From mboxrd@z Thu Jan 1 00:00:00 1970 Path: news.gmane.io!.POSTED.blaine.gmane.org!not-for-mail From: Ihor Radchenko Newsgroups: gmane.emacs.devel Subject: Re: Indentation and gc Date: Sun, 12 Mar 2023 14:20:33 +0000 Message-ID: <871qluuk3y.fsf@localhost> References: <20230310110747.4hytasakomvdyf7i.ref@Ergus> <20230310110747.4hytasakomvdyf7i@Ergus> <87a60k657y.fsf@web.de> <838rg4zmg9.fsf@gnu.org> <87ttys4dge.fsf@web.de> <83sfebyepp.fsf@gnu.org> <87ttyru4zt.fsf@web.de> <83fsabyb41.fsf@gnu.org> <87mt4jtpqf.fsf@web.de> <83ilf7wi48.fsf@gnu.org> <878rg3wh2f.fsf@localhost> <83cz5fwggd.fsf@gnu.org> <871qlvwg1s.fsf@localhost> <83a60jwf9l.fsf@gnu.org> Mime-Version: 1.0 Content-Type: multipart/mixed; boundary="=-=-=" Injection-Info: ciao.gmane.io; posting-host="blaine.gmane.org:116.202.254.214"; logging-data="30521"; mail-complaints-to="usenet@ciao.gmane.io" Cc: arne_bab@web.de, spacibba@aol.com, emacs-devel@gnu.org To: Eli Zaretskii Original-X-From: emacs-devel-bounces+ged-emacs-devel=m.gmane-mx.org@gnu.org Sun Mar 12 15:20:09 2023 Return-path: Envelope-to: ged-emacs-devel@m.gmane-mx.org Original-Received: from lists.gnu.org ([209.51.188.17]) by ciao.gmane.io with esmtps (TLS1.2:ECDHE_RSA_AES_256_GCM_SHA384:256) (Exim 4.92) (envelope-from ) id 1pbMYT-0007hb-Es for ged-emacs-devel@m.gmane-mx.org; Sun, 12 Mar 2023 15:20:09 +0100 Original-Received: from localhost ([::1] helo=lists1p.gnu.org) by lists.gnu.org with esmtp (Exim 4.90_1) (envelope-from ) id 1pbMXp-0006fi-La; Sun, 12 Mar 2023 10:19:29 -0400 Original-Received: from eggs.gnu.org ([2001:470:142:3::10]) by lists.gnu.org with esmtps (TLS1.2:ECDHE_RSA_AES_256_GCM_SHA384:256) (Exim 4.90_1) (envelope-from ) id 1pbMXn-0006fV-Cp for emacs-devel@gnu.org; Sun, 12 Mar 2023 10:19:27 -0400 Original-Received: from mout02.posteo.de ([185.67.36.66]) by eggs.gnu.org with esmtps (TLS1.2:ECDHE_RSA_AES_256_GCM_SHA384:256) (Exim 4.90_1) (envelope-from ) id 1pbMXl-0006Uf-CD for emacs-devel@gnu.org; Sun, 12 Mar 2023 10:19:27 -0400 Original-Received: from submission (posteo.de [185.67.36.169]) by mout02.posteo.de (Postfix) with ESMTPS id 89E1A24018D for ; Sun, 12 Mar 2023 15:19:20 +0100 (CET) DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/simple; d=posteo.net; s=2017; t=1678630763; bh=DHawnj7rYAKgdKG41mKRoeOsNn7Bynkr5S059ebP110=; h=From:To:Cc:Subject:Date:From; b=l8HsCR0NdKHF6cz5++pV9FnVLBiKroBNcXoPWpwMrGGR52rM62Q9YBZ+KPnoeWPQU 8mAar+AOWeDJvwF99KtB62SytkquiZg9+OeuAkXHhue8ojMU8tM0nWuvb5+wmt8vVl l0IQrxlLrIytKJMVkTEhDLBrdL3rvNd2VW6vZJNhiPCdKEuLu9Tg5MS+ZX+iYInPm0 0OADxiGb1usZGr/QGpwjpGBz5UUwXnO8tuvv74chKbqiQcw27LBMOiG79rYEAMYl/3 bmP0GmVZWbNK4nV5McLLchkj46zyswf7J9ZwOGgojMrsU15aLlG1BsHr1oDKPYnKtX mkEMXFTcLLNTg== Original-Received: from customer (localhost [127.0.0.1]) by submission (posteo.de) with ESMTPSA id 4PZMNT0nRJz6tmN; Sun, 12 Mar 2023 15:19:04 +0100 (CET) In-Reply-To: <83a60jwf9l.fsf@gnu.org> Received-SPF: pass client-ip=185.67.36.66; envelope-from=yantar92@posteo.net; helo=mout02.posteo.de X-Spam_score_int: -43 X-Spam_score: -4.4 X-Spam_bar: ---- X-Spam_report: (-4.4 / 5.0 requ) BAYES_00=-1.9, DC_PNG_UNO_LARGO=0.001, DKIM_SIGNED=0.1, DKIM_VALID=-0.1, DKIM_VALID_AU=-0.1, DKIM_VALID_EF=-0.1, RCVD_IN_DNSWL_MED=-2.3, RCVD_IN_MSPIKE_H2=-0.001, SPF_HELO_NONE=0.001, SPF_PASS=-0.001 autolearn=unavailable autolearn_force=no X-Spam_action: no action X-BeenThere: emacs-devel@gnu.org X-Mailman-Version: 