unofficial mirror of emacs-devel@gnu.org 
 help / color / mirror / code / Atom feed
blob e54dc72e34fc8faca06eb5ebec27279c1b5bbb7c 116265 bytes (raw)
name: src/search.c 	 # note: path name is non-authoritative(*)

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
 
/* String search routines for GNU Emacs.

Copyright (C) 1985-1987, 1993-1994, 1997-1999, 2001-2024 Free Software
Foundation, Inc.

This file is part of GNU Emacs.

GNU Emacs is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or (at
your option) any later version.

GNU Emacs is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Emacs.  If not, see <https://www.gnu.org/licenses/>.  */


#include <config.h>

#include <stdio.h>
#include <stdlib.h>

#include "lisp.h"
#include "character.h"
#include "buffer.h"
#include "syntax.h"
#include "charset.h"
#include "region-cache.h"
#include "blockinput.h"
#include "intervals.h"
#include "pdumper.h"
#include "composite.h"

#include "regex-emacs.h"

#define REGEXP_CACHE_SIZE 20

/* If the regexp is non-nil, then the buffer contains the compiled form
   of that regexp, suitable for searching.  */
struct regexp_cache
{
  struct regexp_cache *next;
  Lisp_Object regexp, f_whitespace_regexp;
  /* Syntax table for which the regexp applies.  We need this because
     of character classes.  If this is t, then the compiled pattern is valid
     for any syntax-table.  */
  Lisp_Object syntax_table;
  struct re_pattern_buffer buf;
  char fastmap[FASTMAP_SIZE];
  /* True means regexp was compiled to do full POSIX backtracking.  */
  bool posix;
  /* True means we're inside a buffer match.  */
  bool busy;
};

/* The instances of that struct.  */
static struct regexp_cache searchbufs[REGEXP_CACHE_SIZE];

/* The head of the linked list; points to the most recently used buffer.  */
static struct regexp_cache *searchbuf_head;

static void
set_regs (ptrdiff_t beg_byte, ptrdiff_t nbytes, struct re_registers *regs);
static void set_search_regs (ptrdiff_t, ptrdiff_t);
static void save_search_regs (void);
static EMACS_INT simple_search (EMACS_INT, unsigned char *, ptrdiff_t,
				ptrdiff_t, Lisp_Object, ptrdiff_t, ptrdiff_t,
                                ptrdiff_t, ptrdiff_t);
static EMACS_INT boyer_moore (EMACS_INT, unsigned char *, ptrdiff_t,
                              Lisp_Object, Lisp_Object, ptrdiff_t,
                              ptrdiff_t, int);

Lisp_Object re_match_object;

static AVOID
matcher_overflow (void)
{
  error ("Stack overflow in regexp matcher");
}

static void
freeze_buffer_relocation (void)
{
#ifdef REL_ALLOC
  /* Prevent ralloc.c from relocating the current buffer while
     searching it.  */
  r_alloc_inhibit_buffer_relocation (1);
  record_unwind_protect_int (r_alloc_inhibit_buffer_relocation, 0);
#endif
}

/* Compile a regexp and signal a Lisp error if anything goes wrong.
   PATTERN is the pattern to compile.
   CP is the place to put the result.
   TRANSLATE is a translation table for ignoring case, or nil for none.
   POSIX is true if we want full backtracking (POSIX style) for this pattern.
   False means backtrack only enough to get a valid match.

   The behavior also depends on Vsearch_spaces_regexp.  */

static void
compile_pattern_1 (struct regexp_cache *cp, Lisp_Object pattern,
		   Lisp_Object translate, bool posix)
{
  const char *whitespace_regexp;
  char *val;

  eassert (!cp->busy);
  cp->regexp = Qnil;
  cp->buf.translate = translate;
  cp->posix = posix;
  cp->buf.multibyte = STRING_MULTIBYTE (pattern);
  cp->buf.charset_unibyte = charset_unibyte;
  if (STRINGP (Vsearch_spaces_regexp))
    cp->f_whitespace_regexp = Vsearch_spaces_regexp;
  else
    cp->f_whitespace_regexp = Qnil;

  whitespace_regexp = STRINGP (Vsearch_spaces_regexp) ?
    SSDATA (Vsearch_spaces_regexp) : NULL;

  val = (char *) re_compile_pattern (SSDATA (pattern), SBYTES (pattern),
				     posix, whitespace_regexp, &cp->buf);

  /* If the compiled pattern hard codes some of the contents of the
     syntax-table, it can only be reused with *this* syntax table.  */
  cp->syntax_table = cp->buf.used_syntax ? BVAR (current_buffer, syntax_table) : Qt;

  if (val)
    xsignal1 (Qinvalid_regexp, build_string (val));

  cp->regexp = Fcopy_sequence (pattern);
}

/* Shrink each compiled regexp buffer in the cache
   to the size actually used right now.
   This is called from garbage collection.  */

void
shrink_regexp_cache (void)
{
  struct regexp_cache *cp;

  for (cp = searchbuf_head; cp != 0; cp = cp->next)
    if (!cp->busy)
      {
        cp->buf.allocated = cp->buf.used;
        cp->buf.buffer = xrealloc (cp->buf.buffer, cp->buf.used);
      }
}

/* Clear the regexp cache w.r.t. a particular syntax table,
   because it was changed.
   There is no danger of memory leak here because re_compile_pattern
   automagically manages the memory in each re_pattern_buffer struct,
   based on its `allocated' and `buffer' values.  */
void
clear_regexp_cache (void)
{
  int i;

  for (i = 0; i < REGEXP_CACHE_SIZE; ++i)
    /* It's tempting to compare with the syntax-table we've actually changed,
       but it's not sufficient because char-table inheritance means that
       modifying one syntax-table can change others at the same time.  */
    if (!searchbufs[i].busy && !BASE_EQ (searchbufs[i].syntax_table, Qt))
      searchbufs[i].regexp = Qnil;
}

static void
unfreeze_pattern (void *arg)
{
  struct regexp_cache *searchbuf = arg;
  searchbuf->busy = false;
}

static void
freeze_pattern (struct regexp_cache *searchbuf)
{
  eassert (!searchbuf->busy);
  record_unwind_protect_ptr (unfreeze_pattern, searchbuf);
  eassert (searchbuf != NULL);
  assume (searchbuf);
  searchbuf->busy = true;
}

/* Compile a regexp if necessary, but first check to see if there's one in
   the cache.
   PATTERN is the pattern to compile.
   TRANSLATE is a translation table for ignoring case, or nil for none.
   REGP is the structure that says where to store the "register"
   values that will result from matching this pattern.
   If it is 0, we should compile the pattern not to record any
   subexpression bounds.
   POSIX is true if we want full backtracking (POSIX style) for this pattern.
   False means backtrack only enough to get a valid match.  */

static struct regexp_cache *
compile_pattern (Lisp_Object pattern, struct re_registers *regp,
		 Lisp_Object translate, bool posix, bool multibyte)
{
  struct regexp_cache *cp, **cpp, **lru_nonbusy;

  for (cpp = &searchbuf_head, lru_nonbusy = NULL; ; cpp = &cp->next)
    {
      cp = *cpp;
      if (!cp->busy)
        lru_nonbusy = cpp;
      /* Entries are initialized to nil, and may be set to nil by
	 compile_pattern_1 if the pattern isn't valid.  Don't apply
	 string accessors in those cases.  However, compile_pattern_1
	 is only applied to the cache entry we pick here to reuse.  So
	 nil should never appear before a non-nil entry.  */
      if (NILP (cp->regexp))
	goto compile_it;
      if (SCHARS (cp->regexp) == SCHARS (pattern)
          && !cp->busy
	  && STRING_MULTIBYTE (cp->regexp) == STRING_MULTIBYTE (pattern)
	  && !NILP (Fstring_equal (cp->regexp, pattern))
	  && BASE_EQ (cp->buf.translate, translate)
	  && cp->posix == posix
	  && (BASE_EQ (cp->syntax_table, Qt)
	      || BASE_EQ (cp->syntax_table,
			  BVAR (current_buffer, syntax_table)))
	  && !NILP (Fequal (cp->f_whitespace_regexp, Vsearch_spaces_regexp))
	  && cp->buf.charset_unibyte == charset_unibyte)
	break;

      /* If we're at the end of the cache, compile into the last
	 (least recently used) non-busy cell in the cache.  */
      if (cp->next == 0)
	{
          if (!lru_nonbusy)
            error ("Too much matching reentrancy");
          cpp = lru_nonbusy;
          cp = *cpp;
	compile_it:
          eassert (!cp->busy);
	  compile_pattern_1 (cp, pattern, translate, posix);
	  break;
	}
    }

  /* When we get here, cp (aka *cpp) contains the compiled pattern,
     either because we found it in the cache or because we just compiled it.
     Move it to the front of the queue to mark it as most recently used.  */
  *cpp = cp->next;
  cp->next = searchbuf_head;
  searchbuf_head = cp;

  /* Advise the searching functions about the space we have allocated
     for register data.  */
  if (regp)
    re_set_registers (&cp->buf, regp, regp->num_regs, regp->start, regp->end);

  /* The compiled pattern can be used both for multibyte and unibyte
     target.  But, we have to tell which the pattern is used for. */
  cp->buf.target_multibyte = multibyte;
  return cp;
}

\f
static struct regexp_match_info
resolve_match_info (Lisp_Object regexp, Lisp_Object match)
{
  /* If inhibited, neither read nor write anything, and immediately return. */
  if (!NILP (Vinhibit_changing_match_data))
    return empty_regexp_match_info ();

  /* If a compiled regexp, we don't touch any thread-local state. */
  if (REGEXP_P (regexp))
    {
      struct Lisp_Regexp *r = XREGEXP (regexp);
      struct Lisp_Match *m = NULL;
      /* If a match object was provided, use it. */
      if (MATCH_P (match))
	m = XMATCH (match);
      else
	{
	  eassert (NILP (match));
	  /* Otherwise, use the built-in match target we constructed
	     when we compiled the regexp. */
	  m = XMATCH (r->default_match_target);
	}
      return make_full_match_info (m);
    }

  /* If just a string, do the old complex logic to access thread-locals
     and save state as needed. Incompatible with providing a preallocated
     object. */
  CHECK_STRING (regexp);
  eassert (NILP (match));
  if (running_asynch_code)
    save_search_regs ();

  /* NB: this returns the current copy of the thread-local variable,
     which is saved in a (thread-local) `thread_state' struct
     (`search_regs' expands to `current_thread->m_search_regs'). This
     shouldn't change any behavior, as the same thread accessing
     `search_regs' multiple times in sequence should always access
     the same virtual memory address anyway, but is worth noting as
     adding support for precompiled regexps generally required changing
     many parts of matching logic which previously had to assume they
     could be pre-empted and invalidated at any time. */
  return make_regs_only_match_info (&search_regs);
}

/* Patch up byte- vs char- indices, and set pointers to the last thing
   searched. */
static void
record_string_haystack (struct regexp_match_info *info,
			Lisp_Object haystack)
{
  eassert (info != NULL);
  CHECK_STRING (haystack);

  struct re_registers *regs = info->regs;
  eassert (regs != NULL);

  ptrdiff_t num_matched_regs
    = ((info->match) ? info->match->initialized_regs
		     : regs->num_regs);
  /* The number of matched groups is at least 1, but may be less than
     the total allocated space for match groups. */
  eassert (num_matched_regs > 0);
  eassert (num_matched_regs <= regs->num_regs);

  /* Patch up the byte indices from the regex engine to refer to
     utf-8/multibyte char indices. */
  for (ptrdiff_t i = 0; i < num_matched_regs; ++i)
    {
      ptrdiff_t start_byte = regs->start[i];
      ptrdiff_t end_byte = regs->end[i];
      if (start_byte < 0)
	/* NB: Ignore this: this is a failed match. */
	eassert (end_byte < 0);
      else
	{
	  /* TODO: can we trust the output of the regex engine somehow
	     to avoid relying on the string char decoding cache here? */
	  regs->start[i] = string_byte_to_char (haystack, start_byte);
	  regs->end[i] = string_byte_to_char (haystack, end_byte);
	}
    }

  if (info->match)
    info->match->haystack = haystack;
  else
    last_thing_searched = Qt;
}

static void
record_current_buffer_haystack (struct regexp_match_info *info)
{
  eassert (info != NULL);

  struct re_registers *regs = info->regs;
  eassert (regs != NULL);

  ptrdiff_t num_matched_regs
    = ((info->match) ? info->match->initialized_regs
		     : regs->num_regs);
  /* The number of matched groups is at least 1, but may be less than
     the total allocated space for match groups. */
  eassert (num_matched_regs > 0);
  eassert (num_matched_regs <= regs->num_regs);

  /* Patch up the byte indices from the regex engine to refer to
     utf-8/multibyte char indices. */
  for (ptrdiff_t i = 0; i < num_matched_regs; ++i)
    {
      ptrdiff_t start_byte = regs->start[i];
      ptrdiff_t end_byte = regs->end[i];
      if (start_byte < 0)
	/* NB: Ignore this: this is a failed match. */
	eassert (end_byte < 0);
      else
	{
	  regs->start[i] = BYTE_TO_CHAR (start_byte + BEGV_BYTE);
	  regs->end[i] = BYTE_TO_CHAR (end_byte + BEGV_BYTE);
	}
    }

  if (info->match)
    XSETBUFFER (info->match->haystack, current_buffer);
  else
    XSETBUFFER (last_thing_searched, current_buffer);
}

static struct re_pattern_buffer *
resolve_explicit_compiled_regexp (Lisp_Object regexp, bool posix,
				  struct re_registers *regs,
				  Lisp_Object translate, bool multibyte)
{
  /* If the regexp is precompiled, then immediately return its compiled form. */
  if (REGEXP_P (regexp))
    return &XREGEXP (regexp)->buffer;

  /* Otherwise, this is a string, and we have to compile it via the cache. */
  CHECK_STRING (regexp);

  /* Compile this string into a regexp via the cache. */
  struct regexp_cache *cache_entry = compile_pattern (
      regexp, regs, translate, posix, multibyte);

  /* Do a pending quit right away, to avoid paradoxical behavior */
  maybe_quit ();

  /* Mark the compiled pattern as busy. */
  freeze_pattern (cache_entry);
  return &cache_entry->buf;
}

static struct re_pattern_buffer *
resolve_compiled_regexp (Lisp_Object regexp, bool posix)
{
  /* This is so set_image_of_range_1 in regex-emacs.c can find the EQV
     table.  */
  set_char_table_extras (BVAR (current_buffer, case_canon_table), 2,
			 BVAR (current_buffer, case_eqv_table));

  Lisp_Object translate = (!NILP (Vcase_fold_search)
			   ? BVAR (current_buffer, case_canon_table)
			   : Qnil);
  bool multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));

  return resolve_explicit_compiled_regexp
    (regexp, posix, &search_regs, translate, multibyte);
}

static Lisp_Object
looking_at_1 (Lisp_Object regexp, bool posix, struct regexp_match_info *info)
{
  Lisp_Object val;
  unsigned char *p1, *p2;
  ptrdiff_t s1, s2;
  register ptrdiff_t i;

  eassert (info != NULL);
  struct re_registers *regs = info->regs;

  /* Get pointers and sizes of the two strings
     that make up the visible portion of the buffer. */

  p1 = BEGV_ADDR;
  s1 = GPT_BYTE - BEGV_BYTE;
  p2 = GAP_END_ADDR;
  s2 = ZV_BYTE - GPT_BYTE;
  if (s1 < 0)
    {
      p2 = p1;
      s2 = ZV_BYTE - BEGV_BYTE;
      s1 = 0;
    }
  if (s2 < 0)
    {
      s1 = ZV_BYTE - BEGV_BYTE;
      s2 = 0;
    }

  specpdl_ref count = SPECPDL_INDEX ();
  struct re_pattern_buffer *bufp =
    resolve_compiled_regexp (regexp, posix);
  freeze_buffer_relocation ();

  re_match_object = Qnil;
  i = re_match_2 (bufp, (char *) p1, s1, (char *) p2, s2,
		  PT_BYTE - BEGV_BYTE,
		  info,
		  ZV_BYTE - BEGV_BYTE);

  if (i == -2)
    {
      unbind_to (count, Qnil);
      matcher_overflow ();
    }

  /* Set last_thing_searched only when match data is changed.  */
  if (regs && i >= 0)
    record_current_buffer_haystack (info);

  val = (i >= 0 ? Qt : Qnil);
  return unbind_to (count, val);
}

static struct regexp_match_info
resolve_buffer_match_info (Lisp_Object regexp, Lisp_Object inhibit_modify)
{
  if (EQ (inhibit_modify, Qt))
    return empty_regexp_match_info ();

  return resolve_match_info (regexp, inhibit_modify);
}

DEFUN ("looking-at", Flooking_at, Slooking_at, 1, 2, 0,
       doc: /* Return t if text after point matches regular expression REGEXP.
By default, this function modifies the match data that
`match-beginning', `match-end' and `match-data' access.  If
INHIBIT-MODIFY is t, don't modify the match data.

