/* Tree-sitter integration for GNU Emacs. Copyright (C) 2021-2024 Free Software Foundation, Inc. Maintainer: Yuan Fu This file is part of GNU Emacs. GNU Emacs is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. GNU Emacs is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU Emacs. If not, see . */ #include #include "lisp.h" #include "buffer.h" #include "treesit.h" #if HAVE_TREE_SITTER /* For search_buffer(). */ # include "regex-emacs.h" /* Dynamic loading of libtree-sitter. */ #ifdef WINDOWSNT # include "w32common.h" /* In alphabetical order. */ #undef ts_language_version #undef ts_node_child #undef ts_node_child_by_field_name #undef ts_node_child_count #undef ts_node_descendant_for_byte_range #undef ts_node_end_byte #undef ts_node_eq #undef ts_node_field_name_for_child #undef ts_node_has_error #undef ts_node_is_extra #undef ts_node_is_missing #undef ts_node_is_named #undef ts_node_is_null #undef ts_node_named_child #undef ts_node_named_child_count #undef ts_node_named_descendant_for_byte_range #undef ts_node_next_named_sibling #undef ts_node_next_sibling #undef ts_node_prev_named_sibling #undef ts_node_prev_sibling #undef ts_node_start_byte #undef ts_node_string #undef ts_node_type #undef ts_parser_delete #undef ts_parser_included_ranges #undef ts_parser_language #undef ts_parser_new #undef ts_parser_parse #undef ts_parser_set_included_ranges #undef ts_parser_set_language #undef ts_query_capture_name_for_id #undef ts_query_cursor_delete #undef ts_query_cursor_exec #undef ts_query_cursor_new #undef ts_query_cursor_next_match #undef ts_query_cursor_set_byte_range #undef ts_query_delete #undef ts_query_new #undef ts_query_pattern_count #undef ts_query_predicates_for_pattern #undef ts_query_string_value_for_id #undef ts_set_allocator #undef ts_tree_cursor_copy #undef ts_tree_cursor_current_node #undef ts_tree_cursor_delete #undef ts_tree_cursor_goto_first_child #undef ts_tree_cursor_goto_first_child_for_byte #undef ts_tree_cursor_goto_next_sibling #undef ts_tree_cursor_goto_parent #undef ts_tree_cursor_new #undef ts_tree_delete #undef ts_tree_edit #undef ts_tree_get_changed_ranges #undef ts_tree_root_node DEF_DLL_FN (uint32_t, ts_language_version, (const TSLanguage *)); DEF_DLL_FN (TSNode, ts_node_child, (TSNode, uint32_t)); DEF_DLL_FN (TSNode, ts_node_child_by_field_name, (TSNode, const char *, uint32_t)); DEF_DLL_FN (uint32_t, ts_node_child_count, (TSNode)); DEF_DLL_FN (TSNode, ts_node_descendant_for_byte_range, (TSNode, uint32_t, uint32_t)); DEF_DLL_FN (uint32_t, ts_node_end_byte, (TSNode)); DEF_DLL_FN (bool, ts_node_eq, (TSNode, TSNode)); DEF_DLL_FN (const char *, ts_node_field_name_for_child, (TSNode, uint32_t)); DEF_DLL_FN (bool, ts_node_has_error, (TSNode)); DEF_DLL_FN (bool, ts_node_is_extra, (TSNode)); DEF_DLL_FN (bool, ts_node_is_missing, (TSNode)); DEF_DLL_FN (bool, ts_node_is_named, (TSNode)); DEF_DLL_FN (bool, ts_node_is_null, (TSNode)); DEF_DLL_FN (TSNode, ts_node_named_child, (TSNode, uint32_t)); DEF_DLL_FN (uint32_t, ts_node_named_child_count, (TSNode)); DEF_DLL_FN (TSNode, ts_node_named_descendant_for_byte_range, (TSNode, uint32_t, uint32_t)); DEF_DLL_FN (TSNode, ts_node_next_named_sibling, (TSNode)); DEF_DLL_FN (TSNode, ts_node_next_sibling, (TSNode)); DEF_DLL_FN (TSNode, ts_node_prev_named_sibling, (TSNode)); DEF_DLL_FN (TSNode, ts_node_prev_sibling, (TSNode)); DEF_DLL_FN (uint32_t, ts_node_start_byte, (TSNode)); DEF_DLL_FN (char *, ts_node_string, (TSNode)); DEF_DLL_FN (const char *, ts_node_type, (TSNode)); DEF_DLL_FN (void, ts_parser_delete, (TSParser *)); DEF_DLL_FN (const TSRange *, ts_parser_included_ranges, (const TSParser *, uint32_t *)); DEF_DLL_FN (const TSLanguage *, ts_parser_language, (const TSParser *)); DEF_DLL_FN (TSParser *, ts_parser_new, (void)); DEF_DLL_FN (TSTree *, ts_parser_parse, (TSParser *, const TSTree *, TSInput)); DEF_DLL_FN (bool, ts_parser_set_included_ranges, (TSParser *, const TSRange *, uint32_t)); DEF_DLL_FN (bool, ts_parser_set_language, (TSParser *, const TSLanguage *)); DEF_DLL_FN (const char *, ts_query_capture_name_for_id, (const TSQuery *, uint32_t, uint32_t *)); DEF_DLL_FN (void, ts_query_cursor_delete, (TSQueryCursor *)); DEF_DLL_FN (void, ts_query_cursor_exec, (TSQueryCursor *, const TSQuery *, TSNode)); DEF_DLL_FN (TSQueryCursor *, ts_query_cursor_new, (void)); DEF_DLL_FN (bool, ts_query_cursor_next_match, (TSQueryCursor *, TSQueryMatch *)); DEF_DLL_FN (void, ts_query_cursor_set_byte_range, (TSQueryCursor *, uint32_t, uint32_t)); DEF_DLL_FN (void, ts_query_delete, (TSQuery *)); DEF_DLL_FN (TSQuery *, ts_query_new, (const TSLanguage *, const char *, uint32_t, uint32_t *, TSQueryError *)); DEF_DLL_FN (uint32_t, ts_query_pattern_count, (const TSQuery *)); DEF_DLL_FN (const TSQueryPredicateStep *, ts_query_predicates_for_pattern, ( const TSQuery *, uint32_t, uint32_t *)); DEF_DLL_FN (const char *, ts_query_string_value_for_id, (const TSQuery *, uint32_t, uint32_t *)); DEF_DLL_FN (void, ts_set_allocator, (void *(*)(size_t), void *(*)(size_t, size_t), void *(*)(void *, size_t), void (*)(void *))); DEF_DLL_FN (TSTreeCursor, ts_tree_cursor_copy, (const TSTreeCursor *)); DEF_DLL_FN (TSNode, ts_tree_cursor_current_node, (const TSTreeCursor *)); DEF_DLL_FN (void, ts_tree_cursor_delete, (const TSTreeCursor *)); DEF_DLL_FN (bool, ts_tree_cursor_goto_first_child, (TSTreeCursor *)); DEF_DLL_FN (int64_t, ts_tree_cursor_goto_first_child_for_byte, (TSTreeCursor *, uint32_t)); DEF_DLL_FN (bool, ts_tree_cursor_goto_next_sibling, (TSTreeCursor *)); DEF_DLL_FN (bool, ts_tree_cursor_goto_parent, (TSTreeCursor *)); DEF_DLL_FN (TSTreeCursor, ts_tree_cursor_new, (TSNode)); DEF_DLL_FN (void, ts_tree_delete, (TSTree *)); DEF_DLL_FN (void, ts_tree_edit, (TSTree *, const TSInputEdit *)); DEF_DLL_FN (TSRange *, ts_tree_get_changed_ranges, (const TSTree *, const TSTree *, uint32_t *)); DEF_DLL_FN (TSNode, ts_tree_root_node, (const TSTree *)); static bool init_treesit_functions (void) { HMODULE library = w32_delayed_load (Qtree_sitter); if (!library) return false; LOAD_DLL_FN (library, ts_language_version); LOAD_DLL_FN (library, ts_node_child); LOAD_DLL_FN (library, ts_node_child_by_field_name); LOAD_DLL_FN (library, ts_node_child_count); LOAD_DLL_FN (library, ts_node_descendant_for_byte_range); LOAD_DLL_FN (library, ts_node_end_byte); LOAD_DLL_FN (library, ts_node_eq); LOAD_DLL_FN (library, ts_node_field_name_for_child); LOAD_DLL_FN (library, ts_node_has_error); LOAD_DLL_FN (library, ts_node_is_extra); LOAD_DLL_FN (library, ts_node_is_missing); LOAD_DLL_FN (library, ts_node_is_named); LOAD_DLL_FN (library, ts_node_is_null); LOAD_DLL_FN (library, ts_node_named_child); LOAD_DLL_FN (library, ts_node_named_child_count); LOAD_DLL_FN (library, ts_node_named_descendant_for_byte_range); LOAD_DLL_FN (library, ts_node_next_named_sibling); LOAD_DLL_FN (library, ts_node_next_sibling); LOAD_DLL_FN (library, ts_node_prev_named_sibling); LOAD_DLL_FN (library, ts_node_prev_sibling); LOAD_DLL_FN (library, ts_node_start_byte); LOAD_DLL_FN (library, ts_node_string); LOAD_DLL_FN (library, ts_node_type); LOAD_DLL_FN (library, ts_parser_delete); LOAD_DLL_FN (library, ts_parser_included_ranges); LOAD_DLL_FN (library, ts_parser_language); LOAD_DLL_FN (library, ts_parser_new); LOAD_DLL_FN (library, ts_parser_parse); LOAD_DLL_FN (library, ts_parser_set_included_ranges); LOAD_DLL_FN (library, ts_parser_set_language); LOAD_DLL_FN (library, ts_query_capture_name_for_id); LOAD_DLL_FN (library, ts_query_cursor_delete); LOAD_DLL_FN (library, ts_query_cursor_exec); LOAD_DLL_FN (library, ts_query_cursor_new); LOAD_DLL_FN (library, ts_query_cursor_next_match); LOAD_DLL_FN (library, ts_query_cursor_set_byte_range); LOAD_DLL_FN (library, ts_query_delete); LOAD_DLL_FN (library, ts_query_new); LOAD_DLL_FN (library, ts_query_pattern_count); LOAD_DLL_FN (library, ts_query_predicates_for_pattern); LOAD_DLL_FN (library, ts_query_string_value_for_id); LOAD_DLL_FN (library, ts_set_allocator); LOAD_DLL_FN (library, ts_tree_cursor_copy); LOAD_DLL_FN (library, ts_tree_cursor_current_node); LOAD_DLL_FN (library, ts_tree_cursor_delete); LOAD_DLL_FN (library, ts_tree_cursor_goto_first_child); LOAD_DLL_FN (library, ts_tree_cursor_goto_first_child_for_byte); LOAD_DLL_FN (library, ts_tree_cursor_goto_next_sibling); LOAD_DLL_FN (library, ts_tree_cursor_goto_parent); LOAD_DLL_FN (library, ts_tree_cursor_new); LOAD_DLL_FN (library, ts_tree_delete); LOAD_DLL_FN (library, ts_tree_edit); LOAD_DLL_FN (library, ts_tree_get_changed_ranges); LOAD_DLL_FN (library, ts_tree_root_node); return true; } #define ts_language_version fn_ts_language_version #define ts_node_child fn_ts_node_child #define ts_node_child_by_field_name fn_ts_node_child_by_field_name #define ts_node_child_count fn_ts_node_child_count #define ts_node_descendant_for_byte_range fn_ts_node_descendant_for_byte_range #define ts_node_end_byte fn_ts_node_end_byte #define ts_node_eq fn_ts_node_eq #define ts_node_field_name_for_child fn_ts_node_field_name_for_child #define ts_node_has_error fn_ts_node_has_error #define ts_node_is_extra fn_ts_node_is_extra #define ts_node_is_missing fn_ts_node_is_missing #define ts_node_is_named fn_ts_node_is_named #define ts_node_is_null fn_ts_node_is_null #define ts_node_named_child fn_ts_node_named_child #define ts_node_named_child_count fn_ts_node_named_child_count #define ts_node_named_descendant_for_byte_range fn_ts_node_named_descendant_for_byte_range #define ts_node_next_named_sibling fn_ts_node_next_named_sibling #define ts_node_next_sibling fn_ts_node_next_sibling #define ts_node_prev_named_sibling fn_ts_node_prev_named_sibling #define ts_node_prev_sibling fn_ts_node_prev_sibling #define ts_node_start_byte fn_ts_node_start_byte #define ts_node_string fn_ts_node_string #define ts_node_type fn_ts_node_type #define ts_parser_delete fn_ts_parser_delete #define ts_parser_included_ranges fn_ts_parser_included_ranges #define ts_parser_language fn_ts_parser_language #define ts_parser_new fn_ts_parser_new #define ts_parser_parse fn_ts_parser_parse #define ts_parser_set_included_ranges fn_ts_parser_set_included_ranges #define ts_parser_set_language fn_ts_parser_set_language #define ts_query_capture_name_for_id fn_ts_query_capture_name_for_id #define ts_query_cursor_delete fn_ts_query_cursor_delete #define ts_query_cursor_exec fn_ts_query_cursor_exec #define ts_query_cursor_new fn_ts_query_cursor_new #define ts_query_cursor_next_match fn_ts_query_cursor_next_match #define ts_query_cursor_set_byte_range fn_ts_query_cursor_set_byte_range #define ts_query_delete fn_ts_query_delete #define ts_query_new fn_ts_query_new #define ts_query_pattern_count fn_ts_query_pattern_count #define ts_query_predicates_for_pattern fn_ts_query_predicates_for_pattern #define ts_query_string_value_for_id fn_ts_query_string_value_for_id #define ts_set_allocator fn_ts_set_allocator #define ts_tree_cursor_copy fn_ts_tree_cursor_copy #define ts_tree_cursor_current_node fn_ts_tree_cursor_current_node #define ts_tree_cursor_delete fn_ts_tree_cursor_delete #define ts_tree_cursor_goto_first_child fn_ts_tree_cursor_goto_first_child #define ts_tree_cursor_goto_first_child_for_byte fn_ts_tree_cursor_goto_first_child_for_byte #define ts_tree_cursor_goto_next_sibling fn_ts_tree_cursor_goto_next_sibling #define ts_tree_cursor_goto_parent fn_ts_tree_cursor_goto_parent #define ts_tree_cursor_new fn_ts_tree_cursor_new #define ts_tree_delete fn_ts_tree_delete #define ts_tree_edit fn_ts_tree_edit #define ts_tree_get_changed_ranges fn_ts_tree_get_changed_ranges #define ts_tree_root_node fn_ts_tree_root_node #endif /* WINDOWSNT */ /* Commentary The Emacs wrapper of tree-sitter does not expose everything the C API provides, most notably: - It doesn't expose a syntax tree. The syntax tree is part of the parser object, and updating the tree is handled on the C level. - It doesn't expose the tree cursor, either. Presumably, Lisp is slow enough to make insignificant any performance advantages from using the cursor. Not exposing the cursor also minimizes the number of new types this adds to Emacs Lisp; currently, this adds only the parser, node, and compiled query types. - Because updating the change is handled on the C level as each change is made in the buffer, there is no way for Lisp to update a node. But since we can just retrieve a new node, it shouldn't be a limitation. - I didn't expose setting timeout and cancellation flag for a parser, mainly because I don't think they are really necessary in Emacs's use cases. - Many tree-sitter functions take a TSPoint, which is basically a row and column. Emacs uses a gap buffer and does not keep information about the row and column position of a buffer. According to the author of tree-sitter, those functions only take a TSPoint so that it can be moved alongside the byte position and returned to the caller afterwards, and the position actually used is the specified byte position. He also said that he _thinks_ that just passing a byte position will also work. As a result, a dummy value is used in place of each TSPoint. Judging by the nature of parsing algorithms, I think it is safe to use only the byte position, and I don't think this will change in the future. See: https://github.com/tree-sitter/tree-sitter/issues/445 treesit.h has some commentary on the two main data structure for the parser and node. treesit_sync_visible_region has some commentary on how we make tree-sitter play well with narrowing (the tree-sitter parser only sees the visible region, so we need to translate positions back and forth). Most action happens in treesit_ensure_parsed, treesit_read_buffer and treesit_record_change. A complete correspondence list between tree-sitter functions and exposed Lisp functions can be found in the manual node (elisp)API Correspondence. Placement of CHECK_xxx functions: call CHECK_xxx before using any unchecked Lisp values; these include arguments of Lisp functions, the return value of Fsymbol_value, and that of Fcar or Fcdr on user-specified conses. Initializing tree-sitter: there are two entry points to tree-sitter functions: 'treesit-parser-create' and 'treesit-language-available-p'. Technically we only need to call initialization function in those two functions, but in reality we check at the beginning of every Lisp function. That should be more fool-proof. Tree-sitter offset (0-based) and buffer position (1-based): tree-sitter offset + buffer position = buffer position buffer position - buffer position = tree-sitter offset Tree-sitter-related code in other files: - src/alloc.c for gc for parser and node - src/casefiddle.c & src/insdel.c for notifying tree-sitter parser of buffer changes. - lisp/emacs-lisp/cl-preloaded.el & data.c & lisp.h for parser and node type. - print.c for printing tree-sitter objects (node, parser, query). Regarding signals: only raise signals in Lisp functions. Casts from EMACS_INT and ptrdiff_t to uint32_t: We install checks for buffer size and range and thus able to assume these casts never overflow. We don't parse at every keystroke. Instead we only record the changes at each keystroke, and only parse when requested. It is possible that lazy parsing is worse: instead of dispersed little pauses, now you have less frequent but larger pauses. I doubt there will be any perceived difference, as the lazy parsing is going to be pretty frequent anyway. Also this (lazy parsing) is what the mailing list guys wanted. Because it is pretty slow (comparing to other tree-sitter operations) for tree-sitter to parse the query and produce a query object, it is very wasteful to reparse the query every time treesit-query-capture is called, and it completely kills the performance of querying in a loop for a moderate amount of times (hundreds of queries takes seconds rather than milliseconds to complete). Therefore we want some caching. We can either use a search.c style transparent caching, or simply expose a new type, compiled-ts-query and let the user to manually compile AOT. I believe AOT compiling gives users more control, makes the performance stable and easy to understand (compiled -> fast, uncompiled -> slow), and avoids some edge cases transparent cache could have (see below). So I implemented the AOT compilation. Problems a transparent cache could have: Suppose we store cache entries in a fixed-length linked-list, and compare with EQ. 1) One-off query could kick out useful cache. 2) if the user messed up and the query doesn't EQ to the cache anymore, the performance mysteriously drops. 