. But update_window relies on each row having its correct hash, so do it here if needed. */ if (!desired_row->hash /* A glyph row that is not completely empty is unlikely to have a zero hash value. */ && !(!desired_row->used[0] && !desired_row->used[1] && !desired_row->used[2])) desired_row->hash = row_hash (desired_row); /* Do current_row = desired_row. This exchanges glyph pointers between both rows, and does a structure assignment otherwise. */ assign_row (current_row, desired_row); /* Enable current_row to mark it as valid. */ current_row->enabled_p = true; current_row->mouse_face_p = mouse_face_p; /* If we are called on frame matrices, perform analogous operations for window matrices. */ if (f) mirror_make_current (XWINDOW (f->root_window), row); } /* W is the root of a window tree. FRAME_ROW is the index of a row in W's frame which has been made current (by swapping pointers between current and desired matrix). Perform analogous operations in the matrices of leaf windows in the window tree rooted at W. */ static void mirror_make_current (struct window *w, int frame_row) { while (w) { if (WINDOWP (w->contents)) mirror_make_current (XWINDOW (w->contents), frame_row); else { /* Row relative to window W. Don't use FRAME_TO_WINDOW_VPOS here because the checks performed in debug mode there will not allow the conversion. */ int row = frame_row - w->desired_matrix->matrix_y; /* If FRAME_ROW is within W, assign the desired row to the current row (exchanging glyph pointers). */ if (row >= 0 && row < w->desired_matrix->matrix_h) { struct glyph_row *current_row = MATRIX_ROW (w->current_matrix, row); struct glyph_row *desired_row = MATRIX_ROW (w->desired_matrix, row); if (desired_row->enabled_p) assign_row (current_row, desired_row); else swap_glyph_pointers (desired_row, current_row); current_row->enabled_p = true; /* Set the Y coordinate of the mode/header line's row. It is needed in draw_row_with_mouse_face to find the screen coordinates. (Window-based redisplay sets this in update_window, but no one seems to do that for frame-based redisplay.) */ if (current_row->mode_line_p) current_row->y = row; } } w = NILP (w->next) ? 0 : XWINDOW (w->next); } } /* Perform row dance after scrolling. We are working on the range of lines UNCHANGED_AT_TOP + 1 to UNCHANGED_AT_TOP + NLINES (not including) in MATRIX. COPY_FROM is a vector containing, for each row I in the range 0 <= I < NLINES, the index of the original line to move to I. This index is relative to the row range, i.e. 0 <= index < NLINES. RETAINED_P is a vector containing zero for each row 0 <= I < NLINES which is empty. This function is called from do_scrolling and do_direct_scrolling. */ void mirrored_line_dance (struct frame *f, int unchanged_at_top, int nlines, int *copy_from, char *retained_p) { struct glyph_matrix *matrix = f->current_matrix; /* A copy of original rows. */ struct glyph_row *old_rows; /* Rows to assign to. */ struct glyph_row *new_rows = MATRIX_ROW (matrix, unchanged_at_top); int i; /* Make a copy of the original rows. */ USE_SAFE_ALLOCA; SAFE_NALLOCA (old_rows, 1, nlines); memcpy (old_rows, new_rows, nlines * sizeof *old_rows); /* Assign new rows, maybe clear lines. */ for (i = 0; i < nlines; ++i) { bool enabled_before_p = new_rows[i].enabled_p; eassert (i + unchanged_at_top < matrix->nrows); eassert (unchanged_at_top + copy_from[i] < matrix->nrows); new_rows[i] = old_rows[copy_from[i]]; new_rows[i].enabled_p = enabled_before_p; /* RETAINED_P is zero for empty lines. */ if (!retained_p[copy_from[i]]) new_rows[i].enabled_p = false; } /* Do the same for window matrices, if MATRIX is a frame matrix. */ mirror_line_dance (XWINDOW (f->root_window), unchanged_at_top, nlines, copy_from, retained_p); SAFE_FREE (); } /* Synchronize glyph pointers in the current matrix of window W with the current frame matrix. */ static void sync_window_with_frame_matrix_rows (struct window *w) { struct frame *f = XFRAME (w->frame); struct glyph_row *window_row, *window_row_end, *frame_row; int left, right, x, width; /* Preconditions: W must be a live window on a tty frame. */ eassert (BUFFERP (w->contents)); eassert (!FRAME_WINDOW_P (f)); left = margin_glyphs_to_reserve (w, 1, w->left_margin_cols); right = margin_glyphs_to_reserve (w, 1, w->right_margin_cols); x = w->current_matrix->matrix_x; width = w->current_matrix->matrix_w; window_row = w->current_matrix->rows; window_row_end = window_row + w->current_matrix->nrows; frame_row = f->current_matrix->rows + WINDOW_TOP_EDGE_LINE (w); for (; window_row < window_row_end; ++window_row, ++frame_row) { window_row->glyphs[LEFT_MARGIN_AREA] = frame_row->glyphs[0] + x; window_row->glyphs[TEXT_AREA] = window_row->glyphs[LEFT_MARGIN_AREA] + left; window_row->glyphs[LAST_AREA] = window_row->glyphs[LEFT_MARGIN_AREA] + width; window_row->glyphs[RIGHT_MARGIN_AREA] = window_row->glyphs[LAST_AREA] - right; } } /* Return the window in the window tree rooted in W containing frame row ROW. Value is null if none is found. */ static struct window * frame_row_to_window (struct window *w, int row) { struct window *found = NULL; while (w && !found) { if (WINDOWP (w->contents)) found = frame_row_to_window (XWINDOW (w->contents), row); else if (row >= WINDOW_TOP_EDGE_LINE (w) && row < WINDOW_BOTTOM_EDGE_LINE (w)) found = w; w = NILP (w->next) ? 0 : XWINDOW (w->next); } return found; } /* Perform a line dance in the window tree rooted at W, after scrolling a frame matrix in mirrored_line_dance. We are working on the range of lines UNCHANGED_AT_TOP + 1 to UNCHANGED_AT_TOP + NLINES (not including) in W's frame matrix. COPY_FROM is a vector containing, for each row I in the range 0 <= I < NLINES, the index of the original line to move to I. This index is relative to the row range, i.e. 0 <= index < NLINES. RETAINED_P is a vector containing zero for each row 0 <= I < NLINES which is empty. */ static void mirror_line_dance (struct window *w, int unchanged_at_top, int nlines, int *copy_from, char *retained_p) { while (w) { if (WINDOWP (w->contents)) mirror_line_dance (XWINDOW (w->contents), unchanged_at_top, nlines, copy_from, retained_p); else { /* W is a leaf window, and we are working on its current matrix m. */ struct glyph_matrix *m = w->current_matrix; int i; bool sync_p = 0; struct glyph_row *old_rows; /* Make a copy of the original rows of matrix m. */ USE_SAFE_ALLOCA; SAFE_NALLOCA (old_rows, 1, m->nrows); memcpy (old_rows, m->rows, m->nrows * sizeof *old_rows); for (i = 0; i < nlines; ++i) { /* Frame relative line assigned to. */ int frame_to = i + unchanged_at_top; /* Frame relative line assigned. */ int frame_from = copy_from[i] + unchanged_at_top; /* Window relative line assigned to. */ int window_to = frame_to - m->matrix_y; /* Window relative line assigned. */ int window_from = frame_from - m->matrix_y; /* Is assigned line inside window? */ bool from_inside_window_p = window_from >= 0 && window_from < m->matrix_h; /* Is assigned to line inside window? */ bool to_inside_window_p = window_to >= 0 && window_to < m->matrix_h; if (from_inside_window_p && to_inside_window_p) { /* Do the assignment. The enabled_p flag is saved over the assignment because the old redisplay did that. */ bool enabled_before_p = m->rows[window_to].enabled_p; m->rows[window_to] = old_rows[window_from]; m->rows[window_to].enabled_p = enabled_before_p; /* If frame line is empty, window line is empty, too. */ if (!retained_p[copy_from[i]]) m->rows[window_to].enabled_p = false; } else if (to_inside_window_p) { /* A copy between windows. This is an infrequent case not worth optimizing. */ struct frame *f = XFRAME (w->frame); struct window *root = XWINDOW (FRAME_ROOT_WINDOW (f)); struct window *w2; struct glyph_matrix *m2; int m2_from; w2 = frame_row_to_window (root, frame_from); /* ttn@surf.glug.org: when enabling menu bar using `emacs -nw', FROM_FRAME sometimes has no associated window. This check avoids a segfault if W2 is null. */ if (w2) { m2 = w2->current_matrix; m2_from = frame_from - m2->matrix_y; copy_row_except_pointers (m->rows + window_to, m2->rows + m2_from); /* If frame line is empty, window line is empty, too. */ if (!retained_p[copy_from[i]]) m->rows[window_to].enabled_p = false; } sync_p = 1; } else if (from_inside_window_p) sync_p = 1; } /* If there was a copy between windows, make sure glyph pointers are in sync with the frame matrix. */ if (sync_p) sync_window_with_frame_matrix_rows (w); /* Check that no pointers are lost. */ CHECK_MATRIX (m); SAFE_FREE (); } /* Next window on same level. */ w = NILP (w->next) ? 0 : XWINDOW (w->next); } } #ifdef GLYPH_DEBUG /* Check that window and frame matrices agree about their understanding where glyphs of the rows are to find. For each window in the window tree rooted at W, check that rows in the matrices of leaf window agree with their frame matrices about glyph pointers. */ static void check_window_matrix_pointers (struct window *w) { while (w) { if (WINDOWP (w->contents)) check_window_matrix_pointers (XWINDOW (w->contents)); else { struct frame *f = XFRAME (w->frame); check_matrix_pointers (w->desired_matrix, f->desired_matrix); check_matrix_pointers (w->current_matrix, f->current_matrix); } w = NILP (w->next) ? 0 : XWINDOW (w->next); } } /* Check that window rows are slices of frame rows. WINDOW_MATRIX is a window and FRAME_MATRIX is the corresponding frame matrix. For each row in WINDOW_MATRIX check that it's a slice of the corresponding frame row. If it isn't, abort. */ static void check_matrix_pointers (struct glyph_matrix *window_matrix, struct glyph_matrix *frame_matrix) { /* Row number in WINDOW_MATRIX. */ int i = 0; /* Row number corresponding to I in FRAME_MATRIX. */ int j = window_matrix->matrix_y; /* For all rows check that the row in the window matrix is a slice of the row in the frame matrix. If it isn't we didn't mirror an operation on the frame matrix correctly. */ while (i < window_matrix->nrows) { if (!glyph_row_slice_p (window_matrix->rows + i, frame_matrix->rows + j)) emacs_abort (); ++i, ++j; } } #endif /* GLYPH_DEBUG */ /********************************************************************** VPOS and HPOS translations **********************************************************************/ #ifdef GLYPH_DEBUG /* Translate vertical position VPOS which is relative to window W to a vertical position relative to W's frame. */ static int window_to_frame_vpos (struct window *w, int vpos) { eassert (!FRAME_WINDOW_P (XFRAME (w->frame))); eassert (vpos >= 0 && vpos <= w->desired_matrix->nrows); vpos += WINDOW_TOP_EDGE_LINE (w); eassert (frame_size_change_delayed (XFRAME (w->frame)) || (vpos >= 0 && vpos <= FRAME_TOTAL_LINES (XFRAME (w->frame)))); return vpos; } /* Translate horizontal position HPOS which is relative to window W to a horizontal position relative to W's frame. */ static int window_to_frame_hpos (struct window *w, int hpos) { eassert (!FRAME_WINDOW_P (XFRAME (w->frame))); hpos += WINDOW_LEFT_EDGE_COL (w); return hpos; } #endif /* GLYPH_DEBUG */ /********************************************************************** Redrawing Frames **********************************************************************/ /* Redraw frame F. */ void redraw_frame (struct frame *f) { /* Error if F has no glyphs. */ eassert (f->glyphs_initialized_p); update_begin (f); if (FRAME_MSDOS_P (f)) FRAME_TERMINAL (f)->set_terminal_modes_hook (FRAME_TERMINAL (f)); if (FRAME_WINDOW_P (f)) /* Garbage the frame now. Otherwise, platforms that support double buffering will display the blank contents of the frame even though the frame should be redrawn at some point in the future. */ SET_FRAME_GARBAGED (f); /* clear_frame is actually a "clear_terminal", i.e. it clears the entire screen. */ if (!FRAME_PARENT_FRAME (f)) clear_frame (f); clear_current_matrices (f); update_end (f); fset_redisplay (f); /* Mark all windows as inaccurate, so that every window will have its redisplay done. */ mark_window_display_accurate (FRAME_ROOT_WINDOW (f), 0); set_window_update_flags (XWINDOW (FRAME_ROOT_WINDOW (f)), true); f->garbaged = false; } DEFUN ("redraw-frame", Fredraw_frame, Sredraw_frame, 0, 1, 0, doc: /* Clear frame FRAME and output again what is supposed to appear on it. If FRAME is omitted or nil, the selected frame is used. */) (Lisp_Object frame) { redraw_frame (decode_live_frame (frame)); return Qnil; } DEFUN ("redraw-display", Fredraw_display, Sredraw_display, 0, 0, "", doc: /* Clear and redisplay all visible frames. */) (void) { Lisp_Object tail, frame; FOR_EACH_FRAME (tail, frame) if (FRAME_REDISPLAY_P (XFRAME (frame))) redraw_frame (XFRAME (frame)); return Qnil; } /********************************************************************** TTY Child Frames **********************************************************************/ /* Child frames on ttys break the assumption that frames on a tty always occupy the whole terminal. They can overlap instead. Let a "root" frame be a frame that has no parent frame. Such root frames are required to be the size of the terminal screen. The current glyph matrix of a root frame of a termimnal represents what is on the screen. The desired matrix of a root frame represents what should be one the screen. Building the desired matrix of root frame proceeds by - building the desired matrix of the root frame itself which is the bottommost frame in z-order; - building desired matrices of child frames in z-order, topmost last; - copying the desired glyphs from child frames to the desired glyphs of the root frame Updating the screen is then done using root frame matrices as it was before child frames were introduced. Child frame's current matrices are updated by copying glyph contents of the current matrix of the root frames to the current matrices of child frames. This implicitly also updates the glyph contents of their windows' current matrices. */ struct rect { int x, y, w, h; }; /* Compute the intersection of R1 and R2 in R. Value is true if R1 and R2 intersect, false otherwise. */ static bool rect_intersect (struct rect *r, struct rect r1, struct rect r2) { int x1 = max (r1.x, r2.x); int x2 = min (r1.x + r1.w, r2.x + r2.w); if (x2 < x1) return false; int y1 = max (r1.y, r2.y); int y2 = min (r1.y + r1.h, r2.y + r2.h); if (y2 < y1) return false; *r = (struct rect) { .x = x1, .y = y1, .w = x2 - x1, .h = y2 - y1 }; return true; } /* Return the absolute position of frame F in *X and *Y. */ static void frame_pos_abs (struct frame *f, int *x, int *y) { *x = *y = 0; for (; f; f = FRAME_PARENT_FRAME (f)) { *x += f->left_pos; *y += f->top_pos; } } /* Return the rectangle frame F occupies. X and Y are in absolute coordinates. */ static struct rect frame_rect_abs (struct frame *f) { int x, y; frame_pos_abs (f, &x, &y); return (struct rect) { x, y, f->total_cols, f->total_lines }; } /* Return the root frame of frame F. Follow the parent_frame chain until we reach a frame that has no parent. That is the root frame. Note that the root of a root frame is itself. */ struct frame * root_frame (struct frame *f) { while (FRAME_PARENT_FRAME (f)) f = FRAME_PARENT_FRAME (f); return f; } int max_child_z_order (struct frame *parent) { Lisp_Object tail, frame; int z_order = 0; FOR_EACH_FRAME (tail, frame) { struct frame *f = XFRAME (frame); if (FRAME_PARENT_FRAME (f) == parent) z_order = max (z_order, f->z_order); } return z_order; } /* Return true if F1 is an ancestor of F2. */ static bool is_frame_ancestor (struct frame *f1, struct frame *f2) { for (struct frame *f = FRAME_PARENT_FRAME (f2); f; f = FRAME_PARENT_FRAME (f)) if (f == f1) return true; return false; } /* Return a list of all frames having root frame ROOT. If VISIBLE_ONLY is true, return only visible frames. */ static Lisp_Object frames_with_root (struct frame *root, bool visible_only) { Lisp_Object list = Qnil; Lisp_Object tail, frame; FOR_EACH_FRAME (tail, frame) { struct frame *f = XFRAME (frame); if (root_frame (f) == root && (!visible_only || FRAME_VISIBLE_P (f))) list = Fcons (frame, list); } return list; } /* Return a list of frames having parent frame PARENT. If VISIBLE_ONLY is true, return only visible frames. */ static Lisp_Object frames_with_parent (struct frame *parent, bool visible_only) { Lisp_Object list = Qnil; Lisp_Object tail, frame; FOR_EACH_FRAME (tail, frame) { struct frame *f = XFRAME (frame); if (FRAME_PARENT_FRAME (f) == parent && (!visible_only || FRAME_VISIBLE_P (f))) list = Fcons (frame, list); } return list; } /* Compare frames F1 and F2 for z-order. Value is like strcmp. */ static int frame_z_order_cmp (struct frame *f1, struct frame *f2) { if (f1 == f2) return 0; if (is_frame_ancestor (f1, f2)) return -1; if (is_frame_ancestor (f2, f1)) return 1; return f1->z_order - f2->z_order; } DEFUN ("frame--z-order-lessp", Fframe__z_order_lessp, Sframe__z_order_lessp, 2, 2, 0, doc: /* Internal frame sorting function A < B. */) (Lisp_Object a, Lisp_Object b) { eassert (FRAMEP (a) && FRAMEP (b)); return frame_z_order_cmp (XFRAME (a), XFRAME (b)) < 0 ? Qt : Qnil; } /* Return a z-order list of frames with the same root as F. The list is ordered topmost frame last. Note that this list contains the root frame of F itself as first element. */ Lisp_Object frames_in_reverse_z_order (struct frame *f, bool visible_only) { struct frame *root = root_frame (f); Lisp_Object frames = frames_with_root (root, visible_only); frames = CALLN (Fsort, frames, QClessp, Qframe__z_order_lessp); eassert (FRAMEP (XCAR (frames))); eassert (XFRAME (XCAR (frames)) == root); return frames; } /* Raise of lower frame F in z-order. If RAISE is true, raise F, else lower f. */ void tty_raise_lower_frame (struct frame *f, bool raise) { struct frame *parent = FRAME_PARENT_FRAME (f); if (parent == NULL) return; Lisp_Object siblings = frames_with_parent (parent, false); siblings = CALLN (Fsort, siblings, QClessp, Qframe__z_order_lessp); int i = 0; for (Lisp_Object tail = siblings; CONSP (tail); tail = XCDR (tail)) { struct frame *child = XFRAME (XCAR (tail)); if (child != f) child->z_order = i++; } f->z_order = raise ? i : 0; } /* Return true if frame F is a tty frame. */ bool is_tty_frame (struct frame *f) { return FRAME_TERMCAP_P (f); } /* Return true if frame F is a tty child frame. */ bool is_tty_child_frame (struct frame *f) { return FRAME_PARENT_FRAME (f) && is_tty_frame (f); } /* Return true if frame F is a tty root frame. */ bool is_tty_root_frame (struct frame *f) { return !FRAME_PARENT_FRAME (f) && is_tty_frame (f); } /* Return the index of the first enabled row in MATRIX, or -1 if there is none. */ static int first_enabled_row (struct glyph_matrix *matrix) { for (int i = 0; i < matrix->nrows; ++i) if (MATRIX_ROW_ENABLED_P (matrix, i)) return i; return -1; } /* On tty frame F, make desired matrix current, without writing to the terminal. */ static void make_matrix_current (struct frame *f) { int first_row = first_enabled_row (f->desired_matrix); if (first_row >= 0) for (int i = first_row; i < f->desired_matrix->nrows; ++i) if (MATRIX_ROW_ENABLED_P (f->desired_matrix, i)) make_current (f, NULL, i); } /* Prepare ROOT's desired row at index Y for copying child frame contents to it. */ static struct glyph_row * prepare_desired_root_row (struct frame *root, int y) { /* Start with the root's desired matrix row. If that hasn't been redisplayed, copy from the root's current matrix. */ struct glyph_row *root_row = MATRIX_ROW (root->desired_matrix, y); if (!root_row->enabled_p) { struct glyph_row *from = MATRIX_ROW (root->current_matrix, y); memcpy (root_row->glyphs[0], from->glyphs[0], root->current_matrix->matrix_w * sizeof (struct glyph)); root_row->enabled_p = true; } return root_row; } /* Produce glyphs for box character BOX in ROW. X is the position in ROW where to start producing glyphs. N is the number of glyphs to produce. CHILD is the frame to use for the face of the glyphs. */ static void produce_box_glyphs (enum box box, struct glyph_row *row, int x, int n, struct frame *child) { int dflt; switch (box) { case BOX_VERTICAL: dflt = '|'; break; case BOX_HORIZONTAL: dflt = '-'; break; case BOX_DOWN_RIGHT: case BOX_DOWN_LEFT: case BOX_UP_RIGHT: case BOX_UP_LEFT: dflt = '+'; break; } /* FIXME/tty: some face for the border. */ int face_id = BORDER_FACE_ID; GLYPH g; SET_GLYPH (g, dflt, face_id); if (DISP_TABLE_P (Vstandard_display_table)) { struct Lisp_Char_Table *dp = XCHAR_TABLE (Vstandard_display_table); Lisp_Object gc = dp->extras[box]; if (GLYPH_CODE_P (gc)) { SET_GLYPH_FROM_GLYPH_CODE (g, gc); /* Sorry, but I really don't care if the glyph has a face :-). */ } } struct glyph *glyph = row->glyphs[0] + x; for (int i = 0; i < n; ++i, ++glyph) { glyph->type = CHAR_GLYPH; glyph->u.ch = GLYPH_CHAR (g); glyph->charpos = -1; glyph->pixel_width = 1; glyph->multibyte_p = 1; glyph->face_id = GLYPH_FACE (g); glyph->frame = child; glyph->multibyte_p = 1; glyph->object = Qnil; } } /* Produce box glyphs LEFT and RIGHT in ROOT_ROW. X and W are the start and width of a range in ROOT_ROW before and after which to put the box glyphs, if they fit. ROOT and CHILD are root and child frame we are working on. ROOT is the root frame whose matrix dimensions determines if the box glyphs fit. CHILD is the frame whose faces to use for the box glyphs. */ static void produce_box_sides (enum box left, enum box right, struct glyph_row *root_row, int x, int w, struct frame *root, struct frame *child) { if (x > 0) produce_box_glyphs (left, root_row, x - 1, 1, child); if (x + w < root->desired_matrix->matrix_w) produce_box_glyphs (right, root_row, x + w, 1, child); } static void produce_box_line (struct frame *root, struct frame *child, int x, int y, int w, bool first) { struct glyph_row *root_row = prepare_desired_root_row (root, y); if (first) produce_box_sides (BOX_DOWN_RIGHT, BOX_DOWN_LEFT, root_row, x, w, root, child); else produce_box_sides (BOX_UP_RIGHT, BOX_UP_LEFT, root_row, x, w, root, child); produce_box_glyphs (BOX_HORIZONTAL, root_row, x, w, child); root_row->hash = row_hash (root_row); } /* Copy to ROOT's desired matrix what we need from CHILD. */ static void copy_child_glyphs (struct frame *root, struct frame *child) { eassert (!FRAME_PARENT_FRAME (root)); eassert (is_frame_ancestor (root, child)); /* Determine the intersection of the child frame rectangle with the root frame. This is basically clipping the child frame to the root frame rectangle. */ struct rect r; if (!rect_intersect (&r, frame_rect_abs (root), frame_rect_abs (child))) return; /* Build CHILD's current matrix which we need to copy from it. */ make_matrix_current (child); /* Draw borders around the child frame. */ if (!FRAME_UNDECORATED (child)) { /* Horizontal line above. */ if (r.y > 0) produce_box_line (root, child, r.x, r.y - 1, r.w, true); for (int y = r.y; y < r.y + r.h; ++y) { struct glyph_row *root_row = prepare_desired_root_row (root, y); produce_box_sides (BOX_VERTICAL, BOX_VERTICAL, root_row, r.x, r.w, root, child); } /* Horizontal line below. */ if (r.y + r.h < root->desired_matrix->matrix_h) produce_box_line (root, child, r.x, r.y + r.h, r.w, false); } /* First visible row/col, relative to the child frame. */ int child_x = child->left_pos < 0 ? - child->left_pos : 0; int child_y = child->top_pos < 0 ? - child->top_pos : 0; /* For all rows in the intersection, copy glyphs from the child's current matrix to the root's desired matrix, enabling those rows if they aren't already. */ for (int y = r.y; y < r.y + r.h; ++y, ++child_y) { struct glyph_row *root_row = prepare_desired_root_row (root, y); /* Copy what's visible from the child's current row. */ struct glyph_row *child_row = MATRIX_ROW (child->current_matrix, child_y); memcpy (root_row->glyphs[0] + r.x, child_row->glyphs[0] + child_x, r.w * sizeof (struct glyph)); /* Compute a new hash since we changed glyphs. */ root_row->hash = row_hash (root_row); } } /*********************************************************************** Frame Update ***********************************************************************/ /* Update the menu bar on X frames that don't have toolkit support. */ static void update_menu_bar (struct frame *f) { #if defined HAVE_WINDOW_SYSTEM && !defined HAVE_EXT_MENU_BAR if (WINDOWP (f->menu_bar_window)) update_window (XWINDOW (f->menu_bar_window), true); #endif } #ifdef HAVE_WINDOW_SYSTEM static void update_bar_window (Lisp_Object window, Lisp_Object *current, Lisp_Object *desired) { if (WINDOWP (window)) { struct window *w = XWINDOW (window); if (w->must_be_updated_p) { update_window (w, true); w->must_be_updated_p = false; Lisp_Object tem = *current; *current = *desired; *desired = tem; } } } #endif /* Update the tab-bar window of frame F, if present. */ static void update_tab_bar (struct frame *f) { #if defined(HAVE_WINDOW_SYSTEM) update_bar_window (f->tab_bar_window, &f->current_tab_bar_string, &f->desired_tab_bar_string); #endif } static void update_tool_bar (struct frame *f) { #if defined(HAVE_WINDOW_SYSTEM) && !defined(HAVE_EXT_TOOL_BAR) update_bar_window (f->tool_bar_window, &f->current_tool_bar_string, &f->desired_tool_bar_string); #endif } static bool update_window_frame (struct frame *f, bool force_p) { eassert (FRAME_WINDOW_P (f)); update_begin (f); update_menu_bar (f); update_tab_bar (f); update_tool_bar (f); struct window *root_window = XWINDOW (f->root_window); bool paused_p = update_window_tree (root_window, force_p); update_end (f); set_window_update_flags (root_window, false); return paused_p; } static bool update_initial_frame (struct frame *f, bool force_p) { build_frame_matrix (f); struct window *root_window = XWINDOW (f->root_window); set_window_update_flags (root_window, false); return false; } static void flush_terminal (struct frame *f) { if (FRAME_TTY (f)->termscript) fflush (FRAME_TTY (f)->termscript); fflush (FRAME_TTY (f)->output); } static bool update_tty_frame (struct frame *f, bool force_p) { build_frame_matrix (f); return false; } static void abs_cursor_pos (struct frame *f, int *x, int *y) { frame_pos_abs (f, x, y); struct window *w = XWINDOW (f->selected_window); *x += w->cursor.x; *y += w->cursor.y; } /* Is the terminal cursor of frame F obscured by a child frame? */ static bool is_cursor_obscured (void) { int x, y; abs_cursor_pos (SELECTED_FRAME (), &x, &y); struct frame *root = root_frame (SELECTED_FRAME ()); struct glyph_row *cursor_row = MATRIX_ROW (root->current_matrix, y); eassert (x < root->current_matrix->matrix_w); struct glyph *cursor_glyph = cursor_row->glyphs[0] + x; return cursor_glyph->frame != SELECTED_FRAME (); } /* Decide where to show the cursor, and whether to hide it. This works very well for Vertico-Posframe, Transient-Posframe and Corfu, but it's debatable if it's the right thing for a general use of child frames of all sorts, nested and so on. But it is also debatable if that's a realistic use case from my POV. */ static void terminal_cursor_magic (struct frame *root, struct frame *topmost_child) { /* By default, prevent the cursor "shining through" child frames. */ if (is_cursor_obscured ()) tty_hide_cursor (FRAME_TTY (root)); /* If the terminal cursor is not in the topmost child, the topmost child's tty-cursor-if-topmost determines what to do. If it is non-nil, display the cursor in this "non-selected" topmost child frame to compensate for the fact that we can't display a non-selected cursor like on a window system frame. */ if (topmost_child != SELECTED_FRAME ()) { Lisp_Object frame; XSETFRAME (frame, topmost_child); Lisp_Object cursor = Fframe_parameter (frame, Qtty_non_selected_cursor); if (!NILP (cursor)) { int x, y; abs_cursor_pos (topmost_child, &x, &y); cursor_to (root, y, x); tty_show_cursor (FRAME_TTY (topmost_child)); } } } bool combine_updates_for_frame (struct frame *f, bool force_p, bool inhibit_scrolling) { struct frame *root = root_frame (f); eassert (FRAME_VISIBLE_P (root)); /* Process child frames in reverse z-order, topmost last. For each child, copy what we need to the root's desired matrix. */ Lisp_Object z_order = frames_in_reverse_z_order (root, true); struct frame *topmost_child = NULL; for (Lisp_Object tail = XCDR (z_order); CONSP (tail); tail = XCDR (tail)) { topmost_child = XFRAME (XCAR (tail)); copy_child_glyphs (root, topmost_child); } update_begin (root); bool paused = write_matrix (root, force_p, inhibit_scrolling, 1, false); if (!paused) make_matrix_current (root); update_end (root); /* If a child is displayed, and the cursor is displayed in another frame, the child might lay above the cursor, so that it appers to "shine through" the child. Avoid that because it's confusing. */ if (topmost_child) terminal_cursor_magic (root, topmost_child); flush_terminal (root); for (Lisp_Object tail = z_order; CONSP (tail); tail = XCDR (tail)) { struct frame *f = XFRAME (XCAR (tail)); struct window *root_window = XWINDOW (f->root_window); set_window_update_flags (root_window, false); clear_desired_matrices (f); #ifdef GLYPH_DEBUG check_window_matrix_pointers (root_window); add_frame_display_history (f, false); #endif } return paused; } /* Update on the screen all root frames ROOTS. Called from redisplay_internal as the last step of redisplaying. */ bool combine_updates (Lisp_Object roots, bool force_p, bool inhibit_scrolling) { for (; CONSP (roots); roots = XCDR (roots)) { struct frame *root = XFRAME (XCAR (roots)); if (combine_updates_for_frame (root, force_p, inhibit_scrolling)) { display_completed = false; return true; } } display_completed = true; return false; } /* Update frame F based on the data in desired matrices. If FORCE_P, don't let redisplay be stopped by detecting pending input. If INHIBIT_SCROLLING, don't try scrolling. Value is true if redisplay was stopped due to pending input. */ bool update_frame (struct frame *f, bool force_p, bool inhibit_scrolling) { struct window *root_window = XWINDOW (f->root_window); if (redisplay_dont_pause) force_p = true; else if (!force_p && detect_input_pending_ignore_squeezables ()) { /* Reset flags indicating that a window should be updated. */ set_window_update_flags (root_window, false); display_completed = false; return true; } bool paused; if (FRAME_WINDOW_P (f)) paused = update_window_frame (f, force_p); else if (FRAME_INITIAL_P (f)) paused = update_initial_frame (f, force_p); else paused = update_tty_frame (f, force_p); if (paused) display_completed = false; return paused; } /* Update a TTY frame F that has a menu dropped down over some of its glyphs. This is like the second part of update_frame, but it doesn't call build_frame_matrix, because we already have the desired matrix prepared, and don't want it to be overwritten by the text of the normal display. ROW and COL, if non-negative, are the row and column of the TTY frame where to position the cursor after the frame update is complete. Negative values mean ask update_frame_1 to position the cursor "normally", i.e. at point in the selected window. */ void update_frame_with_menu (struct frame *f, int row, int col) { struct window *root_window = XWINDOW (f->root_window); bool cursor_at_point_p; eassert (FRAME_TERMCAP_P (f)); /* Update the display. */ update_begin (f); cursor_at_point_p = !