If REGEXP is a compiled regexp and INHIBIT-MODIFY is a match object,
then write match data into INHIBIT-MODIFY. Otherwise, INHIBIT-MODIFY
must be nil, and the default match target within REGEXP is used. */)
  (Lisp_Object regexp, Lisp_Object inhibit_modify)
{
  struct regexp_match_info info = resolve_buffer_match_info
    (regexp, inhibit_modify);
  return looking_at_1 (regexp, 0, &info);
}

DEFUN ("posix-looking-at", Fposix_looking_at, Sposix_looking_at, 1, 2, 0,
       doc: /* Return t if text after point matches REGEXP according to Posix rules.
Find the longest match, in accordance with Posix regular expression rules.

By default, this function modifies the match data that
`match-beginning', `match-end' and `match-data' access.  If
INHIBIT-MODIFY is t, don't modify the match data.

If REGEXP is a compiled regexp and INHIBIT-MODIFY is a match object,
then write match data into INHIBIT-MODIFY. Otherwise, INHIBIT-MODIFY
must be nil, and the default match target within REGEXP is used. */)
  (Lisp_Object regexp, Lisp_Object inhibit_modify)
{
  struct regexp_match_info info = resolve_buffer_match_info
    (regexp, inhibit_modify);
  return looking_at_1 (regexp, 1, &info);
}
\f
static Lisp_Object
string_match_1 (Lisp_Object regexp, Lisp_Object string, Lisp_Object start,
		bool posix, struct regexp_match_info *info)
{
  ptrdiff_t val;
  EMACS_INT pos;
  ptrdiff_t pos_byte;

  eassert (info != NULL);
  struct re_registers *regs = info->regs;
  struct re_pattern_buffer *bufp = NULL;

  CHECK_STRING (string);

  if (NILP (start))
    pos = 0, pos_byte = 0;
  else
    {
      ptrdiff_t len = SCHARS (string);

      CHECK_FIXNUM (start);
      pos = XFIXNUM (start);
      if (pos < 0 && -pos <= len)
	pos = len + pos;
      else if (0 > pos || pos > len)
	args_out_of_range (string, start);
      pos_byte = string_char_to_byte (string, pos);
    }

  specpdl_ref count = SPECPDL_INDEX ();
  bufp = resolve_compiled_regexp (regexp, posix);

  re_match_object = string;
  val = re_search (bufp, SSDATA (string),
		   SBYTES (string), pos_byte,
		   SBYTES (string) - pos_byte,
		   info);
  unbind_to (count, Qnil);

  if (val == -2)
    matcher_overflow ();
  if (val < 0) return Qnil;

  /* Set last_thing_searched only when match data is changed.  */
  if (regs)
    record_string_haystack (info, string);

  return make_fixnum (string_byte_to_char (string, val));
}

static struct regexp_match_info
resolve_string_match_info (Lisp_Object regexp, Lisp_Object inhibit_modify)
{
  if (EQ (inhibit_modify, Qt))
    return empty_regexp_match_info ();

  return resolve_match_info (regexp, inhibit_modify);
}

DEFUN ("string-match", Fstring_match, Sstring_match, 2, 4, 0,
       doc: /* Return index of start of first match for REGEXP in STRING, or nil.
Matching ignores case if `case-fold-search' is non-nil.
If third arg START is non-nil, start search at that index in STRING.

If INHIBIT-MODIFY is non-nil, match data is not changed.

If INHIBIT-MODIFY is nil or missing, match data is changed, and
`match-end' and `match-beginning' give indices of substrings matched
by parenthesis constructs in the pattern.  You can use the function
`match-string' to extract the substrings matched by the parenthesis
constructions in REGEXP.  For index of first char beyond the match, do
(match-end 0).  */)
  (Lisp_Object regexp, Lisp_Object string, Lisp_Object start,
   Lisp_Object inhibit_modify)
{
  struct regexp_match_info info = resolve_string_match_info
    (regexp, inhibit_modify);
  return string_match_1 (regexp, string, start, 0, &info);
}

DEFUN ("posix-string-match", Fposix_string_match, Sposix_string_match, 2, 4, 0,
       doc: /* Return index of start of first match for Posix REGEXP in STRING, or nil.
Find the longest match, in accord with Posix regular expression rules.
Case is ignored if `case-fold-search' is non-nil in the current buffer.

If INHIBIT-MODIFY is non-nil, match data is not changed.

If INHIBIT-MODIFY is nil or missing, match data is changed, and
`match-end' and `match-beginning' give indices of substrings matched
by parenthesis constructs in the pattern.  You can use the function
`match-string' to extract the substrings matched by the parenthesis
constructions in REGEXP.  For index of first char beyond the match, do
(match-end 0).  */)
  (Lisp_Object regexp, Lisp_Object string, Lisp_Object start,
   Lisp_Object inhibit_modify)
{
  struct regexp_match_info info = resolve_string_match_info
    (regexp, inhibit_modify);
  return string_match_1 (regexp, string, start, 1, &info);
}

/* Match REGEXP against STRING using translation table TABLE,
   searching all of STRING, and return the index of the match,
   or negative on failure.  This does not clobber the match data.  */

ptrdiff_t
fast_string_match_internal (Lisp_Object regexp, Lisp_Object string,
			    Lisp_Object table)
{
  re_match_object = string;
  specpdl_ref count = SPECPDL_INDEX ();

  struct regexp_match_info empty_info = empty_regexp_match_info ();
  struct re_pattern_buffer *bufp = resolve_explicit_compiled_regexp
    (regexp, false, empty_info.regs, table, STRING_MULTIBYTE (string));

  ptrdiff_t val = re_search (bufp, SSDATA (string),
			     SBYTES (string), 0,
			     SBYTES (string), &empty_info);
  unbind_to (count, Qnil);
  return val;
}

/* Match REGEXP against STRING, searching all of STRING and return the
   index of the match, or negative on failure.  This does not clobber
   the match data.  Table is a canonicalize table for ignoring case,
   or nil for none.

   We assume that STRING contains single-byte characters.  */

ptrdiff_t
fast_c_string_match_internal (Lisp_Object regexp,
			      const char *string, ptrdiff_t len,
			      Lisp_Object table)
{
  /* Record specpdl index because freeze_pattern pushes an
     unwind-protect on the specpdl.  */
  specpdl_ref count = SPECPDL_INDEX ();

  if (REGEXP_P (regexp))
    eassert (!XREGEXP (regexp)->buffer.target_multibyte);
  /* FIXME: This is expensive and not obviously correct when it makes
     a difference. I.e., no longer "fast", and may hide bugs.
     Something should be done about this.  */
  if (STRINGP (regexp))
    regexp = string_make_unibyte (regexp);

  struct regexp_match_info empty_info = empty_regexp_match_info ();
  struct re_pattern_buffer *bufp = resolve_explicit_compiled_regexp
    (regexp, false, empty_info.regs, table, false);

  re_match_object = Qt;
  ptrdiff_t val = re_search (bufp, string, len, 0, len, &empty_info);
  unbind_to (count, Qnil);
  return val;
}

/* Match REGEXP against the characters after POS to LIMIT, and return
   the number of matched characters.  If STRING is non-nil, match
   against the characters in it.  In that case, POS and LIMIT are
   indices into the string.  This function doesn't modify the match
   data.  */

ptrdiff_t
fast_looking_at (Lisp_Object regexp, ptrdiff_t pos, ptrdiff_t pos_byte,
		 ptrdiff_t limit, ptrdiff_t limit_byte, Lisp_Object string)
{
  bool multibyte;
  unsigned char *p1, *p2;
  ptrdiff_t s1, s2;
  ptrdiff_t len;

  if (STRINGP (string))
    {
      if (pos_byte < 0)
	pos_byte = string_char_to_byte (string, pos);
      if (limit_byte < 0)
	limit_byte = string_char_to_byte (string, limit);
      p1 = NULL;
      s1 = 0;
      p2 = SDATA (string);
      s2 = SBYTES (string);
      multibyte = STRING_MULTIBYTE (string);
    }
  else
    {
      if (pos_byte < 0)
	pos_byte = CHAR_TO_BYTE (pos);
      if (limit_byte < 0)
	limit_byte = CHAR_TO_BYTE (limit);
      pos_byte -= BEGV_BYTE;
      limit_byte -= BEGV_BYTE;
      p1 = BEGV_ADDR;
      s1 = GPT_BYTE - BEGV_BYTE;
      p2 = GAP_END_ADDR;
      s2 = ZV_BYTE - GPT_BYTE;
      if (s1 < 0)
	{
	  p2 = p1;
	  s2 = ZV_BYTE - BEGV_BYTE;
	  s1 = 0;
	}
      if (s2 < 0)
	{
	  s1 = ZV_BYTE - BEGV_BYTE;
	  s2 = 0;
	}
      multibyte = ! NILP (BVAR (current_buffer, enable_multibyte_characters));
    }


  specpdl_ref count = SPECPDL_INDEX ();

  struct regexp_match_info empty_info = empty_regexp_match_info ();
  struct re_pattern_buffer *bufp = resolve_explicit_compiled_regexp
    (regexp, false, empty_info.regs, Qnil, multibyte);
  freeze_buffer_relocation ();

  re_match_object = STRINGP (string) ? string : Qnil;
  len = re_match_2 (bufp, (char *) p1, s1, (char *) p2, s2,
		    pos_byte, &empty_info, limit_byte);

  unbind_to (count, Qnil);
  return len;
}

\f
/* The newline cache: remembering which sections of text have no newlines.  */

/* If the user has requested the long scans caching, make sure it's on.
   Otherwise, make sure it's off.
   This is our cheezy way of associating an action with the change of
   state of a buffer-local variable.  */
static struct region_cache *
newline_cache_on_off (struct buffer *buf)
{
  struct buffer *base_buf = buf;
  bool indirect_p = false;

  if (buf->base_buffer)
    {
      base_buf = buf->base_buffer;
      indirect_p = true;
    }

  /* Don't turn on or off the cache in the base buffer, if the value
     of cache-long-scans of the base buffer is inconsistent with that.
     This is because doing so will just make the cache pure overhead,
     since if we turn it on via indirect buffer, it will be
     immediately turned off by its base buffer.  */
  if (NILP (BVAR (buf, cache_long_scans)))
    {
      if (!indirect_p
	  || NILP (BVAR (base_buf, cache_long_scans)))
	{
	  /* It should be off.  */
	  if (base_buf->newline_cache)
	    {
	      free_region_cache (base_buf->newline_cache);
	      base_buf->newline_cache = 0;
	    }
	}
      return NULL;
    }
  else
    {
      if (!indirect_p
	  || !NILP (BVAR (base_buf, cache_long_scans)))
	{
	  /* It should be on.  */
	  if (base_buf->newline_cache == 0)
            {
              base_buf->newline_cache = new_region_cache ();
              __lsan_ignore_object (base_buf->newline_cache);
            }
	}
      return base_buf->newline_cache;
    }
}

\f
/* Search for COUNT newlines between START/START_BYTE and END/END_BYTE.

   If COUNT is positive, search forwards; END must be >= START.
   If COUNT is negative, search backwards for the -COUNTth instance;
      END must be <= START.
   If COUNT is zero, do anything you please; run rogue, for all I care.

   If END is zero, use BEGV or ZV instead, as appropriate for the
   direction indicated by COUNT.  If START_BYTE is -1 it is unknown,
   and similarly for END_BYTE.

   If we find COUNT instances, set *COUNTED to COUNT, and return the
   position past the COUNTth match.  Note that for reverse motion
   this is not the same as the usual convention for Emacs motion commands.

   If we don't find COUNT instances before reaching END, set *COUNTED
   to the number of newlines left found (negated if COUNT is negative),
   and return END.

   If BYTEPOS is not NULL, set *BYTEPOS to the byte position corresponding
   to the returned character position.

   If ALLOW_QUIT, check for quitting.  That's good to do
   except when inside redisplay.  */

ptrdiff_t
find_newline (ptrdiff_t start, ptrdiff_t start_byte, ptrdiff_t end,
	      ptrdiff_t end_byte, ptrdiff_t count, ptrdiff_t *counted,
	      ptrdiff_t *bytepos, bool allow_quit)
{
  struct region_cache *newline_cache;
  struct buffer *cache_buffer;

  if (!end)
    {
      if (count > 0)
	end = ZV, end_byte = ZV_BYTE;
      else
	end = BEGV, end_byte = BEGV_BYTE;
    }
  if (end_byte == -1)
    end_byte = CHAR_TO_BYTE (end);

  newline_cache = newline_cache_on_off (current_buffer);
  if (current_buffer->base_buffer)
    cache_buffer = current_buffer->base_buffer;
  else
    cache_buffer = current_buffer;

  if (counted)
    *counted = count;

  if (count > 0)
    while (start != end)
      {
        /* Our innermost scanning loop is very simple; it doesn't know
           about gaps, buffer ends, or the newline cache.  ceiling is
           the position of the last character before the next such
           obstacle --- the last character the dumb search loop should
           examine.  */
	ptrdiff_t tem, ceiling_byte = end_byte - 1;

        /* If we're using the newline cache, consult it to see whether
           we can avoid some scanning.  */
        if (newline_cache)
          {
            ptrdiff_t next_change;
	    int result = 1;

            while (start < end && result)
	      {
		ptrdiff_t lim1;

		result = region_cache_forward (cache_buffer, newline_cache,
					       start, &next_change);
		if (result)
		  {
		    /* When the cache revalidation is deferred,
		       next-change might point beyond ZV, which will
		       cause assertion violation in CHAR_TO_BYTE below.
		       Limit next_change to ZV to avoid that.  */
		    if (next_change > ZV)
		      next_change = ZV;
		    start = next_change;
		    lim1 = next_change = end;
		  }
		else
		  lim1 = min (next_change, end);

		/* The cache returned zero for this region; see if
		   this is because the region is known and includes
		   only newlines.  While at that, count any newlines
		   we bump into, and exit if we found enough off them.  */
		start_byte = CHAR_TO_BYTE (start);
		while (start < lim1
		       && FETCH_BYTE (start_byte) == '\n')
		  {
		    start_byte++;
		    start++;
		    if (--count == 0)
		      {
			if (bytepos)
			  *bytepos = start_byte;
			return start;
		      }
		  }
		/* If we found a non-newline character before hitting
		   position where the cache will again return non-zero
		   (i.e. no newlines beyond that position), it means
		   this region is not yet known to the cache, and we
		   must resort to the "dumb loop" method.  */
		if (start < next_change && !result)
		  break;
		result = 1;
	      }
	    if (start >= end)
	      {
		start = end;
		start_byte = end_byte;
		break;
	      }

            /* START should never be after END.  */
            if (start_byte > ceiling_byte)
              start_byte = ceiling_byte;

            /* Now the text after start is an unknown region, and
               next_change is the position of the next known region. */
            ceiling_byte = min (CHAR_TO_BYTE (next_change) - 1, ceiling_byte);
          }
	else if (start_byte == -1)
	  start_byte = CHAR_TO_BYTE (start);

        /* The dumb loop can only scan text stored in contiguous
           bytes. BUFFER_CEILING_OF returns the last character
           position that is contiguous, so the ceiling is the
           position after that.  */
	tem = BUFFER_CEILING_OF (start_byte);
	ceiling_byte = min (tem, ceiling_byte);

        {
          /* The termination address of the dumb loop.  */
	  unsigned char *lim_addr = BYTE_POS_ADDR (ceiling_byte) + 1;
	  ptrdiff_t lim_byte = ceiling_byte + 1;