3) what if a user uses so many stuff that the default cache size (20) is not enough and we end up thrashing? These are all imaginary scenarios but they are not impossible :-) Parsers in indirect buffers: We make indirect buffers share the parser of their base buffer. Indirect buffers and their base buffer share the same buffer content but not other buffer attributes. If they have separate parser lists, changes made in an indirect buffer will only update parsers of that indirect buffer, and not parsers in the base buffer or other indirect buffers, and vice versa. For that reason, the base buffer and all ot its indirect buffers share a single parser list. But each parser in this shared parser list still points to their own buffer. On top of that, treesit-parser-list only return parsers that belongs to the calling buffer. So ultimately, from the user's POV, each buffer, regardless of indirect or not, appears to have their own parser list. A discussion can be found in bug#59693. Note that that discussion led to an earlier design, which is different from the current one. */ /*** Initialization */ static Lisp_Object Vtreesit_str_libtree_sitter; static Lisp_Object Vtreesit_str_tree_sitter; #ifndef WINDOWSNT static Lisp_Object Vtreesit_str_dot_0; #endif static Lisp_Object Vtreesit_str_dot; static Lisp_Object Vtreesit_str_question_mark; static Lisp_Object Vtreesit_str_star; static Lisp_Object Vtreesit_str_plus; static Lisp_Object Vtreesit_str_pound_equal; static Lisp_Object Vtreesit_str_pound_match; static Lisp_Object Vtreesit_str_pound_pred; static Lisp_Object Vtreesit_str_open_bracket; static Lisp_Object Vtreesit_str_close_bracket; static Lisp_Object Vtreesit_str_open_paren; static Lisp_Object Vtreesit_str_close_paren; static Lisp_Object Vtreesit_str_space; static Lisp_Object Vtreesit_str_equal; static Lisp_Object Vtreesit_str_match; static Lisp_Object Vtreesit_str_pred; /* This is the limit on recursion levels for some tree-sitter functions. Remember to update docstrings when changing this value. If we think of programs and AST, it is very rare for any program to have a very deep AST. For example, you would need 1000+ levels of nested if-statements, or a struct somehow nested for 1000+ levels. It's hard for me to imagine any hand-written or machine generated program to be like that. So I think 1000 is already generous. If we look at xdisp.c, its AST only have 30 levels. */ #define TREESIT_RECURSION_LIMIT 1000 static bool treesit_initialized = false; static bool load_tree_sitter_if_necessary (bool required) { #ifdef WINDOWSNT static bool tried_to_initialize_once; static bool tree_sitter_initialized; if (!tried_to_initialize_once) { Lisp_Object status; tried_to_initialize_once = true; tree_sitter_initialized = init_treesit_functions (); status = tree_sitter_initialized ? Qt : Qnil; Vlibrary_cache = Fcons (Fcons (Qtree_sitter, status), Vlibrary_cache); } if (required && !tree_sitter_initialized) xsignal1 (Qtreesit_error, build_string ("tree-sitter library not found or failed to load")); return tree_sitter_initialized; #else return true; #endif } static void * treesit_calloc_wrapper (size_t n, size_t size) { return xzalloc (n * size); } static void treesit_initialize (void) { if (!treesit_initialized) { load_tree_sitter_if_necessary (true); ts_set_allocator (xmalloc, treesit_calloc_wrapper, xrealloc, xfree); treesit_initialized = true; } } /*** Loading language library */ /* Translate a symbol treesit- to a C name treesit_. */ static void treesit_symbol_to_c_name (char *symbol_name) { size_t len = strlen (symbol_name); for (int idx = 0; idx < len; idx++) { if (symbol_name[idx] == '-') symbol_name[idx] = '_'; } } /* Find the override name for LANGUAGE_SYMBOL in treesit-load-name-override-list. Set NAME and C_SYMBOL to the override name, and return true if there exists one, otherwise return false. This function may signal if treesit-load-name-override-list is malformed. */ static bool treesit_find_override_name (Lisp_Object language_symbol, Lisp_Object *name, Lisp_Object *c_symbol) { CHECK_LIST (Vtreesit_load_name_override_list); Lisp_Object tail = Vtreesit_load_name_override_list; FOR_EACH_TAIL (tail) { Lisp_Object entry = XCAR (tail); CHECK_LIST (entry); Lisp_Object lang = XCAR (entry); CHECK_SYMBOL (lang); if (EQ (lang, language_symbol)) { *name = Fnth (make_fixnum (1), entry); CHECK_STRING (*name); *c_symbol = Fnth (make_fixnum (2), entry); CHECK_STRING (*c_symbol); return true; } } CHECK_LIST_END (tail, Vtreesit_load_name_override_list); return false; } /* For example, if Vdynamic_library_suffixes is (".so", ".dylib"), this function pushes "lib_base_name.so" and "lib_base_name.dylib" into *path_candidates. Obviously path_candidates should be a Lisp list of Lisp strings. */ static void treesit_load_language_push_for_each_suffix (Lisp_Object lib_base_name, Lisp_Object *path_candidates) { Lisp_Object suffixes; suffixes = Vdynamic_library_suffixes; FOR_EACH_TAIL (suffixes) { Lisp_Object candidate1 = concat2 (lib_base_name, XCAR (suffixes)); #ifndef WINDOWSNT /* On Posix hosts, support libraries named with ABI version numbers. In the foreseeable future we only need to support version 0.0. For more details, see https://lists.gnu.org/archive/html/emacs-devel/2023-04/msg00386.html. */ Lisp_Object candidate2 = concat2 (candidate1, Vtreesit_str_dot_0); Lisp_Object candidate3 = concat2 (candidate2, Vtreesit_str_dot_0); *path_candidates = Fcons (candidate3, *path_candidates); *path_candidates = Fcons (candidate2, *path_candidates); #endif *path_candidates = Fcons (candidate1, *path_candidates); } } /* Load the dynamic library of LANGUAGE_SYMBOL and return the pointer to the language definition. If error occurs, return NULL and fill SIGNAL_SYMBOL and SIGNAL_DATA with values suitable for xsignal. */ static TSLanguage * treesit_load_language (Lisp_Object language_symbol, Lisp_Object *signal_symbol, Lisp_Object *signal_data) { Lisp_Object symbol_name = Fsymbol_name (language_symbol); CHECK_LIST (Vtreesit_extra_load_path); /* Figure out the library name and C name. */ Lisp_Object lib_base_name = concat2 (Vtreesit_str_libtree_sitter, symbol_name); Lisp_Object base_name = concat2 (Vtreesit_str_tree_sitter, symbol_name); /* Override the library name and C name, if appropriate. */ Lisp_Object override_name; Lisp_Object override_c_name; bool found_override = treesit_find_override_name (language_symbol, &override_name, &override_c_name); if (found_override) lib_base_name = override_name; /* Now we generate a list of possible library paths. */ Lisp_Object path_candidates = Qnil; /* First push just the filenames to the candidate list, which will make dynlib_open look under standard system load paths. */ treesit_load_language_push_for_each_suffix (lib_base_name, &path_candidates); /* Then push ~/.emacs.d/tree-sitter paths. */ Lisp_Object lib_name = Fexpand_file_name (concat2 (build_string ("tree-sitter/"), lib_base_name), Fsymbol_value (Quser_emacs_directory)); treesit_load_language_push_for_each_suffix (lib_name, &path_candidates); /* Then push paths from treesit-extra-load-path. */ Lisp_Object tail; tail = Freverse (Vtreesit_extra_load_path); FOR_EACH_TAIL (tail) { Lisp_Object expanded_lib = Fexpand_file_name (lib_base_name, XCAR (tail)); treesit_load_language_push_for_each_suffix (expanded_lib, &path_candidates); } /* Try loading the dynamic library by each path candidate. Stop when succeed, record the error message and try the next one when fail. */ dynlib_handle_ptr handle; const char *error; Lisp_Object error_list = Qnil; tail = path_candidates; error = NULL; handle = NULL; FOR_EACH_TAIL (tail) { char *library_name = SSDATA (XCAR (tail)); dynlib_error (); handle = dynlib_open (library_name); error = dynlib_error (); if (error == NULL) break; else error_list = Fcons (build_string (error), error_list); } if (error != NULL) { /* Yes, the error message list gets a bit verbose, but those messages will be helpful for certain errors like libc version mismatch. */ *signal_symbol = Qtreesit_load_language_error; *signal_data = Fcons (Qnot_found, Fnreverse (error_list)); return NULL; } /* Load TSLanguage. */ eassume (handle != NULL); dynlib_error (); TSLanguage *(*langfn) (void); char *c_name; if (found_override) c_name = xstrdup (SSDATA (override_c_name)); else { c_name = xstrdup (SSDATA (base_name)); treesit_symbol_to_c_name (c_name); } langfn = dynlib_sym (handle, c_name); xfree (c_name); error = dynlib_error (); if (error != NULL) { *signal_symbol = Qtreesit_load_language_error; *signal_data = list2 (Qsymbol_error, build_string (error)); return NULL; } TSLanguage *lang = (*langfn) (); /* Check if language version matches tree-sitter version. */ TSParser *parser = ts_parser_new (); bool success = ts_parser_set_language (parser, lang); ts_parser_delete (parser); if (!success) { *signal_symbol = Qtreesit_load_language_error; *signal_data = list2 (Qversion_mismatch, make_fixnum (ts_language_version (lang))); return NULL; } return lang; } DEFUN ("treesit-language-available-p", Ftreesit_language_available_p, Streesit_language_available_p, 1, 2, 0, doc: /* Return non-nil if LANGUAGE exists and is loadable. If DETAIL is non-nil, return (t . nil) when LANGUAGE is available, (nil . DATA) when unavailable. DATA is the signal data of `treesit-load-language-error'. */) (Lisp_Object language, Lisp_Object detail) { CHECK_SYMBOL (language); treesit_initialize (); Lisp_Object signal_symbol = Qnil; Lisp_Object signal_data = Qnil; if (treesit_load_language (language, &signal_symbol, &signal_data) == NULL) { if (NILP (detail)) return Qnil; else return Fcons (Qnil, signal_data); } else { if (NILP (detail)) return Qt; else return Fcons (Qt, Qnil); } } DEFUN ("treesit-library-abi-version", Ftreesit_library_abi_version, Streesit_library_abi_version, 0, 1, 0, doc: /* Return the language ABI version of the tree-sitter library. By default, report the latest ABI version supported by the library for loading language support modules. The library is backward-compatible with language modules which use older ABI versions; if MIN-COMPATIBLE is non-nil, return the oldest compatible ABI version. */) (Lisp_Object min_compatible) { if (NILP (min_compatible)) return make_fixnum (TREE_SITTER_LANGUAGE_VERSION); else return make_fixnum (TREE_SITTER_MIN_COMPATIBLE_LANGUAGE_VERSION); } DEFUN ("treesit-language-abi-version", Ftreesit_language_abi_version, Streesit_language_abi_version, 0, 1, 0, doc: /* Return the ABI version of the tree-sitter grammar for LANGUAGE. Return nil if a grammar library for LANGUAGE is not available. */) (Lisp_Object language) { if (NILP (Ftreesit_language_available_p (language, Qnil))) return Qnil; else { Lisp_Object signal_symbol = Qnil; Lisp_Object signal_data = Qnil; TSLanguage *ts_language = treesit_load_language (language, &signal_symbol, &signal_data); if (ts_language == NULL) return Qnil; uint32_t version = ts_language_version (ts_language); return make_fixnum((ptrdiff_t) version); } } /*** Parsing functions */ static void treesit_check_parser (Lisp_Object obj) { CHECK_TS_PARSER (obj); if (XTS_PARSER (obj)->deleted) xsignal1 (Qtreesit_parser_deleted, obj); } /* An auxiliary function that saves a few lines of code. Assumes TREE is not NULL. START_BYTE, OLD_END_BYTE, NEW_END_BYTE must not be larger than UINT32_MAX. */ static inline void treesit_tree_edit_1 (TSTree *tree, ptrdiff_t start_byte, ptrdiff_t old_end_byte, ptrdiff_t new_end_byte) { eassert (start_byte >= 0); eassert (start_byte <= old_end_byte); eassert (start_byte <= new_end_byte); TSPoint dummy_point = {0, 0}; eassert (start_byte <= UINT32_MAX); eassert (old_end_byte <= UINT32_MAX); eassert (new_end_byte <= UINT32_MAX); TSInputEdit edit = {(uint32_t) start_byte, (uint32_t) old_end_byte, (uint32_t) new_end_byte, dummy_point, dummy_point, dummy_point}; ts_tree_edit (tree, &edit); } /* Update each parser's tree after the user made an edit. This function does not parse the buffer and only updates the tree, so it should be very fast. */ void treesit_record_change (ptrdiff_t start_byte, ptrdiff_t old_end_byte, ptrdiff_t new_end_byte) { struct buffer *base_buffer = current_buffer; if (current_buffer->base_buffer) base_buffer = current_buffer->base_buffer; Lisp_Object parser_list = BVAR (base_buffer, ts_parser_list); FOR_EACH_TAIL_SAFE (parser_list) { CHECK_CONS (parser_list); Lisp_Object lisp_parser = XCAR (parser_list); treesit_check_parser (lisp_parser); TSTree *tree = XTS_PARSER (lisp_parser)->tree; /* See comment (ref:visible-beg-null) if you wonder why we don't update visible_beg/end when tree is NULL. */ if (tree != NULL) { eassert (start_byte <= old_end_byte); eassert (start_byte <= new_end_byte); /* Think the recorded change as a delete followed by an insert, and think of them as moving unchanged text back and forth. After all, the whole point of updating the tree is to update the position of unchanged text. */ ptrdiff_t visible_beg = XTS_PARSER (lisp_parser)->visible_beg; ptrdiff_t visible_end = XTS_PARSER (lisp_parser)->visible_end; eassert (visible_beg >= 0); eassert (visible_beg <= visible_end); /* AFFECTED_START/OLD_END/NEW_END are (0-based) offsets from VISIBLE_BEG. min(visi_end, max(visi_beg, value)) clips value into [visi_beg, visi_end], and subtracting visi_beg gives the offset from visi_beg. */ ptrdiff_t start_offset = (min (visible_end, max (visible_beg, start_byte)) - visible_beg); ptrdiff_t old_end_offset = (min (visible_end, max (visible_beg, old_end_byte)) - visible_beg); /* We don't clip new_end_offset under visible_end, because otherwise we would miss updating the clipped part. Plus, when inserting in narrowed region, the narrowed region will grow to accommodate the new text, so this is the correct behavior. (Bug#61369). */ ptrdiff_t new_end_offset = (max (visible_beg, new_end_byte) - visible_beg); eassert (start_offset <= old_end_offset); eassert (start_offset <= new_end_offset); treesit_tree_edit_1 (tree, start_offset, old_end_offset, new_end_offset); XTS_PARSER (lisp_parser)->need_reparse = true; /* VISIBLE_BEG/END records tree-sitter's range of view in the buffer. We need to adjust them when tree-sitter's view changes. */ ptrdiff_t visi_beg_delta; if (old_end_byte > new_end_byte) /* Move backward. */ visi_beg_delta = (min (visible_beg, new_end_byte) - min (visible_beg, old_end_byte)); else /* Move forward. */ visi_beg_delta = (old_end_byte < visible_beg ? new_end_byte - old_end_byte : 0); XTS_PARSER (lisp_parser)->visible_beg = visible_beg + visi_beg_delta; XTS_PARSER (lisp_parser)->visible_end = (visible_end + visi_beg_delta + (new_end_offset - old_end_offset)); eassert (XTS_PARSER (lisp_parser)->visible_beg >= 0); eassert (XTS_PARSER (lisp_parser)->visible_beg <= XTS_PARSER (lisp_parser)->visible_end); } } } /* Comment (ref:visible-beg-null) The purpose of visible_beg/end is to keep track of "which part of the buffer does the tree-sitter tree see", in order to update the tree correctly. Visible_beg/end have two purposes: they "clip" buffer changes within them, and they translate positions in the buffer to positions in the tree (buffer position - visible_beg = tree position). Conceptually, visible_beg/end hold the visible region of the buffer when we last reparsed. In-between two reparses, we don't really care if the visible region of the buffer changes. Right before we reparse, we make tree-sitter's visible region match that of the buffer, and update visible_beg/end. That is, the whole purpose of visible_beg/end (and also of treesit_record_change and treesit_sync_visible_region) is to update the tree (by ts_tree_edit). So if the tree is NULL, visible_beg/end are considered uninitialized. Only when we already have a tree, do we need to keep track of position changes and update it correctly, so it can be fed into ts_parser_parse as the old tree, so that tree-sitter will only parse the changed part, incrementally. In a nutshell, tree-sitter incremental parsing in Emacs looks like: treesit_record_change (tree) \ treesit_record_change (tree) | user edits buffer ... / treesit_sync_visible_region (tree) \ treesit_ensure_parsed ts_parser_parse(tree) -> tree / treesit_record_change (tree) \ treesit_record_change (tree) | user edits buffer ... / and so on. */ /* Make sure the tree's visible range is in sync with the buffer's visible range, and PARSER's visible_beg and visible_end are in sync with BUF_BEGV_BYTE and BUG_ZV_BYTE. When calling this function you must make sure the current buffer's size in bytes is not larger than UINT32_MAX. Basically, always