2.1.29 Precedence: list List-Id: "Emacs development discussions." List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , Errors-To: emacs-devel-bounces+ged-emacs-devel=m.gmane-mx.org@gnu.org Original-Sender: emacs-devel-bounces+ged-emacs-devel=m.gmane-mx.org@gnu.org Xref: news.gmane.io gmane.emacs.devel:304369 Archived-At: --=-=-= Content-Type: text/plain Eli Zaretskii writes: > I'm talking about basis for the 0.7% figure. I used 0.7%*RAM because total RAM is the only reasonable metrics. What else can we use to avoid memory over-consumption on low-end machines? Of course, I used implicit assumption that memory usage will scale with gc-cons-threshold linearly. IMHO, it is a safe assumption - the real memory usage increase is slower than linear. For example, see my Emacs loading data for different threshold values: | gc-cons-threshold | memory-limit | gcs-done | gc-elapsed | gc time | | 1Mb | 523704 | 394 | 25.809423617 | 0.065506151 | | 2Mb | +9624 | 210 | 13.41456755 | 0.063878893 | | 4Mb | +1224 | 109 | 6.400488833 | 0.058720081 | | 8Mb | +3164 | 63 | 3.223383144 | 0.051164812 | | 16Mb | +5532 | 37 | 1.757097776 | 0.047489129 | | 32Mb | +20264 | 25 | 0.995694149 | 0.039827766 | | 64Mb | +59860 | 19 | 0.624039941 | 0.032844207 | | 128Mb | +115356 | 16 | 0.42626893 | 0.026641808 | | 256Mb | +171176 | 14 | 0.277912281 | 0.019850877 | | 512Mb | +332148 | 12 | 0.122461442 | 0.010205120 | Also, see the attached graph. --=-=-= Content-Type: image/png Content-Disposition: attachment; filename=benchmark-gc.png Content-Transfer-Encoding: base64 iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAIAAAC6s0uzAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAg AElEQVR4nOzdd1xT1/8/8JPFJmyCgCIrgGwH4hYXrrpQEPdotf7qaKv9WK2jVttatVVR236tVgUU F2pVqHWBtVo3U0EQUEAk7E1Cxv39cWlEQAQkhPF6PvrHPefe3LyBmnfOuWcwKIoiAAAA0LqYyg4A AACgM0ICBgAAUAIkYAAAACVAAgYAAFACJGAAAAAlQAIGAABQAiRgAAAAJVBgAj516pSTk5Oamhqf z//tt9/k9RUVFcuXL+fxeOrq6gMGDLh79678VFpa2sSJE7lcro6Ojq+vb3Z2tuLCAwAAUCJFJeDw 8PAZM2bMmDEjMjJy3rx5ixcvvnjxIn3qo48+On36dEBAwNWrVy0sLEaNGpWRkUEIEQqFI0eOzMvL Cw0NPXXqVEpKyvjx42UymYIiBAAAUCKGglbCcnV17d+//y+//EIXg4ODe/To0bNnz7S0NGtr69DQ 0MmTJxNCJBKJra3t1KlTt2/ffvjw4UWLFmVkZPB4PEJIcnKynZ3dhQsXxo0bp4gIAQAAlEghLeDn z5/HxsbOnj1bXjNr1qyePXsSQq5fv85isUaPHk3Xs9lsb2/vK1euEEKuXbvm4eFBZ19CiK2tLZ/P p08BAAB0MApJwLGxsYQQkUjk5eWlp6dnZ2d34MAB+lRycrKpqam6urr8Yisrq6SkJPqUtbV1zfvI TwEAAHQwCknAubm5hJDPP/980aJFf/3115gxYz766KOwsDBCSHFxMZfLrXkxl8utrKysqqqq91RR UZEiIgQAAFAuhSRgsVhMCPnf//7n7+/v4eGxa9eugQMHbt++vaXuz2KxGG+ytLSkT23atAkHOMAB DnCAA8UdeHl51cpBHA6HNJ1CErC2tjYhxN3dXV4zaNCghIQEQoienl5xcXHNi4uKijQ0NFRUVOo9 paenV/f+DQyNlo8pwwEOcIADHOBAcQc1SSSSupXvpJBR0Pfv3/fw8Pj7778HDRpE16xevTokJCQ9 Pf3IkSMLFy4sLi7W1NSkTy1YsCA2NvbBgwfz589PSEi4c+eO/D5WVlZTpkzZsWNH7aAZDPKW3wIA AEBranZKUkgLuGfPnkZGRmfOnJHX3Lhxw9nZmRAyYsQIQsiFCxfoeqFQGB4ePnbsWEKIt7f3w4cP MzMz6VPR0dFpaWn0KQAAgA5GUfOA9+3bt2LFiu+++27AgAEhISH79u27efPmwIEDCSGLFy8+d+5c QECAmZnZjh07bt++HR8fb2xsLJFI3NzcNDU1v/32W7FYvHLlSmNj48jIyHqCRgsYAADahmanJEUl YELI7t27d+3a9fLlSxsbm40bN/r5+dH1IpFo7dq1QUFBpaWlnp6eAQEBdOOYEJKZmbls2bKrV6+y WKwJEybs2rVLX1+/nqCRgAEAoG1oiwlYcZCAAQCgjWhbz4ABAACgYUjAAAAASoAEDAAAoARIwAAA AEqABPxukyZNOnz4cL2ndu3aNW/ePELI9evX09PT33mrvXv30tc3UNN48tfq6uo+f/68eTdpZCRv +w0AAEDzIAG/2+HDh+VzqGpZtGjR7t27CSH79u1rTAJWkKSkpK5duyr0Lb788kuF3h8AoLNhKzuA 5mMwGB4eHnfv3q17ipKRjFvFuU/Ka9VLq0jCmRxCGA5TDVlsRt0XGvXQ7DpAh/Hm15J58+ZNmjSp