(row >= 0 && col >= 0); /* Do not stop due to pending input, and do not try scrolling. This means that write_glyphs will always return false. */ write_matrix (f, 1, 1, cursor_at_point_p, true); make_matrix_current (f); clear_desired_matrices (f); /* ROW and COL tell us where in the menu to position the cursor, so that screen readers know the active region on the screen. */ if (!cursor_at_point_p) cursor_to (f, row, col); update_end (f); flush_terminal (f); /* Check window matrices for lost pointers. */ #if GLYPH_DEBUG #if 0 /* We cannot possibly survive the matrix pointers check, since we have overwritten parts of the frame glyph matrix without making any updates to the window matrices. */ check_window_matrix_pointers (root_window); #endif add_frame_display_history (f, false); #endif /* Reset flags indicating that a window should be updated. */ set_window_update_flags (root_window, false); display_completed = true; } /* Update the mouse position for a frame F. This handles both updating the display for mouse-face properties and updating the help echo text. Returns the number of events generated. */ int update_mouse_position (struct frame *f, int x, int y) { previous_help_echo_string = help_echo_string; help_echo_string = Qnil; note_mouse_highlight (f, x, y); /* If the contents of the global variable help_echo_string has changed, generate a HELP_EVENT. */ if (!NILP (help_echo_string) || !NILP (previous_help_echo_string)) { Lisp_Object frame; XSETFRAME (frame, f); gen_help_event (help_echo_string, frame, help_echo_window, help_echo_object, help_echo_pos); return 1; } return 0; } DEFUN ("display--update-for-mouse-movement", Fdisplay__update_for_mouse_movement, Sdisplay__update_for_mouse_movement, 3, 3, 0, doc: /* Handle mouse movement detected by Lisp code. This function should be called when Lisp code detects the mouse has moved, even if `track-mouse' is nil. This handles updates that do not rely on input events such as updating display for mouse-face properties or updating the help echo text. */) (Lisp_Object mouse_frame, Lisp_Object mouse_x, Lisp_Object mouse_y) { CHECK_FRAME (mouse_frame); CHECK_FIXNUM (mouse_x); CHECK_FIXNUM (mouse_y); update_mouse_position (XFRAME (mouse_frame), XFIXNUM (mouse_x), XFIXNUM (mouse_y)); return Qnil; } /************************************************************************ Window-based updates ************************************************************************/ /* Perform updates in window tree rooted at W. If FORCE_P, don't stop updating if input is pending. */ static bool update_window_tree (struct window *w, bool force_p) { bool paused_p = 0; while (w && !paused_p) { if (WINDOWP (w->contents)) paused_p |= update_window_tree (XWINDOW (w->contents), force_p); else if (w->must_be_updated_p) paused_p |= update_window (w, force_p); w = NILP (w->next) ? 0 : XWINDOW (w->next); } return paused_p; } /* Update window W if its flag must_be_updated_p is set. If FORCE_P, don't stop updating if input is pending. */ void update_single_window (struct window *w) { if (w->must_be_updated_p) { struct frame *f = XFRAME (WINDOW_FRAME (w)); /* Update W. */ update_begin (f); update_window (w, true); update_end (f); /* Reset flag in W. */ w->must_be_updated_p = false; } } #ifdef HAVE_WINDOW_SYSTEM /* Redraw lines from the current matrix of window W that are overlapped by other rows. YB is bottom-most y-position in W. */ static void redraw_overlapped_rows (struct window *w, int yb) { int i; struct frame *f = XFRAME (WINDOW_FRAME (w)); /* If rows overlapping others have been changed, the rows being overlapped have to be redrawn. This won't draw lines that have already been drawn in update_window_line because overlapped_p in desired rows is 0, so after row assignment overlapped_p in current rows is 0. */ for (i = 0; i < w->current_matrix->nrows; ++i) { struct glyph_row *row = w->current_matrix->rows + i; if (!row->enabled_p) break; else if (row->mode_line_p) continue; if (row->overlapped_p) { enum glyph_row_area area; for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area) { output_cursor_to (w, i, 0, row->y, area == TEXT_AREA ? row->x : 0); if (row->used[area]) FRAME_RIF (f)->write_glyphs (w, row, row->glyphs[area], area, row->used[area]); FRAME_RIF (f)->clear_end_of_line (w, row, area, -1); } row->overlapped_p = 0; } if (MATRIX_ROW_BOTTOM_Y (row) >= yb) break; } } /* Redraw lines from the current matrix of window W that overlap others. YB is bottom-most y-position in W. */ static void redraw_overlapping_rows (struct window *w, int yb) { int i, bottom_y; struct glyph_row *row; struct redisplay_interface *rif = FRAME_RIF (XFRAME (WINDOW_FRAME (w))); for (i = 0; i < w->current_matrix->nrows; ++i) { row = w->current_matrix->rows + i; if (!row->enabled_p) break; else if (row->mode_line_p) continue; bottom_y = MATRIX_ROW_BOTTOM_Y (row); if (row->overlapping_p) { int overlaps = 0; if (MATRIX_ROW_OVERLAPS_PRED_P (row) && i > 0 && !MATRIX_ROW (w->current_matrix, i - 1)->overlapped_p) overlaps |= OVERLAPS_PRED; if (MATRIX_ROW_OVERLAPS_SUCC_P (row) && bottom_y < yb && !MATRIX_ROW (w->current_matrix, i + 1)->overlapped_p) overlaps |= OVERLAPS_SUCC; if (overlaps) { if (row->used[LEFT_MARGIN_AREA]) rif->fix_overlapping_area (w, row, LEFT_MARGIN_AREA, overlaps); if (row->used[TEXT_AREA]) rif->fix_overlapping_area (w, row, TEXT_AREA, overlaps); if (row->used[RIGHT_MARGIN_AREA]) rif->fix_overlapping_area (w, row, RIGHT_MARGIN_AREA, overlaps); /* Record in neighbor rows that ROW overwrites part of their display. */ if (overlaps & OVERLAPS_PRED) MATRIX_ROW (w->current_matrix, i - 1)->overlapped_p = 1; if (overlaps & OVERLAPS_SUCC) MATRIX_ROW (w->current_matrix, i + 1)->overlapped_p = 1; } } if (bottom_y >= yb) break; } } #endif /* HAVE_WINDOW_SYSTEM */ #if defined GLYPH_DEBUG && 0 /* Check that no row in the current matrix of window W is enabled which is below what's displayed in the window. */ static void check_current_matrix_flags (struct window *w) { bool last_seen_p = 0; int i, yb = window_text_bottom_y (w); for (i = 0; i < w->current_matrix->nrows - 1; ++i) { struct glyph_row *row = MATRIX_ROW (w->current_matrix, i); if (!last_seen_p && MATRIX_ROW_BOTTOM_Y (row) >= yb) last_seen_p = 1; else if (last_seen_p && row->enabled_p) emacs_abort (); } } #endif /* GLYPH_DEBUG */ /* Update display of window W. If FORCE_P, don't stop updating when input is pending. */ static bool update_window (struct window *w, bool force_p) { struct glyph_matrix *desired_matrix = w->desired_matrix; bool paused_p; int preempt_count = clip_to_bounds (1, baud_rate / 2400 + 1, INT_MAX); #ifdef HAVE_WINDOW_SYSTEM struct redisplay_interface *rif = FRAME_RIF (XFRAME (WINDOW_FRAME (w))); #endif #ifdef GLYPH_DEBUG /* Check that W's frame doesn't have glyph matrices. */ eassert (FRAME_WINDOW_P (XFRAME (WINDOW_FRAME (w)))); #endif /* Check pending input the first time so that we can quickly return. */ if (!force_p) detect_input_pending_ignore_squeezables (); /* If forced to complete the update, no input is pending, or we are tracking the mouse, do the update. */ if (force_p || !input_pending || !NILP (track_mouse)) { struct glyph_row *row, *end; struct glyph_row *mode_line_row; struct glyph_row *tab_line_row; struct glyph_row *header_line_row; int yb; bool changed_p = 0, mouse_face_overwritten_p = 0; int n_updated = 0; bool invisible_rows_marked = false; #ifdef HAVE_WINDOW_SYSTEM gui_update_window_begin (w); #else (void) changed_p; #endif yb = window_text_bottom_y (w); row = MATRIX_ROW (desired_matrix, 0); end = MATRIX_MODE_LINE_ROW (desired_matrix); /* Take note of the tab line, if there is one. We will update it below, after updating all of the window's lines. */ if (row->mode_line_p && row->tab_line_p) { tab_line_row = row; ++row; } else tab_line_row = NULL; /* Take note of the header line, if there is one. We will update it below, after updating all of the window's lines. */ if (row->mode_line_p) { header_line_row = row; ++row; } else header_line_row = NULL; /* Update the mode line, if necessary. */ mode_line_row = MATRIX_MODE_LINE_ROW (desired_matrix); if (mode_line_row->mode_line_p && mode_line_row->enabled_p) { mode_line_row->y = yb + WINDOW_SCROLL_BAR_AREA_HEIGHT (w); update_window_line (w, MATRIX_ROW_VPOS (mode_line_row, desired_matrix), &mouse_face_overwritten_p); } /* Find first enabled row. Optimizations in redisplay_internal may lead to an update with only one row enabled. There may be also completely empty matrices. */ while (row < end && !row->enabled_p) ++row; /* Try reusing part of the display by copying. */ if (row < end && !desired_matrix->no_scrolling_p) { int rc = scrolling_window (w, (tab_line_row != NULL ? 1 : 0) + (header_line_row != NULL ? 1 : 0)); if (rc < 0) { /* All rows were found to be equal. */ paused_p = 0; goto set_cursor; } else if (rc > 0) { /* We've scrolled the display. */ force_p = 1; changed_p = 1; } } /* Update the rest of the lines. */ for (; row < end && (force_p || !input_pending); ++row) /* scrolling_window resets the enabled_p flag of the rows it reuses from current_matrix. */ if (row->enabled_p) { int vpos = MATRIX_ROW_VPOS (row, desired_matrix); int i; /* We'll have to play a little bit with when to detect_input_pending. If it's done too often, scrolling large windows with repeated scroll-up commands will too quickly pause redisplay. */ if (!force_p && ++n_updated % preempt_count == 0) detect_input_pending_ignore_squeezables (); changed_p |= update_window_line (w, vpos, &mouse_face_overwritten_p); /* Mark all rows below the last visible one in the current matrix as invalid. This is necessary because of variable line heights. Consider the case of three successive redisplays, where the first displays 5 lines, the second 3 lines, and the third 5 lines again. If the second redisplay wouldn't mark rows in the current matrix invalid, the third redisplay might be tempted to optimize redisplay based on lines displayed in the first redisplay. */ if (MATRIX_ROW_BOTTOM_Y (row) >= yb) { for (i = vpos + 1; i < w->current_matrix->nrows - 1; ++i) SET_MATRIX_ROW_ENABLED_P (w->current_matrix, i, false); invisible_rows_marked = true; } } /* If the window doesn't display its mode line, make sure the corresponding row of the current glyph matrix is disabled, so that if and when the mode line is displayed again, it will be cleared and completely redrawn. */ if (!window_wants_mode_line (w)) SET_MATRIX_ROW_ENABLED_P (w->current_matrix, w->current_matrix->nrows - 1, false); /* Was display preempted? */ paused_p = row < end; if (!paused_p && !invisible_rows_marked) { /* If we didn't mark the invisible rows in the current matrix as invalid above, do that now. This can happen if scrolling_window updates the last visible rows of the current matrix, in which case the above loop doesn't get to examine the last visible row. */ int i; for (i = 0; i < w->current_matrix->nrows - 1; ++i) { struct glyph_row *current_row = MATRIX_ROW (w->current_matrix, i); if (current_row->enabled_p && MATRIX_ROW_BOTTOM_Y (current_row) >= yb) { for (++i ; i < w->current_matrix->nrows - 1; ++i) SET_MATRIX_ROW_ENABLED_P (w->current_matrix, i, false); } } } set_cursor: /* Update the tab line after scrolling because a new tab line would otherwise overwrite lines at the top of the window that can be scrolled. */ if (tab_line_row && tab_line_row->enabled_p) { tab_line_row->y = 0; update_window_line (w, 0, &mouse_face_overwritten_p); } /* Update the header line after scrolling because a new header line would otherwise overwrite lines at the top of the window that can be scrolled. */ if (header_line_row && header_line_row->enabled_p) { header_line_row->y = tab_line_row ? CURRENT_TAB_LINE_HEIGHT (w) : 0; update_window_line (w, tab_line_row ? 1 : 0, &mouse_face_overwritten_p); } /* Fix the appearance of overlapping/overlapped rows. */ if (!paused_p && !w->pseudo_window_p) { #ifdef HAVE_WINDOW_SYSTEM if (changed_p && rif->fix_overlapping_area) { redraw_overlapped_rows (w, yb); redraw_overlapping_rows (w, yb); } #endif /* Make cursor visible at cursor position of W. */ set_window_cursor_after_update (w); #if 0 /* Check that current matrix invariants are satisfied. This is for debugging only. See the comment of check_matrix_invariants. */ IF_DEBUG (check_matrix_invariants (w)); #endif } #ifdef GLYPH_DEBUG /* Remember the redisplay method used to display the matrix. */ strcpy (w->current_matrix->method, w->desired_matrix->method); #endif #ifdef HAVE_WINDOW_SYSTEM update_window_fringes (w, 0); /* End the update of window W. Don't set the cursor if we paused updating the display because in this case, set_window_cursor_after_update hasn't been called, and W->output_cursor doesn't contain the cursor location. */ gui_update_window_end (w, !paused_p, mouse_face_overwritten_p); #endif /* If the update wasn't interrupted, this window has been completely updated. */ if (!paused_p) w->must_be_updated_p = false; } else paused_p = 1; #ifdef GLYPH_DEBUG /* check_current_matrix_flags (w); */ add_window_display_history (w, w->current_matrix->method, paused_p); #endif xwidget_end_redisplay (w, w->current_matrix); clear_glyph_matrix (desired_matrix); return paused_p; } #ifdef HAVE_WINDOW_SYSTEM /* Start update of window W. */ void gui_update_window_begin (struct window *w) { struct frame *f = XFRAME (WINDOW_FRAME (w)); Mouse_HLInfo *hlinfo = MOUSE_HL_INFO (f); block_input (); if (FRAME_RIF (f)->update_window_begin_hook) FRAME_RIF (f)->update_window_begin_hook (w); w->output_cursor = w->cursor; if (f == hlinfo->mouse_face_mouse_frame) { /* Don't do highlighting for mouse motion during the update. */ hlinfo->mouse_face_defer = true; /* If the frame needs to be redrawn, simply forget about any prior mouse highlighting. */ if (FRAME_GARBAGED_P (f)) hlinfo->mouse_face_window = Qnil; } unblock_input (); } /* End update of window W. Draw vertical borders between horizontally adjacent windows, and display W's cursor if CURSOR_ON_P is non-zero. MOUSE_FACE_OVERWRITTEN_P non-zero means that some row containing glyphs in mouse-face were overwritten. In that case we have to make sure that the mouse-highlight is properly redrawn. */ void gui_update_window_end (struct window *w, bool cursor_on_p, bool mouse_face_overwritten_p) { struct frame *f = XFRAME (WINDOW_FRAME (w)); /* Pseudo windows don't have cursors, so don't display them here. */ if (!w->pseudo_window_p) { block_input (); if (cursor_on_p) display_and_set_cursor (w, true, w->output_cursor.hpos, w->output_cursor.vpos, w->output_cursor.x, w->output_cursor.y); if (cursor_in_mouse_face_p (w) && cursor_on_p) mouse_face_overwritten_p = 1; if (draw_window_fringes (w, true)) { if (WINDOW_RIGHT_DIVIDER_WIDTH (w)) gui_draw_right_divider (w); else gui_draw_vertical_border (w); } unblock_input (); } /* If a row with mouse-face was overwritten, arrange for frame_up_to_date_hook to redisplay the mouse highlight. */ if (mouse_face_overwritten_p) { Mouse_HLInfo *hlinfo = MOUSE_HL_INFO (f); hlinfo->mouse_face_beg_row = hlinfo->mouse_face_beg_col = -1; hlinfo->mouse_face_end_row = hlinfo->mouse_face_end_col = -1; hlinfo->mouse_face_window = Qnil; } if (FRAME_RIF (f)->update_window_end_hook) FRAME_RIF (f)->update_window_end_hook (w, cursor_on_p, mouse_face_overwritten_p); } #endif /* HAVE_WINDOW_SYSTEM */ /* Update the display of area AREA in window W, row number VPOS. AREA can be either LEFT_MARGIN_AREA or RIGHT_MARGIN_AREA. */ static void update_marginal_area (struct window *w, struct glyph_row *updated_row, enum glyph_row_area area, int vpos) { struct glyph_row *desired_row = MATRIX_ROW (w->desired_matrix, vpos); struct redisplay_interface *rif = FRAME_RIF (XFRAME (WINDOW_FRAME (w))); /* Set cursor to start of glyphs, write them, and clear to the end of the area. I don't think that something more sophisticated is necessary here, since marginal areas will not be the default. */ output_cursor_to (w, vpos, 0, desired_row->y, 0); if (desired_row->used[area]) rif->write_glyphs (w, updated_row, desired_row->glyphs[area], area, desired_row->used[area]); rif->clear_end_of_line (w, updated_row, area, -1); } /* Update the display of the text area of row VPOS in window W. Value is true if display has changed. */ static bool update_text_area (struct window *w, struct glyph_row *updated_row, int vpos, bool *partial_p) { struct glyph_row *current_row = MATRIX_ROW (w->current_matrix, vpos); struct glyph_row *desired_row = MATRIX_ROW (w->desired_matrix, vpos); struct redisplay_interface *rif = FRAME_RIF (XFRAME (WINDOW_FRAME (w))); bool changed_p = 0; /* If rows are at different X or Y, or rows have different height, or the current row is marked invalid, write the entire line. */ if (!current_row->enabled_p || desired_row->y != current_row->y || desired_row->ascent != current_row->ascent || desired_row->phys_ascent != current_row->phys_ascent || desired_row->phys_height != current_row->phys_height || desired_row->visible_height != current_row->visible_height || current_row->overlapped_p /* This next line is necessary for correctly redrawing mouse-face areas after scrolling and other operations. However, it causes excessive flickering when mouse is moved across the mode line. Luckily, turning it off for the mode line doesn't seem to hurt anything. -- cyd. But it is still needed for the header line. -- kfs. The header line vpos is 1 if a tab line is enabled. (18th Apr 2022) */ || (current_row->mouse_face_p && !