	  /* Nonpositive offsets (relative to LIM_ADDR and LIM_BYTE)
	     of the base, the cursor, and the next line.  */
	  ptrdiff_t base = start_byte - lim_byte;
	  ptrdiff_t cursor, next;

	  for (cursor = base; cursor < 0; cursor = next)
	    {
              /* The dumb loop.  */
	      unsigned char *nl = memchr (lim_addr + cursor, '\n', - cursor);
	      next = nl ? nl - lim_addr : 0;

              /* If we're using the newline cache, cache the fact that
                 the region we just traversed is free of newlines. */
              if (newline_cache && cursor != next)
		{
		  know_region_cache (cache_buffer, newline_cache,
				     BYTE_TO_CHAR (lim_byte + cursor),
				     BYTE_TO_CHAR (lim_byte + next));
		  /* know_region_cache can relocate buffer text.  */
		  lim_addr = BYTE_POS_ADDR (ceiling_byte) + 1;
		}

              if (! nl)
		break;
	      next++;

	      if (--count == 0)
		{
		  if (bytepos)
		    *bytepos = lim_byte + next;
		  return BYTE_TO_CHAR (lim_byte + next);
		}
	      if (allow_quit)
		maybe_quit ();
            }

	  start_byte = lim_byte;
	  start = BYTE_TO_CHAR (start_byte);
        }
      }
  else
    while (start > end)
      {
        /* The last character to check before the next obstacle.  */
	ptrdiff_t tem, ceiling_byte = end_byte;

        /* Consult the newline cache, if appropriate.  */
        if (newline_cache)
          {
            ptrdiff_t next_change;
	    int result = 1;

            while (start > end && result)
	      {
		ptrdiff_t lim1;

		result = region_cache_backward (cache_buffer, newline_cache,
						start, &next_change);
		if (result)
		  {
		    start = next_change;
		    lim1 = next_change = end;
		  }
		else
		  lim1 = max (next_change, end);
		start_byte = CHAR_TO_BYTE (start);
		while (start > lim1
		       && FETCH_BYTE (start_byte - 1) == '\n')
		  {
		    if (++count == 0)
		      {
			if (bytepos)
			  *bytepos = start_byte;
			return start;
		      }
		    start_byte--;
		    start--;
		  }
		if (start > next_change && !result)
		  break;
		result = 1;
	      }
	    if (start <= end)
	      {
		start = end;
		start_byte = end_byte;
		break;
	      }

            /* Start should never be at or before end.  */
            if (start_byte <= ceiling_byte)
              start_byte = ceiling_byte + 1;

            /* Now the text before start is an unknown region, and
               next_change is the position of the next known region. */
            ceiling_byte = max (CHAR_TO_BYTE (next_change), ceiling_byte);
          }
	else if (start_byte == -1)
	  start_byte = CHAR_TO_BYTE (start);

        /* Stop scanning before the gap.  */
	tem = BUFFER_FLOOR_OF (start_byte - 1);
	ceiling_byte = max (tem, ceiling_byte);

        {
          /* The termination address of the dumb loop.  */
	  unsigned char *ceiling_addr = BYTE_POS_ADDR (ceiling_byte);

	  /* Offsets (relative to CEILING_ADDR and CEILING_BYTE) of
	     the base, the cursor, and the previous line.  These
	     offsets are at least -1.  */
	  ptrdiff_t base = start_byte - ceiling_byte;
	  ptrdiff_t cursor, prev;

	  for (cursor = base; 0 < cursor; cursor = prev)
            {
	      unsigned char *nl = memrchr (ceiling_addr, '\n', cursor);
	      prev = nl ? nl - ceiling_addr : -1;

              /* If we're looking for newlines, cache the fact that
                 this line's region is free of them. */
              if (newline_cache && cursor != prev + 1)
		{
		  know_region_cache (cache_buffer, newline_cache,
				     BYTE_TO_CHAR (ceiling_byte + prev + 1),
				     BYTE_TO_CHAR (ceiling_byte + cursor));
		  /* know_region_cache can relocate buffer text.  */
		  ceiling_addr = BYTE_POS_ADDR (ceiling_byte);
		}

              if (! nl)
		break;

	      if (++count >= 0)
		{
		  if (bytepos)
		    *bytepos = ceiling_byte + prev + 1;
		  return BYTE_TO_CHAR (ceiling_byte + prev + 1);
		}
	      if (allow_quit)
		maybe_quit ();
            }

	  start_byte = ceiling_byte;
	  start = BYTE_TO_CHAR (start_byte);
        }
      }

  if (counted)
    *counted -= count;
  if (bytepos)
    {
      *bytepos = start_byte == -1 ? CHAR_TO_BYTE (start) : start_byte;
      eassert (*bytepos == CHAR_TO_BYTE (start));
    }
  return start;
}
\f
/* Search for COUNT instances of a line boundary.
   Start at START.  If COUNT is negative, search backwards.

   We report the resulting position by calling TEMP_SET_PT_BOTH.

   If we find COUNT instances. we position after (always after,
   even if scanning backwards) the COUNTth match.

   If we don't find COUNT instances before reaching the end of the
   buffer (or the beginning, if scanning backwards), we position at
   the limit we bumped up against.

   If ALLOW_QUIT, check for quitting.  That's good to do
   except in special cases.  */

void
scan_newline (ptrdiff_t start, ptrdiff_t start_byte,
	      ptrdiff_t limit, ptrdiff_t limit_byte,
	      ptrdiff_t count, bool allow_quit)
{
  ptrdiff_t charpos, bytepos, counted;

  charpos = find_newline (start, start_byte, limit, limit_byte,
			  count, &counted, &bytepos, allow_quit);
  if (counted != count)
    TEMP_SET_PT_BOTH (limit, limit_byte);
  else
    TEMP_SET_PT_BOTH (charpos, bytepos);
}

/* Like above, but always scan from point and report the
   resulting position in *CHARPOS and *BYTEPOS.  */

ptrdiff_t
scan_newline_from_point (ptrdiff_t count, ptrdiff_t *charpos,
			 ptrdiff_t *bytepos)
{
  ptrdiff_t counted;

  if (count <= 0)
    *charpos = find_newline (PT, PT_BYTE, BEGV, BEGV_BYTE, count - 1,
			     &counted, bytepos, 1);
  else
    *charpos = find_newline (PT, PT_BYTE, ZV, ZV_BYTE, count,
			     &counted, bytepos, 1);
  return counted;
}

/* Like find_newline, but doesn't allow QUITting and doesn't return
   COUNTED.  */
ptrdiff_t
find_newline_no_quit (ptrdiff_t from, ptrdiff_t frombyte,
		      ptrdiff_t cnt, ptrdiff_t *bytepos)
{
  return find_newline (from, frombyte, 0, -1, cnt, NULL, bytepos, 0);
}

/* Like find_newline, but returns position before the newline, not
   after, and only search up to TO.
   This isn't just find_newline_no_quit (...)-1, because you might hit TO.  */

ptrdiff_t
find_before_next_newline (ptrdiff_t from, ptrdiff_t to,
			  ptrdiff_t cnt, ptrdiff_t *bytepos)
{
  ptrdiff_t counted;
  ptrdiff_t pos = find_newline (from, -1, to, -1, cnt, &counted, bytepos, 1);

  if (counted == cnt)
    {
      if (bytepos)
	dec_both (&pos, &*bytepos);
      else
	pos--;
    }
  return pos;
}
\f
/* Subroutines of Lisp buffer search functions. */

static Lisp_Object
search_command (Lisp_Object regexp, Lisp_Object bound, Lisp_Object noerror,
		Lisp_Object count, int direction, bool RE, bool posix,
		struct regexp_match_info *info)
{
  EMACS_INT np;
  EMACS_INT lim;
  ptrdiff_t lim_byte;
  EMACS_INT n = direction;

  if (!NILP (count))
    {
      CHECK_FIXNUM (count);
      n *= XFIXNUM (count);
    }

  if (NILP (bound))
    {
      if (n > 0)
	lim = ZV, lim_byte = ZV_BYTE;
      else
	lim = BEGV, lim_byte = BEGV_BYTE;
    }
  else
    {
      lim = fix_position (bound);
      if (n > 0 ? lim < PT : lim > PT)
	error ("Invalid search bound (wrong side of point)");
      if (lim > ZV)
	lim = ZV, lim_byte = ZV_BYTE;
      else if (lim < BEGV)
	lim = BEGV, lim_byte = BEGV_BYTE;
      else
	lim_byte = CHAR_TO_BYTE (lim);
    }

  np = search_buffer (regexp, PT, PT_BYTE, lim, lim_byte, n, RE, posix, info);
  if (np <= 0)
    {
      if (NILP (noerror))
	xsignal1 (Qsearch_failed, regexp);

      if (!EQ (noerror, Qt))
	{
	  eassert (BEGV <= lim && lim <= ZV);
	  SET_PT_BOTH (lim, lim_byte);
	  return Qnil;
#if 0 /* This would be clean, but maybe programs depend on
	 a value of nil here.  */
	  np = lim;
#endif
	}
      else
	return Qnil;
    }

  eassert (BEGV <= np && np <= ZV);
  SET_PT (np);

  return make_fixnum (np);
}
\f
/* Return true if REGEXP it matches just one constant string.  */

static bool
trivial_regexp_p (Lisp_Object regexp)
{
  ptrdiff_t len = SBYTES (regexp);
  unsigned char *s = SDATA (regexp);
  while (--len >= 0)
    {
      switch (*s++)
	{
	case '.': case '*': case '+': case '?': case '[': case '^': case '$':
	  return 0;
	case '\\':
	  if (--len < 0)
	    return 0;
	  switch (*s++)
	    {
	    case '|': case '(': case ')': case '`': case '\'': case 'b':
	    case 'B': case '<': case '>': case 'w': case 'W': case 's':
	    case 'S': case '=': case '{': case '}': case '_':
	    case 'c': case 'C':	/* for categoryspec and notcategoryspec */
	    case '1': case '2': case '3': case '4': case '5':
	    case '6': case '7': case '8': case '9':
	      return 0;
	    }
	}
    }
  return 1;
}

#define TRANSLATE(out, trt, d)			\
do						\
  {						\
    if (! NILP (trt))				\
      {						\
	Lisp_Object temp;			\
	temp = Faref (trt, make_fixnum (d));	\
	if (FIXNUMP (temp))			\
	  out = XFIXNUM (temp);			\
	else					\
	  out = d;				\
      }						\
    else					\
      out = d;					\
  }						\
while (0)

/* Only used in search_buffer, to record the end position of the match
   when searching regexps and SEARCH_REGS should not be changed
   (i.e. Vinhibit_changing_match_data is non-nil).  */
static __thread struct re_registers search_regs_1 = {
  .num_regs = 0,
  .start = NULL,
  .end = NULL,
};

/* For some reason, search_buffer_re() segfaults if this memory hasn't
   been allocated yet. */
static struct re_registers *
ensure_backup_search_regs_allocated (void)
{
  eassert (search_regs_1.num_regs >= 0);
  if (search_regs_1.num_regs == 0)
    {
      eassert (search_regs_1.start == NULL);
      eassert (search_regs_1.end == NULL);
      search_regs_1.start = xnmalloc (1, sizeof *search_regs_1.start);
      search_regs_1.end = xnmalloc (1, sizeof *search_regs_1.end);
      search_regs_1.num_regs = 1;
    }
  return &search_regs_1;
}

static EMACS_INT
search_buffer_re (Lisp_Object regexp, ptrdiff_t pos, ptrdiff_t pos_byte,
		  ptrdiff_t lim, ptrdiff_t lim_byte, EMACS_INT n, bool posix,
		  struct regexp_match_info *info)
{
  unsigned char *p1, *p2;
  ptrdiff_t s1, s2;

  eassert (info != NULL);
  struct re_registers *regs = info->regs;
  bool is_writing_output_match_data = true;
  if (!regs)
    {
      is_writing_output_match_data = false;
      regs = ensure_backup_search_regs_allocated ();
    }

  /* Get pointers and sizes of the two strings
     that make up the visible portion of the buffer. */

  p1 = BEGV_ADDR;
  s1 = GPT_BYTE - BEGV_BYTE;
  p2 = GAP_END_ADDR;
  s2 = ZV_BYTE - GPT_BYTE;
  if (s1 < 0)
    {
      p2 = p1;
      s2 = ZV_BYTE - BEGV_BYTE;
      s1 = 0;
    }
  if (s2 < 0)
    {
      s1 = ZV_BYTE - BEGV_BYTE;
      s2 = 0;
    }

  specpdl_ref count = SPECPDL_INDEX ();
  struct re_pattern_buffer *bufp = resolve_compiled_regexp (regexp, posix);
  freeze_buffer_relocation ();

  while (n < 0)
    {
      ptrdiff_t val;

      re_match_object = Qnil;
      val = re_search_2 (bufp, (char *) p1, s1, (char *) p2, s2,
			 pos_byte - BEGV_BYTE, lim_byte - pos_byte,
			 info,
			 /* Don't allow match past current point */
			 pos_byte - BEGV_BYTE);
      if (val == -2)
	{
	  unbind_to (count, Qnil);
	  matcher_overflow ();
	}
      if (val >= 0)
	{
	  if (is_writing_output_match_data)
	    {
	      pos_byte = regs->start[0] + BEGV_BYTE;
	      record_current_buffer_haystack (info);
	      /* Set pos to the new position. */
	      pos = regs->start[0];
	    }
	  else
	    {
	      pos_byte = regs->start[0] + BEGV_BYTE;
	      /* Set pos to the new position.  */
	      pos = BYTE_TO_CHAR (regs->start[0] + BEGV_BYTE);
	    }
	}
      else
	{
	  unbind_to (count, Qnil);
	  return (n);
	}
      n++;
      maybe_quit ();
    }
  while (n > 0)
    {
      ptrdiff_t val;

      re_match_object = Qnil;
      val = re_search_2 (bufp, (char *) p1, s1, (char *) p2, s2,
			 pos_byte - BEGV_BYTE, lim_byte - pos_byte,
			 info,
			 lim_byte - BEGV_BYTE);
      if (val == -2)
	{
	  unbind_to (count, Qnil);
	  matcher_overflow ();
	}
      if (val >= 0)
	{
	  if (is_writing_output_match_data)
	    {
	      pos_byte = regs->end[0] + BEGV_BYTE;
	      record_current_buffer_haystack (info);
	      pos = regs->end[0];
	    }
	  else
	    {
	      pos_byte = regs->end[0] + BEGV_BYTE;
	      pos = BYTE_TO_CHAR (regs->end[0] + BEGV_BYTE);
	    }
	}
      else
	{
	  unbind_to (count, Qnil);
	  return (0 - n);
	}
      n--;
      maybe_quit ();
    }
  unbind_to (count, Qnil);
  return (pos);
}

static EMACS_INT
search_buffer_non_re (Lisp_Object string, ptrdiff_t pos,
		      ptrdiff_t pos_byte, ptrdiff_t lim, ptrdiff_t lim_byte,
		      EMACS_INT n, bool RE, Lisp_Object trt, Lisp_Object inverse_trt,
		      bool posix, struct regexp_match_info *info)
{
  unsigned char *raw_pattern, *pat;
  ptrdiff_t raw_pattern_size;
  ptrdiff_t raw_pattern_size_byte;
  unsigned char *patbuf;
  bool multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
  unsigned char *base_pat;
  /* Set to positive if we find a non-ASCII char that need
     translation.  Otherwise set to zero later.  */
  int char_base = -1;
  bool boyer_moore_ok = 1;
  USE_SAFE_ALLOCA;

  /* MULTIBYTE says whether the text to be searched is multibyte.
     We must convert PATTERN to match that, or we will not really
     find things right.  */

  if (multibyte == STRING_MULTIBYTE (string))
    {
      raw_pattern = SDATA (string);
      raw_pattern_size = SCHARS (string);
      raw_pattern_size_byte = SBYTES (string);
    }
  else if (multibyte)
    {
      raw_pattern_size = SCHARS (string);
      raw_pattern_size_byte
        = count_size_as_multibyte (SDATA (string),
                                   raw_pattern_size);
      raw_pattern = SAFE_ALLOCA (raw_pattern_size_byte + 1);
      copy_text (SDATA (string), raw_pattern,
                 SCHARS (string), 0, 1);
    }
  else
    {
      /* Converting multibyte to single-byte.  */
      raw_pattern_size = SCHARS (string);
      raw_pattern_size_byte = SCHARS (string);
      raw_pattern = SAFE_ALLOCA (raw_pattern_size + 1);
      copy_text (SDATA (string), raw_pattern,
                 SBYTES (string), 1, 0);
    }