T58+fn5+Pj4+kZGRWVlZu3fvHjt27P79+6Ojo52dncPDw6OiorZu3err6yt/4aVLl1avXi0Sibp3 737w4EEzM7MGfpzHjx9//PHHAoFAVVV18+bNkyZNIoQEBwdv3rxZLBabm5sHBQVZWFiIRKKFCxfe vHnTzMzMw8ODfi2fz4+Oji4vL68boUgk+uijj27cuGFtbT106NCkpKTg4GD5m9Z7t0ePHi1evLiw sFBFRSUgIGDEiBHTpk0TCAROTk4XLlwoLCysdbaBHwoAoAPz8vKqd7WoRmrHCbgBGbeKL336rIEL on/Pftup0bttug3UqVvPYrESExP79OmzadOm06dPb9q0Sb5M5sqVK4OCgvbu3Usv9UXLycnx9/eP jIx0dXXdvXv3kiVLzp8//7Y3pSjK39//iy++mD17dmJiYt++fZOTk1VVVT/66KO4uDgbG5tPPvlk 8+bNBw4cCAwMTElJefbsWWVl5YABA3r16tVwhEFBQfT1+fn5/fr1GzJkSM33rfduS5YsWbJkyYIF C06dOvXxxx8/e/bst99+O3v2bHx8PCFk+vTptc428HsGAIC3accJuPUX4lBVVR0/fjwhpEePHvI1 q9/m6tWrvXv3dnV1JYQsWrRo1apVVVVVb7s4PT392bNnM2fOJITY29u7uLjcvHnTx8cnJyeH3lpq 6NChv/zyCyHkxo0bU6ZM4XA4HA5n0qRJGRkZDUd448YNHx8fDodjYmIybty4srKymtfXe7fIyEh6 a62hQ4empqbWCrXhswAAnUdERAT5byGOZmjHCbgBXQfojN5tk/u4The0hEo8nUcYxH6qAYtVz/Nv I0fNrv3raf7S6FxICGEymVKptOEYcnJy/v333+7du9NFLS2tnJycBi7W09NjMqtD0tfXz83NpSjq xx9/vHTpEkVRRUVFXbp0IYQUFBTIt2jU19evlYDrRpifny9fzrNbt25PnjypeX29d7t48WJAQIBY LJZKpXW/5TR8FgAAGqljJmAGk3QbqFNvT7LHJw09iG1BJiYmQ4cOvXjxYmMuNjY2LiwslEqlLBaL EJKXl8fj8U6fPn3y5Mlbt27p6ekdP378119/JYTo6ekVFRXRrxIIBO+8s46OjnyX5VrZut67ZWdn z549+8GDB05OTtnZ2XTWl2v4LAAANB5GQbcMDodDZ7KSkpIDBw4QQoYPH37v3r3ExERCyKNHjz75 5JMGXm5hYWFra3v06FFCSFxcXEJCwuDBg/Pz8y0sLOgceejQIbr3uF+/fmfPnq2qqsrPzz937tw7 A/Pw8Dh37pxUKn316lXd6+veraioSENDw9raWiaT0QO8y8rKOByOTCYrLS2t92yzfmEAAJ0dEnDL mDx58owZM3bu3JmTk/PRRx8RQoyMjAIDA/38/GxsbBYuXFhzdHS9jh07tn//fj6fP2vWrGPHjhkY GEybNq24uJjP50+aNGnz5s1ZWVmrV69esGCBmZmZhYXF6NGjfXx8JBJJw7f98MMPtbS0LC0tFyxY MHfu3FrPKurezd7eftKkSQ4ODr169Ro2bJiXl9eIESM0NTVHjx5taWlZUFBQ9+x7/uoAADon7IbU 8clkMvrp8pYtWwoKCn766SdlRwQA0HFgNySoX3h4OJ/PLy8vLy8vP336dL9+/ZQdEQAAENJRB2GB 3OjRo8eMGWNvb89kMn18fHx8fJQdEQAAEIIuaAAAgPeBLmgAAID2BAkYAABACZCAAQAAlKAdJ2AG g9G3b19lRwEAAJ2Ul5dXsxeCJu06AQMAALRf7TgBUxRV72bAHdvevXvnzZtHCNHV1X3+/HnDF0dH R9O7QaSmpv79999Nfa+YmBg+n//xxx/Xe3bdunXNuGerkf/IiYmJJiYm739DExMTemHRhk2dOvXw 4cO1Kg0NDd/5xwKAdiciIuJ95uO04wTcIb1zkyW5pKSkrl27NnyNk5PT/fv3CSFhYWFNTZb37t2b O3duvQt3vHjx4rPPPsvJyXn48OHKlSubdNtW08gfufG/cACAltUxE7CMoq4l5uy6mtTU/64l5sjq fJ2ZNm3axo0bx48fb2VltXHjxp9++mnYsGH29vZRUVGEkGfPng0bNszOzq5Xr143b94khDx+/NjJ yWndunUDBw50cHC4cePG5MmTnZyc5E3JM2fOODs729nZDRo0iN4fMCAgYO7cuT179ly1apWmpmZW VhZ95erVq5ctW1bvz8jn8zMyMhp+r/j4+D59+vz999+bNm3as2fPF1980fjfoYGBwc2bNx0cHOqe MjEx8fb2DgsLu3bt2owZM2qeSk9PHzhwoI2Nzdy5c2fMmEHvS5GQkDBgwABzc/OBAwempKTUulvd s48fPx40aBCfz3d2dqa3iKB/zI0bNw4ZMsTW1jY8PJwQcvXqVRcXF1tb2x49ely4cKHmPWv9yBwO 5/vvv7e0tDQ3N6dfO2XKlDVr1tDFsrKyefPm2dnZOTo67tu3j77Dzp07bW1tbWxs+vXr9+zZM7ry 2rVrzs7OBgYG33zzDV1T908pd/XqVT6fb2dn9/XXX7/PUyIA6LCoduidkV9NEFh8ebF5/11LENS6 m5+fn7e3t1QqTUlJYbFYBw4coCjq22+/XbhwIUVRffr0+fnnnymKevjwYZcuXSorKxMSElgs1o0b NyiKmj17toODQ0VFRWVlJZfLzcjIyMzM1NHRefr0KUVRBw8e7NmzJ0VRP//8s4GBQXJyMkVRkydP /vHHH+m3trW1vXnzZs1g9uzZM3fuXIqidHR00tLSGn6vqKgoCwsLiqJWrFixefPmmvdJTU3VedOM GTPq/ia///77xYsX160/ceLEF198MXTo0FevXtWsnzlz5qpVqyiKioiIUFNTO3ToEEVR7u7uJ0+e pCjqxx9/HD58eK1b1Tork8mcnZ0DAwMpikpISOByuQKBgP4xL1y4QFHUqVOnPDw8KIpydXWl+3/i 4uLmz59f67byHzkhIUFVVfX333+nf+H0a319ffv161deXk5R1KpVq6ZPny6VSgsKCqysrB4+fFhQ UMDlcouLiymKCgwMDAgIoCiKx+MtXrxYKpUmJydzOJySkpJ6/5Q+Pj6HDh2SSqVdu3a9ePEiRVH7 9+9nsVhpaWl1f40A0AE0O5l2zBZwixszZgyTybS0tKQoasyYMYQQa2vrV69eZWVlxcXFLVq0iBDS s2dPCwuLW7duEUK0tbUHDx5MXzZw4EB1dXU1NTVTU9NXr15dvXrV09OTz+cTQmbPnh0dHZ2fn89g MNzc3GxsbAghM2bMCAkJIYTEx8dXVFQMGDCg4dgaeK8GXmVpaVn0JnozxEYyMjJat27dDz/8UKsL 