(current_row->mode_line_p && (vpos > (w->current_matrix->tab_line_p && w->current_matrix->header_line_p)))) || current_row->x != desired_row->x) { output_cursor_to (w, vpos, 0, desired_row->y, desired_row->x); if (desired_row->used[TEXT_AREA]) rif->write_glyphs (w, updated_row, desired_row->glyphs[TEXT_AREA], TEXT_AREA, desired_row->used[TEXT_AREA]); /* Clear to end of window. */ rif->clear_end_of_line (w, updated_row, TEXT_AREA, -1); changed_p = 1; /* This erases the cursor. We do this here because notice_overwritten_cursor cannot easily check this, which might indicate that the whole functionality of notice_overwritten_cursor would better be implemented here. On the other hand, we need notice_overwritten_cursor as long as mouse highlighting is done asynchronously outside of redisplay. */ if (vpos == w->phys_cursor.vpos) w->phys_cursor_on_p = 0; } else { int stop, i, x; struct glyph *current_glyph = current_row->glyphs[TEXT_AREA]; struct glyph *desired_glyph = desired_row->glyphs[TEXT_AREA]; bool overlapping_glyphs_p = current_row->contains_overlapping_glyphs_p; int desired_stop_pos = desired_row->used[TEXT_AREA]; bool abort_skipping = 0; /* If the desired row extends its face to the text area end, and unless the current row also does so at the same position, make sure we write at least one glyph, so that the face extension actually takes place. */ if (MATRIX_ROW_EXTENDS_FACE_P (desired_row) && (desired_stop_pos < current_row->used[TEXT_AREA] || (desired_stop_pos == current_row->used[TEXT_AREA] && !MATRIX_ROW_EXTENDS_FACE_P (current_row)))) --desired_stop_pos; stop = min (current_row->used[TEXT_AREA], desired_stop_pos); i = 0; x = desired_row->x; /* Loop over glyphs that current and desired row may have in common. */ while (i < stop) { bool can_skip_p = !abort_skipping; /* Skip over glyphs that both rows have in common. These don't have to be written. We can't skip if the last current glyph overlaps the glyph to its right. For example, consider a current row of `if ' with the `f' in Courier bold so that it overlaps the ` ' to its right. If the desired row is ` ', we would skip over the space after the `if' and there would remain a pixel from the `f' on the screen. */ if (overlapping_glyphs_p && i > 0) { struct glyph *glyph = ¤t_row->glyphs[TEXT_AREA][i - 1]; int left, right; rif->get_glyph_overhangs (glyph, XFRAME (w->frame), &left, &right); can_skip_p = (right == 0 && !abort_skipping); } if (can_skip_p) { int start_hpos = i; while (i < stop && GLYPH_EQUAL_P (desired_glyph, current_glyph)) { x += desired_glyph->pixel_width; ++desired_glyph, ++current_glyph, ++i; /* Say that only a partial update was performed of the current row (i.e. not all the glyphs were drawn). This is used to preserve the stipple_p flag of the current row inside update_window_line. */ *partial_p = true; } /* Consider the case that the current row contains "xxx ppp ggg" in italic Courier font, and the desired row is "xxx ggg". The character `p' has lbearing, `g' has not. The loop above will stop in front of the first `p' in the current row. If we would start writing glyphs there, we wouldn't erase the lbearing of the `p'. The rest of the lbearing problem is then taken care of by draw_glyphs. */ if (overlapping_glyphs_p && i > 0 && i < current_row->used[TEXT_AREA] && (current_row->used[TEXT_AREA] != desired_row->used[TEXT_AREA])) { int left, right; rif->get_glyph_overhangs (current_glyph, XFRAME (w->frame), &left, &right); while (left > 0 && i > 0) { --i, --desired_glyph, --current_glyph; x -= desired_glyph->pixel_width; left -= desired_glyph->pixel_width; } /* Abort the skipping algorithm if we end up before our starting point, to avoid looping (bug#1070). This can happen when the lbearing is larger than the pixel width. */ abort_skipping = (i < start_hpos); } } /* Try to avoid writing the entire rest of the desired row by looking for a resync point. This mainly prevents mode line flickering in the case the mode line is in fixed-pitch font, which it usually will be. */ if (i < desired_row->used[TEXT_AREA]) { int start_x = x, start_hpos = i; struct glyph *start = desired_glyph; int current_x = x; bool skip_first_p = !can_skip_p; /* Find the next glyph that's equal again. */ while (i < stop && (skip_first_p || !GLYPH_EQUAL_P (desired_glyph, current_glyph)) && x == current_x) { x += desired_glyph->pixel_width; current_x += current_glyph->pixel_width; ++desired_glyph, ++current_glyph, ++i; skip_first_p = 0; } if (i == start_hpos || x != current_x) { i = start_hpos; x = start_x; desired_glyph = start; break; } output_cursor_to (w, vpos, start_hpos, desired_row->y, start_x); rif->write_glyphs (w, updated_row, start, TEXT_AREA, i - start_hpos); changed_p = 1; *partial_p = true; } } /* This means we will draw from the start, so no partial update is being performed. */ if (!i) *partial_p = false; /* Write the rest. */ if (i < desired_row->used[TEXT_AREA]) { output_cursor_to (w, vpos, i, desired_row->y, x); rif->write_glyphs (w, updated_row, desired_glyph, TEXT_AREA, desired_row->used[TEXT_AREA] - i); changed_p = 1; } /* Maybe clear to end of line. */ if (MATRIX_ROW_EXTENDS_FACE_P (desired_row)) { /* If new row extends to the end of the text area, nothing has to be cleared, if and only if we did a write_glyphs above. This is made sure by setting desired_stop_pos appropriately above. */ eassert (i < desired_row->used[TEXT_AREA] || ((desired_row->used[TEXT_AREA] == current_row->used[TEXT_AREA]) && MATRIX_ROW_EXTENDS_FACE_P (current_row))); } else if (MATRIX_ROW_EXTENDS_FACE_P (current_row)) { /* If old row extends to the end of the text area, clear. */ if (i >= desired_row->used[TEXT_AREA]) output_cursor_to (w, vpos, i, desired_row->y, desired_row->pixel_width); rif->clear_end_of_line (w, updated_row, TEXT_AREA, -1); changed_p = 1; } else if (desired_row->pixel_width < current_row->pixel_width) { /* Otherwise clear to the end of the old row. Everything after that position should be clear already. */ int xlim; if (i >= desired_row->used[TEXT_AREA]) output_cursor_to (w, vpos, i, desired_row->y, desired_row->pixel_width); /* If cursor is displayed at the end of the line, make sure it's cleared. Nowadays we don't have a phys_cursor_glyph with which to erase the cursor (because this method doesn't work with lbearing/rbearing), so we must do it this way. */ if (vpos == w->phys_cursor.vpos && (desired_row->reversed_p ? (w->phys_cursor.hpos < 0) : (w->phys_cursor.hpos >= desired_row->used[TEXT_AREA]))) { w->phys_cursor_on_p = 0; xlim = -1; } else xlim = current_row->pixel_width; rif->clear_end_of_line (w, updated_row, TEXT_AREA, xlim); changed_p = 1; } } return changed_p; } /* Update row VPOS in window W. Value is true if display has been changed. */ static bool update_window_line (struct window *w, int vpos, bool *mouse_face_overwritten_p) { struct glyph_row *current_row = MATRIX_ROW (w->current_matrix, vpos); struct glyph_row *desired_row = MATRIX_ROW (w->desired_matrix, vpos); struct redisplay_interface *rif = FRAME_RIF (XFRAME (WINDOW_FRAME (w))); /* partial_p is true if not all of desired_row was drawn. */ bool changed_p = 0, partial_p = 0, was_stipple; /* A row can be completely invisible in case a desired matrix was built with a vscroll and then make_cursor_line_fully_visible shifts the matrix. Make sure to make such rows current anyway, since we need the correct y-position, for example, in the current matrix. */ if (desired_row->mode_line_p || desired_row->visible_height > 0) { eassert (desired_row->enabled_p); /* Update display of the left margin area, if there is one. */ if (!desired_row->full_width_p && w->left_margin_cols > 0) { changed_p = 1; update_marginal_area (w, desired_row, LEFT_MARGIN_AREA, vpos); /* Setting this flag will ensure the vertical border, if any, between this window and the one on its left will be redrawn. This is necessary because updating the left margin area can potentially draw over the border. */ current_row->redraw_fringe_bitmaps_p = 1; } /* Update the display of the text area. */ if (update_text_area (w, desired_row, vpos, &partial_p)) { changed_p = 1; if (current_row->mouse_face_p) *mouse_face_overwritten_p = 1; } /* Update display of the right margin area, if there is one. */ if (!desired_row->full_width_p && w->right_margin_cols > 0) { changed_p = 1; update_marginal_area (w, desired_row, RIGHT_MARGIN_AREA, vpos); } /* Draw truncation marks etc. */ if (!current_row->enabled_p || desired_row->y != current_row->y || desired_row->visible_height != current_row->visible_height || desired_row->cursor_in_fringe_p != current_row->cursor_in_fringe_p || desired_row->overlay_arrow_bitmap != current_row->overlay_arrow_bitmap || current_row->redraw_fringe_bitmaps_p || desired_row->mode_line_p != current_row->mode_line_p || desired_row->exact_window_width_line_p != current_row->exact_window_width_line_p || (MATRIX_ROW_CONTINUATION_LINE_P (desired_row) != MATRIX_ROW_CONTINUATION_LINE_P (current_row))) rif->after_update_window_line_hook (w, desired_row); } /* Update current_row from desired_row. */ was_stipple = current_row->stipple_p; make_current (NULL, w, vpos); /* If only a partial update was performed, any stipple already displayed in MATRIX_ROW (w->current_matrix, vpos) might still be there, so don't hurry to clear that flag if it's not in desired_row. */ if (partial_p && was_stipple) current_row->stipple_p = true; return changed_p; } /* Set the cursor after an update of window W. This function may only be called from update_window. */ static void set_window_cursor_after_update (struct window *w) { struct frame *f = XFRAME (w->frame); int cx, cy, vpos, hpos; /* Not intended for frame matrix updates. */ eassert (FRAME_WINDOW_P (f)); if (cursor_in_echo_area && !NILP (echo_area_buffer[0]) /* If we are showing a message instead of the mini-buffer, show the cursor for the message instead. */ && XWINDOW (minibuf_window) == w && BASE_EQ (minibuf_window, echo_area_window) /* These cases apply only to the frame that contains the active mini-buffer window. */ && FRAME_HAS_MINIBUF_P (f) && BASE_EQ (FRAME_MINIBUF_WINDOW (f), echo_area_window)) { cx = cy = vpos = hpos = 0; /* If the mini-buffer is several lines high, find the last line that has any text on it. Note: either all lines are enabled or none. Otherwise we wouldn't be able to determine Y. */ struct glyph_row *last_row = NULL; int yb = window_text_bottom_y (w); for (struct glyph_row *row = w->current_matrix->rows; row->enabled_p && (!last_row || MATRIX_ROW_BOTTOM_Y (row) <= yb); row++) if (row->used[TEXT_AREA] && row->glyphs[TEXT_AREA][0].charpos >= 0) last_row = row; if (last_row) { struct glyph *start = last_row->glyphs[TEXT_AREA]; struct glyph *last = start + last_row->used[TEXT_AREA] - 1; while (last > start && last->charpos < 0) --last; for (struct glyph *glyph = start; glyph < last; glyph++) { cx += glyph->pixel_width; hpos++; } cy = last_row->y; vpos = MATRIX_ROW_VPOS (last_row, w->current_matrix); } } else { cx = w->cursor.x; cy = w->cursor.y; hpos = w->cursor.hpos; vpos = w->cursor.vpos; } /* Window cursor can be out of sync for horizontally split windows. Horizontal position is -1 when cursor is on the left fringe. */ hpos = clip_to_bounds (-1, hpos, w->current_matrix->matrix_w - 1); vpos = clip_to_bounds (0, vpos, w->current_matrix->nrows - 1); output_cursor_to (w, vpos, hpos, cy, cx); } /* Set WINDOW->must_be_updated_p to ON_P for all windows in the window tree rooted at W. */ static void set_window_update_flags (struct window *w, bool on_p) { while (w) { if (WINDOWP (w->contents)) set_window_update_flags (XWINDOW (w->contents), on_p); else w->must_be_updated_p = on_p; w = NILP (w->next) ? 0 : XWINDOW (w->next); } } /*********************************************************************** Window-Based Scrolling ***********************************************************************/ /* Structure describing rows in scrolling_window. */ struct row_entry { /* Number of occurrences of this row in desired and current matrix. */ int old_uses, new_uses; /* Vpos of row in new matrix. */ int new_line_number; /* Bucket index of this row_entry in the hash table row_table. */ ptrdiff_t bucket; /* The row described by this entry. */ struct glyph_row *row; /* Hash collision chain. */ struct row_entry *next; }; /* A pool to allocate row_entry structures from, and the size of the pool. The pool is reallocated in scrolling_window when we find that we need a larger one. */ static struct row_entry *row_entry_pool; static ptrdiff_t row_entry_pool_size; /* Index of next free entry in row_entry_pool. */ static ptrdiff_t row_entry_idx; /* The hash table used during scrolling, and the table's size. This table is used to quickly identify equal rows in the desired and current matrix. */ static struct row_entry **row_table; static ptrdiff_t row_table_size; /* Vectors of pointers to row_entry structures belonging to the current and desired matrix, and the size of the vectors. */ static struct row_entry **old_lines, **new_lines; static ptrdiff_t old_lines_size, new_lines_size; /* A pool to allocate run structures from, and its size. */ static struct run *run_pool; static ptrdiff_t runs_size; /* A vector of runs of lines found during scrolling. */ static struct run **runs; /* Add glyph row ROW to the scrolling hash table. */ static struct row_entry * add_row_entry (struct glyph_row *row) { struct row_entry *entry; ptrdiff_t i = row->hash % row_table_size; entry = row_table[i]; eassert (entry || verify_row_hash (row)); while (entry && !row_equal_p (entry->row, row, 1)) entry = entry->next; if (entry == NULL) { entry = row_entry_pool + row_entry_idx++; entry->row = row; entry->old_uses = entry->new_uses = 0; entry->new_line_number = 0; entry->bucket = i; entry->next = row_table[i]; row_table[i] = entry; } return entry; } /* Try to reuse part of the current display of W by scrolling lines. HEADER_LINE_P means W has a header line. The algorithm is taken from Communications of the ACM, Apr78 "A Technique for Isolating Differences Between Files." It should take O(N) time. A short outline of the steps of the algorithm 1. Skip lines equal at the start and end of both matrices. 2. Enter rows in the current and desired matrix into a symbol table, counting how often they appear in both matrices. 3. Rows that appear exactly once in both matrices serve as anchors, i.e. we assume that such lines are likely to have been moved. 4. Starting from anchor lines, extend regions to be scrolled both forward and backward. Value is -1 if all rows were found to be equal. 