/* Primitive operations on floating point for GNU Emacs Lisp interpreter. Copyright (C) 1988, 1993-1994, 1999, 2001-2021 Free Software Foundation, Inc. Author: Wolfgang Rupprecht (according to ack.texi) This file is part of GNU Emacs. GNU Emacs is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. GNU Emacs is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU Emacs. If not, see . */ /* C89 requires only the following math.h functions, and Emacs omits the starred functions since we haven't found a use for them: acos, asin, atan, atan2, ceil, cos, *cosh, exp, fabs, floor, fmod, frexp, ldexp, log, log10 [via (log X 10)], *modf, pow, sin, *sinh, sqrt, tan, *tanh. C99 and C11 require the following math.h functions in addition to the C89 functions. Of these, Emacs currently exports only the starred ones to Lisp, since we haven't found a use for the others: acosh, atanh, cbrt, *copysign, erf, erfc, exp2, expm1, fdim, fma, fmax, fmin, fpclassify, hypot, ilogb, isfinite, isgreater, isgreaterequal, isinf, isless, islessequal, islessgreater, *isnan, isnormal, isunordered, lgamma, log1p, *log2 [via (log X 2)], *logb (approximately), lrint/llrint, lround/llround, nan, nearbyint, nextafter, nexttoward, remainder, remquo, *rint, round, scalbln, scalbn, signbit, tgamma, *trunc. */ #include #include "lisp.h" #include "bignum.h" #include #include /* Emacs needs proper handling of +/-inf; correct printing as well as important packages depend on it. Make sure the user didn't specify -ffinite-math-only, either directly or implicitly with -Ofast or -ffast-math. */ #if defined __FINITE_MATH_ONLY__ && __FINITE_MATH_ONLY__ #error Emacs cannot be built with -ffinite-math-only #endif /* Check that X is a floating point number. */ static void CHECK_FLOAT (Lisp_Object x) { CHECK_TYPE (FLOATP (x), Qfloatp, x); } /* Extract a Lisp number as a `double', or signal an error. */ double extract_float (Lisp_Object num) { CHECK_NUMBER (num); return XFLOATINT (num); } /* Trig functions. */ DEFUN ("acos", Facos, Sacos, 1, 1, 0, doc: /* Return the inverse cosine of ARG. */) (Lisp_Object arg) { double d = extract_float (arg); d = acos (d); return make_float (d); } DEFUN ("asin", Fasin, Sasin, 1, 1, 0, doc: /* Return the inverse sine of ARG. */) (Lisp_Object arg) { double d = extract_float (arg); d = asin (d); return make_float (d); } DEFUN ("atan", Fatan, Satan, 1, 2, 0, doc: /* Return the inverse tangent of the arguments. If only one argument Y is given, return the inverse tangent of Y. If two arguments Y and X are given, return the inverse tangent of Y divided by X, i.e. the angle in radians between the vector (X, Y) and the x-axis. */) (Lisp_Object y, Lisp_Object x) { double d = extract_float (y); if (NILP (x)) d = atan (d); else { double d2 = extract_float (x); d = atan2 (d, d2); } return make_float (d); } DEFUN ("cos", Fcos, Scos, 1, 1, 0, doc: /* Return the cosine of ARG. */) (Lisp_Object arg) { double d = extract_float (arg); d = cos (d); return make_float (d); } DEFUN ("sin", Fsin, Ssin, 1, 1, 0, doc: /* Return the sine of ARG. */) (Lisp_Object arg) { double d = extract_float (arg); d = sin (d); return make_float (d); } DEFUN ("tan", Ftan, Stan, 1, 1, 0, doc: /* Return the tangent of ARG. */) (Lisp_Object arg) { double d = extract_float (arg); d = tan (d); return make_float (d); } DEFUN ("isnan", Fisnan, Sisnan, 1, 1, 0, doc: /* Return non-nil if argument X is a NaN. */) (Lisp_Object x) { CHECK_FLOAT (x); return isnan (XFLOAT_DATA (x)) ? Qt : Qnil; } /* Although the substitute does not work on NaNs, it is good enough for platforms lacking the signbit macro. */ #ifndef signbit # define signbit(x) ((x) < 0 || (IEEE_FLOATING_POINT && !(x) && 1 / (x) < 0)) #endif DEFUN ("copysign", Fcopysign, Scopysign, 2, 2, 0, doc: /* Copy sign of X2 to value of X1, and return the result. Cause an error if X1 or X2 is not a float. */) (Lisp_Object x1, Lisp_Object x2) { double f1, f2; CHECK_FLOAT (x1); CHECK_FLOAT (x2); f1 = XFLOAT_DATA (x1); f2 = XFLOAT_DATA (x2); /* Use signbit instead of copysign, to avoid calling make_float when the result is X1. */ return signbit (f1) != signbit (f2) ? make_float (-f1) : x1; } DEFUN ("frexp", Ffrexp, Sfrexp, 1, 1, 0, doc: /* Get significand and exponent of a floating point number. Breaks the floating point number X into its binary significand SGNFCAND \(a floating point value between 0.5 (included) and 1.0 (excluded)) and an integral exponent EXP for 2, such that: X = SGNFCAND * 2^EXP The function returns the cons cell (SGNFCAND . EXP). If X is zero, both parts (SGNFCAND and EXP) are zero. */) (Lisp_Object x) { double f = extract_float (x); int exponent; double sgnfcand = frexp (f, &exponent); return Fcons (make_float (sgnfcand), make_fixnum (exponent)); } DEFUN ("ldexp", Fldexp, Sldexp, 2, 2, 0, doc: /* Return SGNFCAND * 2**EXPONENT, as a floating point number. EXPONENT must be an integer. */) (Lisp_Object sgnfcand, Lisp_Object exponent) { CHECK_FIXNUM (exponent); int e = min (max (INT_MIN, XFIXNUM (exponent)), INT_MAX); return make_float (ldexp (extract_float (sgnfcand), e)); } DEFUN ("exp", Fexp, Sexp, 1, 1, 0, doc: /* Return the exponential base e of ARG. */) (Lisp_Object arg) { double d = extract_float (arg); d = exp (d); return make_float (d); } DEFUN ("expt", Fexpt, Sexpt, 2, 2, 0, doc: /* Return the exponential ARG1 ** ARG2. */) (Lisp_Object arg1, Lisp_Object arg2) { CHECK_NUMBER (arg1); CHECK_NUMBER (arg2); /* Common Lisp spec: don't promote if both are integers, and if the result is not fractional. */ if (INTEGERP (arg1) && !NILP (Fnatnump (arg2))) return expt_integer (arg1, arg2); return make_float (pow (XFLOATINT (arg1), XFLOATINT (arg2))); } DEFUN ("log", Flog, Slog, 1, 2, 0, doc: /* Return the natural logarithm of ARG. If the optional argument BASE is given, return log ARG using that base. */) (Lisp_Object arg, Lisp_Object base) { double d = extract_float (arg); if (NILP (base)) d = log (d); else { double b = extract_float (base); if (b == 10.0) d = log10 (d); #if HAVE_LOG2 else if (b == 2.0) d = log2 (d); #endif else d = log (d) / log (b); } return make_float (d); } DEFUN ("sqrt", Fsqrt, Ssqrt, 1, 1, 0, doc: /* Return the square root of ARG. */) (Lisp_Object arg) { double d = extract_float (arg); d = sqrt (d); return make_float (d); } DEFUN ("abs", Fabs, Sabs, 1, 1, 0, doc: /* Return