98aNG/7+/oSQoUOHWltbE0JevnyZlJQ0depUQsiyZcvOnj1b8/q6Z9PT0589ezZz5kxCiL29vYuL C92voKqqOn78eEJIjx49MjMzCSFdunQ5fvz4s2fPnJycfv/99waiZbFY9INzT09P+rUMBmPs2LEa GhqEkD/++GPp0qVMJlNPT8/X1/fs2bMaGhosFis4ODgvL2/27NnyTogFCxYwmUwbGxtdXd3s7Ox6 /5T0lampqQUFBWPHjiWEzJs3j8KqbQBQR8dcC9rLzuj3uX1iM4ua+kIXc92hdkZ16zU1NQkhDAaD wWDQn9osFksqlebk5IjFYjrTEELKy8tzc3PNzMzo6+nL6OtrvsTAwICu4XA4Wlpaubm5hBB55fjx 4xcuXJicnHz27FlfX18GgzFz5sy//vqLEBIWFva22Op9Lw6H09TfQCN5eXkRQjw8PGrV5+fn6+vr 08fdunUjhOTk5Ojo6NB9sBwOh8PhxMTEDB8+nBAyZMiQdevW1TqbmJiop6dHb99ECNHX16d/P9ra 2nQNk8mks35gYODmzZu9vLy0tbV/+umn0aNHd+/evaysjM1mZ2dn14xKW1ubfgv5a0mNX3hOTo6f nx+bzSaEiEQiHx8fVVXViIiI7777bt26de7u7vv376f/xFwut2YMb/tTEkIKCgp0dXXlP5eWltb7 /sYBoMPpmAmYyWAMszceZm+s6DcyMTFRU1OrNcC14bGyxsbG8o9pkUhUWlrK4/HIf6uJEkLU1NQm T5584sSJs2fP/vLLL4SQffv2CYVCQoiBgQE9qOr9paWlubu716wZN25ckxrB9dLR0SkuLqaPMzIy CCHGxsaFhYVSqZTFYonF4pSUFEdHx/j4eEKIqqpqRUVFrbM1ryeE5OXl0b+fuoyMjAICAgICAi5f vuzr65uXl3fv3j2ZTNbIB67yy0xMTIKDg3v37l3zrKur64kTJ8Ri8bfffrts2TL6yXEtb/tTEkL0 9PToHmwGg1FZWVlaWtqYkACgU0EX9HsxMTFxdHQMCgoihOTn58+cObOkpKThl4waNerevXtJSUmE kN9//93T01NPT6/WNf7+/r/99lthYSG90oiurq6JiYmJiUmzW7QcDqeo6I3+gPfsgn4bDw+P0NBQ Qsjly5fpEVVmZmZ8Pv/QoUOEkP379y9dupTNZtM/jp6eXt2zFhYWtra2dDBxcXEJCQl0B3stQqHQ 09MzPT2dEGJvb0+nOmNjYxMTEzoL1v2R32bChAm//vorRVESiWTVqlX37t178ODBxIkTKysrORwO n8+XyWT1vrCBP6WlpaWWlhbdY/F///d/9JcJAICakIDf19GjRw8fPmxjY+Pp6dm/f395L+XbdOnS 5dChQ1OmTLGzszt9+nRgYGDda0aMGCEUCn19fVsqyDFjxvz2229+fn6Nf8kXX3yhpqa2fv36AwcO qKmpLVmypDGv+v777//44w9bW9vQ0FBvb2+6lXn06NGDBw+amJiEhIT8+uuvtV5S9+yxY8f279/P 5/NnzZp17NgxeTdvTWpqap988snIkSMtLS3HjBlz8ODBWkmu8T/yhg0bpFKpra2tra1teXm5m5tb z549+Xy+vb29lZXV3r17d+zYUe8LG/hTstnsAwcOLF++3MLCori42NTUVCKRvDMSAOhUsB1hG+Xk 5HTs2DEXFxdlB9JkMpmMfoI7YsSI5cuXT5gwQdkRAQAoELYj7FCCg4MNDAzaY/b98ssv6elMz549 e/DgQa9evZQdEQBAG9UxB2G1a0OHDs3Ozj5//ryyA2mOlStXzpo1q1u3bmpqanv27DEzM1N2RAAA bVQ77oImhHh4eHTC5aABAKAt8PLyioyMpI/RBQ0AANA+tOMWcHuMHAAAOhgMwgIAAGhPkIABAACU AAkYAABACZCAAQAAlAAJGAAAQAmQgAEAAJQACRgAAEAJkIABAACUAAkYAABACZCAAQAAlKAdJ2AG g+Hl5aXsKAAAoJPy8vKSbw7UDO04AQMAALRf2IwBAACg+bAZAwAAQHuCBAwAAKAESMAAANAC4rOK J/58a8GR+4ISobJjaR/Yyg4AAADaN4oih26nffdngkRKEULORr/8eLC1soNqB5CAAQCg+QrKq1ae iol4mkMXNVXZH7iYKjek9kJRXdB6enqMNwUHB9OnKioqli9fzuPx1NXVBwwYcPfuXfmr0tLSJk6c yOVydXR0fH19s7OzFRQeAAC8v9sp+aN3/y3Pvk6mOheXDjTTVVduVO2FoqYhcTic1atXjxgxQl7j 4ODA4/EIITNnzoyIiNi5c6e5ufm+ffvCwsLi4+O7du0qFAqdnJx4PN7XX39NUdSaNWsYDMa9e/eY zNrfEjANCQBAuSQyaufVpJ8jn8k/iT8caPU/bzsVdqcbWtTslKSQBFxZWamhoXHmzJnJkyfXOpWW lmZtbR0aGkqfkkgktra2U6dO3b59++HDhxctWpSRkUHn6eTkZDs7uwsXLowbN6520EjAAADK87Ko cvnxqIcvCumivqbKT9PchtoZKTcqZWlb84BLSkoIIVpaWnVPXb9+ncVijR49mi6y2Wxvb+8rV64Q Qq5du+bh4UFnX0KIra0tn8+nTwEAQBvxZ3z2mN035dm3n5XBpRWDO232fR8KGYRVWlpKCNHU1Kx7 Kjk52dTUVF399RMCKyurwMBA8l+Tt+bFVlZWSUlJiogQAACaSiSRfXPxydG7L+gii8n4fAT/4yHW LGbz10PuzBTSAqYTcHBwMJ/P19TUdHZ2PnjwIH2quLiYy+XWvJjL5VZWVlZVVdV7qqioSBERAgBA kyTnlE3c9488+5rqqp9c1O8TLxtk32ZTSAKurKzU0dHJyMjYuXPnn3/+OWzYsA8//PCXX35p2Xep OcTa3Nycrty0aRMOcIADHOCgBQ++/npTyP30D/b+k5hdStdYMAv/XD6ol4VeG4mwlQ/oTZDkSHMp pAu6f//+NVuugwcPfv78+e7du5csWaKnp1dcXFzz4qKiIg0NDRUVlXpP6enpNemt5Y/BcYADHOAA B+9/UCIUR4qtDp+JoytV2cwN43sk/3lYR53TRiJU1sH7a6XdkNavX799+3ahUHjkyJGFCxcWFxfL nxAvWLAgNjb2wYMH8+fPT0hIuHPnjvxVVlZWU6ZM2bFjR+2gMQoaAEDxHr4oXHY8Kquoki7aGmvt ndHTjqet3KjamrY1CvrixYt+fn4ikUhec/fuXSsrK0IIPTP4woULdL1QKAwPDx87diwhxNvb++HD h5mZmfSp6OjotLQ0+hQAALQmqYzaG/HMd/+/8uw7o2+380sHIvu2IIW0gBMSEnr16jVkyJDPP/9c