call treesit_check_buffer_size before this function. If buffer range changed since last parse (visible_beg/end doesn't match buffer visible beginning/end), set need_reparse to true. */ static void treesit_sync_visible_region (Lisp_Object parser) { TSTree *tree = XTS_PARSER (parser)->tree; struct buffer *buffer = XBUFFER (XTS_PARSER (parser)->buffer); /* If we are setting visible_beg/end for the first time, we can skip the offset acrobatics and updating the tree below. */ if (tree == NULL) { XTS_PARSER (parser)->visible_beg = BUF_BEGV_BYTE (buffer); XTS_PARSER (parser)->visible_end = BUF_ZV_BYTE (buffer); return; } ptrdiff_t visible_beg = XTS_PARSER (parser)->visible_beg; ptrdiff_t visible_end = XTS_PARSER (parser)->visible_end; eassert (0 <= visible_beg); eassert (visible_beg <= visible_end); eassert (BUF_BEGV_BYTE (buffer) <= UINT32_MAX); eassert (BUF_ZV_BYTE (buffer) <= UINT32_MAX); /* If buffer restriction changed and user requests for a node (hence this function is called), we need to reparse. */ if (visible_beg != BUF_BEGV_BYTE (buffer) || visible_end != BUF_ZV_BYTE (buffer)) XTS_PARSER (parser)->need_reparse = true; /* Before we parse or set ranges, catch up with the narrowing situation. We change visible_beg and visible_end to match BUF_BEGV_BYTE and BUF_ZV_BYTE, and inform tree-sitter of the change. We want to move the visible range of tree-sitter to match the narrowed range. For example, from ________|xxxx|__ to |xxxx|__________ */ /* 1. Make sure visible_beg <= BUF_BEGV_BYTE. */ if (visible_beg > BUF_BEGV_BYTE (buffer)) { /* Tree-sitter sees: insert at the beginning. */ treesit_tree_edit_1 (tree, 0, 0, visible_beg - BUF_BEGV_BYTE (buffer)); visible_beg = BUF_BEGV_BYTE (buffer); eassert (visible_beg <= visible_end); } /* 2. Make sure visible_end = BUF_ZV_BYTE. */ if (visible_end < BUF_ZV_BYTE (buffer)) { /* Tree-sitter sees: insert at the end. */ treesit_tree_edit_1 (tree, visible_end - visible_beg, visible_end - visible_beg, BUF_ZV_BYTE (buffer) - visible_beg); visible_end = BUF_ZV_BYTE (buffer); eassert (visible_beg <= visible_end); } else if (visible_end > BUF_ZV_BYTE (buffer)) { /* Tree-sitter sees: delete at the end. */ treesit_tree_edit_1 (tree, BUF_ZV_BYTE (buffer) - visible_beg, visible_end - visible_beg, BUF_ZV_BYTE (buffer) - visible_beg); visible_end = BUF_ZV_BYTE (buffer); eassert (visible_beg <= visible_end); } /* 3. Make sure visible_beg = BUF_BEGV_BYTE. */ if (visible_beg < BUF_BEGV_BYTE (buffer)) { /* Tree-sitter sees: delete at the beginning. */ treesit_tree_edit_1 (tree, 0, BUF_BEGV_BYTE (buffer) - visible_beg, 0); visible_beg = BUF_BEGV_BYTE (buffer); eassert (visible_beg <= visible_end); } eassert (0 <= visible_beg); eassert (visible_beg <= visible_end); eassert (visible_beg == BUF_BEGV_BYTE (buffer)); eassert (visible_end == BUF_ZV_BYTE (buffer)); XTS_PARSER (parser)->visible_beg = visible_beg; XTS_PARSER (parser)->visible_end = visible_end; } static void treesit_check_buffer_size (struct buffer *buffer) { ptrdiff_t buffer_size_bytes = (BUF_Z_BYTE (buffer) - BUF_BEG_BYTE (buffer)); if (buffer_size_bytes > UINT32_MAX) xsignal2 (Qtreesit_buffer_too_large, build_string ("Buffer size cannot be larger than 4GB"), make_fixnum (buffer_size_bytes)); } static Lisp_Object treesit_make_ranges (const TSRange *, uint32_t, struct buffer *); static void treesit_call_after_change_functions (TSTree *old_tree, TSTree *new_tree, Lisp_Object parser) { /* If the old_tree is NULL, meaning this is the first parse, the changed range is the whole buffer. */ Lisp_Object lisp_ranges; struct buffer *buf = XBUFFER (XTS_PARSER (parser)->buffer); if (old_tree) { uint32_t len; TSRange *ranges = ts_tree_get_changed_ranges (old_tree, new_tree, &len); lisp_ranges = treesit_make_ranges (ranges, len, buf); xfree (ranges); } else { struct buffer *oldbuf = current_buffer; set_buffer_internal (buf); lisp_ranges = Fcons (Fcons (Fpoint_min (), Fpoint_max ()), Qnil); set_buffer_internal (oldbuf); } specpdl_ref count = SPECPDL_INDEX (); /* let's trust the after change functions and not clone a new ranges for each of them. */ Lisp_Object functions = XTS_PARSER (parser)->after_change_functions; FOR_EACH_TAIL (functions) safe_calln (XCAR (functions), lisp_ranges, parser); unbind_to (count, Qnil); } /* Parse the buffer. We don't parse until we have to. When we have to, we call this function to parse and update the tree. */ static void treesit_ensure_parsed (Lisp_Object parser) { struct buffer *buffer = XBUFFER (XTS_PARSER (parser)->buffer); /* Before we parse, catch up with the narrowing situation. */ treesit_check_buffer_size (buffer); /* This function has to run before we check for need_reparse flag, because it might set the flag to true. */ treesit_sync_visible_region (parser); /* Make sure this comes before everything else, see comment (ref:notifier-inside-ensure-parsed) for more detail. */ if (!XTS_PARSER (parser)->need_reparse) return; TSParser *treesit_parser = XTS_PARSER (parser)->parser; TSTree *tree = XTS_PARSER (parser)->tree; TSInput input = XTS_PARSER (parser)->input; TSTree *new_tree = ts_parser_parse (treesit_parser, tree, input); /* This should be very rare (impossible, really): it only happens when 1) language is not set (impossible in Emacs because the user has to supply a language to create a parser), 2) parse canceled due to timeout (impossible because we don't set a timeout), 3) parse canceled due to cancellation flag (impossible because we don't set the flag). (See comments for ts_parser_parse in tree_sitter/api.h.) */ if (new_tree == NULL) { Lisp_Object buf; XSETBUFFER (buf, buffer); xsignal1 (Qtreesit_parse_error, buf); } XTS_PARSER (parser)->tree = new_tree; XTS_PARSER (parser)->need_reparse = false; XTS_PARSER (parser)->timestamp++; /* After-change functions should run at the very end, most crucially after need_reparse is set to false, this way if the function calls some tree-sitter function which invokes treesit_ensure_parsed again, it returns early and do not recursively call the after change functions again. (ref:notifier-inside-ensure-parsed) */ treesit_call_after_change_functions (tree, new_tree, parser); ts_tree_delete (tree); } /* This is the read function provided to tree-sitter to read from a buffer. It reads one character at a time and automatically skips the gap. */ static const char* treesit_read_buffer (void *parser, uint32_t byte_index, TSPoint position, uint32_t *bytes_read) { struct buffer *buffer = XBUFFER (((struct Lisp_TS_Parser *) parser)->buffer); ptrdiff_t visible_beg = ((struct Lisp_TS_Parser *) parser)->visible_beg; ptrdiff_t visible_end = ((struct Lisp_TS_Parser *) parser)->visible_end; ptrdiff_t byte_pos = byte_index + visible_beg; /* We will make sure visible_beg = BUF_BEGV_BYTE before re-parse (in treesit_ensure_parsed), so byte_pos will never be smaller than BUF_BEG_BYTE. */ eassert (visible_beg = BUF_BEGV_BYTE (buffer)); eassert (visible_end = BUF_ZV_BYTE (buffer)); /* Read one character. Tree-sitter wants us to set bytes_read to 0 if it reads to the end of buffer. It doesn't say what it wants for the return value in that case, so we just give it an empty string. */ char *beg; int len; /* This function could run from a user command, so it is better to do nothing instead of raising an error. (It was a pain in the a** to decrypt mega-if-conditions in Emacs source, so I wrote the two branches separately, you are welcome.) */ if (!BUFFER_LIVE_P (buffer)) { beg = NULL; len = 0; } /* Reached visible end-of-buffer, tell tree-sitter to read no more. */ else if (byte_pos >= visible_end) { beg = NULL; len = 0; } /* Normal case, read a character. */ else { beg = (char *) BUF_BYTE_ADDRESS (buffer, byte_pos); len = BYTES_BY_CHAR_HEAD ((int) *beg); } /* We never let tree-sitter to parse buffers that large so this assertion should never hit. */ eassert (len < UINT32_MAX); *bytes_read = (uint32_t) len; return beg; } /*** Functions for parser and node object */ /* Wrap the parser in a Lisp_Object to be used in the Lisp machine. */ Lisp_Object make_treesit_parser (Lisp_Object buffer, TSParser *parser, TSTree *tree, Lisp_Object language_symbol, Lisp_Object tag) { struct Lisp_TS_Parser *lisp_parser; lisp_parser = ALLOCATE_PSEUDOVECTOR (struct Lisp_TS_Parser, buffer, PVEC_TS_PARSER); lisp_parser->language_symbol = language_symbol; lisp_parser->after_change_functions = Qnil; lisp_parser->tag = tag; lisp_parser->last_set_ranges = Qnil; lisp_parser->buffer = buffer; lisp_parser->parser = parser; lisp_parser->tree = tree; TSInput input = {lisp_parser, treesit_read_buffer, TSInputEncodingUTF8}; lisp_parser->input = input; lisp_parser->need_reparse = true; lisp_parser->visible_beg = BUF_BEGV_BYTE (XBUFFER (buffer)); lisp_parser->visible_end = BUF_ZV_BYTE (XBUFFER (buffer)); lisp_parser->timestamp = 0; lisp_parser->deleted = false; eassert (lisp_parser->visible_beg <= lisp_parser->visible_end); return make_lisp_ptr (lisp_parser, Lisp_Vectorlike); } /* Wrap the node in a Lisp_Object to be used in the Lisp machine. */ Lisp_Object make_treesit_node (Lisp_Object parser, TSNode node) { struct Lisp_TS_Node *lisp_node; lisp_node = ALLOCATE_PSEUDOVECTOR (struct Lisp_TS_Node, parser, PVEC_TS_NODE); lisp_node->parser = parser; lisp_node->node = node; lisp_node->timestamp = XTS_PARSER (parser)->timestamp; return make_lisp_ptr (lisp_node, Lisp_Vectorlike); } /* Make a compiled query. QUERY has to be either a cons or a string. */ static Lisp_Object make_treesit_query (Lisp_Object query, Lisp_Object language) { struct Lisp_TS_Query *lisp_query; lisp_query = ALLOCATE_PSEUDOVECTOR (struct Lisp_TS_Query, source, PVEC_TS_COMPILED_QUERY); lisp_query->language = language; lisp_query->source = query; lisp_query->query = NULL; lisp_query->cursor = NULL; return make_lisp_ptr (lisp_query, Lisp_Vectorlike); } /* The following two functions are called from alloc.c:cleanup_vector. */ void treesit_delete_parser (struct Lisp_TS_Parser *lisp_parser) { ts_tree_delete (lisp_parser->tree); ts_parser_delete (lisp_parser->parser); } void treesit_delete_query (struct Lisp_TS_Query *lisp_query) { if (lisp_query->query) ts_query_delete (lisp_query->query); if (lisp_query->cursor) ts_query_cursor_delete (lisp_query->cursor); } /* The following function is called from print.c:print_vectorlike. */ bool treesit_named_node_p (TSNode node) { return ts_node_is_named (node); } static const char* treesit_query_error_to_string (TSQueryError error) { switch (error) { case TSQueryErrorNone: return "None"; case TSQueryErrorSyntax: return "Syntax error at"; case TSQueryErrorNodeType: return "Node type error at"; case TSQueryErrorField: return "Field error at"; case TSQueryErrorCapture: return "Capture error at"; case TSQueryErrorStructure: return "Structure error at"; default: return "Unknown error"; } } static Lisp_Object treesit_compose_query_signal_data (uint32_t error_offset, TSQueryError error_type, Lisp_Object query_source) { return list4 (build_string (treesit_query_error_to_string (error_type)), make_fixnum (error_offset + 1), query_source, build_string ("Debug the query with `treesit-query-validate'")); } /* Ensure QUERY has a non-NULL cursor, and return it. */ static TSQueryCursor * treesit_ensure_query_cursor (Lisp_Object query) { if (!XTS_COMPILED_QUERY (query)->cursor) XTS_COMPILED_QUERY (query)->cursor = ts_query_cursor_new (); return XTS_COMPILED_QUERY (query)->cursor; } /* Ensure the QUERY is compiled. Return the TSQuery. It could be NULL if error occurs, in which case ERROR_OFFSET and ERROR_TYPE are bound. If error occurs, return NULL, and assign SIGNAL_SYMBOL and SIGNAL_DATA accordingly. */ static TSQuery * treesit_ensure_query_compiled (Lisp_Object query, Lisp_Object *signal_symbol, Lisp_Object *signal_data) { /* If query is already compiled (not null), return that, otherwise compile and return it. */ TSQuery *treesit_query = XTS_COMPILED_QUERY (query)->query; if (treesit_query != NULL) return treesit_query; /* Get query source and TSLanguage ready. */ Lisp_Object source = XTS_COMPILED_QUERY (query)->source; Lisp_Object language = XTS_COMPILED_QUERY (query)->language; /* This is the main reason why we compile query lazily: to avoid loading languages early. */ TSLanguage *treesit_lang = treesit_load_language (language, signal_symbol, signal_data); if (treesit_lang == NULL) return NULL; if (CONSP (source)) source = Ftreesit_query_expand (source); /* Create TSQuery. */ uint32_t error_offset; TSQueryError error_type; treesit_query = ts_query_new (treesit_lang, SSDATA (source), SBYTES (source), &error_offset, &error_type); if (treesit_query == NULL) { *signal_symbol = Qtreesit_query_error; *signal_data = treesit_compose_query_signal_data (error_offset, error_type, source); } XTS_COMPILED_QUERY (query)->query = treesit_query; return treesit_query; } /* Resolve language symbol LANG according to treesit-language-remap-alist. */ static Lisp_Object resolve_language_symbol (Lisp_Object lang) { Lisp_Object res = Fassoc (lang, Vtreesit_language_remap_alist, Qeq); if (NILP (res)) return lang; return Fcdr (res); } /* Lisp definitions. */ DEFUN ("treesit-parser-p", Ftreesit_parser_p, Streesit_parser_p, 1, 1, 0, doc: /* Return t if OBJECT is a tree-sitter parser. */) (Lisp_Object object) { if (TS_PARSERP (object)) return Qt; else return Qnil; } DEFUN ("treesit-node-p", Ftreesit_node_p, Streesit_node_p, 1, 1, 0, doc: /* Return t if OBJECT is a tree-sitter node. */) (Lisp_Object object) { if (TS_NODEP (object)) return Qt; else return Qnil; } DEFUN ("treesit-compiled-query-p", Ftreesit_compiled_query_p, Streesit_compiled_query_p, 1, 1, 0, doc: /* Return t if OBJECT is a compiled tree-sitter query. */) (Lisp_Object object) { if (TS_COMPILED_QUERY_P (object)) return Qt; else return Qnil; } DEFUN ("treesit-query-p", Ftreesit_query_p, Streesit_query_p, 1, 1, 0, doc: /* Return t if OBJECT is a generic tree-sitter query. */) (Lisp_Object object) { if (TS_COMPILED_QUERY_P (object) || CONSP (object) || STRINGP (object)) return Qt; else return Qnil; } DEFUN ("treesit-query-language", Ftreesit_query_language, Streesit_query_language, 1, 1, 0, doc: /* Return the language of QUERY. QUERY has to be a compiled query. */) (Lisp_Object query) { CHECK_TS_COMPILED_QUERY (query); return XTS_COMPILED_QUERY (query)->language; } DEFUN ("treesit-node-parser", Ftreesit_node_parser, Streesit_node_parser, 1, 1, 0, doc: /* Return the parser to which NODE belongs. */) (Lisp_Object node) { CHECK_TS_NODE (node); return XTS_NODE (node)->parser; } DEFUN ("treesit-parser-create", Ftreesit_parser_create, Streesit_parser_create, 1, 4, 0, doc: /* Create and return a parser in BUFFER for LANGUAGE with TAG. The parser is automatically added to BUFFER's parser list, as returned by `treesit-parser-list'. LANGUAGE is a language symbol. If BUFFER is nil or omitted, it defaults to the current buffer. If BUFFER already has a parser for LANGUAGE with TAG, return that parser, but if NO-REUSE is non-nil, always create a new parser. TAG can be any symbol except t, and defaults to nil. Different parsers can have the same tag. If that buffer is an indirect buffer, its base buffer is used instead. That is, indirect buffers use their base buffer's parsers. Lisp programs should widen as necessary should they want to use a parser in an indirect buffer. */) (Lisp_Object language, Lisp_Object buffer, Lisp_Object no_reuse, Lisp_Object tag) { treesit_initialize (); CHECK_SYMBOL (language); CHECK_SYMBOL (tag); struct buffer *buf; Lisp_Object buf_orig; if (NILP (buffer)) { buf = current_buffer; XSETBUFFER (buf_orig, current_buffer); } else { CHECK_BUFFER (buffer); buf = XBUFFER (buffer); buf_orig = buffer; } if (buf->base_buffer) buf = buf->base_buffer; if (EQ (tag, Qt)) xsignal2(Qwrong_type_argument, list2(Qnot, Qt), Qt); treesit_check_buffer_size (buf); language = resolve_language_symbol (language); CHECK_SYMBOL (language); /* See if we can reuse a parser. */ if (NILP (no_reuse)) { Lisp_Object tail = BVAR (buf, ts_parser_list); FOR_EACH_TAIL (tail) { struct Lisp_TS_Parser *parser = XTS_PARSER (XCAR (tail)); if (EQ (parser->tag, tag) && EQ (parser->language_symbol, language)) return XCAR (tail); } } /* Load language. */ Lisp_Object signal_symbol = Qnil; Lisp_Object signal_data = Qnil; TSParser *parser = ts_parser_new (); TSLanguage *lang = treesit_load_language (language, &signal_symbol, &signal_data); if (lang == NULL) xsignal (signal_symbol, signal_data); /* We check language version when loading a language, so this should always succeed. */ ts_parser_set_language (parser, lang); /* Create parser. */ Lisp_Object lisp_parser = make_treesit_parser (buf_orig, parser, NULL, language, tag); /* Update parser-list. */ BVAR (buf, ts_parser_list) = Fcons (lisp_parser, BVAR (buf, ts_parser_list)); return lisp_parser; } DEFUN ("treesit-parser-delete", Ftreesit_parser_delete, Streesit_parser_delete, 1, 1, 0, doc: /* Delete PARSER from its buffer's parser list. See `treesit-parser-list' for the buffer's parser list. */) (Lisp_Object parser) { treesit_check_parser (parser); Lisp_Object buffer = XTS_PARSER (parser)->buffer; struct buffer *buf = XBUFFER (buffer); BVAR (buf, ts_parser_list) = Fdelete (parser, BVAR (buf, ts_parser_list)); XTS_PARSER (parser)->deleted = true; return Qnil; } DEFUN ("treesit-parser-list", Ftreesit_parser_list, Streesit_parser_list, 0, 3, 0, doc: /* Return BUFFER's parser list, filtered by LANGUAGE and TAG. BUFFER defaults to the current buffer. If that buffer is an indirect buffer, its base buffer is used instead. That is, indirect buffers use their base buffer's parsers. If LANGUAGE is non-nil, only return parsers for that language. The returned list only contain parsers with TAG. TAG defaults to nil. If TAG is t, include parsers in the returned list regardless of their tag. */) (Lisp_Object buffer, Lisp_Object language, Lisp_Object tag) { struct buffer *buf; Lisp_Object buf_orig; if (NILP (buffer)) { buf = current_buffer; XSETBUFFER (buf_orig, current_buffer); } else { CHECK_BUFFER (buffer); buf = XBUFFER (buffer); buf_orig = buffer; } if (buf->base_buffer) buf = buf->base_buffer; language = resolve_language_symbol (language); /* Return a fresh list so messing with that list doesn't affect our internal data. */ Lisp_Object return_list = Qnil; Lisp_Object tail; tail = BVAR (buf, ts_parser_list); FOR_EACH_TAIL (tail) { struct Lisp_TS_Parser *parser = XTS_PARSER (XCAR (tail)); if ((NILP (language) || EQ (language, parser->language_symbol)) && (EQ (tag, Qt) || EQ (tag, parser->tag)) /* Indirect buffers and base buffer shares the same parser * list, so we need the filtering here. */ && (EQ (parser->buffer, buf_orig))) return_list = Fcons (XCAR (tail), return_list); } return Freverse (return_list); } DEFUN ("treesit-parser-buffer", Ftreesit_parser_buffer, Streesit_parser_buffer, 1, 1, 0, doc: /* Return the buffer of PARSER. */) (Lisp_Object parser) { treesit_check_parser (parser); Lisp_Object buf; XSETBUFFER (buf, XBUFFER (XTS_PARSER (parser)->buffer)); return buf; } DEFUN ("treesit-parser-language", Ftreesit_parser_language, Streesit_parser_language, 1, 1, 0, doc: /* Return PARSER's language symbol. This symbol is the one used to create the parser. */) (Lisp_Object parser) { treesit_check_parser (parser); return XTS_PARSER (parser)->language_symbol; } DEFUN ("treesit-parser-tag", Ftreesit_parser_tag, Streesit_parser_tag, 1, 1, 0, doc: /* Return PARSER's tag. */) (Lisp_Object parser) { treesit_check_parser (parser); return XTS_PARSER (parser)->tag; } /* Return true if PARSER is not deleted and its buffer is live. */ static bool treesit_parser_live_p (Lisp_Object parser) { CHECK_TS_PARSER (parser); return ((!XTS_PARSER (parser)->deleted) && (!NILP (Fbuffer_live_p (XTS_PARSER (parser)->buffer)))); } /*** Parser API */ DEFUN ("treesit-parser-root-node", Ftreesit_parser_root_node, Streesit_parser_root_node, 1, 1, 0, doc: /* Return the root node of PARSER. */) (Lisp_Object parser) { treesit_check_parser (parser); treesit_initialize (); treesit_ensure_parsed (parser); TSNode root_node = ts_tree_root_node (XTS_PARSER (parser)->tree); return make_treesit_node (parser, root_node); } /* Checks that the RANGES argument of treesit-parser-set-included-ranges is valid. */ static void treesit_check_range_argument (Lisp_Object ranges) { struct buffer *buffer = current_buffer; ptrdiff_t point_min = BUF_BEGV (buffer); ptrdiff_t point_max = BUF_ZV (buffer); EMACS_INT last_point = point_min; Lisp_Object tail; tail = ranges; CHECK_LIST (tail); FOR_EACH_TAIL (tail) { CHECK_CONS (tail); Lisp_Object range = XCAR (tail); CHECK_CONS (range); CHECK_FIXNUM (XCAR (range)); CHECK_FIXNUM (XCDR (range)); EMACS_INT beg = XFIXNUM (XCAR (range)); EMACS_INT end = XFIXNUM (XCDR (range)); if (!(last_point <= beg && beg <= end && end <= point_max)) xsignal2 (Qtreesit_range_invalid, build_string ("RANGE is either overlapping," " out-of-order or out-of-range"), ranges); last_point = end; } CHECK_LIST_END (tail, ranges); } /* Generate a list of ranges in Lisp from RANGES. Assumes tree-sitter tree and the buffer has the same visible region (wrt narrowing). This function doesn't take ownership of RANGES. BUFFER is used to convert between tree-sitter buffer offset and buffer position. */ static Lisp_Object treesit_make_ranges (const TSRange *ranges, uint32_t len, struct buffer *buffer) { Lisp_Object list = Qnil; for (int idx = 0; idx < len; idx++) { TSRange range = ranges[idx]; uint32_t beg_byte = range.start_byte + BUF_BEGV_BYTE (buffer); uint32_t end_byte = range.end_byte + BUF_BEGV_BYTE (buffer); eassert (BUF_BEGV_BYTE (buffer) <= beg_byte); eassert (beg_byte <= end_byte); eassert (end_byte <= BUF_ZV_BYTE (buffer)); Lisp_Object lisp_range = Fcons (make_fixnum (buf_bytepos_to_charpos (buffer, beg_byte)), make_fixnum (buf_bytepos_to_charpos (buffer, end_byte))); list = Fcons (lisp_range, list); } return Fnreverse (list); } DEFUN ("treesit-parser-set-included-ranges", Ftreesit_parser_set_included_ranges, Streesit_parser_set_included_ranges, 2, 2, 0, doc: /* Limit PARSER to RANGES. RANGES is a list of (BEG . END), each (BEG . END) defines a region in which the parser should operate. Regions must not overlap, and the regions should come in order in the list. Signal `treesit-set-range-error' if the argument is invalid, or something else went wrong. If RANGES is nil, the PARSER is to parse the whole buffer. */) (Lisp_Object parser, Lisp_Object ranges) { treesit_check_parser (parser); if (!NILP (ranges)) CHECK_CONS (ranges); if (!NILP (Fequal (XTS_PARSER (parser)->last_set_ranges, ranges))) return Qnil; treesit_check_range_argument (ranges); treesit_initialize (); /* Before we parse, catch up with narrowing/widening. */ treesit_check_buffer_size (XBUFFER (XTS_PARSER (parser)->buffer)); treesit_sync_visible_region (parser); XTS_PARSER (parser)->last_set_ranges = ranges; bool success; if (NILP (ranges)) { /* If RANGES is nil, make parser to parse the whole document. To do that we give tree-sitter a 0 length, the range is a dummy. */ TSRange treesit_range = {{0, 0}, {0, 0}, 0, 0}; success = ts_parser_set_included_ranges (XTS_PARSER (parser)->parser, &treesit_range , 0); } else { /* Set ranges for PARSER. */ if (list_length (ranges) > UINT32_MAX) xsignal (Qargs_out_of_range, list2 (ranges, Flength (ranges))); uint32_t len = (uint32_t) list_length (ranges); TSRange *treesit_ranges = xmalloc (sizeof (TSRange) * len); struct buffer *buffer = XBUFFER (XTS_PARSER (parser)->buffer); /* We can use XFIXNUM, XCAR, XCDR freely because we have checked the input by treesit_check_range_argument. */ for (int idx = 0; !NILP (ranges); idx++, ranges = XCDR (ranges)) { Lisp_Object range = XCAR (ranges); ptrdiff_t beg_byte = buf_charpos_to_bytepos (buffer, XFIXNUM (XCAR (range))); ptrdiff_t end_byte = buf_charpos_to_bytepos (buffer, XFIXNUM (XCDR (range))); /* Shouldn't violate assertion since we just checked for buffer size at the beginning of this function. */ eassert (beg_byte - BUF_BEGV_BYTE (buffer) <= UINT32_MAX); eassert (end_byte - BUF_BEGV_BYTE (buffer) <= UINT32_MAX); /* We don't care about start and end points, put in dummy values. */ TSRange rg = {{0, 0}, {0, 0}, (uint32_t) beg_byte - BUF_BEGV_BYTE (buffer), (uint32_t) end_byte - BUF_BEGV_BYTE (buffer)}; treesit_ranges[idx] = rg; } success = ts_parser_set_included_ranges (XTS_PARSER (parser)->parser, treesit_ranges, len); xfree (treesit_ranges); } if (!success) xsignal2 (Qtreesit_range_invalid, build_string ("Something went wrong when setting ranges"), ranges); XTS_PARSER (parser)->need_reparse = true; return Qnil; } DEFUN ("treesit-parser-included-ranges", Ftreesit_parser_included_ranges, Streesit_parser_included_ranges, 1, 1, 0, doc: /* Return the ranges set for PARSER. If no ranges are set for PARSER, return nil. See also `treesit-parser-set-included-ranges'. */) (Lisp_Object parser) { treesit_check_parser (parser); treesit_initialize (); /* When the parser doesn't have a range set and we call ts_parser_included_ranges on it, it doesn't return an empty list, but rather return DEFAULT_RANGE. (A single range where start_byte = 0, end_byte = UINT32_MAX). So we need to track whether the parser is ranged ourselves. */ if (NILP (XTS_PARSER (parser)->last_set_ranges)) return Qnil; uint32_t len; const TSRange *ranges = ts_parser_included_ranges (XTS_PARSER (parser)->parser, &len); /* Our return value depends on the buffer state (BUF_BEGV_BYTE, etc), so we need to sync up. */ treesit_check_buffer_size (XBUFFER (XTS_PARSER (parser)->buffer)); treesit_sync_visible_region (parser); struct buffer *buffer = XBUFFER (XTS_PARSER (parser)->buffer); return treesit_make_ranges (ranges, len, buffer); } DEFUN ("treesit-parser-notifiers", Ftreesit_parser_notifiers, Streesit_parser_notifiers, 1, 1, 0, doc: /* Return the list of after-change notifier functions for PARSER. */) (Lisp_Object parser) { treesit_check_parser (parser); Lisp_Object return_list = Qnil; Lisp_Object tail = XTS_PARSER (parser)->after_change_functions; FOR_EACH_TAIL (tail) return_list = Fcons (XCAR (tail), return_list); return return_list; } DEFUN ("treesit-parser-add-notifier", Ftreesit_parser_add_notifier, Streesit_parser_add_notifier, 2, 2, 0, doc: /* Add FUNCTION to the list of PARSER's after-change notifiers. FUNCTION must be a function symbol, rather than a lambda form. FUNCTION should take 2 arguments, RANGES and PARSER. RANGES is a list of cons cells of the form (START . END), where START and END are buffer positions. PARSER is the parser issuing the notification. */) (Lisp_Object parser, Lisp_Object function) { treesit_check_parser (parser); /* For simplicity we don't accept lambda functions. */ CHECK_SYMBOL (function); Lisp_Object functions = XTS_PARSER (parser)->after_change_functions; if (NILP (Fmemq (function, functions))) XTS_PARSER (parser)->after_change_functions = Fcons (function, functions); return Qnil; } DEFUN ("treesit-parser-remove-notifier", Ftreesit_parser_remove_notifier, Streesit_parser_remove_notifier, 2, 2, 0, doc: /* Remove FUNCTION from the list of PARSER's after-change notifiers. FUNCTION must be a function symbol, rather than a lambda form. FUNCTION should take 2 arguments, RANGES and PARSER. RANGES is a list of cons of the form (START . END), where START and END are buffer positions. PARSER is the parser issuing the notification. */) (Lisp_Object parser, Lisp_Object function) { treesit_check_parser (parser); /* For simplicity we don't accept lambda functions. */ CHECK_SYMBOL (function); Lisp_Object functions = XTS_PARSER (parser)->after_change_functions; if (!NILP (Fmemq (function, functions))) XTS_PARSER (parser)->after_change_functions = Fdelq (function, functions); return Qnil; } /*** Node API */ /* Check that OBJ is a positive integer and signal an error if otherwise. */ static void treesit_check_positive_integer (Lisp_Object obj) { CHECK_INTEGER (obj); if (XFIXNUM (obj) < 0) xsignal1 (Qargs_out_of_range, obj); } static void treesit_check_node (Lisp_Object obj) { CHECK_TS_NODE (obj); if (!treesit_node_uptodate_p (obj)) xsignal1 (Qtreesit_node_outdated, obj); /* Technically a lot of node functions can work without the associated buffer being alive, but I doubt there're any real use-cases for that; OTOH putting the buffer-liveness check here is simple, clean, and safe. */ if (!treesit_node_buffer_live_p (obj)) xsignal1 (Qtreesit_node_buffer_killed, obj); } /* Check that OBJ is a positive integer and it is within the visible portion of BUF. */ static void treesit_check_position (Lisp_Object obj, struct buffer *buf) { treesit_check_positive_integer (obj); ptrdiff_t pos = XFIXNUM (obj); if (pos < BUF_BEGV (buf) || pos > BUF_ZV (buf)) xsignal1 (Qargs_out_of_range, obj); } bool treesit_node_uptodate_p (Lisp_Object obj) { Lisp_Object lisp_parser = XTS_NODE (obj)->parser; return XTS_NODE (obj)->timestamp == XTS_PARSER (lisp_parser)->timestamp; } bool treesit_node_buffer_live_p (Lisp_Object obj) { struct buffer *buffer = XBUFFER (XTS_PARSER (XTS_NODE (obj)->parser)->buffer); return BUFFER_LIVE_P (buffer); } DEFUN ("treesit-node-type", Ftreesit_node_type, Streesit_node_type, 1, 1, 0, doc: /* Return the NODE's type as a string. If NODE is nil, return nil. */) (Lisp_Object node) { if (NILP (node)) return Qnil; treesit_check_node (node); treesit_initialize (); TSNode treesit_node = XTS_NODE (node)->node; const char *type = ts_node_type (treesit_node); return build_string (type); } DEFUN ("treesit-node-start", Ftreesit_node_start, Streesit_node_start, 1, 1, 0, doc: /* Return the NODE's start position in its buffer. If NODE is nil, return nil. */) (Lisp_Object node) { if (NILP (node)) return Qnil; treesit_check_node (node); treesit_initialize (); TSNode treesit_node = XTS_NODE (node)->node; ptrdiff_t visible_beg = XTS_PARSER (XTS_NODE (node)->parser)->visible_beg; uint32_t start_byte_offset = ts_node_start_byte (treesit_node); struct buffer *buffer = XBUFFER (XTS_PARSER (XTS_NODE (node)->parser)->buffer); ptrdiff_t start_pos = buf_bytepos_to_charpos (buffer, start_byte_offset + visible_beg); return make_fixnum (start_pos); } DEFUN ("treesit-node-end", Ftreesit_node_end, Streesit_node_end, 1, 1, 0, doc: /* Return the NODE's end position in its buffer. If NODE is nil, return nil. */) (Lisp_Object node) { if (NILP (node)) return Qnil; treesit_check_node (node); treesit_initialize (); TSNode treesit_node = XTS_NODE (node)->node; ptrdiff_t visible_beg = XTS_PARSER (XTS_NODE (node)->parser)->visible_beg; uint32_t end_byte_offset = ts_node_end_byte (treesit_node); struct buffer *buffer = XBUFFER (XTS_PARSER (XTS_NODE (node)->parser)->buffer); ptrdiff_t end_pos = buf_bytepos_to_charpos (buffer, end_byte_offset + visible_beg); return make_fixnum (end_pos); } DEFUN ("treesit-node-string", Ftreesit_node_string, Streesit_node_string, 1, 1, 0, doc: /* Return the string representation of NODE. If NODE is nil, return nil. */) (Lisp_Object node) { if (NILP (node)) return Qnil; treesit_check_node (node); treesit_initialize (); TSNode treesit_node = XTS_NODE (node)->node; char *string = ts_node_string (treesit_node); return build_string (string); } static bool treesit_cursor_helper (TSTreeCursor *, TSNode, Lisp_Object); DEFUN ("treesit-node-parent", Ftreesit_node_parent, Streesit_node_parent, 1, 1, 0, doc: /* Return the immediate parent of NODE. Return nil if NODE has no parent. If NODE is nil, return nil. */) (Lisp_Object node) { if (NILP (node)) return Qnil; treesit_check_node (node); treesit_initialize (); Lisp_Object return_value = Qnil; TSNode treesit_node = XTS_NODE (node)->node; Lisp_Object parser = XTS_NODE (node)->parser; TSTreeCursor cursor; /* See the comments to treesit_cursor_helper about the algorithm for finding the parent node. The complexity is roughly proportional to the square root of the current node's depth in the parse tree, and we punt if the tree is too deep. */ if (!treesit_cursor_helper (&cursor, treesit_node, parser)) return return_value; if (ts_tree_cursor_goto_parent (&cursor)) { TSNode parent = ts_tree_cursor_current_node (&cursor); return_value = make_treesit_node (parser, parent); } ts_tree_cursor_delete (&cursor); return return_value; } DEFUN ("treesit-node-child", Ftreesit_node_child, Streesit_node_child, 2, 3, 0, doc: /* Return the Nth child of NODE. Return nil if there is no Nth child. If NAMED is non-nil, look for named child only. NAMED defaults to nil. If NODE is nil, return nil. N could be negative, e.g., -1 represents the last child. */) (Lisp_Object node, Lisp_Object n, Lisp_Object named) { if (NILP (node)) return Qnil; treesit_check_node (node); CHECK_INTEGER (n); EMACS_INT idx = XFIXNUM (n); treesit_initialize (); TSNode treesit_node = XTS_NODE (node)->node; TSNode child; /* Process negative index. */ if (idx < 0) { if (NILP (named)) idx = ts_node_child_count (treesit_node) + idx; else idx = ts_node_named_child_count (treesit_node) + idx; } if (idx < 0) return Qnil; if (idx > UINT32_MAX) xsignal1 (Qargs_out_of_range, n); if (NILP (named)) child = ts_node_child (treesit_node, (uint32_t) idx); else child = ts_node_named_child (treesit_node, (uint32_t) idx); if (ts_node_is_null (child)) return Qnil; return make_treesit_node (XTS_NODE (node)->parser, child); } DEFUN ("treesit-node-check", Ftreesit_node_check, Streesit_node_check, 2, 2, 0, doc: /* Return non-nil if NODE has PROPERTY, nil otherwise. PROPERTY could be `named', `missing', `extra', `outdated', `has-error', or `live'. Named nodes correspond to named rules in the language definition, whereas "anonymous" nodes correspond to string literals in the language definition. Missing nodes are inserted by the parser in order to recover from certain kinds of syntax errors, i.e., should be there but not there. Extra nodes represent things like comments, which are not required the language definition, but can appear anywhere. A node is "outdated" if the parser has reparsed at least once after the node was created. A node "has error" if itself is a syntax error or contains any syntax errors. A node is "live" if its parser is not deleted and its buffer is live. */) (Lisp_Object node, Lisp_Object property) { if (NILP (node)) return Qnil; CHECK_TS_NODE (node); CHECK_SYMBOL (property); treesit_initialize (); TSNode treesit_node = XTS_NODE (node)->node; bool result; if (BASE_EQ (property, Qoutdated)) return treesit_node_uptodate_p (node) ? Qnil : Qt; treesit_check_node (node); if (BASE_EQ (property, Qnamed)) result = ts_node_is_named (treesit_node); else if (BASE_EQ (property, Qmissing)) result = ts_node_is_missing (treesit_node); else if (BASE_EQ (property, Qextra)) result = ts_node_is_extra (treesit_node); else if (BASE_EQ (property, Qhas_error)) result = ts_node_has_error (treesit_node); else if (BASE_EQ (property, Qlive)) result = treesit_parser_live_p (XTS_NODE (node)->parser); else signal_error ("Expecting `named', `missing', `extra', " "`outdated', `has-error', or `live', but got", property); return result ? Qt : Qnil; } DEFUN ("treesit-node-field-name-for-child", Ftreesit_node_field_name_for_child, Streesit_node_field_name_for_child, 2, 2, 0, doc: /* Return the field name of the Nth child of NODE. Return nil if there's no Nth child, or if it has no field. If NODE is nil, return nil. N counts all children, i.e., named ones and anonymous ones. N could be negative, e.g., -1 represents the last child. */) (Lisp_Object node, Lisp_Object n) { if (NILP (node)) return Qnil; treesit_check_node (node); CHECK_INTEGER (n); EMACS_INT idx = XFIXNUM (n); treesit_initialize (); TSNode treesit_node = XTS_NODE (node)->node; /* Process negative index. */ if (idx < 0) idx = ts_node_child_count (treesit_node) + idx; if (idx < 0) return Qnil; if (idx > UINT32_MAX) xsignal1 (Qargs_out_of_range, n); const char *name = ts_node_field_name_for_child (treesit_node, (uint32_t) idx); if (name == NULL) return Qnil; return build_string (name); } DEFUN ("treesit-node-child-count", Ftreesit_node_child_count, Streesit_node_child_count, 1, 2, 0, doc: /* Return the number of children of NODE. If NAMED is non-nil, count named children only. NAMED defaults to nil. If NODE is nil, return nil. */) (Lisp_Object node, Lisp_Object named) { if (NILP (node)) return Qnil; treesit_check_node (node); treesit_initialize (); TSNode treesit_node = XTS_NODE (node)->node; uint32_t count; if (NILP (named)) count = ts_node_child_count (treesit_node); else count = ts_node_named_child_count (treesit_node); return make_fixnum (count); } DEFUN ("treesit-node-child-by-field-name", Ftreesit_node_child_by_field_name, Streesit_node_child_by_field_name, 2, 2, 0, doc: /* Return the child of NODE with FIELD-NAME (a string). Return nil if there is no such child. If NODE is nil, return nil. */) (Lisp_Object node, Lisp_Object field_name) { if (NILP (node)) return Qnil; treesit_check_node (node); CHECK_STRING (field_name); treesit_initialize (); TSNode treesit_node = XTS_NODE (node)->node; TSNode child = ts_node_child_by_field_name (treesit_node, SSDATA (field_name), SBYTES (field_name)); if (ts_node_is_null (child)) return Qnil; return make_treesit_node (XTS_NODE (node)->parser, child); } DEFUN ("treesit-node-next-sibling", Ftreesit_node_next_sibling, Streesit_node_next_sibling, 1, 2, 0, doc: /* Return the next sibling of NODE. Return nil if there is no next sibling. If NAMED is non-nil, look for named siblings only. NAMED defaults to nil. If NODE is nil, return nil. */) (Lisp_Object node, Lisp_Object named) { if (NILP (node)) return Qnil; treesit_check_node (node); treesit_initialize (); TSNode treesit_node = XTS_NODE (node)->node; TSNode sibling; if (NILP (named)) sibling = ts_node_next_sibling (treesit_node); else sibling = ts_node_next_named_sibling (treesit_node); if (ts_node_is_null (sibling)) return Qnil; return make_treesit_node (XTS_NODE (node)->parser, sibling); } DEFUN ("treesit-node-prev-sibling", Ftreesit_node_prev_sibling, Streesit_node_prev_sibling, 1, 2, 0, doc: /* Return the previous sibling of NODE. Return nil if there is no previous sibling. If NAMED is non-nil, look for named siblings only. NAMED defaults to nil. If NODE is nil, return nil. */) (Lisp_Object node, Lisp_Object named) { if (NILP (node)) return Qnil; treesit_check_node (node); treesit_initialize (); TSNode treesit_node = XTS_NODE (node)->node; TSNode sibling; if (NILP (named)) sibling = ts_node_prev_sibling (treesit_node); else sibling = ts_node_prev_named_sibling (treesit_node); if (ts_node_is_null (sibling)) return Qnil; return make_treesit_node (XTS_NODE (node)->parser, sibling); } /* Our reimplementation of ts_node_first_child_for_byte. The current implementation of that function has problems (see bug#60127), so before it's fixed upstream, we use our own reimplementation of it. Return true if there is a valid sibling, return false otherwise. If the return value is false, the position of the cursor is undefined. (We use cursor because technically we can't make a null node for ourselves, also, using cursor is more convenient.) TODO: Remove this function once tree-sitter fixed the bug. */ static bool treesit_cursor_first_child_for_byte (TSTreeCursor *cursor, ptrdiff_t pos, bool named) { /* ts_tree_cursor_goto_first_child_for_byte is significantly faster, so despite it having problems, we try it first. */ if (ts_tree_cursor_goto_first_child_for_byte (cursor, pos) == -1 && !ts_tree_cursor_goto_first_child (cursor)) return false; TSNode node = ts_tree_cursor_current_node (cursor); while (ts_node_end_byte (node) <= pos) { if (ts_tree_cursor_goto_next_sibling (cursor)) node = ts_tree_cursor_current_node (cursor); else /* Reached the end and still can't find a valid sibling. */ return false; } while (named && (!ts_node_is_named (node))) { if (ts_tree_cursor_goto_next_sibling (cursor)) node = ts_tree_cursor_current_node (cursor); else /* Reached the end and still can't find a named sibling. */ return false; } return true; } DEFUN ("treesit-node-first-child-for-pos", Ftreesit_node_first_child_for_pos, Streesit_node_first_child_for_pos, 2, 3, 0, doc: /* Return the first child of NODE for buffer position POS. Specifically, return the first child that extends beyond POS. Return nil if there is no such child. If NAMED is non-nil, look for named children only. NAMED defaults to nil. Note that this function returns an immediate child, not the smallest (grand)child. If NODE is nil, return nil. */) (Lisp_Object node, Lisp_Object pos, Lisp_Object named) { if (NILP (node)) return Qnil; treesit_check_node (node); struct buffer *buf = XBUFFER (XTS_PARSER (XTS_NODE (node)->parser)->buffer); ptrdiff_t visible_beg = XTS_PARSER (XTS_NODE (node)->parser)->visible_beg; treesit_check_position (pos, buf); treesit_initialize (); ptrdiff_t byte_pos = buf_charpos_to_bytepos (buf, XFIXNUM (pos)); TSNode treesit_node = XTS_NODE (node)->node; TSTreeCursor cursor = ts_tree_cursor_new (treesit_node); ptrdiff_t treesit_pos = byte_pos - visible_beg; bool success; success = treesit_cursor_first_child_for_byte (&cursor, treesit_pos, !NILP (named)); TSNode child = ts_tree_cursor_current_node (&cursor); ts_tree_cursor_delete (&cursor); if (!success) return Qnil; return make_treesit_node (XTS_NODE (node)->parser, child); } DEFUN ("treesit-node-descendant-for-range", Ftreesit_node_descendant_for_range, Streesit_node_descendant_for_range, 3, 4, 0, doc: /* Return the smallest node that covers buffer positions BEG to END. The returned node is a descendant of NODE. Return nil if there is no such node. If NAMED is non-nil, look for named child only. NAMED defaults to nil. If NODE is nil, return nil. */) (Lisp_Object node, Lisp_Object beg, Lisp_Object end, Lisp_Object named) { if (NILP (node)) return Qnil; treesit_check_node (node); struct buffer *buf = XBUFFER (XTS_PARSER (XTS_NODE (node)->parser)->buffer); ptrdiff_t visible_beg = XTS_PARSER (XTS_NODE (node)->parser)->visible_beg; treesit_check_position (beg, buf); treesit_check_position (end, buf); treesit_initialize (); ptrdiff_t byte_beg = buf_charpos_to_bytepos (buf, XFIXNUM (beg)); ptrdiff_t byte_end = buf_charpos_to_bytepos (buf, XFIXNUM (end)); TSNode treesit_node = XTS_NODE (node)->node; TSNode child; if (NILP (named)) child = ts_node_descendant_for_byte_range (treesit_node, byte_beg - visible_beg, byte_end - visible_beg); else child = ts_node_named_descendant_for_byte_range (treesit_node, byte_beg - visible_beg, byte_end - visible_beg); if (ts_node_is_null (child)) return Qnil; return make_treesit_node (XTS_NODE (node)->parser, child); } /* Return true if NODE1 and NODE2 are the same node. Assumes they are TS_NODE type. */ bool treesit_node_eq (Lisp_Object node1, Lisp_Object node2) { treesit_initialize (); TSNode treesit_node_1 = XTS_NODE (node1)->node; TSNode treesit_node_2 = XTS_NODE (node2)->node; return ts_node_eq (treesit_node_1, treesit_node_2); } DEFUN ("treesit-node-eq", Ftreesit_node_eq, Streesit_node_eq, 2, 2, 0, doc: /* Return non-nil if NODE1 and NODE2 refer to the same node. If any one of NODE1 and NODE2 is nil, return nil. This function uses the same equivalence metric as `equal', and returns non-nil if NODE1 and NODE2 refer to the same node in a syntax tree produced by tree-sitter. */) (Lisp_Object node1, Lisp_Object node2) { if (NILP (node1) || NILP (node2)) return Qnil; CHECK_TS_NODE (node1); CHECK_TS_NODE (node2); bool same_node = treesit_node_eq (node1, node2); return same_node ? Qt : Qnil; } /*** Query functions */ /* Convert a Lisp string to its printed representation in the tree-sitter query syntax. */ static Lisp_Object treesit_query_string_string (Lisp_Object str) { /* Strings in the treesit query syntax only have the escapes \n \r \t \0 and any other escaped char stands for that character. Literal LF, NUL and " are forbidden. */ ptrdiff_t nbytes = SBYTES (str); ptrdiff_t escapes = 0; for (ptrdiff_t i = 0; i < nbytes; i++) { unsigned char c = SREF (str, i); escapes += (c == '\0' || c == '\n' || c == '\r' || c == '\t' || c == '"' || c == '\\'); } ptrdiff_t nchars = SCHARS (str); ptrdiff_t extra = escapes + 2; /* backslashes + double quotes */ Lisp_Object dst = (STRING_MULTIBYTE (str) ? make_uninit_multibyte_string (nchars + extra, nbytes + extra) : make_uninit_string (nbytes + extra)); unsigned char *d = SDATA (dst); *d++ = '"'; for (ptrdiff_t i = 0; i < nbytes; i++) { unsigned char c = SREF (str, i); switch (c) { case '\0': *d++ = '\\'; *d++ = '0'; break; case '\n': *d++ = '\\'; *d++ = 'n'; break; case '\r': *d++ = '\\'; *d++ = 'r'; break; case '\t': *d++ = '\\'; *d++ = 't'; break; case '"': case '\\': *d++ = '\\'; *d++ = c; break; default: *d++ = c; break; } } *d++ = '"'; eassert (d == SDATA (dst) + SBYTES (dst)); return dst; } DEFUN ("treesit-pattern-expand", Ftreesit_pattern_expand, Streesit_pattern_expand, 1, 1, 0, doc: /* Expand PATTERN to its string form. PATTERN can be :anchor :? :* :+ :equal :match (TYPE PATTERN...) [PATTERN...] FIELD-NAME: @CAPTURE-NAME (_) _ \"TYPE\" See Info node `(elisp)Pattern Matching' for detailed explanation. */) (Lisp_Object pattern) { if (BASE_EQ (pattern, QCanchor)) return Vtreesit_str_dot; if (BASE_EQ (pattern, QCquestion)) return Vtreesit_str_question_mark; if (BASE_EQ (pattern, QCstar)) return Vtreesit_str_star; if (BASE_EQ (pattern, QCplus)) return Vtreesit_str_plus; if (BASE_EQ (pattern, QCequal)) return Vtreesit_str_pound_equal; if (BASE_EQ (pattern, QCmatch)) return Vtreesit_str_pound_match; if (BASE_EQ (pattern, QCpred)) return Vtreesit_str_pound_pred; Lisp_Object opening_delimeter = VECTORP (pattern) ? Vtreesit_str_open_bracket : Vtreesit_str_open_paren; Lisp_Object closing_delimiter = VECTORP (pattern) ? Vtreesit_str_close_bracket : Vtreesit_str_close_paren; if (VECTORP (pattern) || CONSP (pattern)) return concat3 (opening_delimeter, Fmapconcat (Qtreesit_pattern_expand, pattern, Vtreesit_str_space), closing_delimiter); if (STRINGP (pattern)) return treesit_query_string_string (pattern); return Fprin1_to_string (pattern, Qnil, Qt); } DEFUN ("treesit-query-expand", Ftreesit_query_expand, Streesit_query_expand, 1, 1, 0, doc: /* Expand sexp QUERY to its string form. A PATTERN in QUERY can be :anchor :? :* :+ :equal :match (TYPE PATTERN...) [PATTERN...] FIELD-NAME: @CAPTURE-NAME (_) _ \"TYPE\" See Info node `(elisp)Pattern Matching' for detailed explanation. */) (Lisp_Object query) { return Fmapconcat (Qtreesit_pattern_expand, query, Vtreesit_str_space); } /* This struct is used for passing captures to be check against predicates. Captures we check for are the ones in START before END. For example, if START and END are START END v v (1 . (2 . (3 . (4 . (5 . (6 . nil)))))) We only look at captures 1 2 3. */ struct capture_range { Lisp_Object start; Lisp_Object end; }; /* Collect predicates for this match and return them in a list. Each predicate is a list of strings and symbols. */ static Lisp_Object treesit_predicates_for_pattern (TSQuery *query, uint32_t pattern_index) { uint32_t len; const TSQueryPredicateStep *predicate_list = ts_query_predicates_for_pattern (query, pattern_index, &len); Lisp_Object result = Qnil; Lisp_Object predicate = Qnil; for (int idx = 0; idx < len; idx++) { TSQueryPredicateStep step = predicate_list[idx]; switch (step.type) { case TSQueryPredicateStepTypeCapture: { uint32_t str_len; const char *str = ts_query_capture_name_for_id (query, step.value_id, &str_len); predicate = Fcons (intern_c_string_1 (str, str_len), predicate); break; } case TSQueryPredicateStepTypeString: { uint32_t str_len; const char *str = ts_query_string_value_for_id (query, step.value_id, &str_len); predicate = Fcons (make_string (str, str_len), predicate); break; } case TSQueryPredicateStepTypeDone: result = Fcons (Fnreverse (predicate), result); predicate = Qnil; break; } } return Fnreverse (result); } /* Translate a capture NAME (symbol) to a node. If everything goes fine, set NODE and return true; if error occurs (e.g., when there is no node for the capture name), set NODE to Qnil, SIGNAL_DATA to a suitable signal data, and return false. */ static bool treesit_predicate_capture_name_to_node (Lisp_Object name, struct capture_range captures, Lisp_Object *node, Lisp_Object *signal_data) { *node = Qnil; for (Lisp_Object tail = captures.start; !EQ (tail, captures.end); tail = XCDR (tail)) { if (EQ (XCAR (XCAR (tail)), name)) { *node = XCDR (XCAR (tail)); break; } } if (NILP (*node)) { *signal_data = list3 (build_string ("Cannot find captured node"), name, build_string ("A predicate can only refer" " to captured nodes in the " "same pattern")); return false; } return true; } /* Translate a capture NAME (symbol) to the text of the captured node. If everything goes fine, set TEXT to the text and return true; otherwise set TEXT to Qnil and set SIGNAL_DATA to a suitable signal data. */ static bool treesit_predicate_capture_name_to_text (Lisp_Object name, struct capture_range captures, Lisp_Object *text, Lisp_Object *signal_data) { Lisp_Object node = Qnil; if (!treesit_predicate_capture_name_to_node (name, captures, &node, signal_data)) return false; struct buffer *old_buffer = current_buffer; set_buffer_internal (XBUFFER (XTS_PARSER (XTS_NODE (node)->parser)->buffer)); *text = Fbuffer_substring (Ftreesit_node_start (node), Ftreesit_node_end (node)); set_buffer_internal (old_buffer); return true; } /* Handles predicate (#equal A B). Return true if A equals B; return false otherwise. A and B can be either string, or a capture name. The capture name evaluates to the text its captured node spans in the buffer. If everything goes fine, don't touch SIGNAL_DATA; if error occurs, set it to a suitable signal data. */ static bool treesit_predicate_equal (Lisp_Object args, struct capture_range