the absolute value of ARG. */) (Lisp_Object arg) { CHECK_NUMBER (arg); if (FIXNUMP (arg)) { if (XFIXNUM (arg) < 0) arg = make_int (-XFIXNUM (arg)); } else if (FLOATP (arg)) { if (signbit (XFLOAT_DATA (arg))) arg = make_float (- XFLOAT_DATA (arg)); } else { if (mpz_sgn (*xbignum_val (arg)) < 0) { mpz_neg (mpz[0], *xbignum_val (arg)); arg = make_integer_mpz (); } } return arg; } DEFUN ("float", Ffloat, Sfloat, 1, 1, 0, doc: /* Return the floating point number equal to ARG. */) (register Lisp_Object arg) { CHECK_NUMBER (arg); /* If ARG is a float, give 'em the same float back. */ return FLOATP (arg) ? arg : make_float (XFLOATINT (arg)); } static int ecount_leading_zeros (EMACS_UINT x) { return (EMACS_UINT_WIDTH == UINT_WIDTH ? count_leading_zeros (x) : EMACS_UINT_WIDTH == ULONG_WIDTH ? count_leading_zeros_l (x) : count_leading_zeros_ll (x)); } DEFUN ("logb", Flogb, Slogb, 1, 1, 0, doc: /* Returns largest integer <= the base 2 log of the magnitude of ARG. This is the same as the exponent of a float. */) (Lisp_Object arg) { EMACS_INT value; CHECK_NUMBER (arg); if (FLOATP (arg)) { double f = XFLOAT_DATA (arg); if (f == 0) return make_float (-HUGE_VAL); if (!isfinite (f)) return f < 0 ? make_float (-f) : arg; int ivalue; frexp (f, &ivalue); value = ivalue - 1; } else if (!FIXNUMP (arg)) value = mpz_sizeinbase (*xbignum_val (arg), 2) - 1; else { EMACS_INT i = XFIXNUM (arg); if (i == 0) return make_float (-HUGE_VAL); value = EMACS_UINT_WIDTH - 1 - ecount_leading_zeros (eabs (i)); } return make_fixnum (value); } /* Return the integer exponent E such that D * FLT_RADIX**E (i.e., scalbn (D, E)) is an integer that has precision equal to D and is representable as a double. Return DBL_MANT_DIG - DBL_MIN_EXP (the maximum possible valid scale) if D is zero or tiny. Return one greater than that if D is infinite, and two greater than that if D is a NaN. */ int double_integer_scale (double d) { int exponent = ilogb (d); #ifdef HAIKU /* On Haiku, the values of FP_ILOGB0 and FP_ILOGBNAN are identical. To top it all, both are also identical to INT_MAX. */ if (exponent == FP_ILOGB0) { if (isnan (d)) return (DBL_MANT_DIG - DBL_MIN_EXP) + 2; if (isinf (d)) return (DBL_MANT_DIG - DBL_MIN_EXP) + 1; return (DBL_MANT_DIG - DBL_MIN_EXP); } #endif return (DBL_MIN_EXP - 1 <= exponent && exponent < INT_MAX ? DBL_MANT_DIG - 1 - exponent : (DBL_MANT_DIG - DBL_MIN_EXP + (isnan (d) ? 2 : exponent == INT_MAX))); } /* Convert the Lisp number N to an integer and return a pointer to the converted integer, represented as an mpz_t *. Use *T as a temporary; the returned value might be T. Scale N by the maximum of NSCALE and DSCALE while converting. If NSCALE is nonzero, N must be a float; signal an overflow if NSCALE is greater than DBL_MANT_DIG - DBL_MIN_EXP, otherwise scalbn (XFLOAT_DATA (N), NSCALE) must return an integer value, without rounding or overflow. */ static mpz_t const * rescale_for_division (Lisp_Object n, mpz_t *t, int nscale, int dscale) { mpz_t const *pn; if (FLOATP (n)) { if (DBL_MANT_DIG - DBL_MIN_EXP < nscale) overflow_error (); mpz_set_d (*t, scalbn (XFLOAT_DATA (n), nscale)); pn = t; } else pn = bignum_integer (t, n); if (nscale < dscale) { emacs_mpz_mul_2exp (*t, *pn, (dscale - nscale) * LOG2_FLT_RADIX); pn = t; } return pn; } /* the rounding functions */ static Lisp_Object rounding_driver (Lisp_Object n, Lisp_Object d, double (*double_round) (double), void (*int_divide) (mpz_t, mpz_t const, mpz_t const), EMACS_INT (*fixnum_divide) (EMACS_INT, EMACS_INT)) { CHECK_NUMBER (n); if (NILP (d)) return FLOATP (n) ? double_to_integer (double_round (XFLOAT_DATA (n))) : n; CHECK_NUMBER (d); int dscale = 0; if (FIXNUMP (d)) { if (XFIXNUM (d) == 0) xsignal0 (Qarith_error); /* Divide fixnum by fixnum specially, for speed. */ if (FIXNUMP (n)) return make_int (fixnum_divide (XFIXNUM (n), XFIXNUM (d))); } else if (FLOATP (d)) { if (XFLOAT_DATA (d) == 0) xsignal0 (Qarith_error); dscale = double_integer_scale (XFLOAT_DATA (d)); } int nscale = FLOATP (n) ? double_integer_scale (XFLOAT_DATA (n)) : 0; /* If the numerator is finite and the denominator infinite, the quotient is zero and there is no need to try the impossible task of rescaling the denominator. */ if (dscale == DBL_MANT_DIG - DBL_MIN_EXP + 1 && nscale < dscale) return make_fixnum (0); int_divide (mpz[0], *rescale_for_division (n, &mpz[0], nscale, dscale), *rescale_for_division (d, &mpz[1], dscale, nscale)); return make_integer_mpz (); } static EMACS_INT ceiling2 (EMACS_INT n, EMACS_INT d) { return n / d + ((n % d != 0) & ((n < 0) == (d < 0))); } static EMACS_INT floor2 (EMACS_INT n, EMACS_INT d) { return n / d - ((n % d != 0) & ((n < 0) != (d < 0))); } static EMACS_INT truncate2 (EMACS_INT n, EMACS_INT d) { return n / d; } static EMACS_INT round2 (EMACS_INT n, EMACS_INT d) { /* The C language's division operator gives us the remainder R corresponding to truncated division, but we want the remainder R1 on the other side of 0 if R1 is closer to 0 than R is; because we want to round to even, we also want R1 if R and R1 are the same distance from 0 and if the truncated quotient is odd. */ EMACS_INT q = n / d; EMACS_INT r = n % d; bool neg_d = d < 0; bool neg_r = r < 0; EMACS_INT abs_r = eabs (r); EMACS_INT abs_r1 = eabs (d) - abs_r; if (abs_r1 < abs_r + (q & 1)) q += neg_d == neg_r ? 1 : -1; return q; } static void rounddiv_q (mpz_t q, mpz_t const n, mpz_t const d) { /* Mimic the source code of round2, using mpz_t instead of EMACS_INT. */ mpz_t *r = &mpz[2], *abs_r = r, *abs_r1 = &mpz[3]; mpz_tdiv_qr (q, *r, n, d); bool neg_d = mpz_sgn (d) < 0; bool neg_r = mpz_sgn (*r) < 0; mpz_abs (*abs_r, *r); mpz_abs (*abs_r1, d); mpz_sub (*abs_r1, *abs_r1, *abs_r); if (mpz_cmp (*abs_r1, *abs_r) < (mpz_odd_p (q) != 0)) (neg_d == neg_r ? mpz_add_ui : mpz_sub_ui) (q, q, 1); } /* The code uses emacs_rint, so that it works to undefine HAVE_RINT if `rint' exists but does not work right. */ #ifdef HAVE_RINT #define emacs_rint rint #else static double emacs_rint (double d) { double d1 = d + 0.5; double r = floor (d1); return r - (r == d1 && fmod (r, 2) != 0); } #endif #ifndef HAVE_TRUNC double trunc (double d) { return (d < 0 ? ceil : floor) (d); } #endif DEFUN ("ceiling", Fceiling, Sceiling, 1, 2, 0, doc: /* Return the smallest integer no less than ARG. This rounds the value towards +inf. With optional DIVISOR, return the smallest integer no less than ARG/DIVISOR. */) (Lisp_Object arg, Lisp_Object divisor) { return rounding_driver (arg, divisor, ceil, mpz_cdiv_q, ceiling2); } DEFUN ("floor", Ffloor, Sfloor, 1, 2, 0, doc: /* Return the largest integer no greater than ARG. This rounds the value towards -inf. With optional DIVISOR, return the largest integer no greater than ARG/DIVISOR. */) (Lisp_Object arg, Lisp_Object divisor) { return rounding_driver (arg, divisor, floor, mpz_fdiv_q, floor2); } DEFUN ("round", Fround, Sround, 1, 2, 0, doc: /* Return the nearest integer to ARG. With optional DIVISOR, return the nearest integer to ARG/DIVISOR. Rounding a value equidistant between two integers may choose the integer closer to zero, or it may prefer an even integer, depending on your machine. For example, (round 2.5) can return 3 on some systems, but 2 on others. */) (Lisp_Object arg, Lisp_Object divisor) { return rounding_driver (arg, divisor, emacs_rint, rounddiv_q, round2); } /* Since rounding_driver truncates anyway, no need to call 'trunc'. */ static double identity (double x) { return x; } DEFUN ("truncate", Ftruncate, Struncate, 1, 2, 0, doc: /* Truncate a floating point number to an int. Rounds ARG toward zero. With optional DIVISOR, truncate ARG/DIVISOR. */) (Lisp_Object arg, Lisp_Object divisor) { return rounding_driver (arg, divisor, identity, mpz_tdiv_q, truncate2); } Lisp_Object fmod_float (Lisp_Object x, Lisp_Object y) { double f1 = XFLOATINT (x); double f2 = XFLOATINT (y); f1 = fmod (f1, f2); /* If the "remainder" comes out with the wrong sign, fix it. */ if (f2 < 0 ? f1 > 0 : f1 < 0) f1 += f2; return make_float (f1); } DEFUN ("fceiling", Ffceiling, Sfceiling, 1, 1, 0, doc: /* Return the smallest integer no less than ARG, as a float. \(Round toward +inf.) */) (Lisp_Object arg) { CHECK_FLOAT (arg); double d = XFLOAT_DATA (arg); d = ceil (d); return make_float (d); } DEFUN ("ffloor", Fffloor, Sffloor, 1, 1, 0, doc: /* Return the largest integer no greater than ARG, as a float. \(Round toward -inf.) */) (Lisp_Object arg) { CHECK_FLOAT (arg); double d = XFLOAT_DATA (arg); d = floor (d); return make_float (d); } DEFUN ("fround", Ffround, Sfround, 1, 1, 0, doc: /* Return the nearest integer to ARG, as a float. */) (Lisp_Object arg) { CHECK_FLOAT (arg); double d = XFLOAT_DATA (arg); d = emacs_rint (d); return make_float (d); } DEFUN ("ftruncate", Fftruncate, Sftruncate, 1, 1, 0, doc: /* Truncate a floating point number to an integral float value. \(Round toward zero.) */) (Lisp_Object arg) { CHECK_FLOAT (arg); double d = XFLOAT_DATA (arg); d = trunc (d); return make_float (d); } void syms_of_floatfns (void) { defsubr (&Sacos); defsubr (&Sasin); defsubr (&Satan); defsubr (&Scos); defsubr (&Ssin); defsubr (&Stan); defsubr (&Sisnan); defsubr (&Scopysign); defsubr (&Sfrexp); defsubr (&Sldexp); defsubr (&Sfceiling); defsubr (&Sffloor); defsubr (&Sfround); defsubr (&Sftruncate); defsubr (&Sexp); defsubr (&Sexpt); defsubr (&Slog); defsubr (&Ssqrt); defsubr (&Sabs); defsubr (&Sfloat); defsubr (&Slogb); defsubr (&Sceiling); defsubr (&Sfloor); defsubr (&Sround); defsubr (&Struncate); }