RUXl+PHjv/7665EjR+bMmUMIWbx48blz5wICAszMzHbs2HH79u34+HhjY2OJROLm5qapqfntt9+K xeKVK1caGxtHRkbWEzRawAAACpNdIvzsRPS/qfl0kavG2erjPNapi3KjarPa1kIchJBbt25t3Ljx 4cOHFEX16NFj7dq148ePp0+JRKK1a9cGBQWVlpZ6enoGBAQ4OzvTpzIzM5ctW3b16lUWizVhwoRd u3bp6+vXEzQSMACAYlxPzFl5Kqawooou9rbQ2z3dHatLNqDNJWCFQgIGAGhxQrH0+z8Tj/z7nC4y GGSZl+3y4bZsTDRqULNTEnZDAgAAkphduuJ41FNB9UQjHldtt5+bp5WBcqPq2JCAAQA6NYoih26n bb2UWCWR0TUjHXg/+Ljoa6ooN7AODwkYAKDzKqoQrzodczVBQBfVOKwN43r4e3R7j+UloLGQgAEA OqmHLwqXhkS9Kq6eaNSjCzdguruNcT376IAiIAEDAHQ6MorafzN1+19PpbLqoUNz+3X/aqxDJ9zN V4mQgAEAOpfCiqrPTkZHPs2li1w1zo5pLqN6mCg3qk4ICRgAoBO5k5r/6Yno7BIhXXTtqrvPv6e5 Hqb5KkE77m1gMBheXl7KjgIAoH2QyKifriT5H7gjz74fDrQ6vbgfsm+z0dsiNfvlaAEDAHR8WUWV y49HPXhRSBf1NFS2TXUZ6cBTblSdHFbCAgDo4C7GvlodGlteJaGLnlYGu/zcTLhqyo2qw8BKWAAA UFu5SLLxwuPTD6t3mWMxGZ+N4C8ZYs3C6pJtABIwAEDHFJ1RtOJE1Iv8Crporqe+28+9l4WecqMC OSRgAICORkZRv0Sm/HQ1ST7Nd5Kb2eaJTtpq+MxvQ/DHAADoUPLLqj49GX0zuXqar5Yqe8skp0lu ZsqNCupCAgYA6DjupuUvC4nKKRXRRfduugHT3bvqaSg3KqgXEjAAQEcgo6ifI1N+upIk+2847v8b avP5SD52822zkIABANq97BLh8pCoe88L6KK+pspOX7chfCPlRgUNQwIGAGjfLj/J/l9obFGFmC56 dNcP8HfHNN+2DwkYAKC9qqiSbgl7cuxeOl1kMMiSIeh2bjeQgAEA2qUnr0qWhUSl5JbRRROu2k++ bv2tDZQbFTQeNmMAAGhnKIocuv184r5b8uw72tHkzxWDkH1bGTZjAADoRArKq/4XGns1QUAXVdnM byY6+fbq+h6JAJQDmzEAALQbd1LzV5yIFvy3n6CjKXfP9J5WRprKjaqTw2YMAAAdmURGBVxL3hOR LP+cXzjQcrW3vQq7HT9J7OSQgAEA2rqXRZXLj0c9/G83X31NlR+nuXrZGSs3KnhPSMAAAG1aePyr L0PjSoTV03z7Wxvs9HXjYZpv+4cEDADQRlWKpZsvvp7my2IyVo7kLx6M3Xw7CCRgAIC2KElQujQk KklQShfNdNX3+Lv37IbdfDsOJGAAgLaFosjxB+mbLjwRiqV0zTjnLt9PceaqcZQbGLQsJGAAgDak TCT58kzcxdgsuqjGYW38oMf03t0wzbfjQQIGAGgrotKLlh1/lFlYSRf5PO29/u58nrZyowIFQQIG AFA+GUX9343UHVeeSmXV83xn9rVYP85BjcNSbmCgOEjAAABKllMq+uxE9K2UPLqopcreNtVlrFMX 5UYFioYEDACgTJFPcz8/FV1QXkUX3brqBkx376avodyooBW04zXMsBsSALRrVRLZlrCEeYfvybPv kiHWpxf3R/ZtL7AbEgBA+5OWV74sJCo+q5guGmmr/jTNbZCtoXKjgtaE3ZAAAFoVRZEzUZnr/4iv qKqe5juEb/TTNDcDLRXlBgbNg92QAADagTKR5KtzcX9EV0/zZbMYq73tFw60ZGKeb+eDBAwA0Eqi 0ouWH4/KKKygixYGGnum93Qx11FuVKAsSMAAAAonlVH7Ip/tvpYsn+Y72d1s80QnLVV8CHde+NsD ACjWy6LKz05E33teQBe11djfTXL+wNVUuVGB0iEBAwAo0JUngpWnYuS7+Xp019/p52amq67cqKAt QAIGAFAIiZTaeinxwD+p8ppVo+yWDMFuvlANCRgAoOVlFVV+EvIoKr2ILnbRUd/j797bArv5wmtI wAAALezyk+yVp2JKhRK6ONze+Mdpbroa2M0X3oAEDADQYoRi6Xd/JgT++4IuspmM1aPtPxxohVm+ UBcSMABAy0jOKVsW8igxu5QudtFR3zfDvWc3dDtD/ZCAAQDeF0WRkHvp34Q9EYqrV5f0djT5YYoL up2hAdgNCQDgvRRWVH189OHac3F09lVlM7+d5PTrzF7Ivh0edkMCAFCaWyl5n5+MEZQI6aKtsdbe GT3teNrKjQraBeyGBADQHGKp7MfLSf93M0X+UTSjb7f143qoc1hKjQtaG3ZDAgBoPc/zy5eFRMW9 rN7NV09D5Qcf51E9TJQbFbQvSMAAAE1zNurlunPx5VXV03wH2hj+OM2Vx1VTblTQ7iABAwA0VrlI suH849BHmXSRwSBrxzhgN19oHiRgAIBGic8qXhYSlZZXThctDTX3+Ls7mWI3X7oYj/AAACAASURB VGgmJGAAgHegKBJ45/mWsASxVEbX+PQ0/2aio6YKPkKh+RQ+D/jJkycqKirTp0+X11RUVCxfvpzH 46mrqw8YMODu3bvyU2lpaRMnTuRyuTo6Or6+vtnZ2YoODwCgYSVC8f879nDj+cd09tVUZe/yc/tx miuyL7wnxSZgiqIWL15ca3D2Rx99dPr06YCAgKtXr1pYWIwaNSojI4MQIhQKR44cmZeXFxoaeurU qZSUlPHjx8tkMoVGCADQgJjMonEB//wZX90YcDLVubh04CQ3M+VGBR2DYr/BHThwID09fdSoUfKa tLS0kJCQ0NDQyZMnE0L69u1ra2sbEBCwffv248ePp6en37p1i8fjEUIsLS3t7Oz+/PPPcePGKTRI AIC6KIoc+Cf1h78SJdLqJsTcft2/Guugwm7HCwhCm9KcBJyXlxcUFHTv3r2cnBwGg8Hj8fr16zdr 1ixdXd2al+Xk5Kxevfrw4cOBgYHyyuvXr7NYrNGjR1e/PZvt7e195coVQsi1a9c8PDzo7EsIsbW1 5fP5V65cQQIGgFaWVyZadTom8mkuXdRUZW/zcRnn3EW5UUEH0+QEHBUVNXz48MLCwpqVx44d27x5 87Vr15ycnOSVn3766dChQydMmFAzAScnJ5uamqqrq8trrKys6AuSk5Pt7Oxq3tbKyiopKampEQIA vI+IpzmrTsfkl1XRRUdT7r4ZPbsbaCo3Kuh4mtyXsmrVqqqqqoMHD758+VImk8lkslevXh05cqSy