  /* Copy and optionally translate the pattern.  */
  ptrdiff_t len = raw_pattern_size;
  ptrdiff_t len_byte = raw_pattern_size_byte;
  SAFE_NALLOCA (patbuf, MAX_MULTIBYTE_LENGTH, len);
  pat = patbuf;
  base_pat = raw_pattern;
  if (multibyte)
    {
      /* Fill patbuf by translated characters in STRING while
         checking if we can use boyer-moore search.  If TRT is
         non-nil, we can use boyer-moore search only if TRT can be
         represented by the byte array of 256 elements.  For that,
         all non-ASCII case-equivalents of all case-sensitive
         characters in STRING must belong to the same character
         group (two characters belong to the same group iff their
         multibyte forms are the same except for the last byte;
         i.e. every 64 characters form a group; U+0000..U+003F,
         U+0040..U+007F, U+0080..U+00BF, ...).  */

      while (--len >= 0)
        {
          unsigned char str_base[MAX_MULTIBYTE_LENGTH], *str;
          int translated, inverse;
          int charlen;

          /* If we got here and the RE flag is set, it's because we're
             dealing with a regexp known to be trivial, so the backslash
             just quotes the next character.  */
          if (RE && *base_pat == '\\')
            {
              len--;
              raw_pattern_size--;
              len_byte--;
              base_pat++;
            }

          int in_charlen, c = string_char_and_length (base_pat, &in_charlen);

          if (NILP (trt))
            {
              str = base_pat;
              charlen = in_charlen;
            }
          else
            {
              /* Translate the character.  */
              TRANSLATE (translated, trt, c);
              charlen = CHAR_STRING (translated, str_base);
              str = str_base;

              /* Check if C has any other case-equivalents.  */
              TRANSLATE (inverse, inverse_trt, c);
              /* If so, check if we can use boyer-moore.  */
              if (c != inverse && boyer_moore_ok)
                {
                  /* Check if all equivalents belong to the same
                     group of characters.  Note that the check of C
                     itself is done by the last iteration.  */
                  int this_char_base = -1;

                  while (boyer_moore_ok)
                    {
                      if (ASCII_CHAR_P (inverse))
                        {
                          if (this_char_base > 0)
                            boyer_moore_ok = 0;
                          else
                            this_char_base = 0;
                        }
                      else if (CHAR_BYTE8_P (inverse))
                        /* Boyer-moore search can't handle a
                           translation of an eight-bit
                           character.  */
                        boyer_moore_ok = 0;
                      else if (this_char_base < 0)
                        {
                          this_char_base = inverse & ~0x3F;
                          if (char_base < 0)
                            char_base = this_char_base;
                          else if (this_char_base != char_base)
                            boyer_moore_ok = 0;
                        }
                      else if ((inverse & ~0x3F) != this_char_base)
                        boyer_moore_ok = 0;
                      if (c == inverse)
                        break;
                      TRANSLATE (inverse, inverse_trt, inverse);
                    }
                }
            }

          /* Store this character into the translated pattern.  */
          memcpy (pat, str, charlen);
          pat += charlen;
          base_pat += in_charlen;
          len_byte -= in_charlen;
        }

      /* If char_base is still negative we didn't find any translated
         non-ASCII characters.  */
      if (char_base < 0)
        char_base = 0;
    }
  else
    {
      /* Unibyte buffer.  */
      char_base = 0;
      while (--len >= 0)
        {
          int c, translated, inverse;

          /* If we got here and the RE flag is set, it's because we're
             dealing with a regexp known to be trivial, so the backslash
             just quotes the next character.  */
          if (RE && *base_pat == '\\')
            {
              len--;
              raw_pattern_size--;
              base_pat++;
            }
          c = *base_pat++;
          TRANSLATE (translated, trt, c);
          *pat++ = translated;
          /* Check that none of C's equivalents violates the
             assumptions of boyer_moore.  */
          TRANSLATE (inverse, inverse_trt, c);
          while (1)
            {
              if (inverse >= 0200)
                {
                  boyer_moore_ok = 0;
                  break;
                }
              if (c == inverse)
                break;
              TRANSLATE (inverse, inverse_trt, inverse);
            }
        }
    }

  len_byte = pat - patbuf;
  pat = base_pat = patbuf;

  EMACS_INT result
    = (boyer_moore_ok
       ? boyer_moore (n, pat, len_byte, trt, inverse_trt,
                      pos_byte, lim_byte,
                      char_base)
       : simple_search (n, pat, raw_pattern_size, len_byte, trt,
                        pos, pos_byte, lim, lim_byte));
  SAFE_FREE ();
  return result;
}

static Lisp_Object
extract_regexp_pattern (Lisp_Object regexp)
{
  if (REGEXP_P (regexp))
    return XREGEXP (regexp)->pattern;
  CHECK_STRING (regexp);
  return regexp;
}

/* Search for the Nth occurrence of STRING in the current buffer,
   from buffer position POS/POS_BYTE until LIM/LIM_BYTE.

   If RE, look for matches against the regular expression STRING instead;
   if POSIX, enable POSIX style backtracking within that regular
   expression.

   If N is positive, search forward; in this case, LIM must be greater
   than POS.

   If N is negative, search backward; LIM must be less than POS.

   Return -X if there are X remaining occurrences or matches,
   or else the position at the beginning (if N is negative) or the end
   (if N is positive) of the Nth occurrence or match against STRING.

   Use TRT and INVERSE_TRT as character translation tables.  */

EMACS_INT
search_buffer (Lisp_Object regexp, ptrdiff_t pos, ptrdiff_t pos_byte,
	       ptrdiff_t lim, ptrdiff_t lim_byte, EMACS_INT n,
	       bool RE, bool posix, struct regexp_match_info *info)
{
  eassert (info != NULL);
  Lisp_Object pattern = extract_regexp_pattern (regexp);
  /* Searching 0 times means don't move.  */
  /* Null string is found at starting position.  */
  if (n == 0 || SCHARS (pattern) == 0)
    {
      /* FIXME: make a helper function to do this!!!!!! */
      struct re_registers *regs = info->regs;
      if (regs)
	{
	  ptrdiff_t char_pos = BYTE_TO_CHAR (pos);
	  if (info->match)
	    {
	      eassert (regs->num_regs > 0);
	      info->match->initialized_regs = 1;
	      regs->start[0] = regs->end[0] = char_pos;
	      Lisp_Object buf;
	      XSETBUFFER (buf, current_buffer);
	      info->match->haystack = buf;
	    }
	  else
	    {
	      /* Make sure we have registers in which to store
		 the match position.  */
	      if (regs->num_regs == 0)
		{
		  regs->start = xnmalloc (2, sizeof *regs->start);
		  regs->end = xnmalloc (2, sizeof *regs->end);
		  regs->num_regs = 2;
		}
	      eassert (regs->num_regs > 0);
	      /* Write the empty match into the registers. */
	      regs->start[0] = regs->end[0] = char_pos;
	      /* Clear out the other registers.  */
	      for (ptrdiff_t i = 1; i < regs->num_regs; ++i)
		regs->start[i] = regs->end[i] = RE_MATCH_EXP_UNSET;
	      XSETBUFFER (last_thing_searched, current_buffer);
	    }
	}
      return pos;
    }

  if (RE && !(trivial_regexp_p (pattern) && NILP (Vsearch_spaces_regexp)))
    pos = search_buffer_re (regexp, pos, pos_byte, lim, lim_byte,
			    n, posix, info);
  else
    {
      Lisp_Object trt = (!NILP (Vcase_fold_search)
			 ? BVAR (current_buffer, case_canon_table)
			 : Qnil);
      Lisp_Object inverse_trt = (!NILP (Vcase_fold_search)
				 ? BVAR (current_buffer, case_eqv_table)
				 : Qnil);
      pos = search_buffer_non_re (pattern, pos, pos_byte, lim, lim_byte,
				  n, RE, trt, inverse_trt, posix, info);
    }

  return pos;
}
\f
/* Do a simple string search N times for the string PAT,
   whose length is LEN/LEN_BYTE,
   from buffer position POS/POS_BYTE until LIM/LIM_BYTE.
   TRT is the translation table.

   Return the character position where the match is found.
   Otherwise, if M matches remained to be found, return -M.

   This kind of search works regardless of what is in PAT and
   regardless of what is in TRT.  It is used in cases where
   boyer_moore cannot work.  */

static EMACS_INT
simple_search (EMACS_INT n, unsigned char *pat,
	       ptrdiff_t len, ptrdiff_t len_byte, Lisp_Object trt,
	       ptrdiff_t pos, ptrdiff_t pos_byte,
	       ptrdiff_t lim, ptrdiff_t lim_byte)
{
  bool multibyte = ! NILP (BVAR (current_buffer, enable_multibyte_characters));
  bool forward = n > 0;
  /* Number of buffer bytes matched.  Note that this may be different
     from len_byte in a multibyte buffer.  */
  ptrdiff_t match_byte = PTRDIFF_MIN;

  if (lim > pos && multibyte)
    while (n > 0)
      {
	while (1)
	  {
	    /* Try matching at position POS.  */
	    ptrdiff_t this_pos_byte = pos_byte;
	    ptrdiff_t this_len = len;
	    unsigned char *p = pat;
	    if (pos + len > lim || pos_byte + len_byte > lim_byte)
	      goto stop;

	    while (this_len > 0)
	      {
		int charlen, pat_ch = string_char_and_length (p, &charlen);
		int buf_charlen, buf_ch
		  = string_char_and_length (BYTE_POS_ADDR (this_pos_byte),
					    &buf_charlen);
		TRANSLATE (buf_ch, trt, buf_ch);

		if (buf_ch != pat_ch)
		  break;

		this_len--;
		p += charlen;

		this_pos_byte += buf_charlen;
	      }

	    if (this_len == 0)
	      {
		match_byte = this_pos_byte - pos_byte;
		pos += len;
		pos_byte += match_byte;
		break;
	      }

	    inc_both (&pos, &pos_byte);
	  }

	n--;
      }
  else if (lim > pos)
    while (n > 0)
      {
	while (1)
	  {
	    /* Try matching at position POS.  */
	    ptrdiff_t this_pos = pos;
	    ptrdiff_t this_len = len;
	    unsigned char *p = pat;

	    if (pos + len > lim)
	      goto stop;

	    while (this_len > 0)
	      {
		int pat_ch = *p++;
		int buf_ch = FETCH_BYTE (this_pos);
		TRANSLATE (buf_ch, trt, buf_ch);

		if (buf_ch != pat_ch)
		  break;

		this_len--;
		this_pos++;
	      }

	    if (this_len == 0)
	      {
		match_byte = len;
		pos += len;
		break;
	      }

	    pos++;
	  }

	n--;
      }
  /* Backwards search.  */
  else if (lim < pos && multibyte)
    while (n < 0)
      {
	while (1)
	  {
	    /* Try matching at position POS.  */
	    ptrdiff_t this_pos = pos;
	    ptrdiff_t this_pos_byte = pos_byte;
	    ptrdiff_t this_len = len;
	    const unsigned char *p = pat + len_byte;

	    if (this_pos - len < lim || (pos_byte - len_byte) < lim_byte)
	      goto stop;

	    while (this_len > 0)
	      {
		int pat_ch, buf_ch;

		dec_both (&this_pos, &this_pos_byte);
		p -= raw_prev_char_len (p);
		pat_ch = STRING_CHAR (p);
		buf_ch = STRING_CHAR (BYTE_POS_ADDR (this_pos_byte));
		TRANSLATE (buf_ch, trt, buf_ch);

		if (buf_ch != pat_ch)
		  break;

		this_len--;
	      }

	    if (this_len == 0)
	      {
		match_byte = pos_byte - this_pos_byte;
		pos = this_pos;
		pos_byte = this_pos_byte;
		break;
	      }

	    dec_both (&pos, &pos_byte);
	  }

	n++;
      }
  else if (lim < pos)
    while (n < 0)
      {
	while (1)
	  {
	    /* Try matching at position POS.  */
	    ptrdiff_t this_pos = pos - len;
	    ptrdiff_t this_len = len;
	    unsigned char *p = pat;

	    if (this_pos < lim)
	      goto stop;

	    while (this_len > 0)
	      {
		int pat_ch = *p++;
		int buf_ch = FETCH_BYTE (this_pos);
		TRANSLATE (buf_ch, trt, buf_ch);

		if (buf_ch != pat_ch)
		  break;
		this_len--;
		this_pos++;
	      }

	    if (this_len == 0)
	      {
		match_byte = len;
		pos -= len;
		break;
	      }

	    pos--;
	  }

	n++;
      }

 stop:
  if (n == 0)
    {
      eassert (match_byte != PTRDIFF_MIN);
      if (forward)
	set_search_regs ((multibyte ? pos_byte : pos) - match_byte, match_byte);
      else
	set_search_regs (multibyte ? pos_byte : pos, match_byte);

      return pos;
    }
  else if (n > 0)
    return -n;
  else
    return n;
}
\f
/* Do Boyer-Moore search N times for the string BASE_PAT,
   whose length is LEN_BYTE,
   from buffer position POS_BYTE until LIM_BYTE.
   DIRECTION says which direction we search in.
   TRT and INVERSE_TRT are translation tables.
   Characters in PAT are already translated by TRT.

   This kind of search works if all the characters in BASE_PAT that
   have nontrivial translation are the same aside from the last byte.
   This makes it possible to translate just the last byte of a
   character, and do so after just a simple test of the context.
   CHAR_BASE is nonzero if there is such a non-ASCII character.

   If that criterion is not satisfied, do not call this function.  */

static EMACS_INT
boyer_moore (EMACS_INT n, unsigned char *base_pat,
	     ptrdiff_t len_byte,
	     Lisp_Object trt, Lisp_Object inverse_trt,
	     ptrdiff_t pos_byte, ptrdiff_t lim_byte,
             int char_base)
{
  int direction = ((n > 0) ? 1 : -1);
  register ptrdiff_t dirlen;
  ptrdiff_t limit;
  int stride_for_teases = 0;
  int BM_tab[0400];
  register unsigned char *cursor, *p_limit;
  register ptrdiff_t i;
  register int j;
  unsigned char *pat, *pat_end;
  bool multibyte = ! NILP (BVAR (current_buffer, enable_multibyte_characters));

  unsigned char simple_translate[0400];
  /* These are set to the preceding bytes of a byte to be translated
     if char_base is nonzero.  As the maximum byte length of a
     multibyte character is 5, we have to check at most four previous
     bytes.  */
  int translate_prev_byte1 = 0;
  int translate_prev_byte2 = 0;
  int translate_prev_byte3 = 0;

  /* The general approach is that we are going to maintain that we know
     the first (closest to the present position, in whatever direction
     we're searching) character that could possibly be the last
     (furthest from present position) character of a valid match.  We
     advance the state of our knowledge by looking at that character
     and seeing whether it indeed matches the last character of the
     pattern.  If it does, we take a closer look.  If it does not, we
     move our pointer (to putative last characters) as far as is
     logically possible.  This amount of movement, which I call a
     stride, will be the length of the pattern if the actual character
     appears nowhere in the pattern, otherwise it will be the distance
     from the last occurrence of that character to the end of the
     pattern.  If the amount is zero we have a possible match.  */

  /* Here we make a "mickey mouse" BM table.  The stride of the search
     is determined only by the last character of the putative match.
     If that character does not match, we will stride the proper
     distance to propose a match that superimposes it on the last
     instance of a character that matches it (per trt), or misses
     it entirely if there is none. */

  dirlen = len_byte * direction;

  /* Record position after the end of the pattern.  */
  pat_end = base_pat + len_byte;
  /* BASE_PAT points to a character that we start scanning from.
     It is the first character in a forward search,
     the last character in a backward search.  */
  if (direction < 0)
    base_pat = pat_end - 1;

  /* A character that does not appear in the pattern induces a
     stride equal to the pattern length.  */
  for (i = 0; i < 0400; i++)
    BM_tab[i] = dirlen;