captures, Lisp_Object *signal_data) { if (list_length (args) != 2) { *signal_data = list2 (build_string ("Predicate `equal' requires " "two arguments but got"), Flength (args)); return false; } Lisp_Object arg1 = XCAR (args); Lisp_Object arg2 = XCAR (XCDR (args)); Lisp_Object text1 = arg1; Lisp_Object text2 = arg2; if (SYMBOLP (arg1)) { if (!treesit_predicate_capture_name_to_text (arg1, captures, &text1, signal_data)) return false; } if (SYMBOLP (arg2)) { if (!treesit_predicate_capture_name_to_text (arg2, captures, &text2, signal_data)) return false; } return !NILP (Fstring_equal (text1, text2)); } /* Handles predicate (#match "regexp" @node). Return true if "regexp" matches the text spanned by @node; return false otherwise. Matching is case-sensitive. If everything goes fine, don't touch SIGNAL_DATA; if error occurs, set it to a suitable signal data. */ static bool treesit_predicate_match (Lisp_Object args, struct capture_range captures, Lisp_Object *signal_data) { if (list_length (args) != 2) { *signal_data = list2 (build_string ("Predicate `match' requires two " "arguments but got"), Flength (args)); return false; } Lisp_Object regexp = XCAR (args); Lisp_Object capture_name = XCAR (XCDR (args)); /* It's probably common to get the argument order backwards. Catch this mistake early and show helpful explanation, because Emacs loves you. (We put the regexp first because that's what string-match does.) */ if (!STRINGP (regexp)) xsignal1 (Qtreesit_query_error, build_string ("The first argument to `match' should " "be a regexp string, not a capture name")); if (!SYMBOLP (capture_name)) xsignal1 (Qtreesit_query_error, build_string ("The second argument to `match' should " "be a capture name, not a string")); Lisp_Object node = Qnil; if (!treesit_predicate_capture_name_to_node (capture_name, captures, &node, signal_data)) return false; TSNode treesit_node = XTS_NODE (node)->node; ptrdiff_t visible_beg = XTS_PARSER (XTS_NODE (node)->parser)->visible_beg; uint32_t start_byte_offset = ts_node_start_byte (treesit_node); uint32_t end_byte_offset = ts_node_end_byte (treesit_node); ptrdiff_t start_byte = visible_beg + start_byte_offset; ptrdiff_t end_byte = visible_beg + end_byte_offset; ptrdiff_t start_pos = BYTE_TO_CHAR (start_byte); ptrdiff_t end_pos = BYTE_TO_CHAR (end_byte); ptrdiff_t old_begv = BEGV; ptrdiff_t old_begv_byte = BEGV_BYTE; ptrdiff_t old_zv = ZV; ptrdiff_t old_zv_byte = ZV_BYTE; BEGV = start_pos; BEGV_BYTE = start_byte; ZV = end_pos; ZV_BYTE = end_byte; ptrdiff_t val = search_buffer (regexp, start_pos, start_byte, end_pos, end_byte, 1, true, false, NULL); BEGV = old_begv; BEGV_BYTE = old_begv_byte; ZV = old_zv; ZV_BYTE = old_zv_byte; return (val > 0); } /* Handles predicate (#pred FN ARG...). Return true if FN returns non-nil; return false otherwise. The arity of FN must match the number of ARGs. If everything goes fine, don't touch SIGNAL_DATA; if error occurs, set it to a suitable signal data. */ static bool treesit_predicate_pred (Lisp_Object args, struct capture_range captures, Lisp_Object *signal_data) { if (list_length (args) < 2) { *signal_data = list2 (build_string ("Predicate `pred' requires " "at least two arguments, " "but only got"), Flength (args)); return false; } Lisp_Object fn = Fintern (XCAR (args), Qnil); Lisp_Object nodes = Qnil; Lisp_Object tail = XCDR (args); FOR_EACH_TAIL (tail) { Lisp_Object node = Qnil; if (!treesit_predicate_capture_name_to_node (XCAR (tail), captures, &node, signal_data)) return false; nodes = Fcons (node, nodes); } nodes = Fnreverse (nodes); return !NILP (CALLN (Fapply, fn, nodes)); } /* If all predicates in PREDICATES pass, return true; otherwise return false. If everything goes fine, don't touch SIGNAL_DATA; if error occurs, set it to a suitable signal data. */ static bool treesit_eval_predicates (struct capture_range captures, Lisp_Object predicates, Lisp_Object *signal_data) { bool pass = true; /* Evaluate each predicates. */ for (Lisp_Object tail = predicates; pass && !NILP (tail); tail = XCDR (tail)) { Lisp_Object predicate = XCAR (tail); Lisp_Object fn = XCAR (predicate); Lisp_Object args = XCDR (predicate); if (!NILP (Fstring_equal (fn, Vtreesit_str_equal))) pass &= treesit_predicate_equal (args, captures, signal_data); else if (!NILP (Fstring_equal (fn, Vtreesit_str_match))) pass &= treesit_predicate_match (args, captures, signal_data); else if (!NILP (Fstring_equal (fn, Vtreesit_str_pred))) pass &= treesit_predicate_pred (args, captures, signal_data); else { *signal_data = list3 (build_string ("Invalid predicate"), fn, build_string ("Currently Emacs only supports" " `equal', `match', and `pred'" " predicates")); pass = false; } } /* If all predicates passed, add captures to result list. */ return pass; } DEFUN ("treesit-query-compile", Ftreesit_query_compile, Streesit_query_compile, 2, 3, 0, doc: /* Compile QUERY to a compiled query. Querying with a compiled query is much faster than an uncompiled one. LANGUAGE is the language this query is for. If EAGER is non-nil, immediately load LANGUAGE and compile the query. Otherwise defer the compilation until the query is first used. Signal `treesit-query-error' if QUERY is malformed or something else goes wrong. (This only happens if EAGER is non-nil.) You can use `treesit-query-validate' to validate and debug a query. */) (Lisp_Object language, Lisp_Object query, Lisp_Object eager) { if (NILP (Ftreesit_query_p (query))) wrong_type_argument (Qtreesit_query_p, query); CHECK_SYMBOL (language); if (TS_COMPILED_QUERY_P (query)) return query; treesit_initialize (); Lisp_Object lisp_query = make_treesit_query (query, language); /* Maybe actually compile. */ if (NILP (eager)) return lisp_query; else { Lisp_Object signal_symbol = Qnil; Lisp_Object signal_data = Qnil; TSQuery *treesit_query = treesit_ensure_query_compiled (lisp_query, &signal_symbol, &signal_data); if (treesit_query == NULL) xsignal (signal_symbol, signal_data); return lisp_query; } } /* Resolve OBJ into a tree-sitter node Lisp_Object. OBJ can be a node, a parser, or a language symbol. Note that this function can signal. */ static Lisp_Object treesit_resolve_node (Lisp_Object obj) { if (TS_NODEP (obj)) { treesit_check_node (obj); /* Check if up-to-date. */ return obj; } else if (TS_PARSERP (obj)) { treesit_check_parser (obj); /* Check if deleted. */ return Ftreesit_parser_root_node (obj); } else if (SYMBOLP (obj)) { Lisp_Object parser = Ftreesit_parser_create (obj, Fcurrent_buffer (), Qnil, Qnil); return Ftreesit_parser_root_node (parser); } else xsignal2 (Qwrong_type_argument, list4 (Qor, Qtreesit_node_p, Qtreesit_parser_p, Qsymbolp), obj); } /* Create and initialize QUERY. When success, initialize TS_QUERY, CURSOR, and NEED_FREE, and return true; if failed, initialize SIGNAL_SYMBOL and SIGNAL_DATA, and return false. If NEED_FREE is initialized to true, the TS_QUERY and CURSOR needs to be freed after use; otherwise they shouldn't be freed by hand. Basically this function looks at QUERY and check its type, if QUERY is a compiled query, this function takes out its query and cursor; if QUERY is a string or a cons, this function creates a new query and cursor (so they need to be manually freed). This function assumes QUERY is either a compiled query, a string or a cons, the caller should make sure QUERY is valid. LANG is the language to use if we need to create the query and cursor. */ static bool treesit_initialize_query (Lisp_Object query, const TSLanguage *lang, TSQuery **ts_query, TSQueryCursor **cursor, bool *need_free, Lisp_Object *signal_symbol, Lisp_Object *signal_data) { if (TS_COMPILED_QUERY_P (query)) { *ts_query = treesit_ensure_query_compiled (query, signal_symbol, signal_data); *cursor = treesit_ensure_query_cursor (query); /* We don't need to free ts_query and cursor because they are stored in a lisp object, which is tracked by gc. */ *need_free = false; return (*ts_query != NULL); } else { /* Since query is not TS_COMPILED_QUERY, it can only be a string or a cons. */ if (CONSP (query)) query = Ftreesit_query_expand (query); uint32_t error_offset; TSQueryError error_type; *ts_query = ts_query_new (lang, SSDATA (query), SBYTES (query), &error_offset, &error_type); if (*ts_query == NULL) { *signal_symbol = Qtreesit_query_error; *signal_data = treesit_compose_query_signal_data (error_offset, error_type, query); return false; } else { *cursor = ts_query_cursor_new (); *need_free = true; return true; } } } DEFUN ("treesit-query-capture", Ftreesit_query_capture, Streesit_query_capture, 2, 5, 0, doc: /* Query NODE with patterns in QUERY. Return a list of (CAPTURE_NAME . NODE). CAPTURE_NAME is the name assigned to the node in PATTERN. NODE is the captured node. QUERY is either a string query, a sexp query, or a compiled query. See Info node `(elisp)Pattern Matching' for how to write a query in either string or sexp form. When using repeatedly, a compiled query is much faster than a string or sexp one, so it is recommend to compile your query if it will be used repeatedly. BEG and END, if both non-nil, specify the region of buffer positions in which the query is executed. Any matching node whose span overlaps with the region between BEG and END are captured, it doesn't have to be completely in the region. If NODE-ONLY is non-nil, return a list of nodes. Besides a node, NODE can be a parser, in which case the root node of that parser is used. NODE can also be a language symbol, in which case the root node of a parser for that language is used. If such a parser doesn't exist, it is created. Signal `treesit-query-error' if QUERY is malformed or something else goes wrong. You can use `treesit-query-validate' to validate and debug the query. */) (Lisp_Object node, Lisp_Object query, Lisp_Object beg, Lisp_Object end, Lisp_Object node_only) { if (!(TS_COMPILED_QUERY_P (query) || CONSP (query) || STRINGP (query))) wrong_type_argument (Qtreesit_query_p, query); treesit_initialize (); /* Resolve NODE into an actual node, signals if node not up-to-date. */ Lisp_Object lisp_node = treesit_resolve_node (node); /* As of right now, the node returned by treesit_resolve_node always passes treesit_check_node; but it might not be true in the future, so adding the line below just to be safe. */ treesit_check_node (lisp_node); /* Extract C values from Lisp objects. */ TSNode treesit_node = XTS_NODE (lisp_node)->node; Lisp_Object lisp_parser = XTS_NODE (lisp_node)->parser; const TSLanguage *lang = ts_parser_language (XTS_PARSER (lisp_parser)->parser); /* Check BEG and END. */ struct buffer *buf = XBUFFER (XTS_PARSER (lisp_parser)->buffer); if (!NILP (beg)) treesit_check_position (beg, buf); if (!NILP (end)) treesit_check_position (end, buf); /* Initialize query objects. At the end of this block, we should have a working TSQuery and a TSQueryCursor. */ TSQuery *treesit_query; TSQueryCursor *cursor; bool needs_to_free_query_and_cursor; Lisp_Object signal_symbol; Lisp_Object signal_data; if (!treesit_initialize_query (query, lang, &treesit_query, &cursor, &needs_to_free_query_and_cursor, &signal_symbol, &signal_data)) xsignal (signal_symbol, signal_data); /* WARN: After this point, if NEEDS_TO_FREE_QUERY_AND_CURSOR is true, free TREESIT_QUERY and CURSOR before every signal and return. */ /* Set query range. */ if (!NILP (beg) && !NILP (end)) { ptrdiff_t visible_beg = XTS_PARSER (XTS_NODE (lisp_node)->parser)->visible_beg; ptrdiff_t beg_byte = CHAR_TO_BYTE (XFIXNUM (beg)); ptrdiff_t end_byte = CHAR_TO_BYTE (XFIXNUM (end)); /* We never let tree-sitter run on buffers too large, so these assertion should never hit. */ eassert (beg_byte - visible_beg <= UINT32_MAX); eassert (end_byte - visible_beg <= UINT32_MAX); ts_query_cursor_set_byte_range (cursor, (uint32_t) (beg_byte - visible_beg), (uint32_t) (end_byte - visible_beg)); } /* Execute query. */ ts_query_cursor_exec (cursor, treesit_query, treesit_node); TSQueryMatch match; /* Go over each match, collect captures and predicates. Include the captures in the RESULT list unconditionally as we get them, then test for predicates. If predicates pass, then all good, if predicates don't pass, revert the result back to the result before this loop (PREV_RESULT). (Predicates control the entire match.) This way we don't need to create a list of captures in every for loop and nconc it to RESULT every time. That is indeed the initial implementation in which Yoav found nconc being the bottleneck (98.4% of the running time spent on nconc). */ uint32_t patterns_count = ts_query_pattern_count (treesit_query); Lisp_Object result = Qnil; Lisp_Object prev_result = result; Lisp_Object predicates_table = make_vector (patterns_count, Qt); Lisp_Object predicate_signal_data = Qnil; struct buffer *old_buf = current_buffer; set_buffer_internal (buf); while (ts_query_cursor_next_match (cursor, &match)) { /* Record the checkpoint that we may roll back to. */ prev_result = result; /* 1. Get captured nodes. */ const TSQueryCapture *captures = match.captures; for (int idx = 0; idx < match.capture_count; idx++) { uint32_t capture_name_len; TSQueryCapture capture = captures[idx]; Lisp_Object captured_node = make_treesit_node (lisp_parser, capture.node); Lisp_Object cap; if (NILP (node_only)) { const char *capture_name = ts_query_capture_name_for_id (treesit_query, capture.index, &capture_name_len); cap = Fcons (intern_c_string_1 (capture_name, capture_name_len), captured_node); } else cap = captured_node; result = Fcons (cap, result); } /* 2. Get predicates and check whether this match can be included in the result list. */ Lisp_Object predicates = AREF (predicates_table, match.pattern_index); if (BASE_EQ (predicates, Qt)) { predicates = treesit_predicates_for_pattern (treesit_query, match.pattern_index); ASET (predicates_table, match.pattern_index, predicates); } /* captures_lisp = Fnreverse (captures_lisp); */ struct capture_range captures_range = { result, prev_result }; bool match = treesit_eval_predicates (captures_range, predicates, &predicate_signal_data); if (!NILP (predicate_signal_data)) break; /* Predicates didn't pass, roll back. */ if (!match) result = prev_result; } /* Final clean up. */ if (needs_to_free_query_and_cursor) { ts_query_delete (treesit_query); ts_query_cursor_delete (cursor); } set_buffer_internal (old_buf); /* Some capture predicate signaled an error. */ if (!NILP (predicate_signal_data)) xsignal (Qtreesit_query_error, predicate_signal_data); return Fnreverse (result); } /*** Navigation */ static inline void treesit_assume_true (bool val) { eassert (val == true); } /* Tries to move CURSOR to point to TARGET. END_POS is the end of TARGET. If success, return true, otherwise move CURSOR back to starting position and return false. LIMIT is the recursion limit. */ static bool treesit_cursor_helper_1 (TSTreeCursor *cursor, TSNode *target, uint32_t start_pos, uint32_t end_pos, ptrdiff_t limit) { if (limit <= 0) return false; TSNode cursor_node = ts_tree_cursor_current_node (cursor); if (ts_node_eq (cursor_node, *target)) return true; /* ts_tree_cursor_goto_first_child_for_byte is significantly faster, so despite it having problems (see bug#60127), we try it first. */ if (ts_tree_cursor_goto_first_child_for_byte (cursor, start_pos) == -1 && !ts_tree_cursor_goto_first_child (cursor)) return false; /* Go through each sibling that could contain TARGET. Because of missing nodes (their width is 0), there could be multiple siblings that could contain TARGET. */ while (ts_node_start_byte (cursor_node) <= end_pos) { if (ts_node_end_byte (cursor_node) >= end_pos && treesit_cursor_helper_1 (cursor, target, start_pos, end_pos, limit - 1)) return true; if (!ts_tree_cursor_goto_next_sibling (cursor)) break; cursor_node = ts_tree_cursor_current_node (cursor); } /* Couldn't find TARGET, must be not in this subtree, move cursor back and pray that other brothers and sisters can succeed. */ treesit_assume_true (ts_tree_cursor_goto_parent (cursor)); return false; } /* Create a TSTreeCursor pointing at NODE. PARSER is the lisp parser that produced NODE. If success, return true, otherwise return false. This function should almost always succeed, but if the parse tree is strangely too deep and exceeds the recursion limit, this function will fail and return false. If this function returns true, caller needs to free CURSOR; if returns false, caller don't need to free CURSOR. The reason we need this instead of simply using ts_tree_cursor_new is that we have to create the cursor on the root node and traverse down to NODE, in order to