snL58uXyyy5fvnzx4sWAgIBaLy8uLuZyuTVruFxuZWVlVVVVvaeKioreFgmjBktLS7py06ZNOMAB DnDQvIMNmzZvuvB4/uH78uzrxMo+u2RAdwPNNhIhDtrCAb0Hgxxpria3gO/fv79x48YFCxbIa0xM TObMmVNeXv7ZZ5/RNZWVlUuWLNmyZYu5uXmzI2se+YAvHOAABzho0kGSoPS8yKHo9nO60lhb9Sdf t6vBe+mHvm0hQhy0qYP31+TNGPT19Q8ePEgPoaopIiJi/Pjx5eXlhJA1a9Zcv37933//ZTKZhJCp U6ey2ezjx48TQtauXRscHJyeni5/4datWzdv3lxeXt6/f38bG5ua/dWjR49msVhhYWG1g8ZmDADQ ciiKhNxL33TxsUhSPe1iZA/eD1Nc9DVVlBsYtAuttxnD4MGD//3337oJ+N69e4MGDaKPT58+nZqa qqJS/f8uPZXo9OnTd+/etbOzy8rKKi8v19SsfqCSlJTk4OBACLGzs0tISKh5z6SkpClTpjQ1QgCA xiuuFH95JlY+0UiNw1o31mFmXwssLgmK1uQEvHv37nHjxpmYmPj5+ZmZmVEUlZOTc/r06aCgoHPn ztHXhIeHi0Qi+Us+//xzFou1fft2GxsbExMTQsiFCxfopTmEQmF4ePiiRYsIId7e3sHBwZmZmXTH dXR0dFpa2tixY1vk5wQAqOvhi8Jlx6Oyiirpor2J9h7/nrbGWsqNCjqJxnZB6+rqSiQSQgiTyWQw GCUlJYQQDodDURRdr6Wlpa+vn5qaymLV3guzZhc0IWTx4sXnzp0LCAgwMzPbsWPH7du34+PjjY2N JRKJm5ubpqbmt99+KxaLV65caWxsHBkZWU/Q6IIGgPcjlVE/R6bsupYklVV/ksz2tPhqrIMadvOF JlJ4F/SAAQOkUmnD19Rs9TYgICBAS0tr2bJlpaWlnp6e165dMzY2JoSw2exLly4tW7Zs8uTJLBZr woQJu3btamR4AACN96pY+OmJ6Ltp+XRRR52zzcfF2xG7+UKravIgrLYALWAAaLYrCYIvTscUVYjp Yp/u+rv93Ex11Rt+FcDbKLwFfP369cYsyzx8+PD3mRQFAKA4VRLZd38mHP5vohGTwVg+zGbpMFs2 E59aoASNbQGz2ex3dkETQsRiMZut8B1C0AIGgKZKyytfGvLocVYJXTThqu2e7tbX0kC5UUEH0BrT kDgcjqen59ixY21tbd/2TnVHYAEAKN3ZqJfrzsWXV0no4kgH3rapLnoamOYLytTYFnBMTMyhQ4eO Hj2al5fn7u6+YMGCGTNm6OvrKzq+eqEFDACNVFEl3Xj+8amHGXSRw2J+NdZhbr/ueFYGLaXZKalp g7DEYvH58+cPHTp06dIlNps9ceLE+fPnjxo1il7xqtUgAQNAYzx5VbI05FFqbjldtDTU3OPv7mSq o9yooINppQQs9+rVq6CgoEOHDiUmJpqbm8+ZM2f+/Pk2NjbNuFUzIAEDQMMoihz+9/l34QliafXo 0cnuZlsmOmmqKnyQCnQ2rZ2A5e7cuRMcHPzHH39kZmYOGjQoMjKyFVrD8oHWQ4cOjYiIUPTbAUD7 UlBe9b/Q2KsJArqoocLaPNHJp2dr7w0DHZ6Xl5d8tajWWAu6Fj09PQMDAx6Pl5mZWXOLBQAApbiT mv/piejsEiFddDTl7vXvaWmI3XyhzWlmC7isrOzkyZO///77rVu3VFVVJ06cuHDhwhEjRrTOw2B0 QQNAXRIZtfta0t6IZ/LPhoUDLVd729P7CQIoSOt1Qd++ffvgwYMnT54sKytzcXFZsGDBrFmzDAxa dS4dEjAA1PKyqHL58aiHLwrpor6myo6prsPsjZUbFXQGCp8HLBAIAgMDDx48+PTpUx0dnVmzZi1c uLB3795NfT8AgBYXHv9qdWhsqbB6mm9/a4Odvm48rppyowJoWGNbwGpqahRFDRo0aNy4cSNHjlRT q///7NYZCI0WMADQhGLpN2FPjt2tHoDCYjI+H8H/eIg1C6tLQmtReBc0lqIEgLYmSVC6LCTqqaCU Lprpqu/xd+/ZTU+5UUFno/Au6J9++qkxmzFgKUoAaAUURU48yPj6wmOhuLphMNapy1YfZ64aR7mB ATQetiMEgHamVChZczbuYmwWXVRlMzd+4OjfpxtWlwSlaI3NGAAAlC4qvWjZ8UeZhZV0kc/T3uPv bsfTVm5UAM2ABAwA7YOMov7vRuqPV55KZNVNjRke3daP76HOwZMvaJeQgAGgHcgpFX1+MvqfZ3l0 UVuN/YOPy1inLsqNCuB9IAEDQFsX+TT381PRBeVVdLGXhV7AdHczXXXlRgXwnpCAAaDtqpLIfvgr 8eA/aXSRwSCfDLX5dASfjWm+0P614yVSGQyGl5eXsqMAAEVJyyuf8sttefY11lY9utBz1Sg7ZF9o I7y8vBjvMfgeLWAAaHMoipx8mLH+j/gqSfXyA8PtjbdPddXXVFFuYAAtqMXmAX/22WdSqVRHR2fQ oEEjR458ny8F74R5wAAdWHGleM2ZuPD4V3SRw2KuGWM/v78lpvlC29R6uyG9jZqamkgk+uqrr65e vTp+/Ph169a1yG3rhQQM0FHdTcv/9ET0q+Lq3XwtDTX3+vd0NOUqNyqABig/Ad++fVsmkw0cOJAQ kpuba2Rk1CK3rRcSMEDHI5FRO68m/Rz5ejff6X26bhjvqKGCab7Qpik/AZeUlJSUlJibm7fI3RqG BAzQwbwqFi4/HnX/eQFd1NXgbJ3iMtrRRLlRATRGs1NSk0dBa2lpPXr0qG79tWvX6OYvAECT3EjK Hbfnpjz79rc2uLRiMLIvdHhNGAX94sULiqKEQuHLly/19fVrnpJKpZGRkVlZWS0dHgB0ZBIZ9eOV p79EptBFejffJUOtmRhwBZ1AE7qg37klcL9+/W7fvt0SUb0DuqABOoCXRZVLQx5FpRfRRR5XbY+/ u0d3/YZfBdDWtMZuSKmpqTdu3Jg3b96MGTN4PF6ttzc1NZ09e3ZT3x4AOqc/47NXh8aWCMV0cTDf aJevG6b5QqfS5EFY48aN27Vrl62trYICagy0gAHar0qxdPPFJ8fupdNFJoPx+Uj+/0O3M7Rbyh8F 3ZqQgAHaqcTs0mUhj5JzyuhiFx31gOlufdDtDO2ZwrugDQ0NFyxYsG3bNkNDQ4lE8rbL8vPzWSxM 2gOA2iiKBN15sSX8iXx1SW9Hkx+muOhqcJQbGICyNDYB9+rVq1u3bvRBA0OxFLoCZd33Gjp0aERE