  /* We use this for translation, instead of TRT itself.
     We fill this in to handle the characters that actually
     occur in the pattern.  Others don't matter anyway!  */
  for (i = 0; i < 0400; i++)
    simple_translate[i] = i;

  if (char_base)
    {
      /* Setup translate_prev_byte1/2/3/4 from CHAR_BASE.  Only a
	 byte following them are the target of translation.  */
      eassume (0x80 <= char_base && char_base <= MAX_CHAR);
      unsigned char str[MAX_MULTIBYTE_LENGTH];
      int cblen = CHAR_STRING (char_base, str);

      translate_prev_byte1 = str[cblen - 2];
      if (cblen > 2)
	{
	  translate_prev_byte2 = str[cblen - 3];
	  if (cblen > 3)
	    translate_prev_byte3 = str[cblen - 4];
	}
    }

  i = 0;
  while (i != dirlen)
    {
      unsigned char *ptr = base_pat + i;
      i += direction;
      if (! NILP (trt))
	{
	  /* If the byte currently looking at is the last of a
	     character to check case-equivalents, set CH to that
	     character.  An ASCII character and a non-ASCII character
	     matching with CHAR_BASE are to be checked.  */
	  int ch = -1;

	  if (ASCII_CHAR_P (*ptr) || ! multibyte)
	    ch = *ptr;
	  else if (char_base
		   && ((pat_end - ptr) == 1 || CHAR_HEAD_P (ptr[1])))
	    {
	      unsigned char *charstart = ptr - 1;

	      while (! (CHAR_HEAD_P (*charstart)))
		charstart--;
	      ch = STRING_CHAR (charstart);
	      if (char_base != (ch & ~0x3F))
		ch = -1;
	    }

	  if (ch >= 0200 && multibyte)
	    j = (ch & 0x3F) | 0200;
	  else
	    j = *ptr;

	  if (i == dirlen)
	    stride_for_teases = BM_tab[j];

	  BM_tab[j] = dirlen - i;
	  /* A translation table is accompanied by its inverse -- see
	     comment following downcase_table for details.  */
	  if (ch >= 0)
	    {
	      int starting_ch = ch;
	      int starting_j = j;

	      while (1)
		{
		  TRANSLATE (ch, inverse_trt, ch);
		  if (ch >= 0200 && multibyte)
		    j = (ch & 0x3F) | 0200;
		  else
		    j = ch;

		  /* For all the characters that map into CH,
		     set up simple_translate to map the last byte
		     into STARTING_J.  */
		  simple_translate[j] = starting_j;
		  if (ch == starting_ch)
		    break;
		  BM_tab[j] = dirlen - i;
		}
	    }
	}
      else
	{
	  j = *ptr;

	  if (i == dirlen)
	    stride_for_teases = BM_tab[j];
	  BM_tab[j] = dirlen - i;
	}
      /* stride_for_teases tells how much to stride if we get a
	 match on the far character but are subsequently
	 disappointed, by recording what the stride would have been
	 for that character if the last character had been
	 different.  */
    }
  pos_byte += dirlen - ((direction > 0) ? direction : 0);
  /* loop invariant - POS_BYTE points at where last char (first
     char if reverse) of pattern would align in a possible match.  */
  while (n != 0)
    {
      ptrdiff_t tail_end;
      unsigned char *tail_end_ptr;

      /* It's been reported that some (broken) compiler thinks that
	 Boolean expressions in an arithmetic context are unsigned.
	 Using an explicit ?1:0 prevents this.  */
      if ((lim_byte - pos_byte - ((direction > 0) ? 1 : 0)) * direction
	  < 0)
	return (n * (0 - direction));
      /* First we do the part we can by pointers (maybe nothing) */
      maybe_quit ();
      pat = base_pat;
      limit = pos_byte - dirlen + direction;
      if (direction > 0)
	{
	  limit = BUFFER_CEILING_OF (limit);
	  /* LIMIT is now the last (not beyond-last!) value POS_BYTE
	     can take on without hitting edge of buffer or the gap.  */
	  limit = min (limit, pos_byte + 20000);
	  limit = min (limit, lim_byte - 1);
	}
      else
	{
	  limit = BUFFER_FLOOR_OF (limit);
	  /* LIMIT is now the last (not beyond-last!) value POS_BYTE
	     can take on without hitting edge of buffer or the gap.  */
	  limit = max (limit, pos_byte - 20000);
	  limit = max (limit, lim_byte);
	}
      tail_end = BUFFER_CEILING_OF (pos_byte) + 1;
      tail_end_ptr = BYTE_POS_ADDR (tail_end);

      if ((limit - pos_byte) * direction > 20)
	{
	  unsigned char *p2;

	  p_limit = BYTE_POS_ADDR (limit);
	  p2 = (cursor = BYTE_POS_ADDR (pos_byte));
	  /* In this loop, pos + cursor - p2 is the surrogate for pos.  */
	  while (1)		/* use one cursor setting as long as i can */
	    {
	      if (direction > 0) /* worth duplicating */
		{
		  while (cursor <= p_limit)
		    {
		      if (BM_tab[*cursor] == 0)
			goto hit;
		      cursor += BM_tab[*cursor];
		    }
		}
	      else
		{
		  while (cursor >= p_limit)
		    {
		      if (BM_tab[*cursor] == 0)
			goto hit;
		      cursor += BM_tab[*cursor];
		    }
		}
	      /* If you are here, cursor is beyond the end of the
		 searched region.  You fail to match within the
		 permitted region and would otherwise try a character
		 beyond that region.  */
	      break;

	    hit:
	      i = dirlen - direction;
	      if (! NILP (trt))
		{
		  while ((i -= direction) + direction != 0)
		    {
		      int ch;
		      cursor -= direction;
		      /* Translate only the last byte of a character.  */
		      if (! multibyte
			  || ((cursor == tail_end_ptr
			       || CHAR_HEAD_P (cursor[1]))
			      && (CHAR_HEAD_P (cursor[0])
				  /* Check if this is the last byte of
				     a translatable character.  */
				  || (translate_prev_byte1 == cursor[-1]
				      && (CHAR_HEAD_P (translate_prev_byte1)
					  || (translate_prev_byte2 == cursor[-2]
					      && (CHAR_HEAD_P (translate_prev_byte2)
						  || (translate_prev_byte3 == cursor[-3]))))))))
			ch = simple_translate[*cursor];
		      else
			ch = *cursor;
		      if (pat[i] != ch)
			break;
		    }
		}
	      else
		{
		  while ((i -= direction) + direction != 0)
		    {
		      cursor -= direction;
		      if (pat[i] != *cursor)
			break;
		    }
		}
	      cursor += dirlen - i - direction;	/* fix cursor */
	      if (i + direction == 0)
		{
		  ptrdiff_t position, start, end;
#ifdef REL_ALLOC
		  ptrdiff_t cursor_off;
#endif

		  cursor -= direction;

		  position = pos_byte + cursor - p2 + ((direction > 0)
						       ? 1 - len_byte : 0);
#ifdef REL_ALLOC
		  /* set_search_regs might call malloc, which could
		     cause ralloc.c relocate buffer text.  We need to
		     update pointers into buffer text due to that.  */
		  cursor_off = cursor - p2;
#endif
		  set_search_regs (position, len_byte);
#ifdef REL_ALLOC
		  p_limit = BYTE_POS_ADDR (limit);
		  p2 = BYTE_POS_ADDR (pos_byte);
		  cursor = p2 + cursor_off;
#endif

		  if (NILP (Vinhibit_changing_match_data))
		    {
		      start = search_regs.start[0];
		      end = search_regs.end[0];
		    }
		  else
		    /* If Vinhibit_changing_match_data is non-nil,
		       search_regs will not be changed.  So let's
		       compute start and end here.  */
		    {
		      start = BYTE_TO_CHAR (position);
		      end = BYTE_TO_CHAR (position + len_byte);
		    }

		  if ((n -= direction) != 0)
		    cursor += dirlen; /* to resume search */
		  else
		    return direction > 0 ? end : start;
		}
	      else
		cursor += stride_for_teases; /* <sigh> we lose -  */
	    }
	  pos_byte += cursor - p2;
	}
      else
	/* Now we'll pick up a clump that has to be done the hard
	   way because it covers a discontinuity.  */
	{
	  limit = ((direction > 0)
		   ? BUFFER_CEILING_OF (pos_byte - dirlen + 1)
		   : BUFFER_FLOOR_OF (pos_byte - dirlen - 1));
	  limit = ((direction > 0)
		   ? min (limit + len_byte, lim_byte - 1)
		   : max (limit - len_byte, lim_byte));
	  /* LIMIT is now the last value POS_BYTE can have
	     and still be valid for a possible match.  */
	  while (1)
	    {
	      /* This loop can be coded for space rather than
		 speed because it will usually run only once.
		 (the reach is at most len + 21, and typically
		 does not exceed len).  */
	      while ((limit - pos_byte) * direction >= 0)
		{
		  int ch = FETCH_BYTE (pos_byte);
		  if (BM_tab[ch] == 0)
		    goto hit2;
		  pos_byte += BM_tab[ch];
		}
	      break;	/* ran off the end */

	    hit2:
	      /* Found what might be a match.  */
	      i = dirlen - direction;
	      while ((i -= direction) + direction != 0)
		{
		  int ch;
		  unsigned char *ptr;
		  pos_byte -= direction;
		  ptr = BYTE_POS_ADDR (pos_byte);
		  /* Translate only the last byte of a character.  */
		  if (! multibyte
		      || ((ptr == tail_end_ptr
			   || CHAR_HEAD_P (ptr[1]))
			  && (CHAR_HEAD_P (ptr[0])
			      /* Check if this is the last byte of a
				 translatable character.  */
			      || (translate_prev_byte1 == ptr[-1]
				  && (CHAR_HEAD_P (translate_prev_byte1)
				      || (translate_prev_byte2 == ptr[-2]
					  && (CHAR_HEAD_P (translate_prev_byte2)
					      || translate_prev_byte3 == ptr[-3])))))))
		    ch = simple_translate[*ptr];
		  else
		    ch = *ptr;
		  if (pat[i] != ch)
		    break;
		}
	      /* Above loop has moved POS_BYTE part or all the way
		 back to the first pos (last pos if reverse).
		 Set it once again at the last (first if reverse) char.  */
	      pos_byte += dirlen - i - direction;
	      if (i + direction == 0)
		{
		  ptrdiff_t position, start, end;
		  pos_byte -= direction;

		  position = pos_byte + ((direction > 0) ? 1 - len_byte : 0);
		  set_search_regs (position, len_byte);

		  if (NILP (Vinhibit_changing_match_data))
		    {
		      start = search_regs.start[0];
		      end = search_regs.end[0];
		    }
		  else
		    /* If Vinhibit_changing_match_data is non-nil,
		       search_regs will not be changed.  So let's
		       compute start and end here.  */
		    {
		      start = BYTE_TO_CHAR (position);
		      end = BYTE_TO_CHAR (position + len_byte);
		    }

		  if ((n -= direction) != 0)
		    pos_byte += dirlen; /* to resume search */
		  else
		    return direction > 0 ? end : start;
		}
	      else
		pos_byte += stride_for_teases;
	    }
	  }
      /* We have done one clump.  Can we continue? */
      if ((lim_byte - pos_byte) * direction < 0)
	return ((0 - n) * direction);
    }
  return BYTE_TO_CHAR (pos_byte);
}

static void
set_regs (ptrdiff_t beg_byte, ptrdiff_t nbytes, struct re_registers *regs)
{
  ptrdiff_t i;

  if (!NILP (Vinhibit_changing_match_data))
    return;

  /* Make sure we have registers in which to store
     the match position.  */
  if (regs->num_regs == 0)
    {
      regs->start = xmalloc (2 * sizeof *regs->start);
      regs->end = xmalloc (2 * sizeof *regs->end);
      regs->num_regs = 2;
    }

  /* Clear out the other registers.  */
  for (i = 1; i < regs->num_regs; i++)
    {
      regs->start[i] = RE_MATCH_EXP_UNSET;
      regs->end[i] = RE_MATCH_EXP_UNSET;
    }

  regs->start[0] = BYTE_TO_CHAR (beg_byte);
  regs->end[0] = BYTE_TO_CHAR (beg_byte + nbytes);
}

/* Record beginning BEG_BYTE and end BEG_BYTE + NBYTES
   for the overall match just found in the current buffer.
   Also clear out the match data for registers 1 and up.  */

static void
set_search_regs (ptrdiff_t beg_byte, ptrdiff_t nbytes)
{
  set_regs (beg_byte, nbytes, &search_regs);
  XSETBUFFER (last_thing_searched, current_buffer);
}

\f
DEFUN ("search-backward", Fsearch_backward, Ssearch_backward, 1, 5,
       "MSearch backward: ",
       doc: /* Search backward from point for STRING.
Set point to the beginning of the occurrence found, and return point.
An optional second argument bounds the search; it is a buffer position.
  The match found must not begin before that position.  A value of nil
  means search to the beginning of the accessible portion of the buffer.
Optional third argument, if t, means if fail just return nil (no error).
  If not nil and not t, position at limit of search and return nil.
Optional fourth argument COUNT, if a positive number, means to search
  for COUNT successive occurrences.  If COUNT is negative, search
  forward, instead of backward, for -COUNT occurrences.  A value of
  nil means the same as 1.
With COUNT positive, the match found is the COUNTth to last one (or
  last, if COUNT is 1 or nil) in the buffer located entirely before
  the origin of the search; correspondingly with COUNT negative.
Optional sixth argument INHIBIT-MODIFY provides a match object to write into.
  A value of nil means to use the default match object, and a value of
  t means to discard the match data.

Search case-sensitivity is determined by the value of the variable
`case-fold-search', which see.

See also the functions `match-beginning', `match-end' and `replace-match'.  */)
  (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count,
   Lisp_Object inhibit_modify)
{
  CHECK_STRING (string);
  struct regexp_match_info info = resolve_buffer_match_info
    (string, inhibit_modify);
  return search_command (string, bound, noerror, count, -1, false, false, &info);
}

DEFUN ("search-forward", Fsearch_forward, Ssearch_forward, 1, 5, "MSearch: ",
       doc: /* Search forward from point for STRING.
Set point to the end of the occurrence found, and return point.
An optional second argument bounds the search; it is a buffer position.
  The match found must not end after that position.  A value of nil
  means search to the end of the accessible portion of the buffer.
Optional third argument, if t, means if fail just return nil (no error).
  If not nil and not t, move to limit of search and return nil.
Optional fourth argument COUNT, if a positive number, means to search
  for COUNT successive occurrences.  If COUNT is negative, search
  backward, instead of forward, for -COUNT occurrences.  A value of
  nil means the same as 1.
With COUNT positive, the match found is the COUNTth one (or first,
  if COUNT is 1 or nil) in the buffer located entirely after the
  origin of the search; correspondingly with COUNT negative.
Optional sixth argument INHIBIT-MODIFY provides a match object to write into.
  A value of nil means to use the default match object, and a value of
  t means to discard the match data.

Search case-sensitivity is determined by the value of the variable
`case-fold-search', which see.

See also the functions `match-beginning', `match-end' and `replace-match'.  */)
  (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count,
   Lisp_Object inhibit_modify)
{
  CHECK_STRING (string);
  struct regexp_match_info info = resolve_buffer_match_info
    (string, inhibit_modify);
  return search_command (string, bound, noerror, count, 1, false, false, &info);
}

DEFUN ("re-search-backward", Fre_search_backward, Sre_search_backward, 1, 5,
       "sRE search backward: ",
       doc: /* Search backward from point for regular expression REGEXP.
This function is almost identical to `re-search-forward', except that
by default it searches backward instead of forward, and the sign of
COUNT also indicates exactly the opposite searching direction.
See `re-search-forward' for details.

Note that searching backwards may give a shorter match than expected,
because REGEXP is still matched in the forward direction.  See Info
anchor `(elisp) re-search-backward' for details.  */)
  (Lisp_Object regexp, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count,
   Lisp_Object inhibit_modify)
{
  struct regexp_match_info info = resolve_buffer_match_info
    (regexp, inhibit_modify);
  return search_command (regexp, bound, noerror, count, -1, true, false, &info);
}

DEFUN ("re-search-forward", Fre_search_forward, Sre_search_forward, 1, 5,
       "sRE search: ",
       doc: /* Search forward from point for regular expression REGEXP.
Set point to the end of the occurrence found, and return point.
The optional second argument BOUND is a buffer position that bounds
  the search.  The match found must not end after that position.  A
  value of nil means search to the end of the accessible portion of
  the buffer.
The optional third argument NOERROR indicates how errors are handled
  when the search fails: if it is nil or omitted, emit an error; if
  it is t, simply return nil and do nothing; if it is neither nil nor
  t, move to the limit of search and return nil.
The optional fourth argument COUNT is a number that indicates the
  search direction and the number of occurrences to search for.  If it
  is positive, search forward for COUNT successive occurrences; if it
  is negative, search backward, instead of forward, for -COUNT
  occurrences.  A value of nil means the same as 1.
With COUNT positive/negative, the match found is the COUNTth/-COUNTth
  one in the buffer located entirely after/before the origin of the
  search.
Optional sixth argument INHIBIT-MODIFY provides a match object to write into.
  A value of nil means to use the default match object, and a value of
  t means to discard the match data.