0 to indicate that we did not scroll the display, or 1 if we did scroll. */ static int scrolling_window (struct window *w, int tab_line_p) { struct glyph_matrix *desired_matrix = w->desired_matrix; struct glyph_matrix *current_matrix = w->current_matrix; int yb = window_text_bottom_y (w); ptrdiff_t i; int j, first_old, first_new, last_old, last_new; int nruns, run_idx; ptrdiff_t n; struct row_entry *entry; struct redisplay_interface *rif = FRAME_RIF (XFRAME (WINDOW_FRAME (w))); /* Skip over rows equal at the start. */ for (i = tab_line_p; i < current_matrix->nrows - 1; ++i) { struct glyph_row *d = MATRIX_ROW (desired_matrix, i); struct glyph_row *c = MATRIX_ROW (current_matrix, i); /* If there is a row with a stipple currently on the glass, give up. Stipples look different depending on where on the display they are drawn, so scrolling the display will produce incorrect results. */ if (c->stipple_p) return 0; if (c->enabled_p && d->enabled_p && !d->redraw_fringe_bitmaps_p && c->y == d->y && MATRIX_ROW_BOTTOM_Y (c) <= yb && MATRIX_ROW_BOTTOM_Y (d) <= yb && row_equal_p (c, d, 1)) { assign_row (c, d); d->enabled_p = false; } else break; } /* Can't scroll the display of w32 GUI frames when position of point is indicated by the system caret, because scrolling the display will then "copy" the pixels used by the caret. */ #ifdef HAVE_NTGUI if (w32_use_visible_system_caret) return 0; #endif /* Give up if some rows in the desired matrix are not enabled. */ if (! MATRIX_ROW_ENABLED_P (desired_matrix, i)) return -1; first_old = first_new = i; while (i < current_matrix->nrows - 1) { /* If there is a stipple after the first change, give up as well. */ if (MATRIX_ROW (current_matrix, i)->stipple_p) return 0; ++i; } /* Set last_new to the index + 1 of the row that reaches the bottom boundary in the desired matrix. Give up if we find a disabled row before we reach the bottom boundary. */ i = first_new + 1; while (i < desired_matrix->nrows - 1) { int bottom; if (! MATRIX_ROW_ENABLED_P (desired_matrix, i)) return 0; bottom = MATRIX_ROW_BOTTOM_Y (MATRIX_ROW (desired_matrix, i)); if (bottom <= yb) ++i; if (bottom >= yb) break; } last_new = i; /* Set last_old to the index + 1 of the row that reaches the bottom boundary in the current matrix. We don't look at the enabled flag here because we plan to reuse part of the display even if other parts are disabled. */ i = first_old + 1; while (i < current_matrix->nrows - 1) { int bottom = MATRIX_ROW_BOTTOM_Y (MATRIX_ROW (current_matrix, i)); if (bottom <= yb) ++i; if (bottom >= yb) break; } last_old = i; /* Skip over rows equal at the bottom. */ i = last_new; j = last_old; while (i - 1 > first_new && j - 1 > first_old && MATRIX_ROW_ENABLED_P (current_matrix, j - 1) && (MATRIX_ROW (current_matrix, j - 1)->y == MATRIX_ROW (desired_matrix, i - 1)->y) && !MATRIX_ROW (desired_matrix, i - 1)->redraw_fringe_bitmaps_p && row_equal_p (MATRIX_ROW (desired_matrix, i - 1), MATRIX_ROW (current_matrix, j - 1), 1)) --i, --j; last_new = i; last_old = j; /* Nothing to do if all rows are equal. */ if (last_new == first_new) return 0; /* Check for integer overflow in size calculation. If next_almost_prime checks (N) for divisibility by 2..10, then it can return at most N + 10, e.g., next_almost_prime (1) == 11. So, set next_almost_prime_increment_max to 10. It's just a coincidence that next_almost_prime_increment_max == NEXT_ALMOST_PRIME_LIMIT - 1. If NEXT_ALMOST_PRIME_LIMIT were 13, then next_almost_prime_increment_max would be 14, e.g., because next_almost_prime (113) would be 127. */ { static_assert (NEXT_ALMOST_PRIME_LIMIT == 11); enum { next_almost_prime_increment_max = 10 }; ptrdiff_t row_table_max = (min (PTRDIFF_MAX, SIZE_MAX) / (3 * sizeof *row_table) - next_almost_prime_increment_max); ptrdiff_t current_nrows_max = row_table_max - desired_matrix->nrows; if (current_nrows_max < current_matrix->nrows) memory_full (SIZE_MAX); } /* Reallocate vectors, tables etc. if necessary. */ if (current_matrix->nrows > old_lines_size) old_lines = xpalloc (old_lines, &old_lines_size, current_matrix->nrows - old_lines_size, INT_MAX, sizeof *old_lines); if (desired_matrix->nrows > new_lines_size) new_lines = xpalloc (new_lines, &new_lines_size, desired_matrix->nrows - new_lines_size, INT_MAX, sizeof *new_lines); n = desired_matrix->nrows; n += current_matrix->nrows; if (row_table_size < 3 * n) { ptrdiff_t size = next_almost_prime (3 * n); row_table = xnrealloc (row_table, size, sizeof *row_table); row_table_size = size; memset (row_table, 0, size * sizeof *row_table); } if (n > row_entry_pool_size) row_entry_pool = xpalloc (row_entry_pool, &row_entry_pool_size, n - row_entry_pool_size, -1, sizeof *row_entry_pool); if (desired_matrix->nrows > runs_size) { runs = xnrealloc (runs, desired_matrix->nrows, sizeof *runs); run_pool = xnrealloc (run_pool, desired_matrix->nrows, sizeof *run_pool); runs_size = desired_matrix->nrows; } nruns = run_idx = 0; row_entry_idx = 0; /* Add rows from the current and desired matrix to the hash table row_hash_table to be able to find equal ones quickly. */ for (i = first_old; i < last_old; ++i) { if (MATRIX_ROW_ENABLED_P (current_matrix, i)) { entry = add_row_entry (MATRIX_ROW (current_matrix, i)); old_lines[i] = entry; ++entry->old_uses; } else old_lines[i] = NULL; } for (i = first_new; i < last_new; ++i) { eassert (MATRIX_ROW_ENABLED_P (desired_matrix, i)); entry = add_row_entry (MATRIX_ROW (desired_matrix, i)); ++entry->new_uses; entry->new_line_number = i; new_lines[i] = entry; } /* Identify moves based on lines that are unique and equal in both matrices. */ for (i = first_old; i < last_old;) if (old_lines[i] && old_lines[i]->old_uses == 1 && old_lines[i]->new_uses == 1) { int p, q; int new_line = old_lines[i]->new_line_number; struct run *run = run_pool + run_idx++; /* Record move. */ run->current_vpos = i; run->current_y = MATRIX_ROW (current_matrix, i)->y; run->desired_vpos = new_line; run->desired_y = MATRIX_ROW (desired_matrix, new_line)->y; run->nrows = 1; run->height = MATRIX_ROW (current_matrix, i)->height; /* Extend backward. */ p = i - 1; q = new_line - 1; while (p > first_old && q > first_new && old_lines[p] == new_lines[q]) { int h = MATRIX_ROW (current_matrix, p)->height; --run->current_vpos; --run->desired_vpos; ++run->nrows; run->height += h; run->desired_y -= h; run->current_y -= h; --p, --q; } /* Extend forward. */ p = i + 1; q = new_line + 1; while (p < last_old && q < last_new && old_lines[p] == new_lines[q]) { int h = MATRIX_ROW (current_matrix, p)->height; ++run->nrows; run->height += h; ++p, ++q; } /* Insert run into list of all runs. Order runs by copied pixel lines. Note that we record runs that don't have to be copied because they are already in place. This is done because we can avoid calling update_window_line in this case. */ for (p = 0; p < nruns && runs[p]->height > run->height; ++p) ; for (q = nruns; q > p; --q) runs[q] = runs[q - 1]; runs[p] = run; ++nruns; i += run->nrows; } else ++i; /* Do the moves. Do it in a way that we don't overwrite something we want to copy later on. This is not solvable in general because there is only one display and we don't have a way to exchange areas on this display. Example: +-----------+ +-----------+ | A | | B | +-----------+ --> +-----------+ | B | | A | +-----------+ +-----------+ Instead, prefer bigger moves, and invalidate moves that would copy from where we copied to. */ for (i = 0; i < nruns; ++i) if (runs[i]->nrows > 0) { struct run *r = runs[i]; /* Copy on the display. */ if (r->current_y != r->desired_y) { rif->clear_window_mouse_face (w); rif->scroll_run_hook (w, r); } /* Truncate runs that copy to where we copied to, and invalidate runs that copy from where we copied to. */ for (j = nruns - 1; j > i; --j) { struct run *p = runs[j]; bool truncated_p = 0; if (p->nrows > 0 && p->desired_y < r->desired_y + r->height && p->desired_y + p->height > r->desired_y) { if (p->desired_y < r->desired_y) { p->nrows = r->desired_vpos - p->desired_vpos; p->height = r->desired_y - p->desired_y; truncated_p = 1; } else { int nrows_copied = (r->desired_vpos + r->nrows - p->desired_vpos); if (p->nrows <= nrows_copied) p->nrows = 0; else { int height_copied = (r->desired_y + r->height - p->desired_y); p->current_vpos += nrows_copied; p->desired_vpos += nrows_copied; p->nrows -= nrows_copied; p->current_y += height_copied; p->desired_y += height_copied; p->height -= height_copied; truncated_p = 1; } } } if (r->current_y != r->desired_y /* The condition below is equivalent to ((p->current_y >= r->desired_y && p->current_y < r->desired_y + r->height) || (p->current_y + p->height > r->desired_y && (p->current_y + p->height <= r->desired_y + r->height))) because we have 0 < p->height <= r->height. */ && p->current_y < r->desired_y + r->height && p->current_y + p->height > r->desired_y) p->nrows = 0; /* Reorder runs by copied pixel lines if truncated. */ if (truncated_p && p->nrows > 0) { int k = nruns - 1; while (runs[k]->nrows == 0 || runs[k]->height < p->height) k--; memmove (runs + j, runs + j + 1, (k - j) * sizeof (*runs)); runs[k] = p; } } /* Assign matrix rows. */ for (j = 0; j < r->nrows; ++j) { struct glyph_row *from, *to; bool to_overlapped_p; to = MATRIX_ROW (current_matrix, r->desired_vpos + j); from = MATRIX_ROW (desired_matrix, r->desired_vpos + j); to_overlapped_p = to->overlapped_p; from->redraw_fringe_bitmaps_p = from->fringe_bitmap_periodic_p; assign_row (to, from); /* The above `assign_row' actually does swap, so if we had an overlap in the copy destination of two runs, then the second run would assign a previously disabled bogus row. But thanks to the truncation code in the preceding for-loop, we no longer have such an overlap, and thus the assigned row should always be enabled. */ eassert (to->enabled_p); from->enabled_p = false; to->overlapped_p = to_overlapped_p; } } /* Clear the hash table, for the next time. */ for (i = 0; i < row_entry_idx; ++i) row_table[row_entry_pool[i].bucket] = NULL; /* Value is 1 to indicate that we scrolled the display. */ return nruns > 0; } /************************************************************************ Frame-Based Updates ************************************************************************/ static void tty_set_cursor (void) { struct frame *f = SELECTED_FRAME (); if ((cursor_in_echo_area /* If we are showing a message instead of the mini-buffer, show the cursor for the message instead of for the (now hidden) mini-buffer contents. */ || (BASE_EQ (minibuf_window, selected_window) && BASE_EQ (minibuf_window, echo_area_window) && !NILP (echo_area_buffer[0]))) /* These cases apply only to the frame that contains the active mini-buffer window. */ && FRAME_HAS_MINIBUF_P (f) && BASE_EQ (FRAME_MINIBUF_WINDOW (f), echo_area_window)) { int top = WINDOW_TOP_EDGE_LINE (XWINDOW (FRAME_MINIBUF_WINDOW (f))); int col; /* Put cursor at the end of the prompt. If the mini-buffer is several lines high, find the last line that has any text on it. */ int row = FRAME_TOTAL_LINES (f); do { row--; col = 0; if (MATRIX_ROW_ENABLED_P (f->current_matrix, row)) { /* Frame rows are filled up with spaces that must be ignored here. */ struct glyph_row *r = MATRIX_ROW (f->current_matrix, row); struct glyph *start = r->glyphs[TEXT_AREA]; col = r->used[TEXT_AREA]; while (0 < col && start[col - 1].charpos < 0) col--; } } while (row > top && col == 0); /* We exit the loop with COL at the glyph _after_ the last one. */ if (col > 0) col--; /* Make sure COL is not out of range. */ if (col >= FRAME_CURSOR_X_LIMIT (f)) { /* If we have another row, advance cursor into it. */ if (row < FRAME_TOTAL_LINES (f) - 1) { col = FRAME_LEFT_SCROLL_BAR_COLS (f); row++; } /* Otherwise move it back in range. */ else col = FRAME_CURSOR_X_LIMIT (f) - 1; } cursor_to (f, row, col); } else { /* We have only one cursor on terminal frames. Use it to display the cursor of the selected window. */ struct window *w = XWINDOW (FRAME_SELECTED_WINDOW (f)); if (w->cursor.vpos >= 0 /* The cursor vpos may be temporarily out of bounds in the following situation: There is one window, with the cursor in the lower half of it. The window is split, and a message causes a redisplay before a new cursor position has been computed. */ && w->cursor.vpos < WINDOW_TOTAL_LINES (w)) { int x = WINDOW_TO_FRAME_HPOS (w, w->cursor.hpos); int y = WINDOW_TO_FRAME_VPOS (w, w->cursor.vpos); x += max (0, w->left_margin_cols); cursor_to (f, y, x); } } } /* Write desired matix of tty frame F and make it current. FORCE_P means that the update should not be stopped by pending input. INHIBIT_ID_P means that scrolling by insert/delete should not be tried. SET_CURSOR_P false means do not set cursor at point in selected window. Value is true if update was stopped due to pending input. */ static bool write_matrix (struct frame *f, bool force_p, bool inhibit_id_p, bool set_cursor_p, bool updating_menu_p) { if (!force_p && detect_input_pending_ignore_squeezables ()) return true; /* If we cannot insert/delete lines, it's no use trying it. */ if (!FRAME_LINE_INS_DEL_OK (f)) inhibit_id_p = true; if (baud_rate != FRAME_COST_BAUD_RATE (f)) calculate_costs (f); /* See if any of the desired lines are enabled; don't compute for i/d line if just want cursor motion. */ int first_row = first_enabled_row (f->desired_matrix); if (!inhibit_id_p && first_row >= 0) force_p |= scrolling (f); /* Update the individual lines as needed. Do bottom line first. This is done so that messages are made visible when pausing. */ int last_row = f->desired_matrix->nrows - 1; if (MATRIX_ROW_ENABLED_P (f->desired_matrix, last_row)) write_row (f, last_row, updating_menu_p); bool pause_p = false; if (first_row >= 0) { const int preempt_count = clip_to_bounds (1, baud_rate / 2400 + 1, INT_MAX); for (int i = first_row, n = 0; i < last_row; ++i) if (MATRIX_ROW_ENABLED_P (f->desired_matrix, i)) { if (!force_p && n % preempt_count == 0 && detect_input_pending_ignore_squeezables ()) { pause_p = true; break; } write_row (f, i, updating_menu_p); ++n; } } /* Now just clean up termcap drivers and set cursor, etc. */ if (!pause_p && set_cursor_p) tty_set_cursor (); return pause_p; } /* Do line insertions/deletions on frame F for frame-based redisplay. */ static bool scrolling (struct frame *frame) { /* In fact this code should never be reached at all under Android. */ #ifndef HAVE_ANDROID int unchanged_at_top, unchanged_at_bottom; int window_size; int changed_lines; int i; int height = FRAME_TOTAL_LINES (frame); int free_at_end_vpos = height; struct glyph_matrix *current_matrix = frame->current_matrix; struct glyph_matrix *desired_matrix = frame->desired_matrix; static_assert (sizeof (int) <= sizeof (unsigned)); static_assert (alignof (unsigned) % alignof (int) == 0); unsigned *old_hash; USE_SAFE_ALLOCA; SAFE_NALLOCA (old_hash, 4, height); unsigned *new_hash = old_hash + height; int *draw_cost = (int *) (new_hash + height); int *old_draw_cost = draw_cost + height; eassert (current_matrix); /* Compute hash codes of all the lines. Also calculate number of changed lines, number of unchanged lines at the beginning, and number of unchanged lines at the end. */ changed_lines = 0; unchanged_at_top = 0; unchanged_at_bottom = height; for (i = 0; i < height; i++) { /* Give up on this scrolling if some old lines are not enabled. */ if (!MATRIX_ROW_ENABLED_P (current_matrix, i)) { SAFE_FREE (); return false; } old_hash[i] = line_hash_code (frame, MATRIX_ROW (current_matrix, i)); if (! MATRIX_ROW_ENABLED_P (desired_matrix, i)) { /* This line cannot be redrawn, so don't let scrolling mess it. */ new_hash[i] = old_hash[i]; draw_cost[i] = SCROLL_INFINITY; } else { new_hash[i] = line_hash_code (frame, MATRIX_ROW (desired_matrix, i)); draw_cost[i] = line_draw_cost (frame, desired_matrix, i); } if (old_hash[i] != new_hash[i]) { changed_lines++; unchanged_at_bottom = height - i - 1; } else if (i == unchanged_at_top) unchanged_at_top++; old_draw_cost[i] = line_draw_cost (frame, current_matrix, i); } /* If changed lines are few, don't allow preemption, don't scroll. */ if ((!FRAME_SCROLL_REGION_OK (frame) && changed_lines < baud_rate / 2400) || unchanged_at_bottom == height) { SAFE_FREE (); return true; } window_size = (height - unchanged_at_top - unchanged_at_bottom); if (FRAME_SCROLL_REGION_OK (frame)) free_at_end_vpos -= unchanged_at_bottom; else if (FRAME_MEMORY_BELOW_FRAME (frame)) free_at_end_vpos = -1; /* Do id/calc only if small window, or slow terminal, or many lines in common between current frame and desired frame. But the window size must be at least 2. */ if ((FRAME_SCROLL_REGION_OK (frame) || window_size < 18 || baud_rate <= 2400 || (window_size < 10 * scrolling_max_lines_saved (unchanged_at_top, height - unchanged_at_bottom, old_hash, new_hash, draw_cost))) && 2 <= window_size) scrolling_1 (frame, window_size, unchanged_at_top, unchanged_at_bottom, draw_cost + unchanged_at_top - 1, old_draw_cost + unchanged_at_top - 1, old_hash + unchanged_at_top - 1, new_hash + unchanged_at_top - 1, free_at_end_vpos - unchanged_at_top); SAFE_FREE (); #endif return false; } /* Count the number of blanks at the start of the vector of glyphs R which is LEN glyphs long. */ static int count_blanks (struct frame *f, struct glyph *r, int len) { int i; for (i = 0; i < len; ++i) if (!CHAR_GLYPH_SPACE_P (f, r[i])) break; return i; } /* Count the number of glyphs in common at the start of the glyph vectors STR1 and STR2. END1 is the end of STR1 and END2 is the end of STR2. Value is the number of equal glyphs equal at the start. */ static int count_match (struct glyph *str1, struct glyph *end1, struct glyph *str2, struct glyph *end2) { struct glyph *p1 = str1; struct glyph *p2 = str2; while (p1 < end1 && p2 < end2 && GLYPH_CHAR_AND_FACE_EQUAL_P (p1, p2)) ++p1, ++p2; return p1 - str1; } /* Char insertion/deletion cost vector, from term.c */ #ifndef HAVE_ANDROID #define char_ins_del_cost(f) (&char_ins_del_vector[FRAME_TOTAL_COLS (f)]) #endif /* Perform a frame-based update on line VPOS in frame FRAME. */ static void write_row (struct frame *f, int vpos, bool updating_menu_p) { struct glyph *obody, *nbody, *op1, *op2, *np1, *nend; int tem; int osp, nsp, begmatch, endmatch, olen, nlen; struct glyph_matrix *current_matrix = f->current_matrix; struct glyph_matrix *desired_matrix = f->desired_matrix; struct glyph_row *current_row = MATRIX_ROW (current_matrix, vpos); struct glyph_row *desired_row = MATRIX_ROW (desired_matrix, vpos); bool must_write_whole_line_p; bool write_spaces_p = FRAME_MUST_WRITE_SPACES (f); bool colored_spaces_p = (FACE_FROM_ID (f, DEFAULT_FACE_ID)->background != FACE_TTY_DEFAULT_BG_COLOR); if (colored_spaces_p) write_spaces_p = 1; /* Current row not enabled means it has unknown contents. We must write the whole desired line in that case. */ must_write_whole_line_p = !current_row->enabled_p; if (must_write_whole_line_p) { obody = 0; olen = 0; } else { obody = MATRIX_ROW_GLYPH_START (current_matrix, vpos); olen = current_row->used[TEXT_AREA]; /* Ignore trailing spaces, if we can. */ if (!write_spaces_p) while (olen > 0 && CHAR_GLYPH_SPACE_P (f, obody[olen-1])) olen--; } current_row->enabled_p = true; current_row->used[TEXT_AREA] = desired_row->used[TEXT_AREA]; /* For some reason, cursor is sometimes moved behind our back when a frame with a TTY menu is redrawn. Homing the cursor as below fixes that. */ if (updating_menu_p) cursor_to (f, 0, 0); /* If desired line is empty, just clear the line. */ if (!desired_row->enabled_p) { nlen = 0; goto just_erase; } nbody = desired_row->glyphs[TEXT_AREA]; nlen = desired_row->used[TEXT_AREA]; nend = nbody + nlen; /* If display line has unknown contents, write the whole line. */ if (must_write_whole_line_p) { /* Ignore spaces at the end, if we can. */ if (!write_spaces_p) while (nlen > 0 && CHAR_GLYPH_SPACE_P (f, nbody[nlen - 1])) --nlen; /* Write the contents of the desired line. */ if (nlen) { cursor_to (f, vpos, 0); write_glyphs (f, nbody, nlen); } /* Don't call clear_end_of_line if we already wrote the whole line. The cursor will not be at the right margin in that case but in the line below. */ if (nlen < FRAME_TOTAL_COLS (f)) { cursor_to (f, vpos, nlen); clear_end_of_line (f, FRAME_TOTAL_COLS (f)); } else /* Make sure we are in the right row, otherwise cursor movement with cmgoto might use `ch' in the wrong row. */ cursor_to (f, vpos, 0); return; } /* Pretend trailing spaces are not there at all, unless for one reason or another we must write all spaces. */ if (!write_spaces_p) while (nlen > 0 && CHAR_GLYPH_SPACE_P (f, nbody[nlen - 1])) nlen--; /* If there's no i/d char, quickly do the best we can without it. */ if (!FRAME_CHAR_INS_DEL_OK (f)) { int i, j; /* Find the first glyph in desired row that doesn't agree with a glyph in the current row, and write the rest from there on. */ for (i = 0; i < nlen; i++) { if (i >= olen || !GLYPH_EQUAL_P (nbody + i, obody + i)) { /* Find the end of the run of different glyphs. */ j = i + 1; while (j < nlen && (j >= olen || !GLYPH_EQUAL_P (nbody + j, obody + j) || CHAR_GLYPH_PADDING_P (nbody[j]))) ++j; /* Output this run of non-matching chars. */ cursor_to (f, vpos, i); write_glyphs (f, nbody + i, j - i); i = j - 1; /* Now find the next non-match. */ } } /* Clear the rest of the line, or the non-clear part of it. */ if (olen > nlen) { cursor_to (f, vpos, nlen); clear_end_of_line (f, olen); } return; } /* Here when CHAR_INS_DEL_OK != 0, i.e. we can insert or delete characters in a row. */ if (!olen) { /* If current line is blank, skip over initial spaces, if possible, and write the rest. */ if (write_spaces_p) nsp = 0; else nsp = count_blanks (f, nbody, nlen); if (nlen > nsp) { cursor_to (f, vpos, nsp); write_glyphs (f, nbody + nsp, nlen - nsp); } return; } /* Compute number of leading blanks in old and new contents. */ osp = count_blanks (f, obody, olen); nsp = (colored_spaces_p ? 0 : count_blanks (f, nbody, nlen)); /* Compute number of matching chars starting with first non-blank. */ begmatch = count_match (obody + osp, obody + olen, nbody + nsp, nbody + nlen); /* Spaces in new match implicit space past the end of old. */ /* A bug causing this to be a no-op was fixed in 18.29. */ if (!write_spaces_p && osp + begmatch == olen) { np1 = nbody + nsp; while (np1 + begmatch < nend && CHAR_GLYPH_SPACE_P (f, np1[begmatch])) ++begmatch; } /* Avoid doing insert/delete char just cause number of leading spaces differs when the following text does not match. */ if (begmatch == 0 && osp != nsp) osp = nsp = min (osp, nsp); /* Find matching characters at end of line */ op1 = obody + olen; np1 = nbody + nlen; op2 = op1 + begmatch - min (olen - osp, nlen - nsp); while (op1 > op2 && GLYPH_EQUAL_P (op1 - 1, np1 - 1)) { op1--; np1--; } endmatch = obody + olen - op1; /* tem gets the distance to insert or delete. endmatch is how many characters we save by doing so. Is it worth it? */ tem = (nlen - nsp) - (olen - osp); if (endmatch && tem && (!FRAME_CHAR_INS_DEL_OK (f) #ifndef HAVE_ANDROID || endmatch <= char_ins_del_cost (f)[tem] #endif )) endmatch = 0; /* nsp - osp is the distance to insert or delete. If that is nonzero, begmatch is known to be nonzero also. begmatch + endmatch is how much we save by doing the ins/del. Is it worth it? */ if (nsp != osp && (!FRAME_CHAR_INS_DEL_OK (f) #ifndef HAVE_ANDROID || begmatch + endmatch <= char_ins_del_cost (f)[nsp - osp] #endif )) { begmatch = 0; endmatch = 0; osp = nsp = min (osp, nsp); } /* Now go through the line, inserting, writing and deleting as appropriate. */ if (osp > nsp) { cursor_to (f, vpos, nsp); delete_glyphs (f, osp - nsp); } else if (nsp > osp) { /* If going to delete chars later in line and insert earlier in the line, must delete first to avoid losing data in the insert */ if (endmatch && nlen < olen + nsp - osp) { cursor_to (f, vpos, nlen - endmatch + osp - nsp); delete_glyphs (f, olen + nsp - osp - nlen); olen = nlen - (nsp - osp); } cursor_to (f, vpos, osp); insert_glyphs (f, 0, nsp - osp); } olen += nsp - osp; tem = nsp + begmatch + endmatch; if (nlen != tem || olen != tem) { if (!endmatch || nlen == olen) { /* If new text being written reaches right margin, there is no need to do clear-to-eol at the end of this function (and it would not be safe, since cursor is not going to be "at the margin" after the text is done). */ if (nlen == FRAME_TOTAL_COLS (f)) olen = 0; /* Function write_glyphs is prepared to do nothing if passed a length <= 0. Check it here to avoid unnecessary cursor movement. */ if (nlen - tem > 0) { cursor_to (f, vpos, nsp + begmatch); write_glyphs (f, nbody + nsp + begmatch, nlen - tem); } } else if (nlen > olen) { /* Here, we used to have the following simple code: ---------------------------------------- write_glyphs (nbody + nsp + begmatch, olen - tem); insert_glyphs (nbody + nsp + begmatch + olen - tem, nlen - olen); ---------------------------------------- but it doesn't work if nbody[nsp + begmatch + olen - tem] is a padding glyph. */ int out = olen - tem; /* Columns to be overwritten originally. */ int del; cursor_to (f, vpos, nsp + begmatch); /* Calculate columns we can actually overwrite. */ while (CHAR_GLYPH_PADDING_P (nbody[nsp + begmatch + out])) out--; write_glyphs (f, nbody + nsp + begmatch, out); /* If we left columns to be overwritten, we must delete them. */ del = olen - tem - out; if (del > 0) delete_glyphs (f, del); /* At last, we insert columns not yet written out. */ insert_glyphs (f, nbody + nsp + begmatch + out, nlen - olen + del); olen = nlen; } else if (olen > nlen) { cursor_to (f, vpos, nsp + begmatch); write_glyphs (f, nbody + nsp + begmatch, nlen - tem); delete_glyphs (f, olen - nlen); olen = nlen; } } just_erase: /* If any unerased characters remain after the new line, erase them. */ if (olen > nlen) { cursor_to (f, vpos, nlen); clear_end_of_line (f, olen); } } /*********************************************************************** X/Y Position -> Buffer Position ***********************************************************************/ /* Determine what's under window-relative pixel position (*X, *Y). Return the object (string or buffer) that's there. Return in *POS the position in that object. Adjust *X and *Y to character positions. If an image is shown at the specified position, return in *OBJECT its image-spec. Return in *DX and *DY the pixel coordinates of the click, relative to the top left corner of object, or relative to the top left corner of the character glyph at (*X, *Y) if the object at (*X, *Y) is nil. Return WIDTH and HEIGHT of the object at (*X, *Y), or zero if the coordinates point to an empty area of the display. */ Lisp_Object buffer_posn_from_coords (struct window *w, int *x, int *y, struct display_pos *pos, Lisp_Object *object, int *dx, int *dy, int *width, int *height) { struct it it; Lisp_Object old_current_buffer = Fcurrent_buffer (); struct text_pos startp; Lisp_Object string; struct glyph_row *row; #ifdef HAVE_WINDOW_SYSTEM struct image *img = 0; #endif int x0, x1, to_x, it_vpos; void *itdata = NULL; /* We used to set current_buffer directly here, but that does the wrong thing with `face-remapping-alist' (bug#2044). */ Fset_buffer (w->contents); itdata = bidi_shelve_cache (); CLIP_TEXT_POS_FROM_MARKER (startp, w->start); start_display (&it, w, startp); x0 = *x; /* First, move to the beginning of the row corresponding to *Y. We need to be in that row to get the correct value of base paragraph direction for the text at (*X, *Y). */ move_it_to (&it, -1, 0, *y, -1, MOVE_TO_X | MOVE_TO_Y); /* TO_X is the pixel position that the iterator will compute for the glyph at *X. */ to_x = x0; if (it.bidi_it.paragraph_dir == R2L) /* For lines in an R2L paragraph, we need to mirror TO_X wrt the text area. This is because the iterator, even in R2L paragraphs, delivers glyphs as if they started at the left margin of the window. (When we actually produce glyphs for display, we reverse their order in PRODUCE_GLYPHS, but the iterator doesn't know about that.) The following line adjusts the pixel position to the iterator geometry, which is what move_it_* routines use. (The -1 is because in a window whose text-area width is W, the rightmost pixel position is W-1, and it should be mirrored into zero pixel position.) */ to_x = window_box_width (w, TEXT_AREA) - to_x - 1; /* We need to add it.first_visible_x because iterator positions include the hscroll. */ to_x += it.first_visible_x; /* If we are hscrolling only the current line, and Y is at the line containing point, augment TO_X with the hscroll amount of the current line. */ if (it.line_wrap == TRUNCATE && EQ (automatic_hscrolling, Qcurrent_line) && IT_CHARPOS (it) < PT) { struct it it2 = it; void *it2data = bidi_shelve_cache (); it2.last_visible_x = 1000000; /* If the line at Y shows point, the call below to move_it_in_display_line will succeed in reaching point. */ move_it_in_display_line (&it2, PT, -1, MOVE_TO_POS); if (IT_CHARPOS (it2) >= PT) { to_x += (w->hscroll - w->min_hscroll) * FRAME_COLUMN_WIDTH (it.f); /* We need to pretend the window is hscrolled, so that move_it_in_display_line below will DTRT with TO_X. */ it.first_visible_x += w->hscroll * FRAME_COLUMN_WIDTH (it.f); it.last_visible_x += w->hscroll * FRAME_COLUMN_WIDTH (it.f); } bidi_unshelve_cache (it2data, 0); } /* Now move horizontally in the row to the glyph under *X. Second argument is ZV to prevent move_it_in_display_line from matching based on buffer positions. */ move_it_in_display_line (&it, ZV, to_x, MOVE_TO_X); if (mouse_prefer_closest_glyph) { int next_x = it.current_x + it.pixel_width; int before_dx = to_x - it.current_x; int after_dx = next_x - to_x; if (before_dx > after_dx) move_it_in_display_line (&it, ZV, next_x, MOVE_TO_X); } bidi_unshelve_cache (itdata, 0); Fset_buffer (old_current_buffer); *dx = to_x - it.current_x; *dy = *y - it.current_y; string = w->contents; if (STRINGP (it.string)) string = it.string; *pos = it.current; if (it.what == IT_COMPOSITION && it.cmp_it.nchars > 1 && it.cmp_it.reversed_p) { /* The current display element is a grapheme cluster in a composition. In that case, we need the position of the first character of the cluster. But, as it.cmp_it.reversed_p is 1, it.current points to the last character of the cluster, thus we must move back to the first character of the same cluster. */ CHARPOS (pos->pos) -= it.cmp_it.nchars - 1; if (STRINGP (it.string)) BYTEPOS (pos->pos) = string_char_to_byte (string, CHARPOS (pos->pos)); else BYTEPOS (pos->pos) = buf_charpos_to_bytepos (XBUFFER (w->contents), CHARPOS (pos->pos)); } #ifdef HAVE_WINDOW_SYSTEM if (it.what == IT_IMAGE) { /* Note that this ignores images that are fringe bitmaps, because their image ID is zero, and so IMAGE_OPT_FROM_ID will return NULL. This is okay, since fringe bitmaps are not displayed in the text area, and so are never the object we are interested in. */ img = IMAGE_OPT_FROM_ID (it.f, it.image_id); if (img && !NILP (img->spec)) *object = img->spec; } #endif /* IT's vpos counts from the glyph row that includes the window's start position, i.e. it excludes the header-line row, but MATRIX_ROW includes the header-line row. Adjust for a possible header-line row. */ it_vpos = it.vpos + window_wants_header_line (w) + window_wants_tab_line (w); if (it_vpos < w->current_matrix->nrows && (row = MATRIX_ROW (w->current_matrix, it_vpos), row->enabled_p)) { if (it.hpos < row->used[TEXT_AREA]) { struct glyph *glyph = row->glyphs[TEXT_AREA] + it.hpos; #ifdef HAVE_WINDOW_SYSTEM if (img) { *dy -= row->ascent - glyph->ascent; *dx += glyph->slice.img.x; *dy += glyph->slice.img.y; /* Image slices positions are still relative to the entire image */ *width = img->width; *height = img->height; } else #endif { *width = glyph->pixel_width; *height = glyph->ascent + glyph->descent; } } else { *width = 0; *height = row->height; } } else { *width = *height = 0; } /* Add extra (default width) columns if clicked after EOL. */ x1 = max (0, it.current_x + it.pixel_width); if (to_x > x1) it.hpos += (to_x - x1) / WINDOW_FRAME_COLUMN_WIDTH (w); *x = it.hpos; *y = it.vpos; return string; } /* Value is the string under window-relative coordinates X/Y in the mode line or header line (PART says which) of window W, or nil if none. *CHARPOS is set to the position in the string returned. */ Lisp_Object mode_line_string (struct window *w, enum window_part part, int *x, int *y, ptrdiff_t *charpos, Lisp_Object *object, int *dx, int *dy, int *width, int *height) { struct glyph_row *row; struct glyph *glyph, *end; int x0, y0; Lisp_Object string = Qnil; if (part == ON_MODE_LINE) row = MATRIX_MODE_LINE_ROW (w->current_matrix); else if (part == ON_TAB_LINE) row = MATRIX_TAB_LINE_ROW (w->current_matrix); else row = MATRIX_HEADER_LINE_ROW (w->current_matrix); y0 = *y - row->y; *y = row - MATRIX_FIRST_TEXT_ROW (w->current_matrix); if (row->mode_line_p && row->enabled_p) { /* Find the glyph under X. If we find one with a string object, it's the one we were looking for. */ glyph = row->glyphs[TEXT_AREA]; end = glyph + row->used[TEXT_AREA]; for (x0 = *x; glyph < end && x0 >= glyph->pixel_width; ++glyph) x0 -= glyph->pixel_width; *x = glyph - row->glyphs[TEXT_AREA]; if (glyph < end) { string = glyph->object; *charpos = glyph->charpos; *width = glyph->pixel_width; *height = glyph->ascent + glyph->descent; #ifdef HAVE_WINDOW_SYSTEM if (glyph->type == IMAGE_GLYPH) { struct image *img; img = IMAGE_OPT_FROM_ID (WINDOW_XFRAME (w), glyph->u.img_id); if (img != NULL) *object = img->spec; y0 -= row->ascent - glyph->ascent; } #endif } else { /* Add extra (default width) columns if clicked after EOL. */ *x += x0 / WINDOW_FRAME_COLUMN_WIDTH (w); *width = 0; *height = row->height; } } else { *x = 0; x0 = 0; *width = *height = 0; } *dx = x0; *dy = y0; return string; } /* Value is the string under window-relative coordinates X/Y in either marginal area, or nil if none. *CHARPOS is set to the position in the string returned. */ Lisp_Object marginal_area_string (struct window *w, enum window_part part, int *x, int *y, ptrdiff_t *charpos, Lisp_Object *object, int *dx, int *dy, int *width, int *height) { struct glyph_row *row = w->current_matrix->rows; struct glyph *glyph, *end; int x0, y0, i, wy = *y; int area; Lisp_Object string = Qnil; if (part == ON_LEFT_MARGIN) area = LEFT_MARGIN_AREA; else if (part == ON_RIGHT_MARGIN) area = RIGHT_MARGIN_AREA; else emacs_abort (); for (i = 0; row->enabled_p && i < w->current_matrix->nrows; ++i, ++row) if (wy >= row->y && wy < MATRIX_ROW_BOTTOM_Y (row)) break; y0 = *y - row->y; *y = row - MATRIX_FIRST_TEXT_ROW (w->current_matrix); if (row->enabled_p) { /* Find the glyph under X. If we find one with a string object, it's the one we were looking for. */ if (area == RIGHT_MARGIN_AREA) x0 = ((WINDOW_HAS_FRINGES_OUTSIDE_MARGINS (w) ? WINDOW_LEFT_FRINGE_WIDTH (w) : WINDOW_FRINGES_WIDTH (w)) + window_box_width (w, LEFT_MARGIN_AREA) + window_box_width (w, TEXT_AREA)); else x0 = (WINDOW_HAS_FRINGES_OUTSIDE_MARGINS (w) ? WINDOW_LEFT_FRINGE_WIDTH (w) : 0); glyph = row->glyphs[area]; end = glyph + row->used[area]; for (x0 = *x - x0; glyph < end && x0 >= glyph->pixel_width; ++glyph) x0 -= glyph->pixel_width; *x = glyph - row->glyphs[area]; if (glyph < end) { string = glyph->object; *charpos = glyph->charpos; *width = glyph->pixel_width; *height = glyph->ascent + glyph->descent; #ifdef HAVE_WINDOW_SYSTEM if (glyph->type == IMAGE_GLYPH) { struct image *img; img = IMAGE_OPT_FROM_ID (WINDOW_XFRAME (w), glyph->u.img_id); if (img != NULL) *object = img->spec; y0 -= row->ascent - glyph->ascent; x0 += glyph->slice.img.x; y0 += glyph->slice.img.y; } #endif } else { /* Add extra (default width) columns if clicked after EOL. */ *x += x0 / WINDOW_FRAME_COLUMN_WIDTH (w); *width = 0; *height = row->height; } } else { x0 = 0; *x = 0; *width = *height = 0; } *dx = x0; *dy = y0; return string; } /*********************************************************************** Changing Frame Sizes ***********************************************************************/ #ifdef SIGWINCH static void deliver_window_change_signal (int); static void handle_window_change_signal (int sig) { int width, height; struct tty_display_info *tty; /* The frame size change obviously applies to a single termcap-controlled terminal, but we can't decide which. Therefore, we resize the frames corresponding to each tty. */ for (tty = tty_list; tty; tty = tty->next) { if (! tty->term_initted) continue; /* Suspended tty frames have tty->input == NULL avoid trying to use it. */ if (!tty->input) continue; get_tty_size (fileno (tty->input), &width, &height); if (width > 5 && height > 2) { Lisp_Object tail, frame; FOR_EACH_FRAME (tail, frame) { struct frame *f = XFRAME (frame); if (FRAME_TERMCAP_P (f) && FRAME_TTY (f) == tty && !FRAME_PARENT_FRAME (f)) /* Record the new sizes, but don't reallocate the data structures now. Let that be done later outside of the signal handler. */ change_frame_size (f, width, height, false, true, false); } } } } static void deliver_window_change_signal (int sig) { deliver_process_signal (sig, handle_window_change_signal); } #endif /* SIGWINCH */ /* Do any change in frame size that was requested by a signal. SAFE means this function is called from a place where it is safe to change frame sizes while a redisplay is in progress. */ void do_pending_window_change (bool safe) { if (redisplaying_p && !safe) return; while (delayed_size_change) { Lisp_Object tail, frame; delayed_size_change = false; FOR_EACH_FRAME (tail, frame) { struct frame *f = XFRAME (frame); /* Negative new_width or new_height values mean no change is required (a native size can never drop below zero). If new_size_p is not set, this means the size change was requested by adjust_frame_size but has not been honored by the window manager yet. */ if (f->new_size_p && (f->new_height >= 0 || f->new_width >= 0)) change_frame_size (f, f->new_width, f->new_height, false, false, safe); } } } static void change_frame_size_1 (struct frame *f, int new_width, int new_height, bool pretend, bool delay, bool safe) { if (delay || (redisplaying_p && !safe)) { if (CONSP (frame_size_history) && ((new_width != f->new_width || new_height != f->new_height || new_width != FRAME_PIXEL_WIDTH (f) || new_height != FRAME_PIXEL_HEIGHT (f)))) frame_size_history_extra (f, build_string ("change_frame_size_1, delayed"), FRAME_PIXEL_WIDTH (f), FRAME_PIXEL_HEIGHT (f), new_width, new_height, f->new_width, f->new_height); /* We can't deal with the change now, queue it for later. */ f->new_width = new_width; f->new_height = new_height; f->new_size_p = true; delayed_size_change = true; } else { /* Storing -1 in the new_width/new_height slots means that no size change is pending. Native sizes are always non-negative. Reset the new_size_p slot as well. */ f->new_height = -1; f->new_width = -1; f->new_size_p = false; /* adjust_frame_size wants its arguments in terms of text_width and text_height, so convert them here. For pathologically small frames, the resulting values may be negative though. */ adjust_frame_size (f, FRAME_PIXEL_TO_TEXT_WIDTH (f, new_width), FRAME_PIXEL_TO_TEXT_HEIGHT (f, new_height), 5, pretend, Qchange_frame_size); } } /* Change native height/width of frame F to NEW_WIDTH/NEW_HEIGHT pixels. Values may be given as -1 to indicate that no change is needed. If DELAY, assume we're being called from a signal handler, and queue the change for later - perhaps the next redisplay. Since this tries to resize windows, we can't call it from a signal handler. SAFE means this function is called from a place where it's safe to change frame sizes while a redisplay is in progress. */ void change_frame_size (struct frame *f, int new_width, int new_height, bool pretend, bool delay, bool safe) { Lisp_Object tail, frame; if (FRAME_MSDOS_P (f)) { /* On MS-DOS, all frames use the same screen, so a change in size affects all frames. Termcap now supports multiple ttys. */ FOR_EACH_FRAME (tail, frame) if (!FRAME_WINDOW_P (XFRAME (frame))) change_frame_size_1 (XFRAME (frame), new_width, new_height, pretend, delay, safe); } else change_frame_size_1 (f, new_width, new_height, pretend, delay, safe); } /* Return non-zero if we delayed size-changes of frame F and haven't handled them yet, which means we cannot be sure about the exact dimensions of our frames. */ bool frame_size_change_delayed (struct frame *f) { return (delayed_size_change || f->new_size_p); } /*********************************************************************** Terminal Related Lisp Functions ***********************************************************************/ DEFUN ("open-termscript", Fopen_termscript, Sopen_termscript, 1, 1, "FOpen termscript file: ", doc: /* Start writing all terminal output to FILE as well as the terminal. FILE = nil means just close any termscript file currently open. */) (Lisp_Object file) { struct tty_display_info *tty; if (! FRAME_TERMCAP_P (SELECTED_FRAME ()) && ! FRAME_MSDOS_P (SELECTED_FRAME ())) error ("Current frame is not on a tty device"); tty = CURTTY (); if (tty->termscript != 0) { block_input (); emacs_fclose (tty->termscript); tty->termscript = 0; unblock_input (); } if (! NILP (file)) { file = Fexpand_file_name (file, Qnil); tty->termscript = emacs_fopen (SSDATA (file), "w"); if (tty->termscript == 0) report_file_error ("Opening termscript", file); } return Qnil; } DEFUN ("send-string-to-terminal", Fsend_string_to_terminal, Ssend_string_to_terminal, 1, 2, 0, doc: /* Send STRING to the terminal without alteration. Control characters in STRING will have terminal-dependent effects. Optional parameter TERMINAL specifies the tty terminal device to use. It may be a terminal object, a frame, or nil for the terminal used by the currently selected frame. In batch mode, STRING is sent to stdout when TERMINAL is nil. */) (Lisp_Object string, Lisp_Object terminal) { struct terminal *t = decode_live_terminal (terminal); FILE *out; /* ??? Perhaps we should do something special for multibyte strings here. */ CHECK_STRING (string); block_input (); if (t->type == output_initial) out = stdout; else if (t->type != output_termcap && t->type != output_msdos_raw) error ("Device %d is not a termcap terminal device", t->id); else { struct tty_display_info *tty = t->display_info.tty; if (! tty->output) error ("Terminal is currently suspended"); if (tty->termscript) { fwrite (SDATA (string), 1, SBYTES (string), tty->termscript); fflush (tty->termscript); } out = tty->output; } /* STRING might be very long, in which case fwrite could be interrupted by SIGIO. So we temporarily block SIGIO. */ unrequest_sigio (); fwrite (SDATA (string), 1, SBYTES (string), out); fflush (out); request_sigio (); unblock_input (); return Qnil; } DEFUN ("ding", Fding, Sding, 0, 1, 0, doc: /* Beep, or flash the screen. Also, unless an argument is given, terminate any keyboard macro currently executing. */) (Lisp_Object arg) { if (!NILP (arg)) { if (noninteractive) putchar (07); else ring_bell (XFRAME (selected_frame)); } else bitch_at_user (); return Qnil; } void bitch_at_user (void) { if (noninteractive) putchar (07); else if (!INTERACTIVE) /* Stop executing a keyboard macro. */ { const char *msg = "Keyboard macro terminated by a command ringing the bell"; Fsignal (Quser_error, list1 (build_string (msg))); } else ring_bell (XFRAME (selected_frame)); } /*********************************************************************** Sleeping, Waiting ***********************************************************************/ DEFUN ("sleep-for", Fsleep_for, Ssleep_for, 1, 2, 0, doc: /* Pause, without updating display, for SECONDS seconds. SECONDS may be a floating-point value, meaning that you can wait for a fraction of a second. An optional second arg MILLISECONDS can be provided but is deprecated: it specifies an additional wait period, in milliseconds. */) (Lisp_Object seconds, Lisp_Object milliseconds) { double duration = extract_float (seconds); if (!NILP (milliseconds)) { CHECK_FIXNUM (milliseconds); duration += XFIXNUM (milliseconds) / 1000.0; } if (duration > 0) { struct timespec t = dtotimespec (duration); struct timespec tend = timespec_add (current_timespec (), t); /* wait_reading_process_output returns as soon as it detects output from any subprocess, so we wait in a loop until the time expires. */ do { wait_reading_process_output (min (t.tv_sec, WAIT_READING_MAX), t.tv_nsec, 0, 0, Qnil, NULL, 0); t = timespec_sub (tend, current_timespec ()); } while (timespec_sign (t) > 0); } return Qnil; } /* This is just like wait_reading_process_output, except that it does redisplay. TIMEOUT is number of seconds to wait (float or integer), or t to wait forever. READING is true if reading input. If DISPLAY_OPTION is >0 display process output while waiting. If DISPLAY_OPTION is >1 perform an initial redisplay before waiting. Returns a boolean Qt if we waited the full time and returns Qnil if the wait was interrupted by incoming process output or keyboard events. FIXME: When `wait_reading_process_output` returns early because of process output, instead of returning nil we should loop and wait some more (i.e. until either there's pending input events or the timeout expired). */ Lisp_Object sit_for (Lisp_Object timeout, bool reading, int display_option) { intmax_t sec; int nsec; bool do_display = display_option > 0; bool curbuf_eq_winbuf = (current_buffer == XBUFFER (XWINDOW (selected_window)->contents)); swallow_events (do_display); if ((detect_input_pending_run_timers (do_display)) || !NILP (Vexecuting_kbd_macro)) return Qnil; if (display_option > 1) redisplay_preserve_echo_area (2); if (INTEGERP (timeout)) { if (integer_to_intmax (timeout, &sec)) { if (sec <= 0) return Qt; sec = min (sec, WAIT_READING_MAX); } else { if (NILP (Fnatnump (timeout))) return Qt; sec = WAIT_READING_MAX; } nsec = 0; } else if (FLOATP (timeout)) { double seconds = XFLOAT_DATA (timeout); if (! (0 < seconds)) return Qt; else { struct timespec t = dtotimespec (seconds); sec = min (t.tv_sec, WAIT_READING_MAX); nsec = t.tv_nsec; } } else if (EQ (timeout, Qt)) { sec = 0; nsec = 0; } else wrong_type_argument (Qnumberp, timeout); #if defined (USABLE_SIGIO) || defined (USABLE_SIGPOLL) gobble_input (); #endif int nbytes = wait_reading_process_output (sec, nsec, reading ? -1 : 1, do_display, Qnil, NULL, 0); if (reading && curbuf_eq_winbuf) /* Timers and process filters/sentinels may have changed the selected window (e.g. in response to a connection from emacsclient), in which case we should follow it (unless we weren't in the selected-window's buffer to start with). */ set_buffer_internal (XBUFFER (XWINDOW (selected_window)->contents)); return (nbytes > 0 || detect_input_pending ()) ? Qnil : Qt; } DEFUN ("redisplay", Fredisplay, Sredisplay, 0, 1, 0, doc: /* Perform redisplay. Optional arg FORCE, if non-nil, prevents redisplay from being preempted by arriving input, even if `redisplay-dont-pause' is nil. If `redisplay-dont-pause' is non-nil (the default), redisplay is never preempted by arriving input, so FORCE does nothing. Return t if redisplay was performed, nil if redisplay was preempted immediately by pending input. */) (Lisp_Object force) { swallow_events (true); if ((detect_input_pending_run_timers (1) && NILP (force) && !redisplay_dont_pause) || !NILP (Vexecuting_kbd_macro)) return Qnil; specpdl_ref count = SPECPDL_INDEX (); if (!NILP (force) && !redisplay_dont_pause) specbind (Qredisplay_dont_pause, Qt); redisplay_preserve_echo_area (2); return unbind_to (count, Qt); } /*********************************************************************** Other Lisp Functions ***********************************************************************/ /* A vector of size >= 2 * NFRAMES + 3 * NBUFFERS + 1, containing the session's frames, frame names, buffers, buffer-read-only flags, and buffer-modified-flags. */ static Lisp_Object frame_and_buffer_state; DEFUN ("frame-or-buffer-changed-p", Fframe_or_buffer_changed_p, Sframe_or_buffer_changed_p, 0, 1, 0, doc: /* Return non-nil if the frame and buffer state appears to have changed. VARIABLE is a variable name whose value is either nil or a state vector that will be updated to contain all frames and buffers, aside from buffers whose names start with space, along with the buffers' read-only and modified flags. This allows a fast check to see whether buffer menus might need to be recomputed. If this function returns non-nil, it updates the internal vector to reflect the current state. If VARIABLE is nil, an internal variable is used. Users