RKu9IwA0T0F51RenY64l5tBFVTZzw/geMzws0OsM7ZqXl1dkZGSzX97YBPzXX3/VOgAAaIy/k3I/ PxWTVyaii/Ym3IDpbnyetnKjAlA6PAMGAEWpksi2Xkr8/VaavGbhQMvV3vYq7Ha8ESpALa0xDUnu xo0bERERBQUFMpms1qmAgAAmE/+0AICk5pYvDXn05FUJXTTSVv1pmusgWwWuEg/QvjS5BRwQELBi xYq3nRWLxWy2wvcYRgsYoC2jKBL6KHPD+fiKqurxIl52xj9Ow26+0DG13jQkGxsbJyen9evXm5mZ 1c21hoaGTY2gGZCAAdqscpFk7bm4P6KrF6bFbr6dRFWZNP5Y7qMDLwmTOfWEg66FmrIjaj2tl4C1 tLQePHhgb2/f1HdqQUjAAG3Tk1clnxx7lJZXThctDTX3+Ls7meooNypQqHJBVVxITkJonriiusND TYc957qrcqNqTa33DJjP5xcXFzf1VQDQsVEUCbmX/vXFx/Jpvj49zb+Z6KipovBnUqAsBSmVsYGC Z38WyKRv5B6OFlaDaJQmt4DPnz+/ffv24OBgCwsLBcX0TmgBA7QpZSLJmrNxF2Kqu501VFhbJjlP cTdTblSgKBTJelQac0SQceuNxpiupXpVsYSjyZxyvAdHrRONxm29LuiKigp/f/+wsLDu3bvXfeJ7 69atVlgJCwkYoO2IzSxecvThy6JKumhvov3zjF5WRprKjQoUgZJRadeLYo5k5z6pqFnfpZe26xxe 1/46jE6Udl9rvS7opUuXnj9/XlVVVSgUZmdnN/XlANBhSGXU/r9Tf7zyVCKr/ujx79Nt4wc91Djo gexoJEJZ0oX82CBByUuRvJLBJJbD9Fzm8Iwd8X2rOZrcAjYyMlq4cOE333yjoqK0GQVoAQMo3ati 4ecno/9NzaeLGiqs7yY7T3JDt3NHIyyUPD6Z8/hkrrDo9S4ALBWm3QQDl1k8bldVJcbWRrReFzSX y3306JGNjU1T36kFIQEDKNelx9mrQ2OLK6t383U1193l52ZpiGZQh1KSKYoNFiSdz5eIXq+5pKbD 7uFr5ORnrKaH4XXVWq8Lum/fvklJScpNwACgLEKxdHNYwtG7L+gig0H+31Cbz4bz2SzM8+04ch+X xwQK0q4XUjVWO9Q2U3WZaWw3wZCt3imf9CpAkxPwzz///OGHH4pEIi8vL11dXUXE1EjYDQmglSUJ SpeGRCUJSuliFx31XX6ufS0NlBsVtBiKpN8ujj0iyHpYWrPa0EHDba5J92G6THzNelMr7YYk98EH H+Tk5EyZMoUQUnfAs0gkwn7AAB0PPc1308XHov+m+Y5xMtk6xUVHHbv5dgQyMfXsr4LYQEFBSmXN +q79ua5zTUx7aRNkXgVozkIcdnZ2b9v3tzX3A8YzYIDWUVwpXnMmLjz+FV1U47A2ftBjeu9uWF2y A6gqlyaeyYs7JijPEcsrmSyGzRh9l9k8fRt1JcbW9tFdsM1OfNiOEAAa8uBF4fLjUVn/TfO142nv ndHT1lhLuVHB+6vIFceF5CSczq0ql8orORpMhylGTjOMtXjYOaOxWnU7QgDoDKQyal/ks11Xk2X/ fbLM8rRYN9YB03zbu8JUYWxQdnJ4gUzyOmdoGHCcZhj38DFS0cbft5U0NgEbGhouWLBg27ZthoaG EonkbZfl5+fjGTBAB/CqWPjpiei7adXTfHXUOdt8XLwdTZQbFbwXiryKKosJzE6/WWsJSTXX2Tyb MQYsFTxUaFWNTcC9evXq1q0bfSCVSt92WWs+AwYABbmaIFh1OqaoovqhYJ/u+rv93Ex18TiwvaJk 1POIophAQU58ec16E3ct1zkm3QZ20iUklQ7PgAHgtSqJbOulxN9vpdFFJoOxfJjN0mG2bCa+W7dL EpEs6UJ+bLCgJOP1EpKEQSy9dF3nmBg7Y+2UFtDslKSorz0vXryYOXNmly5dtLW1+/Tpc+bMGfmp ioqK5cuX83g8dXX1AQMG3L17V34qLS1t4sSJXC5XR0fH19cXa00DtKa0vPLJv9ySZ18TrlrIR30/ HcFH9m2PhMWSRwdeHRsX98/36fLsy1JhOPgY+YU6jtxujeyrdAppAZeXl7u5uWlra2/YsEFHR+fw 4cNBQUHXrl3z8vIihMycOTMiImLnzp3m5ub79u0LCwuLj4/v2rWrUCh0cnLi8Xhff/01RVFr1qxh MBj37t1jMmt/S0ALGKDFnY16ue5cfHlV9QiPEQ687VNd9DQwFLb9KX0pijuWk3guTyJ8vZCVKpfl 6Gvs6Gekro+p2y1M4WtB6+rqNjD2Sq64uJjFYv3111+TJ0+Oi4uztrYmhMhksm7duk2ZMiUgICAt Lc3a2jo0NHTy5MmEEIlEYmtrO3Xq1O3btx8+fHjRokUZGRk8Ho8QkpycbGdnd+HChXHjxrXUTwsA dZWLJBvOPw59lEkXOSzm2rEO8/p1x4iOdicvsSImUJB6paDmEpJaXVRcZvHsJhhyNPCkVyEUPg1p wIABDYy9qhWHt7d3RcXr3SKZTCaHw6EbstevX2exWKNHj65+ezbb29v7ypUrhJBr1655eHjQ2ZcQ Ymtry+fzr1y5UjcBA0BLiXtZvPx4VFpe9dgcS0PNvf49HU25yo0KmoYimXdKoo9kZ91/cwlJOw2X OTyrkXpYQrJtamwCDgsLa8bdy8rKBALB3r17CwoKFi1aRAhJTk42NTVVV389nNLKyiowMJD81+St +XIrK6ukpKRmvC8AvBNFkd9vpX1/KUEirf7m7tPT/JuJjpoqWB6g3ZBJqJS/CmKCBAXJbywhae7J dZ3DM/PgYgnJtqz5PRLFxcVbtmxJTExs4BpdXV0bG5vw8PCrV6/26NGDfhWX+8aXay6XW1lZWVVV Ve+poqKit92cUYOlpSVduWnTJhzgAAfvPFjz9XcLjtzfHPaEzr6aquzBnNQfp7lqqrDbSIQ4aPjg m/VbYoMFxyfER2x4Ls++DCbDZox+3pC/x+6zNevL3fRNmwi14x14eXnVTECkuZqfgAsLC9evXx8f H9/ANTdu3AgNDXV1dR05cuQ///zT7PdqPHkvPA5wgIO3HfzzLO9cVY+Ipzl0pYu5TviyQVbMfKUH hoPGHFTkie/teWl8ecSdnZllgiq6nq3OLLdK9T/vNGyLZRW3uI2E2rEP3l/zR0E/f/7c0tLy1KlT U6dOfefFw4cPLy8vv3Pnztq1a4ODg9PT0+Wntm7dunnz5vLy8v79+9vY2NDd0bTRo0ezWKy6vd8Y hAXQPBIp9eOVp7/+nSL/17NokNUX3nYcFobntANFz4WxQYKksHyZ+PWnn7o+x3mGsYOPkSoXqxAq