Search case-sensitivity is determined by the value of the variable
`case-fold-search', which see.

See also the functions `match-beginning', `match-end', `match-string',
and `replace-match'.  */)
  (Lisp_Object regexp, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count,
   Lisp_Object inhibit_modify)
{
  struct regexp_match_info info = resolve_buffer_match_info
    (regexp, inhibit_modify);
  return search_command (regexp, bound, noerror, count, 1, true, false, &info);
}

DEFUN ("posix-search-backward", Fposix_search_backward, Sposix_search_backward, 1, 5,
       "sPosix search backward: ",
       doc: /* Search backward from point for match for REGEXP according to Posix rules.
Find the longest match in accord with Posix regular expression rules.
Set point to the beginning of the occurrence found, and return point.
An optional second argument bounds the search; it is a buffer position.
  The match found must not begin before that position.  A value of nil
  means search to the beginning of the accessible portion of the buffer.
Optional third argument, if t, means if fail just return nil (no error).
  If not nil and not t, position at limit of search and return nil.
Optional fourth argument COUNT, if a positive number, means to search
  for COUNT successive occurrences.  If COUNT is negative, search
  forward, instead of backward, for -COUNT occurrences.  A value of
  nil means the same as 1.
With COUNT positive, the match found is the COUNTth to last one (or
  last, if COUNT is 1 or nil) in the buffer located entirely before
  the origin of the search; correspondingly with COUNT negative.
Optional sixth argument INHIBIT-MODIFY provides a match object to write into.
  A value of nil means to use the default match object, and a value of
  t means to discard the match data.

Search case-sensitivity is determined by the value of the variable
`case-fold-search', which see.

See also the functions `match-beginning', `match-end', `match-string',
and `replace-match'.  */)
  (Lisp_Object regexp, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count,
   Lisp_Object inhibit_modify)
{
  struct regexp_match_info info = resolve_buffer_match_info
    (regexp, inhibit_modify);
  return search_command (regexp, bound, noerror, count, -1, true, true, &info);
}

DEFUN ("posix-search-forward", Fposix_search_forward, Sposix_search_forward, 1, 5,
       "sPosix search: ",
       doc: /* Search forward from point for REGEXP according to Posix rules.
Find the longest match in accord with Posix regular expression rules.
Set point to the end of the occurrence found, and return point.
An optional second argument bounds the search; it is a buffer position.
  The match found must not end after that position.  A value of nil
  means search to the end of the accessible portion of the buffer.
Optional third argument, if t, means if fail just return nil (no error).
  If not nil and not t, move to limit of search and return nil.
Optional fourth argument COUNT, if a positive number, means to search
  for COUNT successive occurrences.  If COUNT is negative, search
  backward, instead of forward, for -COUNT occurrences.  A value of
  nil means the same as 1.
With COUNT positive, the match found is the COUNTth one (or first,
  if COUNT is 1 or nil) in the buffer located entirely after the
  origin of the search; correspondingly with COUNT negative.
Optional sixth argument INHIBIT-MODIFY provides a match object to write into.
  A value of nil means to use the default match object, and a value of
  t means to discard the match data.

Search case-sensitivity is determined by the value of the variable
`case-fold-search', which see.

See also the functions `match-beginning', `match-end', `match-string',
and `replace-match'.  */)
  (Lisp_Object regexp, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count,
   Lisp_Object inhibit_modify)
{
  struct regexp_match_info info = resolve_buffer_match_info
    (regexp, inhibit_modify);
  return search_command (regexp, bound, noerror, count, 1, true, true, &info);
}
\f
DEFUN ("replace-match", Freplace_match, Sreplace_match, 1, 5, 0,
       doc: /* Replace text matched by last search with NEWTEXT.
Leave point at the end of the replacement text.

If optional second arg FIXEDCASE is non-nil, do not alter the case of
the replacement text.  Otherwise, maybe capitalize the whole text, or
maybe just word initials, based on the replaced text.  If the replaced
text has only capital letters and has at least one multiletter word,
convert NEWTEXT to all caps.  Otherwise if all words are capitalized
in the replaced text, capitalize each word in NEWTEXT.  Note that
what exactly is a word is determined by the syntax tables in effect
in the current buffer, and the variable `case-symbols-as-words'.

If optional third arg LITERAL is non-nil, insert NEWTEXT literally.
Otherwise treat `\\' as special:
  `\\&' in NEWTEXT means substitute original matched text.
  `\\N' means substitute what matched the Nth `\\(...\\)'.
       If Nth parens didn't match, substitute nothing.
  `\\\\' means insert one `\\'.
  `\\?' is treated literally
       (for compatibility with `query-replace-regexp').
  Any other character following `\\' signals an error.
Case conversion does not apply to these substitutions.

If optional fourth argument STRING is non-nil, it should be a string
to act on; this should be the string on which the previous match was
done via `string-match'.  In this case, `replace-match' creates and
returns a new string, made by copying STRING and replacing the part of
STRING that was matched (the original STRING itself is not altered).

The optional fifth argument SUBEXP specifies a subexpression;
it says to replace just that subexpression with NEWTEXT,
rather than replacing the entire matched text.
This is, in a vague sense, the inverse of using `\\N' in NEWTEXT;
`\\N' copies subexp N into NEWTEXT, but using N as SUBEXP puts
NEWTEXT in place of subexp N.
This is useful only after a regular expression search or match,
since only regular expressions have distinguished subexpressions.  */)
  (Lisp_Object newtext, Lisp_Object fixedcase, Lisp_Object literal, Lisp_Object string, Lisp_Object subexp)
{
  enum { nochange, all_caps, cap_initial } case_action;
  ptrdiff_t pos, pos_byte;
  bool some_multiletter_word;
  bool some_lowercase;
  bool some_uppercase;
  bool some_nonuppercase_initial;
  int c, prevc;
  ptrdiff_t sub;
  ptrdiff_t opoint, newpoint;

  CHECK_STRING (newtext);

  if (! NILP (string))
    CHECK_STRING (string);

  /* Most replacement texts don't contain any backslash directives in
     the replacements.  Check whether that's the case, which will
     enable us to take the fast path later.  */
  if (NILP (literal)
      && !memchr (SSDATA (newtext), '\\', SBYTES (newtext)))
    literal = Qt;

  case_action = nochange;	/* We tried an initialization */
				/* but some C compilers blew it */

  ptrdiff_t num_regs = search_regs.num_regs;
  if (num_regs <= 0)
    error ("`replace-match' called before any match found");

  sub = !NILP (subexp) ? check_integer_range (subexp, 0, num_regs - 1) : 0;
  ptrdiff_t sub_start = search_regs.start[sub];
  ptrdiff_t sub_end = search_regs.end[sub];
  eassert (sub_start <= sub_end);

  /* Check whether the text to replace is present in the buffer/string.  */
  if (! (NILP (string)
	 ? BEGV <= sub_start && sub_end <= ZV
	 : 0 <= sub_start && sub_end <= SCHARS (string)))
    {
      if (sub_start < 0)
	xsignal2 (Qerror,
		  build_string ("replace-match subexpression does not exist"),
		  subexp);
      args_out_of_range (make_fixnum (sub_start), make_fixnum (sub_end));
    }

  if (NILP (fixedcase))
    {
      /* Decide how to casify by examining the matched text. */
      ptrdiff_t last;

      pos = sub_start;
      last = sub_end;

      if (NILP (string))
	pos_byte = CHAR_TO_BYTE (pos);
      else
	pos_byte = string_char_to_byte (string, pos);

      prevc = '\n';
      case_action = all_caps;

      /* some_multiletter_word is set nonzero if any original word
	 is more than one letter long. */
      some_multiletter_word = 0;
      some_lowercase = 0;
      some_nonuppercase_initial = 0;
      some_uppercase = 0;

      while (pos < last)
	{
	  if (NILP (string))
	    {
	      c = FETCH_CHAR_AS_MULTIBYTE (pos_byte);
	      inc_both (&pos, &pos_byte);
	    }
	  else
	    c = fetch_string_char_as_multibyte_advance (string,
							&pos, &pos_byte);

	  if (lowercasep (c))
	    {
	      /* Cannot be all caps if any original char is lower case */

	      some_lowercase = 1;
	      if (SYNTAX (prevc) != Sword
		  && !(case_symbols_as_words && SYNTAX (prevc) == Ssymbol))
		some_nonuppercase_initial = 1;
	      else
		some_multiletter_word = 1;
	    }
	  else if (uppercasep (c))
	    {
	      some_uppercase = 1;
	      if (SYNTAX (prevc) != Sword
		  && !(case_symbols_as_words && SYNTAX (prevc) == Ssymbol))
		;
	      else
		some_multiletter_word = 1;
	    }
	  else
	    {
	      /* If the initial is a caseless word constituent,
		 treat that like a lowercase initial.  */
	      if (SYNTAX (prevc) != Sword
		  && !(case_symbols_as_words && SYNTAX (prevc) == Ssymbol))
		some_nonuppercase_initial = 1;
	    }

	  prevc = c;
	}

      /* Convert to all caps if the old text is all caps
	 and has at least one multiletter word.  */
      if (! some_lowercase && some_multiletter_word)
	case_action = all_caps;
      /* Capitalize each word, if the old text has all capitalized words.  */
      else if (!some_nonuppercase_initial && some_multiletter_word)
	case_action = cap_initial;
      else if (!some_nonuppercase_initial && some_uppercase)
	/* Should x -> yz, operating on X, give Yz or YZ?
	   We'll assume the latter.  */
	case_action = all_caps;
      else
	case_action = nochange;
    }

  /* Do replacement in a string.  */
  if (!NILP (string))
    {
      Lisp_Object before, after;

      before = Fsubstring (string, make_fixnum (0), make_fixnum (sub_start));
      after = Fsubstring (string, make_fixnum (sub_end), Qnil);

      /* Substitute parts of the match into NEWTEXT
	 if desired.  */
      if (NILP (literal))
	{
	  ptrdiff_t lastpos = 0;
	  ptrdiff_t lastpos_byte = 0;
	  /* We build up the substituted string in ACCUM.  */
	  Lisp_Object accum;
	  Lisp_Object middle;
	  ptrdiff_t length = SBYTES (newtext);

	  accum = Qnil;

	  for (pos_byte = 0, pos = 0; pos_byte < length;)
	    {
	      ptrdiff_t substart = -1;
	      ptrdiff_t subend = 0;
	      bool delbackslash = 0;

	      c = fetch_string_char_advance (newtext, &pos, &pos_byte);

	      if (c == '\\')
		{
		  c = fetch_string_char_advance (newtext, &pos, &pos_byte);

		  if (c == '&')
		    {
		      substart = sub_start;
		      subend = sub_end;
		    }
		  else if (c >= '1' && c <= '9')
		    {
		      if (c - '0' < num_regs
			  && search_regs.start[c - '0'] >= 0)
			{
			  substart = search_regs.start[c - '0'];
			  subend = search_regs.end[c - '0'];
			}
		      else
			{
			  /* If that subexp did not match,
			     replace \\N with nothing.  */
			  substart = 0;
			  subend = 0;
			}
		    }
		  else if (c == '\\')
		    delbackslash = 1;
		  else if (c != '?')
		    error ("Invalid use of `\\' in replacement text");
		}
	      if (substart >= 0)
		{
		  if (pos - 2 != lastpos)
		    middle = substring_both (newtext, lastpos,
					     lastpos_byte,
					     pos - 2, pos_byte - 2);
		  else
		    middle = Qnil;
		  accum = concat3 (accum, middle,
				   Fsubstring (string,
					       make_fixnum (substart),
					       make_fixnum (subend)));
		  lastpos = pos;
		  lastpos_byte = pos_byte;
		}
	      else if (delbackslash)
		{
		  middle = substring_both (newtext, lastpos,
					   lastpos_byte,
					   pos - 1, pos_byte - 1);

		  accum = concat2 (accum, middle);
		  lastpos = pos;
		  lastpos_byte = pos_byte;
		}
	    }

	  if (pos != lastpos)
	    middle = substring_both (newtext, lastpos,
				     lastpos_byte,
				     pos, pos_byte);
	  else
	    middle = Qnil;

	  newtext = concat2 (accum, middle);
	}

      /* Do case substitution in NEWTEXT if desired.  */
      if (case_action == all_caps)
	newtext = Fupcase (newtext);
      else if (case_action == cap_initial)
	newtext = Fupcase_initials (newtext);

      return concat3 (before, newtext, after);
    }

  /* Record point.  A nonpositive OPOINT is actually an offset from ZV.  */
  opoint = PT <= sub_start ? PT : max (PT, sub_end) - ZV;

  /* If we want non-literal replacement,
     perform substitution on the replacement string.  */
  if (NILP (literal))
    {
      ptrdiff_t length = SBYTES (newtext);
      unsigned char *substed;
      ptrdiff_t substed_alloc_size, substed_len;
      bool buf_multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
      bool str_multibyte = STRING_MULTIBYTE (newtext);
      bool really_changed = 0;

      substed_alloc_size = (length <= (STRING_BYTES_BOUND - 100) / 2
			    ? length * 2 + 100
			    : STRING_BYTES_BOUND);
      substed = xmalloc (substed_alloc_size);
      substed_len = 0;

      /* Go thru NEWTEXT, producing the actual text to insert in
	 SUBSTED while adjusting multibyteness to that of the current
	 buffer.  */

      for (pos_byte = 0, pos = 0; pos_byte < length;)
	{
	  unsigned char str[MAX_MULTIBYTE_LENGTH];
	  const unsigned char *add_stuff = NULL;
	  ptrdiff_t add_len = 0;
	  ptrdiff_t idx = -1;
	  ptrdiff_t begbyte UNINIT;

	  if (str_multibyte)
	    {
	      c = fetch_string_char_advance_no_check (newtext,
						      &pos, &pos_byte);
	      if (!buf_multibyte)
		c = CHAR_TO_BYTE8 (c);
	    }
	  else
	    {
	      /* Note that we don't have to increment POS.  */
	      c = SREF (newtext, pos_byte++);
	      if (buf_multibyte)
		c = make_char_multibyte (c);
	    }

	  /* Either set ADD_STUFF and ADD_LEN to the text to put in SUBSTED,
	     or set IDX to a match index, which means put that part
	     of the buffer text into SUBSTED.  */

	  if (c == '\\')
	    {
	      really_changed = 1;

	      if (str_multibyte)
		{
		  c = fetch_string_char_advance_no_check (newtext,
							  &pos, &pos_byte);
		  if (!buf_multibyte && !ASCII_CHAR_P (c))
		    c = CHAR_TO_BYTE8 (c);
		}
	      else
		{
		  c = SREF (newtext, pos_byte++);
		  if (buf_multibyte)
		    c = make_char_multibyte (c);
		}

	      if (c == '&')
		idx = sub;
	      else if ('1' <= c && c <= '9' && c - '0' < num_regs)
		{
		  if (search_regs.start[c - '0'] >= 1)
		    idx = c - '0';
		}
	      else if (c == '\\')
		add_len = 1, add_stuff = (unsigned char *) "\\";
	      else
		{
		  xfree (substed);
		  error ("Invalid use of `\\' in replacement text");
		}
	    }
	  else
	    {
	      add_len = CHAR_STRING (c, str);
	      add_stuff = str;
	    }

	  /* If we want to copy part of a previous match,
	     set up ADD_STUFF and ADD_LEN to point to it.  */
	  if (idx >= 0)
	    {
	      begbyte = CHAR_TO_BYTE (search_regs.start[idx]);
	      add_len = CHAR_TO_BYTE (search_regs.end[idx]) - begbyte;
	      if (search_regs.start[idx] < GPT && GPT < search_regs.end[idx])
		move_gap_both (search_regs.start[idx], begbyte);
	    }