should not pass nil for VARIABLE. */) (Lisp_Object variable) { Lisp_Object state, tail, frame, buf; ptrdiff_t n, idx; if (! NILP (variable)) { CHECK_SYMBOL (variable); state = Fsymbol_value (variable); if (! VECTORP (state)) goto changed; } else state = frame_and_buffer_state; idx = 0; FOR_EACH_FRAME (tail, frame) { if (idx == ASIZE (state)) goto changed; if (!BASE_EQ (AREF (state, idx++), frame)) goto changed; if (idx == ASIZE (state)) goto changed; if (!EQ (AREF (state, idx++), XFRAME (frame)->name)) goto changed; } /* Check that the buffer info matches. */ FOR_EACH_LIVE_BUFFER (tail, buf) { /* Ignore buffers that aren't included in buffer lists. */ if (SREF (BVAR (XBUFFER (buf), name), 0) == ' ') continue; if (idx == ASIZE (state)) goto changed; if (!BASE_EQ (AREF (state, idx++), buf)) goto changed; if (idx == ASIZE (state)) goto changed; if (!EQ (AREF (state, idx++), BVAR (XBUFFER (buf), read_only))) goto changed; if (idx == ASIZE (state)) goto changed; if (!EQ (AREF (state, idx++), Fbuffer_modified_p (buf))) goto changed; } if (idx == ASIZE (state)) goto changed; /* Detect deletion of a buffer at the end of the list. */ if (EQ (AREF (state, idx), Qlambda)) return Qnil; /* Come here if we decide the data has changed. */ changed: /* Count the size we will need. Start with 1 so there is room for at least one lambda at the end. */ n = 1; FOR_EACH_FRAME (tail, frame) n += 2; FOR_EACH_LIVE_BUFFER (tail, buf) n += 3; /* Reallocate the vector if data has grown to need it, or if it has shrunk a lot. */ if (! VECTORP (state) || n > ASIZE (state) || n + 20 < ASIZE (state) / 2) /* Add 20 extra so we grow it less often. */ { state = make_vector (n + 20, Qlambda); if (! NILP (variable)) Fset (variable, state); else frame_and_buffer_state = state; } /* Record the new data in the (possibly reallocated) vector. */ idx = 0; FOR_EACH_FRAME (tail, frame) { ASET (state, idx, frame); idx++; ASET (state, idx, XFRAME (frame)->name); idx++; } FOR_EACH_LIVE_BUFFER (tail, buf) { /* Ignore buffers that aren't included in buffer lists. */ if (SREF (BVAR (XBUFFER (buf), name), 0) == ' ') continue; ASET (state, idx, buf); idx++; ASET (state, idx, BVAR (XBUFFER (buf), read_only)); idx++; ASET (state, idx, Fbuffer_modified_p (buf)); idx++; } /* Fill up the vector with lambdas (always at least one). */ ASET (state, idx, Qlambda); idx++; while (idx < ASIZE (state)) { ASET (state, idx, Qlambda); idx++; } /* Make sure we didn't overflow the vector. */ eassert (idx <= ASIZE (state)); return Qt; } /*********************************************************************** Initialization ***********************************************************************/ static void init_faces_initial (void) { /* For the initial frame, we don't have any way of knowing what are the foreground and background colors of the terminal. */ struct frame *sf = SELECTED_FRAME (); FRAME_FOREGROUND_PIXEL (sf) = FACE_TTY_DEFAULT_FG_COLOR; FRAME_BACKGROUND_PIXEL (sf) = FACE_TTY_DEFAULT_BG_COLOR; call0 (Qtty_set_up_initial_frame_faces); } /* Initialization done when Emacs fork is started, before doing stty. Determine terminal type and set terminal_driver. Then invoke its decoding routine to set up variables in the terminal package. */ static void init_display_interactive (void) { char *terminal_type; /* Construct the space glyph. */ space_glyph.type = CHAR_GLYPH; SET_CHAR_GLYPH (NULL, space_glyph, ' ', DEFAULT_FACE_ID, 0); space_glyph.charpos = -1; inverse_video = 0; cursor_in_echo_area = false; /* Now is the time to initialize this; it's used by init_sys_modes during startup. */ Vinitial_window_system = Qnil; /* SIGWINCH needs to be handled no matter what display we start with. Otherwise newly opened tty frames will not resize automatically. */ #ifdef SIGWINCH if (!will_dump_p ()) { struct sigaction action; emacs_sigaction_init (&action, deliver_window_change_signal); sigaction (SIGWINCH, &action, 0); } #endif /* SIGWINCH */ /* If running as a daemon, no need to initialize any frames/terminal, except on Windows, where we at least want to initialize it. */ if (IS_DAEMON) { /* Pdump'ed Emacs doesn't record the initial frame from temacs, so the non-basic faces realized for that frame in temacs aren't in emacs. This causes errors when users try to customize those faces in their init file. The call to init_faces_initial will realize these faces now. (Non-daemon Emacs does this either near the end of this function or when the GUI frame is created.) */ if (dumped_with_pdumper_p ()) init_faces_initial (); #ifndef WINDOWSNT return; #endif } /* If the user wants to use a window system, we shouldn't bother initializing the terminal. This is especially important when the terminal is so dumb that emacs gives up before and doesn't bother using the window system. If the DISPLAY environment variable is set and nonempty, try to use X, and if that fails output a line to stderr reporting that -nw will be simulated. */ #ifdef HAVE_X_WINDOWS if (! inhibit_window_system && ! display_arg) { char *display; display = getenv ("DISPLAY"); display_arg = (display != 0 && *display != 0); if (display_arg && !x_display_ok (display)) { fprintf (stderr, "Display %s unavailable, simulating -nw\n", display); inhibit_window_system = 1; } } if (!inhibit_window_system && display_arg) { Vinitial_window_system = Qx; #ifdef USE_NCURSES /* In some versions of ncurses, tputs crashes if we have not called tgetent. So call tgetent. */ { char b[2044]; tgetent (b, "xterm");} #endif return; } #endif /* HAVE_X_WINDOWS */ #ifdef HAVE_ANDROID if (!inhibit_window_system && android_init_gui) { Vinitial_window_system = Qandroid; android_term_init (); return; } #endif #ifdef HAVE_NTGUI if (!inhibit_window_system) { Vinitial_window_system = Qw32; return; } #endif /* HAVE_NTGUI */ #ifdef HAVE_NS if (!inhibit_window_system && !will_dump_p ()) { Vinitial_window_system = Qns; return; } #endif #ifdef HAVE_PGTK if (!inhibit_window_system && !will_dump_p ()) { Vinitial_window_system = Qpgtk; return; } #endif #ifdef HAVE_HAIKU if (!inhibit_window_system && !will_dump_p ()) { Vinitial_window_system = Qhaiku; return; } #endif /* If no window system has been specified, try to use the terminal. */ if (! isatty (STDIN_FILENO)) fatal ("standard input is not a tty"); #ifdef WINDOWSNT terminal_type = (char *)"w32console"; #else terminal_type = getenv ("TERM"); #endif if (!terminal_type) { char const *msg = "Please set the environment variable TERM; see 'tset'.\n"; #ifdef HAVE_WINDOW_SYSTEM if (! inhibit_window_system) msg = ("Please set the environment variable DISPLAY or TERM; " "see 'tset'.\n"); #endif /* HAVE_WINDOW_SYSTEM */ fputs (msg, stderr); exit (1); } #ifndef HAVE_ANDROID { struct terminal *t; struct frame *f = XFRAME (selected_frame); init_foreground_group (); /* Open a display on the controlling tty. */ t = init_tty (0, terminal_type, 1); /* Errors are fatal. */ /* Convert the initial frame to use the new display. */ if (f->output_method != output_initial) emacs_abort (); f->output_method = t->type; f->terminal = t; t->reference_count++; #ifdef MSDOS f->output_data.tty = &the_only_tty_output; f->output_data.tty->display_info = &the_only_display_info; #else if (f->output_method == output_termcap) create_tty_output (f); #endif t->display_info.tty->top_frame = selected_frame; change_frame_size (XFRAME (selected_frame), FrameCols (t->display_info.tty), FrameRows (t->display_info.tty), false, false, true); /* Delete the initial terminal. */ if (--initial_terminal->reference_count == 0 && initial_terminal->delete_terminal_hook) (*initial_terminal->delete_terminal_hook) (initial_terminal); /* Update frame parameters to reflect the new type. */ AUTO_FRAME_ARG (tty_type_arg, Qtty_type, Ftty_type (selected_frame)); Fmodify_frame_parameters (selected_frame, tty_type_arg); AUTO_FRAME_ARG (tty_arg, Qtty, (t->display_info.tty->name ? build_string (t->display_info.tty->name) : Qnil)); Fmodify_frame_parameters (selected_frame, tty_arg); } #else fatal ("Could not establish a connection to the Android application.\n" "Emacs does not work on text terminals when built to run as" " part of an Android application package."); #endif { struct frame *sf = SELECTED_FRAME (); int width = FRAME_TOTAL_COLS (sf); int height = FRAME_TOTAL_LINES (sf); int area; /* If these sizes are so big they cause overflow, just ignore the change. It's not clear what better we could do. The rest of the code assumes that (width + 2) * height * sizeof (struct glyph) does not overflow and does not exceed PTRDIFF_MAX or SIZE_MAX. */ if (ckd_add (&area, width, 2) || ckd_mul (&area, area, height) || min (PTRDIFF_MAX, SIZE_MAX) / sizeof (struct glyph) < area) fatal ("screen size %dx%d too big", width, height); } calculate_costs (XFRAME (selected_frame)); /* Set up faces of the initial terminal frame. */ if (initialized && !noninteractive && NILP (Vinitial_window_system)) init_faces_initial (); } void init_display (void) { if (noninteractive) { if (dumped_with_pdumper_p ()) init_faces_initial (); } else init_display_interactive (); } /*********************************************************************** Blinking cursor ***********************************************************************/ DEFUN ("internal-show-cursor", Finternal_show_cursor, Sinternal_show_cursor, 2, 2, 0, doc: /* Set the cursor-visibility flag of WINDOW to SHOW. WINDOW nil means use the selected window. SHOW non-nil means show a cursor in WINDOW in the next redisplay. SHOW nil means don't show a cursor. */) (Lisp_Object window, Lisp_Object show) { /* Don't change cursor state while redisplaying. This could confuse output routines. */ if (!redisplaying_p) decode_any_window (window)->cursor_off_p = NILP (show); return Qnil; } DEFUN ("internal-show-cursor-p", Finternal_show_cursor_p, Sinternal_show_cursor_p, 0, 1, 0, doc: /* Value is non-nil if next redisplay will display a cursor in WINDOW. WINDOW nil or omitted means report on the selected window. */) (Lisp_Object window) { return decode_any_window (window)->cursor_off_p ? Qnil : Qt; } /*********************************************************************** Initialization ***********************************************************************/ static void syms_of_display_for_pdumper (void); void syms_of_display (void) { defsubr (&Sredraw_frame); defsubr (&Sredraw_display); defsubr (&Sdisplay__update_for_mouse_movement); defsubr (&Sframe_or_buffer_changed_p); defsubr (&Sopen_termscript); defsubr (&Sding); defsubr (&Sredisplay); defsubr (&Ssleep_for); defsubr (&Ssend_string_to_terminal); defsubr (&Sinternal_show_cursor); defsubr (&Sinternal_show_cursor_p); defsubr (&Sframe__z_order_lessp); #ifdef GLYPH_DEBUG defsubr (&Sdump_redisplay_history); #endif frame_and_buffer_state = make_vector (20, Qlambda); staticpro (&frame_and_buffer_state); /* This is the "purpose" slot of a display table. */ DEFSYM (Qdisplay_table, "display-table"); DEFSYM (Qframe__z_order_lessp, "frame--z-order-lessp"); DEFSYM (Qredisplay_dont_pause, "redisplay-dont-pause"); DEFSYM (Qtty_non_selected_cursor, "tty-non-selected-cursor"); DEFVAR_INT ("baud-rate", baud_rate, doc: /* The output baud rate of the terminal. On most systems, changing this value will affect the amount of padding and the other strategic decisions made during redisplay. */); DEFVAR_BOOL ("inverse-video", inverse_video, doc: /* Non-nil means invert the entire frame display. This means everything is in inverse video which otherwise would not be. */); DEFVAR_BOOL ("visible-bell", visible_bell, doc: /* Non-nil means try to flash the frame to represent a bell. See also `ring-bell-function'. */); DEFVAR_BOOL ("no-redraw-on-reenter", no_redraw_on_reenter, doc: /* Non-nil means no need to redraw entire frame after suspending. A non-nil value is useful if the terminal can automatically preserve Emacs's frame display when you reenter Emacs. It is up to you to set this variable if your terminal can do that. */); DEFVAR_LISP ("initial-window-system", Vinitial_window_system, doc: /* Name of the window system that Emacs uses for the first frame. The value is a symbol: nil for a termcap frame (a character-only terminal), `x' for an Emacs frame that is really an X window, `w32' for an Emacs frame that is a window on MS-Windows display, `ns' for an Emacs frame on a GNUstep or Macintosh Cocoa display, `pc' for a direct-write MS-DOS frame. `pgtk' for an Emacs frame using pure GTK facilities. `haiku' for an Emacs frame running in Haiku. Use of this variable as a boolean is deprecated. Instead, use `display-graphic-p' or any of the other `display-*-p' predicates which report frame's specific UI-related capabilities. */); DEFVAR_KBOARD ("window-system", Vwindow_system, doc: /* Name of window system through which the selected frame is displayed. The value is a symbol: nil for a termcap frame (a character-only terminal), `x' for an Emacs frame that is really an X window, `w32' for an Emacs frame that is a window on MS-Windows display, `ns' for an Emacs frame on a GNUstep or Macintosh Cocoa display, `pc' for a direct-write MS-DOS frame. `pgtk' for an Emacs frame using pure GTK facilities. `haiku' for an Emacs frame running in Haiku. `android' for an Emacs frame running in Android. Use of this variable as a boolean is deprecated. Instead, use `display-graphic-p' or any of the other `display-*-p' predicates which report frame's specific UI-related capabilities. */); DEFVAR_BOOL ("cursor-in-echo-area", cursor_in_echo_area, doc: /* Non-nil means put cursor in minibuffer, at end of any message there. */); DEFVAR_BOOL ("mouse-prefer-closest-glyph", mouse_prefer_closest_glyph, doc: /* Non-nil means mouse click position is taken from glyph closest to click. When non-nil, mouse position lists will report buffer position set to the position of the glyph that is the closest to the mouse pointer at the time of the click, instead of the glyph immediately under it. */); mouse_prefer_closest_glyph = false; DEFVAR_LISP ("glyph-table", Vglyph_table, doc: /* Table defining how to output a glyph code to the frame. If not nil, this is a vector indexed by glyph code to define the glyph. Each element can be: integer: a glyph code which this glyph is an alias for. string: output this glyph using that string (not impl. in X windows). nil: this glyph mod 524288 is the code of a character to output, and this glyph / 524288 is the face number (see `face-id') to use while outputting it. */); Vglyph_table = Qnil; DEFVAR_LISP ("standard-display-table", Vstandard_display_table, doc: /* Display table to use for buffers that specify none. It is also used for standard output and error streams. See `buffer-display-table' for more information. */); Vstandard_display_table = Qnil; DEFVAR_BOOL ("redisplay-dont-pause", redisplay_dont_pause, doc: /* Nil means display update is paused when input is detected. */); /* Contrary to expectations, a value of "false" can be detrimental to responsiveness since aborting a redisplay throws away some of the work already performed. It's usually more efficient (and gives more prompt feedback to the user) to let the redisplay terminate, and just completely skip the next command's redisplay (which is done regardless of this setting if there's pending input at the beginning of the next redisplay). */ redisplay_dont_pause = true; DEFVAR_LISP ("x-show-tooltip-timeout", Vx_show_tooltip_timeout, doc: /* The default timeout (in seconds) for `x-show-tip'. */); Vx_show_tooltip_timeout = make_fixnum (5); DEFVAR_LISP ("tab-bar-position", Vtab_bar_position, doc: /* Specify on which side from the tool bar the tab bar shall be. Possible values are t (below the tool bar), nil (above the tool bar). This option affects only builds where the tool bar is not external. */); pdumper_do_now_and_after_load (syms_of_display_for_pdumper); Fprovide (intern_c_string ("tty-child-frames"), Qnil); } static void syms_of_display_for_pdumper (void) { Vinitial_window_system = Qnil; }