record the correct stack of parent nodes. Otherwise going to sibling or parent of NODE wouldn't work. (Wow perfect filling.) */ static bool treesit_cursor_helper (TSTreeCursor *cursor, TSNode node, Lisp_Object parser) { uint32_t start_pos = ts_node_start_byte (node); uint32_t end_pos = ts_node_end_byte (node); TSNode root = ts_tree_root_node (XTS_PARSER (parser)->tree); *cursor = ts_tree_cursor_new (root); bool success = treesit_cursor_helper_1 (cursor, &node, start_pos, end_pos, TREESIT_RECURSION_LIMIT); if (!success) ts_tree_cursor_delete (cursor); return success; } /* Move CURSOR to the next/previous sibling. FORWARD controls the direction. NAMED controls the namedness. If there is a valid sibling, move CURSOR to it and return true, otherwise return false. When false is returned, CURSOR points to a sibling node of the node we started at, but exactly which is undefined. */ static bool treesit_traverse_sibling_helper (TSTreeCursor *cursor, bool forward, bool named) { if (forward) { if (!named) return ts_tree_cursor_goto_next_sibling (cursor); /* Else named... */ while (ts_tree_cursor_goto_next_sibling (cursor)) { if (ts_node_is_named (ts_tree_cursor_current_node (cursor))) return true; } return false; } else /* Backward. */ { /* Go to first child and go through each sibling, until we find the one just before the starting node. */ TSNode start = ts_tree_cursor_current_node (cursor); if (!ts_tree_cursor_goto_parent (cursor)) return false; treesit_assume_true (ts_tree_cursor_goto_first_child (cursor)); /* Now CURSOR is at the first child. If we started at the first child, then there is no further siblings. */ TSNode first_child = ts_tree_cursor_current_node (cursor); if (ts_node_eq (first_child, start)) return false; /* PROBE is always DELTA siblings ahead of CURSOR. */ TSTreeCursor probe = ts_tree_cursor_copy (cursor); /* This is position of PROBE minus position of CURSOR. */ ptrdiff_t delta = 0; TSNode probe_node; TSNode cursor_node; while (ts_tree_cursor_goto_next_sibling (&probe)) { /* Move PROBE forward, if it equals to the starting node, CURSOR points to the node we want (prev valid sibling of the starting node). */ delta++; probe_node = ts_tree_cursor_current_node (&probe); /* PROBE matched, depending on NAMED, return true/false. */ if (ts_node_eq (probe_node, start)) { ts_tree_cursor_delete (&probe); cursor_node = ts_tree_cursor_current_node (cursor); ts_tree_cursor_delete (&probe); return (!named || (named && ts_node_is_named (cursor_node))); } /* PROBE didn't match, move CURSOR forward to PROBE's position, but if we are looking for named nodes, only move CURSOR to PROBE if PROBE is at a named node. */ if (!named || (named && ts_node_is_named (probe_node))) for (; delta > 0; delta--) treesit_assume_true (ts_tree_cursor_goto_next_sibling (cursor)); } ts_tree_cursor_delete (&probe); return false; } } /* Move CURSOR to the first/last child. FORWARD controls the direction. NAMED controls the namedness. If there is a valid child, move CURSOR to it and return true, otherwise don't move CURSOR and return false. */ static bool treesit_traverse_child_helper (TSTreeCursor *cursor, bool forward, bool named) { if (forward) { if (!named) return ts_tree_cursor_goto_first_child (cursor); else { if (!ts_tree_cursor_goto_first_child (cursor)) return false; /* After this point, if you return false, make sure to go back to parent. */ TSNode first_child = ts_tree_cursor_current_node (cursor); if (ts_node_is_named (first_child)) return true; if (treesit_traverse_sibling_helper (cursor, true, true)) return true; else { treesit_assume_true (ts_tree_cursor_goto_parent (cursor)); return false; } } } else /* Backward. */ { if (!ts_tree_cursor_goto_first_child (cursor)) return false; /* After this point, if you return false, make sure to go back to parent. */ /* First go to the last child. */ while (ts_tree_cursor_goto_next_sibling (cursor)); if (!named || (named && ts_node_is_named (ts_tree_cursor_current_node(cursor)))) return true; /* Else named is required and last child is not named node. */ if (treesit_traverse_sibling_helper(cursor, false, true)) return true; else { treesit_assume_true (ts_tree_cursor_goto_parent (cursor)); return false; } } } /* Given a symbol THING, and a language symbol LANGUAGE, find the corresponding predicate definition in treesit-thing-settings. Don't check for the type of THING and LANGUAGE. If there isn't one, return Qnil. */ static Lisp_Object treesit_traverse_get_predicate (Lisp_Object thing, Lisp_Object language) { Lisp_Object cons = assq_no_signal (language, Vtreesit_thing_settings); if (NILP (cons)) return Qnil; Lisp_Object definitions = XCDR (cons); Lisp_Object entry = assq_no_signal (thing, definitions); if (NILP (entry)) return Qnil; /* ENTRY looks like (THING PRED). */ Lisp_Object cdr = XCDR (entry); if (!CONSP (cdr)) return Qnil; return XCAR (cdr); } /* Validate the PRED passed to treesit_traverse_match_predicate. If there's an error, set SIGNAL_DATA to (ERR . DATA), where ERR is an error symbol, and DATA is something signal accepts, and return false, otherwise return true. This function also check for recursion levels: we place a arbitrary 100 level limit on recursive predicates. RECURSION_LEVEL is the current recursion level (that starts at 0), if it goes over 99, return false and set SIGNAL_DATA. LANGUAGE is a LANGUAGE symbol. */ static bool treesit_traverse_validate_predicate (Lisp_Object pred, Lisp_Object language, Lisp_Object *signal_data, ptrdiff_t recursion_level) { if (recursion_level > 99) { *signal_data = list2 (Qtreesit_invalid_predicate, build_string ("Predicate recursion level " "exceeded: it must not exceed " "100 levels")); return false; } if (STRINGP (pred)) return true; else if (FUNCTIONP (pred)) return true; else if (SYMBOLP (pred)) { Lisp_Object definition = treesit_traverse_get_predicate (pred, language); if (NILP (definition)) { *signal_data = list3 (Qtreesit_predicate_not_found, build_string ("Cannot find the definition " "of the predicate in " "`treesit-thing-settings'"), pred); return false; } return treesit_traverse_validate_predicate (definition, language, signal_data, recursion_level + 1); } else if (CONSP (pred)) { Lisp_Object car = XCAR (pred); Lisp_Object cdr = XCDR (pred); if (BASE_EQ (car, Qnot)) { if (!CONSP (cdr)) { *signal_data = list3 (Qtreesit_invalid_predicate, build_string ("Invalid `not' " "predicate"), pred); return false; } /* At this point CDR must be a cons. */ if (XFIXNUM (Flength (cdr)) != 1) { *signal_data = list3 (Qtreesit_invalid_predicate, build_string ("`not' can only " "have one argument"), pred); return false; } return treesit_traverse_validate_predicate (XCAR (cdr), language, signal_data, recursion_level + 1); } else if (BASE_EQ (car, Qor)) { if (!CONSP (cdr) || NILP (cdr)) { *signal_data = list3 (Qtreesit_invalid_predicate, build_string ("`or' must have a list " "of patterns as " "arguments "), pred); return false; } FOR_EACH_TAIL (cdr) { if (!treesit_traverse_validate_predicate (XCAR (cdr), language, signal_data, recursion_level + 1)) return false; } return true; } else if (STRINGP (car) && FUNCTIONP (cdr)) return true; } *signal_data = list3 (Qtreesit_invalid_predicate, build_string ("Invalid predicate, see `treesit-thing-settings' for valid forms of predicate"), pred); return false; } /* Return true if the node at CURSOR matches PRED. PRED can be a lot of things: PRED := string | function | (string . function) | (or PRED...) | (not PRED) See docstring of treesit-search-forward and friends for the meaning of each shape. This function assumes PRED is in one of its valid forms. If NAMED is true, also check that the node is named. This function may signal if the predicate function signals. */ static bool treesit_traverse_match_predicate (TSTreeCursor *cursor, Lisp_Object pred, Lisp_Object parser, bool named) { TSNode node = ts_tree_cursor_current_node (cursor); if (named && !ts_node_is_named (node)) return false; if (STRINGP (pred)) { const char *type = ts_node_type (node); return fast_c_string_match (pred, type, strlen (type)) >= 0; } else if (FUNCTIONP (pred)) { Lisp_Object lisp_node = make_treesit_node (parser, node); return !NILP (CALLN (Ffuncall, pred, lisp_node)); } else if (SYMBOLP (pred)) { Lisp_Object language = XTS_PARSER (parser)->language_symbol; Lisp_Object definition = treesit_traverse_get_predicate (pred, language); return treesit_traverse_match_predicate (cursor, definition, parser, named); } else if (CONSP (pred)) { Lisp_Object car = XCAR (pred); Lisp_Object cdr = XCDR (pred); if (BASE_EQ (car, Qnot)) return !treesit_traverse_match_predicate (cursor, XCAR (cdr), parser, named); else if (BASE_EQ (car, Qor)) { FOR_EACH_TAIL (cdr) { if (treesit_traverse_match_predicate (cursor, XCAR (cdr), parser, named)) return true; } return false; } else if (STRINGP (car) && FUNCTIONP (cdr)) { /* A bit of code duplication here, but should be fine. */ const char *type = ts_node_type (node); if (!(fast_c_string_match (car, type, strlen (type)) >= 0)) return false; Lisp_Object lisp_node = make_treesit_node (parser, node); if (NILP (CALLN (Ffuncall, cdr, lisp_node))) return false; return true; } } /* Returning false is better than UB. */ return false; } /* Traverse the parse tree starting from CURSOR. See `treesit-thing-settings' for the shapes PRED can have. If the node satisfies PRED, leave CURSOR on that node and return true. If no node satisfies PRED, move CURSOR back to starting position and return false. LIMIT is the number of levels we descend in the tree. FORWARD controls the direction in which we traverse the tree, true means forward, false backward. If SKIP_ROOT is true, don't match ROOT. This function may signal if the predicate function signals. */ static bool treesit_search_dfs (TSTreeCursor *cursor, Lisp_Object pred, Lisp_Object parser, bool forward, bool named, ptrdiff_t limit, bool skip_root) { if (!skip_root && treesit_traverse_match_predicate (cursor, pred, parser, named)) return true; if (limit == 0) return false; if (!treesit_traverse_child_helper (cursor, forward, named)) return false; /* After this point, if you return false, make sure to go back to parent. */ do /* Iterate through each child. */ { if (treesit_search_dfs (cursor, pred, parser, forward, named, limit - 1, false)) return true; } while (treesit_traverse_sibling_helper (cursor, forward, false)); /* No match in any child's subtree, go back to starting node. */ treesit_assume_true (ts_tree_cursor_goto_parent (cursor)); return false; } /* Go through the whole tree linearly, leaf-first, starting from START. PRED, PARSER, NAMED, FORWARD are the same as in ts_search_subtree. If a match is found, leave CURSOR at that node, and return true, if no match is found, return false, and CURSOR's position is undefined. This function may signal if the predicate function signals. */ static bool treesit_search_forward (TSTreeCursor *cursor, Lisp_Object pred, Lisp_Object parser, bool forward, bool named) { /* We don't search for subtree and always search from the leaf nodes. This way repeated call of this function traverses each node in the tree once and only once: (while node (setq node (treesit-search-forward node))) */ bool initial = true; while (true) { if (!initial /* We don't match the starting node. */ && treesit_traverse_match_predicate (cursor, pred, parser, named)) return true; initial = false; /* Try going to the next sibling, if there is no next sibling, go to parent and try again. */ while (!treesit_traverse_sibling_helper (cursor, forward, named)) { /* There is no next sibling, go to parent. */ if (!ts_tree_cursor_goto_parent (cursor)) return false; if (treesit_traverse_match_predicate (cursor, pred, parser, named)) return true; } /* We are at the next sibling, deep dive into the first leaf node. */ while (treesit_traverse_child_helper (cursor, forward, false)); /* At this point CURSOR is at a leaf node. */ } } /* Clean up the given tree cursor CURSOR. */ static void treesit_traverse_cleanup_cursor (void *cursor) { ts_tree_cursor_delete (cursor); } DEFUN ("treesit-search-subtree", Ftreesit_search_subtree, Streesit_search_subtree, 2, 5, 0, doc: /* Traverse the parse tree of NODE depth-first using PREDICATE. Traverse the subtree of NODE, and match PREDICATE with each node along the way. PREDICATE can be a regexp string that matches against each node's type, a predicate function, and more. See `treesit-thing-settings' for the possible predicates. PREDICATE can also be a thing defined in `treesit-thing-settings'. Using an undefined thing doesn't raise an error. By default, only traverse named nodes, but if ALL is non-nil, traverse all nodes. If BACKWARD is non-nil, traverse backwards. If DEPTH is non-nil, only traverse nodes up to that number of levels down in the tree. If DEPTH is nil, default to 1000. Return the first matched node, or nil if none matches. */) (Lisp_Object node, Lisp_Object predicate, Lisp_Object backward, Lisp_Object all, Lisp_Object depth) { CHECK_TS_NODE (node); CHECK_SYMBOL (all); CHECK_SYMBOL (backward); /* We use a default limit of 1000. See bug#59426 for the discussion. */ ptrdiff_t the_limit = TREESIT_RECURSION_LIMIT; if (!NILP (depth)) { CHECK_FIXNUM (depth); the_limit = XFIXNUM (depth); } treesit_initialize (); Lisp_Object parser = XTS_NODE (node)->parser; Lisp_Object language = XTS_PARSER (parser)->language_symbol; Lisp_Object signal_data = Qnil; if (!treesit_traverse_validate_predicate (predicate, language, &signal_data, 0)) { Lisp_Object err_symbol = XCAR (signal_data); Lisp_Object data = XCDR (signal_data); if (EQ (err_symbol, Qtreesit_predicate_not_found)) return Qnil; xsignal1 (err_symbol, data); } Lisp_Object return_value = Qnil; TSTreeCursor cursor; if (!treesit_cursor_helper (&cursor, XTS_NODE (node)->node, parser)) return return_value; specpdl_ref count = SPECPDL_INDEX (); record_unwind_protect_ptr (treesit_traverse_cleanup_cursor, &cursor); if (treesit_search_dfs (&cursor, predicate, parser, NILP (backward), NILP (all), the_limit, false)) { TSNode node = ts_tree_cursor_current_node (&cursor); return_value = make_treesit_node (parser, node); } return unbind_to (count, return_value); } DEFUN ("treesit-search-forward", Ftreesit_search_forward, Streesit_search_forward, 2, 4, 0, doc: /* Search for node matching PREDICATE in the parse tree of START. Start traversing the tree from node START, and match PREDICATE with each node (except START itself) along the way. PREDICATE can be a regexp string that matches against each node's type, a predicate function, and more. See `treesit-thing-settings' for the possible predicates. PREDICATE can also be a thing defined in `treesit-thing-settings'. Using an undefined thing doesn't raise an error. By default, only search for named nodes, but if ALL is non-nil, search for all nodes. If BACKWARD is non-nil, search backwards. Return the first matched node, or nil if none matches. For a tree like below, where START is marked by S, traverse as numbered from 1 to 12: 12 | S--------3----------11 | | | o--o-+--o 1--+--2 6--+-----10 | | | | o o +-+-+ +--+--+ | | | | | 4 5 7 8 9 Note that this function doesn't traverse the subtree of START, and it always traverse leaf nodes first, then upwards. */) (Lisp_Object start, Lisp_Object predicate, Lisp_Object backward, Lisp_Object all) { CHECK_TS_NODE (start); CHECK_SYMBOL (all); CHECK_SYMBOL (backward); treesit_initialize (); Lisp_Object parser = XTS_NODE (start)->parser; Lisp_Object language = XTS_PARSER (parser)->language_symbol; Lisp_Object signal_data = Qnil; if (!treesit_traverse_validate_predicate (predicate, language, &signal_data, 0)) { Lisp_Object err_symbol = XCAR (signal_data); Lisp_Object data = XCDR (signal_data); if (EQ (err_symbol, Qtreesit_predicate_not_found)) return Qnil; xsignal1 (err_symbol, data); } Lisp_Object return_value = Qnil; TSTreeCursor cursor; if (!treesit_cursor_helper (&cursor, XTS_NODE (start)->node, parser)) return return_value; specpdl_ref count = SPECPDL_INDEX (); record_unwind_protect_ptr (treesit_traverse_cleanup_cursor, &cursor); if (treesit_search_forward (&cursor, predicate, parser, NILP (backward), NILP (all))) { TSNode node = ts_tree_cursor_current_node (&cursor); return_value = make_treesit_node (parser, node); } return unbind_to (count, return_value); } /* Recursively traverse the tree under CURSOR, and append the result subtree to PARENT's cdr. See more in Ftreesit_induce_sparse_tree. Note that the top-level children list is reversed, because reasons. This function may signal if the