	  /* Now the stuff we want to add to SUBSTED
	     is invariably ADD_LEN bytes starting at ADD_STUFF.  */

	  /* Make sure SUBSTED is big enough.  */
	  if (substed_alloc_size - substed_len < add_len)
	    substed =
	      xpalloc (substed, &substed_alloc_size,
		       add_len - (substed_alloc_size - substed_len),
		       STRING_BYTES_BOUND, 1);

	  /* We compute this after the call to xpalloc, because that
	     could cause buffer text be relocated when ralloc.c is used.  */
	  if (idx >= 0)
	    add_stuff = BYTE_POS_ADDR (begbyte);

	  /* Now add to the end of SUBSTED.  */
	  if (add_stuff)
	    {
	      memcpy (substed + substed_len, add_stuff, add_len);
	      substed_len += add_len;
	    }
	}

      if (really_changed)
	newtext = make_specified_string ((const char *) substed, -1,
					 substed_len, buf_multibyte);
      xfree (substed);
    }

  newpoint = sub_start + SCHARS (newtext);

  /* Replace the old text with the new in the cleanest possible way.  */
  replace_range (sub_start, sub_end, newtext, 1, 0, 1, true, true);
  signal_after_change (sub_start, sub_end - sub_start, SCHARS (newtext));

  if (case_action == all_caps)
    Fupcase_region (make_fixnum (search_regs.start[sub]),
		    make_fixnum (newpoint),
		    Qnil);
  else if (case_action == cap_initial)
    Fupcase_initials_region (make_fixnum (search_regs.start[sub]),
			     make_fixnum (newpoint), Qnil);

  /* The replace_range etc. functions can trigger modification hooks
     (see signal_before_change and signal_after_change).  Try to error
     out if these hooks clobber the match data since clobbering can
     result in confusing bugs.  We used to check for changes in
     search_regs start and end, but that fails if modification hooks
     remove or add text earlier in the buffer, so just check num_regs
     now. */
  if (search_regs.num_regs != num_regs)
    error ("Match data clobbered by buffer modification hooks");

  /* Put point back where it was in the text, if possible.  */
  TEMP_SET_PT (clip_to_bounds (BEGV, opoint + (opoint <= 0 ? ZV : 0), ZV));
  /* Now move point "officially" to the end of the inserted replacement.  */
  move_if_not_intangible (newpoint);

  update_compositions (sub_start, newpoint, CHECK_BORDER);

  return Qnil;
}
\f
static Lisp_Object
match_limit (Lisp_Object num, bool beginningp)
{
  EMACS_INT n;

  CHECK_FIXNUM (num);
  n = XFIXNUM (num);
  if (n < 0)
    args_out_of_range (num, make_fixnum (0));
  if (search_regs.num_regs <= 0)
    error ("No match data, because no search succeeded");
  if (n >= search_regs.num_regs
      || search_regs.start[n] < 0)
    return Qnil;
  return (make_fixnum ((beginningp) ? search_regs.start[n]
		                    : search_regs.end[n]));
}

DEFUN ("match-beginning", Fmatch_beginning, Smatch_beginning, 1, 1, 0,
       doc: /* Return position of start of text matched by last search.
SUBEXP, a number, specifies the parenthesized subexpression in the last
  regexp for which to return the start position.
Value is nil if SUBEXPth subexpression didn't match, or there were fewer
  than SUBEXP subexpressions.
SUBEXP zero means the entire text matched by the whole regexp or whole
  string.

Return value is undefined if the last search failed.  */)
  (Lisp_Object subexp)
{
  return match_limit (subexp, 1);
}

DEFUN ("match-end", Fmatch_end, Smatch_end, 1, 1, 0,
       doc: /* Return position of end of text matched by last search.
SUBEXP, a number, specifies the parenthesized subexpression in the last
  regexp for which to return the start position.
Value is nil if SUBEXPth subexpression didn't match, or there were fewer
  than SUBEXP subexpressions.
SUBEXP zero means the entire text matched by the whole regexp or whole
  string.

Return value is undefined if the last search failed.  */)
  (Lisp_Object subexp)
{
  return match_limit (subexp, 0);
}

DEFUN ("match-data", Fmatch_data, Smatch_data, 0, 3, 0,
       doc: /* Return a list of positions that record text matched by the last search.
Element 2N of the returned list is the position of the beginning of the
match of the Nth subexpression; it corresponds to `(match-beginning N)';
element 2N + 1 is the position of the end of the match of the Nth
subexpression; it corresponds to `(match-end N)'.  See `match-beginning'
and `match-end'.
If the last search was on a buffer, all the elements are by default
markers or nil (nil when the Nth pair didn't match); they are integers
or nil if the search was on a string.  But if the optional argument
INTEGERS is non-nil, the elements that represent buffer positions are
always integers, not markers, and (if the search was on a buffer) the
buffer itself is appended to the list as one additional element.

Use `set-match-data' to reinstate the match data from the elements of
this list.

Note that non-matching optional groups at the end of the regexp are
elided instead of being represented with two `nil's each.  For instance:

  (progn
    (string-match "^\\(a\\)?\\(b\\)\\(c\\)?$" "b")
    (match-data))
  => (0 1 nil nil 0 1)

If REUSE is a list, store the value in REUSE by destructively modifying it.
If REUSE is long enough to hold all the values, its length remains the
same, and any unused elements are set to nil.  If REUSE is not long
enough, it is extended.  Note that if REUSE is long enough and INTEGERS
is non-nil, no consing is done to make the return value; this minimizes GC.

If optional third argument RESEAT is non-nil, any previous markers on the
REUSE list will be modified to point to nowhere.

Return value is undefined if the last search failed.  */)
  (Lisp_Object integers, Lisp_Object reuse, Lisp_Object reseat)
{
  Lisp_Object tail, prev;
  Lisp_Object *data;
  ptrdiff_t i, len;

  if (!NILP (reseat))
    for (tail = reuse; CONSP (tail); tail = XCDR (tail))
      if (MARKERP (XCAR (tail)))
	{
	  unchain_marker (XMARKER (XCAR (tail)));
	  XSETCAR (tail, Qnil);
	}

  if (NILP (last_thing_searched))
    return Qnil;

  prev = Qnil;

  USE_SAFE_ALLOCA;
  SAFE_NALLOCA (data, 1, 2 * search_regs.num_regs + 1);

  len = 0;
  for (i = 0; i < search_regs.num_regs; i++)
    {
      ptrdiff_t start = search_regs.start[i];
      if (start >= 0)
	{
	  if (BASE_EQ (last_thing_searched, Qt)
	      || ! NILP (integers))
	    {
	      XSETFASTINT (data[2 * i], start);
	      XSETFASTINT (data[2 * i + 1], search_regs.end[i]);
	    }
	  else if (BUFFERP (last_thing_searched))
	    {
	      data[2 * i] = Fmake_marker ();
	      Fset_marker (data[2 * i],
			   make_fixnum (start),
			   last_thing_searched);
	      data[2 * i + 1] = Fmake_marker ();
	      Fset_marker (data[2 * i + 1],
			   make_fixnum (search_regs.end[i]),
			   last_thing_searched);
	    }
	  else
	    /* last_thing_searched must always be Qt, a buffer, or Qnil.  */
	    emacs_abort ();

	  len = 2 * i + 2;
	}
      else
	data[2 * i] = data[2 * i + 1] = Qnil;
    }

  if (BUFFERP (last_thing_searched) && !NILP (integers))
    {
      data[len] = last_thing_searched;
      len++;
    }

  /* If REUSE is not usable, cons up the values and return them.  */
  if (! CONSP (reuse))
    reuse = Flist (len, data);
  else
    {
      /* If REUSE is a list, store as many value elements as will fit
	 into the elements of REUSE.  */
      for (i = 0, tail = reuse; CONSP (tail);
	   i++, tail = XCDR (tail))
	{
	  if (i < len)
	    XSETCAR (tail, data[i]);
	  else
	    XSETCAR (tail, Qnil);
	  prev = tail;
	}

      /* If we couldn't fit all value elements into REUSE,
	 cons up the rest of them and add them to the end of REUSE.  */
      if (i < len)
	XSETCDR (prev, Flist (len - i, data + i));
    }

  SAFE_FREE ();
  return reuse;
}

/* We used to have an internal use variant of `reseat' described as:

      If RESEAT is `evaporate', put the markers back on the free list
      immediately.  No other references to the markers must exist in this
      case, so it is used only internally on the unwind stack and
      save-match-data from Lisp.

   But it was ill-conceived: those supposedly-internal markers get exposed via
   the undo-list, so freeing them here is unsafe.  */

DEFUN ("set-match-data", Fset_match_data, Sset_match_data, 1, 2, 0,
       doc: /* Set internal data on last search match from elements of LIST.
LIST should have been created by calling `match-data' previously.

If optional arg RESEAT is non-nil, make markers on LIST point nowhere.  */)
  (register Lisp_Object list, Lisp_Object reseat)
{
  ptrdiff_t i;
  register Lisp_Object marker;

  if (running_asynch_code)
    save_search_regs ();

  CHECK_LIST (list);

  /* Unless we find a marker with a buffer or an explicit buffer
     in LIST, assume that this match data came from a string.  */
  last_thing_searched = Qt;

  /* Allocate registers if they don't already exist.  */
  {
    ptrdiff_t length = list_length (list) / 2;

    if (length > search_regs.num_regs)
      {
	ptrdiff_t num_regs = search_regs.num_regs;
	search_regs.start =
	  xpalloc (search_regs.start, &num_regs, length - num_regs,
		   min (PTRDIFF_MAX, UINT_MAX), sizeof *search_regs.start);
	search_regs.end =
	  xrealloc (search_regs.end, num_regs * sizeof *search_regs.end);

	for (i = search_regs.num_regs; i < num_regs; i++)
	  search_regs.start[i] = -1;

	search_regs.num_regs = num_regs;
      }

    for (i = 0; CONSP (list); i++)
      {
	marker = XCAR (list);
	if (BUFFERP (marker))
	  {
	    last_thing_searched = marker;
	    break;
	  }
	if (i >= length)
	  break;
	if (NILP (marker))
	  {
	    search_regs.start[i] = -1;
	    list = XCDR (list);
	  }
	else
	  {
	    Lisp_Object from;
	    Lisp_Object m;

	    m = marker;
	    if (MARKERP (marker))
	      {
		if (XMARKER (marker)->buffer == 0)
		  XSETFASTINT (marker, 0);
		else
		  XSETBUFFER (last_thing_searched, XMARKER (marker)->buffer);
	      }

	    CHECK_FIXNUM_COERCE_MARKER (marker);
	    from = marker;

	    if (!NILP (reseat) && MARKERP (m))
	      {
		unchain_marker (XMARKER (m));
		XSETCAR (list, Qnil);
	      }

	    if ((list = XCDR (list), !CONSP (list)))
	      break;

	    m = marker = XCAR (list);

	    if (MARKERP (marker) && XMARKER (marker)->buffer == 0)
	      XSETFASTINT (marker, 0);

	    CHECK_FIXNUM_COERCE_MARKER (marker);
	    if (PTRDIFF_MIN <= XFIXNUM (from) && XFIXNUM (from) <= PTRDIFF_MAX
		&& PTRDIFF_MIN <= XFIXNUM (marker)
		&& XFIXNUM (marker) <= PTRDIFF_MAX)
	      {
		search_regs.start[i] = XFIXNUM (from);
		search_regs.end[i] = XFIXNUM (marker);
	      }
	    else
	      {
		search_regs.start[i] = -1;
	      }

	    if (!NILP (reseat) && MARKERP (m))
	      {
		unchain_marker (XMARKER (m));
		XSETCAR (list, Qnil);
	      }
	  }
	list = XCDR (list);
      }

    for (; i < search_regs.num_regs; i++)
      search_regs.start[i] = -1;
  }

  return Qnil;
}

DEFUN ("match-data--translate", Fmatch_data__translate, Smatch_data__translate,
       1, 1, 0,
       doc: /* Add N to all positions in the match data.  Internal.  */)
  (Lisp_Object n)
{
  CHECK_FIXNUM (n);
  EMACS_INT delta = XFIXNUM (n);
  if (!NILP (last_thing_searched))
    for (ptrdiff_t i = 0; i < search_regs.num_regs; i++)
      if (search_regs.start[i] >= 0)
        {
          search_regs.start[i] = max (0, search_regs.start[i] + delta);
          search_regs.end[i] = max (0, search_regs.end[i] + delta);
        }
  return Qnil;
}

/* Called from Flooking_at, Fstring_match, search_buffer, Fstore_match_data
   if asynchronous code (filter or sentinel) is running. */
static void
save_search_regs (void)
{
  if (saved_search_regs.num_regs == 0)
    {
      saved_search_regs = search_regs;
      saved_last_thing_searched = last_thing_searched;
      last_thing_searched = Qnil;
      search_regs.num_regs = 0;
      search_regs.start = 0;
      search_regs.end = 0;
    }
}

/* Called upon exit from filters and sentinels. */
void
restore_search_regs (void)
{
  if (saved_search_regs.num_regs != 0)
    {
      if (search_regs.num_regs > 0)
	{
	  xfree (search_regs.start);
	  xfree (search_regs.end);
	}
      search_regs = saved_search_regs;
      last_thing_searched = saved_last_thing_searched;
      saved_last_thing_searched = Qnil;
      saved_search_regs.num_regs = 0;
    }
}

/* Called from replace-match via replace_range.  */
void
update_search_regs (ptrdiff_t oldstart, ptrdiff_t oldend, ptrdiff_t newend)
{
  /* Adjust search data for this change.  */
  ptrdiff_t change = newend - oldend;
  ptrdiff_t i;

  /* When replacing subgroup 3 in a match for regexp '\(\)\(\(\)\)\(\)'
     start[i] should ideally stay unchanged for all but i=4 and end[i]
     should move for all but i=1.
     We don't have enough info here to distinguish those different subgroups
     (except for subgroup 0), so instead we lean towards leaving the start[i]s
     unchanged and towards moving the end[i]s.  */

  for (i = 0; i < search_regs.num_regs; i++)
    {
      if (search_regs.start[i] <= oldstart)
        /* If the subgroup that 'replace-match' is modifying encloses the
           subgroup 'i', then its 'start' position should stay unchanged.
           That's always true for subgroup 0.
           For other subgroups it depends on details we don't have, so
           we optimistically assume that it also holds for them.  */
        ;
      else if (search_regs.start[i] >= oldend)
        search_regs.start[i] += change;
      else
        search_regs.start[i] = oldstart;
      if (search_regs.end[i] >= oldend)
        search_regs.end[i] += change;
      else if (search_regs.end[i] > oldstart)
        search_regs.end[i] = oldstart;
    }
}

static void
unwind_set_match_data (Lisp_Object list)
{
  /* It is NOT ALWAYS safe to free (evaporate) the markers immediately.  */
  Fset_match_data (list, Qt);
}

/* Called to unwind protect the match data.  */
void
record_unwind_save_match_data (void)
{
  record_unwind_protect (unwind_set_match_data,
			 Fmatch_data (Qnil, Qnil, Qnil));
}

/* Quote a string to deactivate reg-expr chars */

DEFUN ("regexp-quote", Fregexp_quote, Sregexp_quote, 1, 1, 0,
       doc: /* Return a regexp string which matches exactly STRING and nothing else.  */)
  (Lisp_Object string)
{
  char *in, *out, *end;
  char *temp;
  ptrdiff_t backslashes_added = 0;

  CHECK_STRING (string);

  USE_SAFE_ALLOCA;
  SAFE_NALLOCA (temp, 2, SBYTES (string));

  /* Now copy the data into the new string, inserting escapes. */

  in = SSDATA (string);
  end = in + SBYTES (string);
  out = temp;

  for (; in != end; in++)
    {
      if (*in == '['
	  || *in == '*' || *in == '.' || *in == '\\'
	  || *in == '?' || *in == '+'
	  || *in == '^' || *in == '$')
	*out++ = '\\', backslashes_added++;
      *out++ = *in;
    }

  Lisp_Object result
    = (backslashes_added > 0
       ? make_specified_string (temp,
                                SCHARS (string) + backslashes_added,
                                out - temp,
                                STRING_MULTIBYTE (string))
       : string);
  SAFE_FREE ();
  return result;
}

/* Like find_newline, but doesn't use the cache, and only searches forward.  */
ptrdiff_t
find_newline1 (ptrdiff_t start, ptrdiff_t start_byte, ptrdiff_t end,
	       ptrdiff_t end_byte, ptrdiff_t count, ptrdiff_t *counted,
	       ptrdiff_t *bytepos, bool allow_quit)
{
  if (count > 0)
    {
      if (!end)
	end = ZV, end_byte = ZV_BYTE;
    }
  else
    {
      if (!end)
	end = BEGV, end_byte = BEGV_BYTE;
    }
  if (end_byte == -1)
    end_byte = CHAR_TO_BYTE (end);

  if (counted)
    *counted = count;

  if (count > 0)
    while (start != end)
      {
        /* Our innermost scanning loop is very simple; it doesn't know
           about gaps, buffer ends, or the newline cache.  ceiling is
           the position of the last character before the next such
           obstacle --- the last character the dumb search loop should
           examine.  */
	ptrdiff_t tem, ceiling_byte = end_byte - 1;

	if (start_byte == -1)
	  start_byte = CHAR_TO_BYTE (start);

        /* The dumb loop can only scan text stored in contiguous
           bytes. BUFFER_CEILING_OF returns the last character
           position that is contiguous, so the ceiling is the
           position after that.  */
	tem = BUFFER_CEILING_OF (start_byte);
	ceiling_byte = min (tem, ceiling_byte);

        {
          /* The termination address of the dumb loop.  */
	  unsigned char *lim_addr = BYTE_POS_ADDR (ceiling_byte) + 1;
	  ptrdiff_t lim_byte = ceiling_byte + 1;

	  /* Nonpositive offsets (relative to LIM_ADDR and LIM_BYTE)
	     of the base, the cursor, and the next line.  */
	  ptrdiff_t base = start_byte - lim_byte;
	  ptrdiff_t cursor, next;

	  for (cursor = base; cursor < 0; cursor = next)
	    {
              /* The dumb loop.  */
	      unsigned char *nl = memchr (lim_addr + cursor, '\n', - cursor);
	      next = nl ? nl - lim_addr : 0;

              if (! nl)
		break;
	      next++;

	      if (--count == 0)
		{
		  if (bytepos)
		    *bytepos = lim_byte + next;
		  return BYTE_TO_CHAR (lim_byte + next);
		}
	      if (allow_quit)
		maybe_quit ();
            }

	  start_byte = lim_byte;
	  start = BYTE_TO_CHAR (start_byte);
        }
      }

  if (counted)
    *counted -= count;
  if (bytepos)
    {
      *bytepos = start_byte == -1 ? CHAR_TO_BYTE (start) : start_byte;
      eassert (*bytepos == CHAR_TO_BYTE (start));
    }
  return start;
}

DEFUN ("newline-cache-check", Fnewline_cache_check, Snewline_cache_check,
       0, 1, 0,
       doc: /* Check the newline cache of BUFFER against buffer contents.

BUFFER defaults to the current buffer.

Value is an array of 2 sub-arrays of buffer positions for newlines,
the first based on the cache, the second based on actually scanning
the buffer.  If the buffer doesn't have a cache, the value is nil.  */)
  (Lisp_Object buffer)
{
  struct buffer *buf, *old = NULL;
  ptrdiff_t nl_count_cache, nl_count_buf;
  Lisp_Object cache_newlines, buf_newlines, val;
  ptrdiff_t from, found, i;

  if (NILP (buffer))
    buf = current_buffer;
  else
    {
      CHECK_BUFFER (buffer);
      buf = XBUFFER (buffer);
      old = current_buffer;
    }
  if (buf->base_buffer)
    buf = buf->base_buffer;

  /* If the buffer doesn't have a newline cache, return nil.  */
  if (NILP (BVAR (buf, cache_long_scans))
      || buf->newline_cache == NULL)
    return Qnil;

  /* find_newline can only work on the current buffer.  */
  if (old != NULL)
    set_buffer_internal_1 (buf);

  /* How many newlines are there according to the cache?  */
  find_newline (BEGV, BEGV_BYTE, ZV, ZV_BYTE,
		TYPE_MAXIMUM (ptrdiff_t), &nl_count_cache, NULL, true);

  /* Create vector and populate it.  */
  cache_newlines = make_vector (nl_count_cache, make_fixnum (-1));

  if (nl_count_cache)
    {
      for (from = BEGV, found = from, i = 0; from < ZV; from = found, i++)
	{
	  ptrdiff_t from_byte = CHAR_TO_BYTE (from), counted;

	  found = find_newline (from, from_byte, 0, -1, 1, &counted,
				NULL, true);
	  if (counted == 0 || i >= nl_count_cache)
	    break;
	  ASET (cache_newlines, i, make_fixnum (found - 1));
	}
    }

  /* Now do the same, but without using the cache.  */
  find_newline1 (BEGV, BEGV_BYTE, ZV, ZV_BYTE,
		 TYPE_MAXIMUM (ptrdiff_t), &nl_count_buf, NULL, true);
  buf_newlines = make_vector (nl_count_buf, make_fixnum (-1));
  if (nl_count_buf)
    {
      for (from = BEGV, found = from, i = 0; from < ZV; from = found, i++)
	{
	  ptrdiff_t from_byte = CHAR_TO_BYTE (from), counted;

	  found = find_newline1 (from, from_byte, 0, -1, 1, &counted,
				 NULL, true);
	  if (counted == 0 || i >= nl_count_buf)
	    break;
	  ASET (buf_newlines, i, make_fixnum (found - 1));
	}
    }

  /* Construct the value and return it.  */
  val = CALLN (Fvector, cache_newlines, buf_newlines);

  if (old != NULL)
    set_buffer_internal_1 (old);
  return val;
}

DEFUN ("re--describe-compiled", Fre__describe_compiled, Sre__describe_compiled,
       1, 2, 0,
       doc: /* Return a string describing the compiled form of REGEXP.
If RAW is non-nil, just return the actual bytecode.  */)
  (Lisp_Object regexp, Lisp_Object raw)
{
  struct re_pattern_buffer *bufp = resolve_compiled_regexp (regexp, false);

  if (!NILP (raw))
    return make_unibyte_string ((char *) bufp->buffer, bufp->used);
  else
    {                           /* FIXME: Why ENABLE_CHECKING?  */
#if !defined ENABLE_CHECKING
      error ("Not available: rebuild with --enable-checking");
#elif HAVE_OPEN_MEMSTREAM
      char *buffer = NULL;
      size_t size = 0;
      FILE* f = open_memstream (&buffer, &size);
      if (!f)
	report_file_error ("open_memstream failed", regexp);
      print_compiled_pattern (f, bufp);
      fclose (f);
      if (!buffer)
        return Qnil;
      Lisp_Object description = make_unibyte_string (buffer, size);
      free (buffer);
      return description;
#else /* ENABLE_CHECKING && !HAVE_OPEN_MEMSTREAM */
      print_compiled_pattern (stderr, bufp);
      return build_string ("Description was sent to standard error");
#endif /* !ENABLE_CHECKING */
    }
}
\f

static void syms_of_search_for_pdumper (void);

void
syms_of_search (void)
{
  for (int i = 0; i < REGEXP_CACHE_SIZE; ++i)
    {
      staticpro (&searchbufs[i].regexp);
      staticpro (&searchbufs[i].f_whitespace_regexp);
      staticpro (&searchbufs[i].syntax_table);
    }

  /* Error condition used for failing searches.  */
  DEFSYM (Qsearch_failed, "search-failed");

  /* Error condition used for failing searches started by user, i.e.,
     where failure should not invoke the debugger.  */
  DEFSYM (Quser_search_failed, "user-search-failed");

  /* Error condition signaled when regexp compile_pattern fails.  */
  DEFSYM (Qinvalid_regexp, "invalid-regexp");

  Fput (Qsearch_failed, Qerror_conditions,
	pure_list (Qsearch_failed, Qerror));
  Fput (Qsearch_failed, Qerror_message,
	build_pure_c_string ("Search failed"));

  Fput (Quser_search_failed, Qerror_conditions,
	pure_list (Quser_search_failed, Quser_error, Qsearch_failed, Qerror));
  Fput (Quser_search_failed, Qerror_message,
        build_pure_c_string ("Search failed"));

  Fput (Qinvalid_regexp, Qerror_conditions,
	pure_list (Qinvalid_regexp, Qerror));
  Fput (Qinvalid_regexp, Qerror_message,
	build_pure_c_string ("Invalid regexp"));

  re_match_object = Qnil;
  staticpro (&re_match_object);

  DEFVAR_LISP ("search-spaces-regexp", Vsearch_spaces_regexp,
      doc: /* Regexp to substitute for bunches of spaces in regexp search.
Some commands use this for user-specified regexps.
Spaces that occur inside character classes or repetition operators
or other such regexp constructs are not replaced with this.
A value of nil (which is the normal value) means treat spaces
literally.  Note that a value with capturing groups can change the
numbering of existing capture groups in unexpected ways.  */);
  Vsearch_spaces_regexp = Qnil;

  DEFSYM (Qinhibit_changing_match_data, "inhibit-changing-match-data");
  DEFVAR_LISP ("inhibit-changing-match-data", Vinhibit_changing_match_data,
      doc: /* Internal use only.
If non-nil, the primitive searching and matching functions
such as `looking-at', `string-match', `re-search-forward', etc.,
do not set the match data.  The proper way to use this variable
is to bind it with `let' around a small expression.  */);
  Vinhibit_changing_match_data = Qnil;

  defsubr (&Slooking_at);
  defsubr (&Sposix_looking_at);
  defsubr (&Sstring_match);
  defsubr (&Sposix_string_match);
  defsubr (&Ssearch_forward);
  defsubr (&Ssearch_backward);
  defsubr (&Sre_search_forward);
  defsubr (&Sre_search_backward);
  defsubr (&Sposix_search_forward);
  defsubr (&Sposix_search_backward);
  defsubr (&Sreplace_match);
  defsubr (&Smatch_beginning);
  defsubr (&Smatch_end);
  defsubr (&Smatch_data);
  defsubr (&Sset_match_data);
  defsubr (&Smatch_data__translate);
  defsubr (&Sregexp_quote);
  defsubr (&Snewline_cache_check);
  defsubr (&Sre__describe_compiled);

  pdumper_do_now_and_after_load (syms_of_search_for_pdumper);
}

static void
syms_of_search_for_pdumper (void)
{
  for (int i = 0; i < REGEXP_CACHE_SIZE; ++i)
    {
      searchbufs[i].buf.allocated = 100;
      searchbufs[i].buf.buffer = xmalloc (100);
      searchbufs[i].buf.fastmap = searchbufs[i].fastmap;
      searchbufs[i].regexp = Qnil;
      searchbufs[i].f_whitespace_regexp = Qnil;
      searchbufs[i].busy = false;
      searchbufs[i].syntax_table = Qnil;
      searchbufs[i].next = (i == REGEXP_CACHE_SIZE-1 ? 0 : &searchbufs[i+1]);
    }
  searchbuf_head = &searchbufs[0];
}

debug log:

solving e54dc72e34f ...
found e54dc72e34f in https://yhetil.org/emacs-devel/obyPxjc1-gUH7aZNNaGIIzybT6m7sLarevWp3z6KXBhb4rCC9G_FzTOuPtDs2saC3vQOVoMNPO6Bn3UQFa5KvbgtbNUjefNA3ArTasTnDy4=@hypnicjerk.ai/ ||
	https://yhetil.org/emacs-devel/2LOLmIp1X8w4CGbqq3qDrzmKVA0KzYNL1N9lBtWdB-MtEv9oCuYgJMYprG170wMPjYxeQImAmWOPatGTTl4KxZMlptNo9A9hnHt84vdN9EA=@hypnicjerk.ai/
found cee245ab0b2 in https://yhetil.org/emacs-devel/1VzhyYQmzkY8ZudqyPNciqngpUIHE7bpzCHQJQJhmJUvyq0OSOCMOKiAOS3s7FVO67oKaW-67ZrLQhvT_4Pth1TlHl8Z9XfGEvV8WD16m0c=@pm.me/ ||
	https://yhetil.org/emacs-devel/N0O-eiIpxKNtUY2ZEohzUF--05o8uBc2wHsLVw7KrVJbG_Lt6kzkiKaN_ZTRdPv8jIxc_yAj-2-DVrzFi6MyYHwrgxHl11h6MYvHeqz1p9E=@hypnicjerk.ai/ ||
	https://yhetil.org/emacs-devel/obyPxjc1-gUH7aZNNaGIIzybT6m7sLarevWp3z6KXBhb4rCC9G_FzTOuPtDs2saC3vQOVoMNPO6Bn3UQFa5KvbgtbNUjefNA3ArTasTnDy4=@hypnicjerk.ai/ ||
	https://yhetil.org/emacs-devel/2LOLmIp1X8w4CGbqq3qDrzmKVA0KzYNL1N9lBtWdB-MtEv9oCuYgJMYprG170wMPjYxeQImAmWOPatGTTl4KxZMlptNo9A9hnHt84vdN9EA=@hypnicjerk.ai/
found 2ff8b0599c4 in https://git.savannah.gnu.org/cgit/emacs.git
preparing index
index prepared:
100644 2ff8b0599c4baa625e8e1b11edd9371cca10c93d	src/search.c

applying [1/2] https://yhetil.org/emacs-devel/1VzhyYQmzkY8ZudqyPNciqngpUIHE7bpzCHQJQJhmJUvyq0OSOCMOKiAOS3s7FVO67oKaW-67ZrLQhvT_4Pth1TlHl8Z9XfGEvV8WD16m0c=@pm.me/
diff --git a/src/search.c b/src/search.c
index 2ff8b0599c4..cee245ab0b2 100644

Checking patch src/search.c...
Applied patch src/search.c cleanly.

skipping https://yhetil.org/emacs-devel/N0O-eiIpxKNtUY2ZEohzUF--05o8uBc2wHsLVw7KrVJbG_Lt6kzkiKaN_ZTRdPv8jIxc_yAj-2-DVrzFi6MyYHwrgxHl11h6MYvHeqz1p9E=@hypnicjerk.ai/ for cee245ab0b2
skipping https://yhetil.org/emacs-devel/obyPxjc1-gUH7aZNNaGIIzybT6m7sLarevWp3z6KXBhb4rCC9G_FzTOuPtDs2saC3vQOVoMNPO6Bn3UQFa5KvbgtbNUjefNA3ArTasTnDy4=@hypnicjerk.ai/ for cee245ab0b2
skipping https://yhetil.org/emacs-devel/2LOLmIp1X8w4CGbqq3qDrzmKVA0KzYNL1N9lBtWdB-MtEv9oCuYgJMYprG170wMPjYxeQImAmWOPatGTTl4KxZMlptNo9A9hnHt84vdN9EA=@hypnicjerk.ai/ for cee245ab0b2
index at:
100644 cee245ab0b2744ea6804789b9c3ffda817965004	src/search.c

applying [2/2] https://yhetil.org/emacs-devel/obyPxjc1-gUH7aZNNaGIIzybT6m7sLarevWp3z6KXBhb4rCC9G_FzTOuPtDs2saC3vQOVoMNPO6Bn3UQFa5KvbgtbNUjefNA3ArTasTnDy4=@hypnicjerk.ai/
diff --git a/src/search.c b/src/search.c
index cee245ab0b2..e54dc72e34f 100644

Checking patch src/search.c...
Applied patch src/search.c cleanly.

skipping https://yhetil.org/emacs-devel/2LOLmIp1X8w4CGbqq3qDrzmKVA0KzYNL1N9lBtWdB-MtEv9oCuYgJMYprG170wMPjYxeQImAmWOPatGTTl4KxZMlptNo9A9hnHt84vdN9EA=@hypnicjerk.ai/ for e54dc72e34f
index at:
100644 e54dc72e34fc8faca06eb5ebec27279c1b5bbb7c	src/search.c

(*) Git path names are given by the tree(s) the blob belongs to.
    Blobs themselves have no identifier aside from the hash of its contents.^

Code repositories for project(s) associated with this public inbox

	https://git.savannah.gnu.org/cgit/emacs.git

This is a public inbox, see mirroring instructions
for how to clone and mirror all data and code used for this inbox;
as well as URLs for read-only IMAP folder(s) and NNTP newsgroup(s).