predicate function signals. */ static void treesit_build_sparse_tree (TSTreeCursor *cursor, Lisp_Object parent, Lisp_Object pred, Lisp_Object process_fn, ptrdiff_t limit, Lisp_Object parser) { bool match = treesit_traverse_match_predicate (cursor, pred, parser, false); if (match) { /* If this node matches pred, add a new node to the parent's children list. */ TSNode node = ts_tree_cursor_current_node (cursor); Lisp_Object lisp_node = make_treesit_node (parser, node); if (!NILP (process_fn)) lisp_node = CALLN (Ffuncall, process_fn, lisp_node); Lisp_Object this = Fcons (lisp_node, Qnil); Fsetcdr (parent, Fcons (this, Fcdr (parent))); /* Now for children nodes, this is the new parent. */ parent = this; } /* Go through each child. */ if (limit > 0 && ts_tree_cursor_goto_first_child (cursor)) { do { /* Make sure not to use node after the recursive funcall. Then C compilers should be smart enough not to copy NODE to stack. */ treesit_build_sparse_tree (cursor, parent, pred, process_fn, limit - 1, parser); } while (ts_tree_cursor_goto_next_sibling (cursor)); /* Don't forget to come back to this node. */ ts_tree_cursor_goto_parent (cursor); } /* Before we go, reverse children in the sparse tree. */ if (match) /* When match == true, "parent" is actually the node we added in this layer (parent = this). */ Fsetcdr (parent, Fnreverse (Fcdr (parent))); } DEFUN ("treesit-induce-sparse-tree", Ftreesit_induce_sparse_tree, Streesit_induce_sparse_tree, 2, 4, 0, doc: /* Create a sparse tree of ROOT's subtree. This takes the subtree under ROOT, and combs it so only the nodes that match PREDICATE are left, like picking out grapes on the vine. PREDICATE can be a regexp string that matches against each node's type, a predicate function, and more. See `treesit-thing-settings' for the possible predicates. PREDICATE can also be a thing defined in `treesit-thing-settings'. Using an undefined thing doesn't raise an error. For a subtree on the left that consist of both numbers and letters, if PREDICATE is "is letter", the returned tree is the one on the right. a a a | | | +---+---+ +---+---+ +---+---+ | | | | | | | | | b 1 2 b | | b c d | | => | | => | c +--+ c + e | | | | | +--+ d 4 +--+ d | | | e 5 e If PROCESS-FN is non-nil, it should be a function of one argument. In that case, instead of returning the matched nodes, pass each node to PROCESS-FN, and use its return value instead. If non-nil, DEPTH is the number of levels to go down the tree from ROOT. If DEPTH is nil or omitted, it defaults to 1000. Each node in the returned tree looks like (NODE . (CHILD ...)). The root of this tree might be nil, if ROOT doesn't match PREDICATE. If no node matches PREDICATE, return nil. */) (Lisp_Object root, Lisp_Object predicate, Lisp_Object process_fn, Lisp_Object depth) { CHECK_TS_NODE (root); if (!NILP (process_fn)) CHECK_TYPE (FUNCTIONP (process_fn), Qfunctionp, process_fn); /* We use a default limit of 1000. See bug#59426 for the discussion. */ ptrdiff_t the_limit = TREESIT_RECURSION_LIMIT; if (!NILP (depth)) { CHECK_FIXNUM (depth); the_limit = XFIXNUM (depth); } treesit_initialize (); Lisp_Object parser = XTS_NODE (root)->parser; Lisp_Object language = XTS_PARSER (parser)->language_symbol; Lisp_Object signal_data = Qnil; if (!treesit_traverse_validate_predicate (predicate, language, &signal_data, 0)) { Lisp_Object err_symbol = XCAR (signal_data); Lisp_Object data = XCDR (signal_data); if (EQ (err_symbol, Qtreesit_predicate_not_found)) return Qnil; xsignal1 (err_symbol, data); } Lisp_Object parent = Fcons (Qnil, Qnil); /* In this function we never traverse above NODE, so we don't need to use treesit_cursor_helper. */ TSTreeCursor cursor = ts_tree_cursor_new (XTS_NODE (root)->node); specpdl_ref count = SPECPDL_INDEX (); record_unwind_protect_ptr (treesit_traverse_cleanup_cursor, &cursor); treesit_build_sparse_tree (&cursor, parent, predicate, process_fn, the_limit, parser); unbind_to (count, Qnil); Fsetcdr (parent, Fnreverse (Fcdr (parent))); if (NILP (Fcdr (parent))) return Qnil; else return parent; } DEFUN ("treesit-node-match-p", Ftreesit_node_match_p, Streesit_node_match_p, 2, 3, 0, doc: /* Check whether NODE matches PREDICATE. PREDICATE can be a symbol representing a thing in `treesit-thing-settings', or a predicate, like regexp matching node type, etc. See `treesit-thing-settings' for more details. Return non-nil if NODE matches PREDICATE, nil otherwise. Signals `treesit-invalid-predicate' if there's no definition of THING in `treesit-thing-settings', or if PREDICATE is malformed. If IGNORE-MISSING is non-nil, don't signal an error for missing THING definition, but still signal for malformed PREDICATE. */) (Lisp_Object node, Lisp_Object predicate, Lisp_Object ignore_missing) { CHECK_TS_NODE (node); Lisp_Object parser = XTS_NODE (node)->parser; Lisp_Object language = XTS_PARSER (parser)->language_symbol; Lisp_Object signal_data = Qnil; if (!treesit_traverse_validate_predicate (predicate, language, &signal_data, 0)) { Lisp_Object err_symbol = XCAR (signal_data); Lisp_Object data = XCDR (signal_data); if (!NILP (ignore_missing) && EQ (err_symbol, Qtreesit_predicate_not_found)) return Qnil; xsignal1 (err_symbol, data); } TSTreeCursor cursor = ts_tree_cursor_new (XTS_NODE (node)->node); specpdl_ref count = SPECPDL_INDEX (); record_unwind_protect_ptr (treesit_traverse_cleanup_cursor, &cursor); bool match = false; match = treesit_traverse_match_predicate (&cursor, predicate, parser, false); unbind_to (count, Qnil); return match ? Qt : Qnil; } DEFUN ("treesit-subtree-stat", Ftreesit_subtree_stat, Streesit_subtree_stat, 1, 1, 0, doc: /* Return information about the subtree of NODE. Return a list (MAX-DEPTH MAX-WIDTH COUNT), where MAX-DEPTH is the maximum depth of the subtree, MAX-WIDTH is the maximum number of direct children of nodes in the subtree, and COUNT is the number of nodes in the subtree, including NODE. */) (Lisp_Object node) { /* Having a limit on the depth to traverse doesn't have much impact on the time it takes, so I left that out. */ CHECK_TS_NODE (node); treesit_initialize (); TSTreeCursor cursor = ts_tree_cursor_new (XTS_NODE (node)->node); ptrdiff_t max_depth = 1; ptrdiff_t max_width = 0; ptrdiff_t count = 0; ptrdiff_t current_depth = 0; /* Traverse the subtree depth-first. */ while (true) { count++; /* Go down depth-first. */ while (ts_tree_cursor_goto_first_child (&cursor)) { current_depth++; count++; /* While we're at here, measure the number of siblings. */ ptrdiff_t width_count = 1; while (ts_tree_cursor_goto_next_sibling (&cursor)) width_count++; max_width = max (max_width, width_count); /* Go back to the first sibling. */ treesit_assume_true (ts_tree_cursor_goto_parent (&cursor)); treesit_assume_true (ts_tree_cursor_goto_first_child (&cursor)); } max_depth = max (max_depth, current_depth); /* Go to next sibling. If there is no next sibling, go to parent's next sibling, and so on. If there is no more parent, we've traversed the whole subtree, stop. */ while (!ts_tree_cursor_goto_next_sibling (&cursor)) { if (ts_tree_cursor_goto_parent (&cursor)) current_depth--; else { ts_tree_cursor_delete (&cursor); return list3 (make_fixnum (max_depth), make_fixnum (max_width), make_fixnum (count)); } } } } #endif /* HAVE_TREE_SITTER */ DEFUN ("treesit-available-p", Ftreesit_available_p, Streesit_available_p, 0, 0, 0, doc: /* Return non-nil if tree-sitter support is built-in and available. */) (void) { #if HAVE_TREE_SITTER return load_tree_sitter_if_necessary (false) ? Qt : Qnil; #else return Qnil; #endif } /*** Initialization */ /* Initialize the tree-sitter routines. */ void syms_of_treesit (void) { #if HAVE_TREE_SITTER DEFSYM (Qtreesit_parser_p, "treesit-parser-p"); DEFSYM (Qtreesit_node_p, "treesit-node-p"); DEFSYM (Qtreesit_compiled_query_p, "treesit-compiled-query-p"); DEFSYM (Qtreesit_query_p, "treesit-query-p"); DEFSYM (Qnamed, "named"); DEFSYM (Qmissing, "missing"); DEFSYM (Qextra, "extra"); DEFSYM (Qoutdated, "outdated"); DEFSYM (Qhas_error, "has-error"); DEFSYM (Qlive, "live"); DEFSYM (Qnot, "not"); DEFSYM (QCanchor, ":anchor"); DEFSYM (QCquestion, ":?"); DEFSYM (QCstar, ":*"); DEFSYM (QCplus, ":+"); DEFSYM (QCequal, ":equal"); DEFSYM (QCmatch, ":match"); DEFSYM (QCpred, ":pred"); DEFSYM (Qnot_found, "not-found"); DEFSYM (Qsymbol_error, "symbol-error"); DEFSYM (Qversion_mismatch, "version-mismatch"); DEFSYM (Qtreesit_error, "treesit-error"); DEFSYM (Qtreesit_query_error, "treesit-query-error"); DEFSYM (Qtreesit_parse_error, "treesit-parse-error"); DEFSYM (Qtreesit_range_invalid, "treesit-range-invalid"); DEFSYM (Qtreesit_buffer_too_large, "treesit-buffer-too-large"); DEFSYM (Qtreesit_load_language_error, "treesit-load-language-error"); DEFSYM (Qtreesit_node_outdated, "treesit-node-outdated"); DEFSYM (Qtreesit_node_buffer_killed, "treesit-node-buffer-killed"); DEFSYM (Quser_emacs_directory, "user-emacs-directory"); DEFSYM (Qtreesit_parser_deleted, "treesit-parser-deleted"); DEFSYM (Qtreesit_pattern_expand, "treesit-pattern-expand"); DEFSYM (Qtreesit_invalid_predicate, "treesit-invalid-predicate"); DEFSYM (Qtreesit_predicate_not_found, "treesit-predicate-not-found"); DEFSYM (Qor, "or"); #ifdef WINDOWSNT DEFSYM (Qtree_sitter, "tree-sitter"); #endif define_error (Qtreesit_error, "Generic tree-sitter error", Qerror); define_error (Qtreesit_query_error, "Query pattern is malformed", Qtreesit_error); /* Should be impossible, no need to document this error. */ define_error (Qtreesit_parse_error, "Parse failed", Qtreesit_error); define_error (Qtreesit_range_invalid, "RANGES are invalid: they have to be ordered and should not overlap", Qtreesit_error); define_error (Qtreesit_buffer_too_large, "Buffer too large (> 4GiB)", Qtreesit_error); define_error (Qtreesit_load_language_error, "Cannot load language definition", Qtreesit_error); define_error (Qtreesit_node_outdated, "This node is outdated, please retrieve a new one", Qtreesit_error); define_error (Qtreesit_node_buffer_killed, "The buffer associated with this node is killed", Qtreesit_error); define_error (Qtreesit_parser_deleted, "This parser is deleted and cannot be used", Qtreesit_error); define_error (Qtreesit_invalid_predicate, "Invalid predicate, see `treesit-thing-settings' " "for valid forms for a predicate", Qtreesit_error); DEFVAR_LISP ("treesit-load-name-override-list", Vtreesit_load_name_override_list, doc: /* An override list for unconventional tree-sitter libraries. By default, Emacs assumes the dynamic library for LANG is libtree-sitter-LANG.EXT, where EXT is the OS specific extension for dynamic libraries. Emacs also assumes that the name of the C function the library provides is tree_sitter_LANG. If that is not the case, you can add an entry (LANG LIBRARY-BASE-NAME FUNCTION-NAME) to this list, where LIBRARY-BASE-NAME is the filename of the dynamic library without the file-name extension, and FUNCTION-NAME is the function provided by the library. */); Vtreesit_load_name_override_list = Qnil; DEFVAR_LISP ("treesit-extra-load-path", Vtreesit_extra_load_path, doc: /* Additional directories to look for tree-sitter language definitions. The value should be a list of directories. When trying to load a tree-sitter language definition, Emacs first looks in the directories mentioned in this variable, then in the `tree-sitter' subdirectory of `user-emacs-directory', and then in the system default locations for dynamic libraries, in that order. */); Vtreesit_extra_load_path = Qnil; DEFVAR_LISP ("treesit-thing-settings", Vtreesit_thing_settings, doc: /* A list defining things. The value should be an alist of (LANGUAGE . DEFINITIONS), where LANGUAGE is a language symbol, and DEFINITIONS is a list of (THING PRED) THING is a symbol representing the thing, like `defun', `sexp', or `sentence'; PRED defines what kind of node can be qualified as THING. PRED can be a regexp string that matches the type of the node; it can be a predicate function that takes the node as the sole argument and returns t if the node is the thing, and nil otherwise; it can be a cons (REGEXP . FN), which is a combination of a regexp and a predicate function, and the node has to match both to qualify as the thing. PRED can also be recursively defined. It can be (or PRED...), meaning satisfying anyone of the inner PREDs qualifies the node; or (not PRED), meaning not satisfying the inner PRED qualifies the node. Finally, PRED can refer to other THINGs defined in this list by using the symbol of that THING. For example, (or sexp sentence). */); Vtreesit_thing_settings = Qnil; DEFVAR_LISP ("treesit-language-remap-alist", Vtreesit_language_remap_alist, doc: /* An alist remapping language symbols. The value should be an alist of (LANGUAGE-A . LANGUAGE-B). When such pair exists in the alist, creating a parser for LANGUAGE-A actually creates a parser for LANGUAGE-B. Basically, anything that requires or applies to LANGUAGE-A will be redirected to LANGUAGE-B instead. */); Vtreesit_language_remap_alist = Qnil; DEFSYM (Qtreesit_language_remap_alist, "treesit-language-remap-alist"); Fmake_variable_buffer_local (Qtreesit_language_remap_alist); staticpro (&Vtreesit_str_libtree_sitter); Vtreesit_str_libtree_sitter = build_pure_c_string ("libtree-sitter-"); staticpro (&Vtreesit_str_tree_sitter); Vtreesit_str_tree_sitter = build_pure_c_string ("tree-sitter-"); #ifndef WINDOWSNT staticpro (&Vtreesit_str_dot_0); Vtreesit_str_dot_0 = build_pure_c_string (".0"); #endif staticpro (&Vtreesit_str_dot); Vtreesit_str_dot = build_pure_c_string ("."); staticpro (&Vtreesit_str_question_mark); Vtreesit_str_question_mark = build_pure_c_string ("?"); staticpro (&Vtreesit_str_star); Vtreesit_str_star = build_pure_c_string ("*"); staticpro (&Vtreesit_str_plus); Vtreesit_str_plus = build_pure_c_string ("+"); staticpro (&Vtreesit_str_pound_equal); Vtreesit_str_pound_equal = build_pure_c_string ("#equal"); staticpro (&Vtreesit_str_pound_match); Vtreesit_str_pound_match = build_pure_c_string ("#match"); staticpro (&Vtreesit_str_pound_pred); Vtreesit_str_pound_pred = build_pure_c_string ("#pred"); staticpro (&Vtreesit_str_open_bracket); Vtreesit_str_open_bracket = build_pure_c_string ("["); staticpro (&Vtreesit_str_close_bracket); Vtreesit_str_close_bracket = build_pure_c_string ("]"); staticpro (&Vtreesit_str_open_paren); Vtreesit_str_open_paren = build_pure_c_string ("("); staticpro (&Vtreesit_str_close_paren); Vtreesit_str_close_paren = build_pure_c_string (")"); staticpro (&Vtreesit_str_space); Vtreesit_str_space = build_pure_c_string (" "); staticpro (&Vtreesit_str_equal); Vtreesit_str_equal = build_pure_c_string ("equal"); staticpro (&Vtreesit_str_match); Vtreesit_str_match = build_pure_c_string ("match"); staticpro (&Vtreesit_str_pred); Vtreesit_str_pred = build_pure_c_string ("pred"); defsubr (&Streesit_language_available_p); defsubr (&Streesit_library_abi_version); defsubr (&Streesit_language_abi_version); defsubr (&Streesit_parser_p); defsubr (&Streesit_node_p); defsubr (&Streesit_compiled_query_p); defsubr (&Streesit_query_p); defsubr (&Streesit_query_language); defsubr (&Streesit_node_parser); defsubr (&Streesit_parser_create); defsubr (&Streesit_parser_delete); defsubr (&Streesit_parser_list); defsubr (&Streesit_parser_buffer); defsubr (&Streesit_parser_language); defsubr (&Streesit_parser_tag); defsubr (&Streesit_parser_root_node); /* defsubr (&Streesit_parse_string); */ defsubr (&Streesit_parser_set_included_ranges); defsubr (&Streesit_parser_included_ranges); defsubr (&Streesit_parser_notifiers); defsubr (&Streesit_parser_add_notifier); defsubr (&Streesit_parser_remove_notifier); defsubr (&Streesit_node_type); defsubr (&Streesit_node_start); defsubr (&Streesit_node_end); defsubr (&Streesit_node_string); defsubr (&Streesit_node_parent); defsubr (&Streesit_node_child); defsubr (&Streesit_node_check); defsubr (&Streesit_node_field_name_for_child); defsubr (&Streesit_node_child_count); defsubr (&Streesit_node_child_by_field_name); defsubr (&Streesit_node_next_sibling); defsubr (&Streesit_node_prev_sibling); defsubr (&Streesit_node_first_child_for_pos); defsubr (&Streesit_node_descendant_for_range); defsubr (&Streesit_node_eq); defsubr (&Streesit_pattern_expand); defsubr (&Streesit_query_expand); defsubr (&Streesit_query_compile); defsubr (&Streesit_query_capture); defsubr (&Streesit_search_subtree); defsubr (&Streesit_search_forward); defsubr (&Streesit_induce_sparse_tree); defsubr (&Streesit_node_match_p); defsubr (&Streesit_subtree_stat); #endif /* HAVE_TREE_SITTER */ defsubr (&Streesit_available_p); }