R9taCzomJubJkyf+/v7yml69eh08eJAQYmdnl5WVVV5erqlZPQUtKSnJwcGBPpWQkFDzPklJSfS+ hwDw/jIKK5Yei4rJrH6sY6ClsnOa22C+kXKjgsbIjimLOSJ4ceONR3I6Fmquc3i2Y/VZKvj+1C4p 5M9269atmTNnvnjxQl4THR1NP6YdMWIEIeTChQt0vVAoDA8PHzt2LCHE29v74cOHmZmZ8pekpaXR pwDgPZ2Nejl690159h1ka3hp+WBk3zaOkpHnEUV/zE88v+BpzezLc9Ua9aO172lH+0mGyL7tV5O7 oC9fvjxixAgmkykWi1NSUszMzLS1tWtdU1BQ4O7urqOjs3HjRgMDg3Pnzu3evfvQoUPz5s0jhCxe vPjcuXMBAQFmZmY7duy4fft2fHy8sbGxRCJxc3PT1NT89ttvxWLxypUrjY2NIyMj6wkaXdAAjVYq lKz/I/5c9Eu6yGYyVnnbLRpkxcQ83zZMWiVLulgQGywofiF8Xcsg3Yfous7h8VyxHWQbovCFOOTY bLapqencuXPnz59vZWX1tstSUlK++uqrv//+u6SkxNbWdsWKFXT2JYSIRKK1a9cGBQWVlpZ6enoG BAQ4OzvTpzIzM5ctW3b16lUWizVhwoRdu3bp6+vXEzQSMEDjPHxRuOJEVGZh9SjZ7gaau6e7uZrr KjcqaICoRPLkVG788dzKArG8kslh8McbuMzm6VqoKTE2qFfrJeBt27YFBwfHxcUxGIyhQ4cuWLDA x8en5rzeVoAEDPBOMor6JTLlxytJ8t18fXt33fhBD0zzbbPKXlXFHhUknsuTVL5eyEpFm+U4zchx urGGAZaQbKNaLwHTHj9+fPTo0ZCQkOfPn+vo6Pj7+y9YsKBPnz7NuFUzIAEDNCy/rOrTk9E3k3Pp IleN8/0U53HOXZQbFbxN/tOKmEBByuVCSvb6Y02Lp+I8i2c/yYCjgeHNbVprJ2C527dvHzt27MSJ E3l5eU5OTh9//PHcuXO1tBT7fAIJGKABd9Pyl4VE5ZRWb4Dj1lX3l5k9u+hgN9+2hyKZ90pijwgy 75bUrNa3VXeba2I1Uo/JxnP6dkBpCbiqqio8PPzIkSPnzp2jawwMDLZv3z5//vz3uW3DkIAB6iWj qH0RKTuvvu52XjLUeuUIOzaWAm5jZFIq9UphTKAg/2lFzXqzvlzXOTzzvlhCsj1RwjzguLi4gwcP BgcH5+fn6+joLFmyZPHixWw2e+3atQsWLKioqPjkk0+afXMAaKqcUtHnJ6P/eZZHF/U0VHb6ug21 w0SjtkVcIXv6R17sUUHZqyp5JYPJsB6l5zKbZ2ivocTYoJU1uQVcUlISEhJy8ODB+/fvE0I8PT0X LVrk5+enofH6/5uZM2feuHFDPqO3xaEFDFBLxNOcladiCsqrP9P7dNcPmO7eRQcjZtuQygJx/PHc J6dyRCWvd5ZjqzHtJxk6z+Rpm2Lr5faq9bqguVxuaWmpnp7erFmzFi1a5OTkVPea8PDwCRMmNGb/ 4OZBAgaQq5LIfvgr8eA/aXSRwSCfDLX5dASfzUQnZltR9EIYGyRIDsuXVr3+1FLTYztNN+4xzUhN B+PS27fW64Lu3bv3/Pnzp02bpqb21i/XLi4uQUFBTb1zU9HzoCIiIhT9RgBt1rOcsqUhjxKzq3eB NdZW3eXn3t/aQLlRgZwgtjzmSPbzG0WkxoezTjdVl1k82/EGbFUsYtW+eXl51btaVCM1OQFfvnyZ xWI1vAGTubl5zYWgAaDFURQ5du/F5rAEobi6P3O4vfH2qa76mujJVD5KRtJvFsUcEWTHlNWsN3bW dJ1j0n2oDgP9E9DULmiJRKKmprZ///4FCxYoLqZ3Qhc0dHIF5VWrz8ReeSKgiyps5poxDvP6dcfi kkonraKSw/NjgwRFz4U16y0G67jONTFx1cLw5o6nlbqg2Ww2n89//vx5U98GAFrKrZS8z05Ey6f5 2vG0A/zd7Xi1l2SHViYqkSaE5saH5FTkv7GEpO1YA9fZPF1LDIiD2prcBX3kyJGlS5fq6upOmzat S5cubDaGDwC0EqmM2n0teU9Esvyr9vz+3b8c46DKxqNEZSrLroo7lpN4NldcUWMJSS1Wj6lGTtON NYywhCTUr8mjoO3t7cvKyl6+fEkIYTAYTOYb//JFIhGLpfBV09AFDZ1Qbqlo+fGof1Pz6aKOOme3 nzum+SpXQXJlTGB2yl+FMunrjyNNnorzDGP7yYYqmlhCslNovVHQVlZWTCazd+/eDcQBAC3rdkr+ 8uNReWXV3c79rQ12+7kbaasqN6rOiyJZD0qjj2Rn/vvmEpLW6q5zedaj9JkcfBLCu73vUpRKgRYw dB4SGbX7WtKe68/oIoNBVgznL/OyYWEYrTLIpFTataKYI9l5iW8sIWnaW9t1rknXflhCsjNq1aUo RSJRSEhIREREVlYWIcTc3HzUqFHTpk3D82CAlvWyqHL58aiHLwrpoqGWasB0TPNVDkmlLPGPvLij gtKsmktIEsvheq5zTIx6YAlJaLImt4ALCgqGDh0aFxdXq75///6XL1/W1NRsudjeCi1g6AzC4199 GRpXIqweUjvA2nCXnxu6nVtfZYHk8YmcxydzRSWvV/djqzLtJho4z+JxzfAX6exarwX89ddfP336 dM+ePRMnTjQzMyOEpKennzp1au3atZs2bdq2bVtTbwgAtVRUSb+5+Pj4/Qy6yGIyVo7kLx5sjW7n VlaSIYoNFjw9ny+tej28WU33vyUkddHnB++lyS1ga2vr+fPnr1u3rlb9hg0bgoKC0tLSWi62t0IL GDqw+Kzi5cejUnPL6aKZrvoef/ee3fSUG1VnkxNfHhMoSLteWHMJSa6ZqsscHn+8AVsN877gtdZr AWdlZXl6etatHzJkyHfffdfUuwGAnIyiDvyTtu2vRMl/c1rGOXf5foozVw0TSVsJJSMZt4pjArNf PXpjCUkjR03XOTzLYbpYQhJaUJMTsKamJj32qpacnBx1dfWWCAmgMxKUCFeeipHv5qvOYW38wNGv d1fM7Gsd0irq2aWCmMDsorQ3lpDsNkDHdS6vS09tDG+GFtfkLuhx48alpaX9888/+vr68sqcnJxh w4aZmppevny5pSOsh3y2MXZDgo7hWmLOqlMxhRXVw2udzXR2+7lbGbXGkEaoKpMmhObGHcupyKux hCSbYTNG33U2T88a7Qp4q5q7IbVGF/S6deuGDBliaWk5bNiwbt26iUSijIyMa9euURS1f//+pt4N oJOrksi2Xkr8/dbr3Xw/Hmz9+Ug+h4WnjApXLqiKC8lJCM0TV0jllSqaLAcfQyd/nqYxev5BsZqz EEdkZOT//ve/+/fvV9+CwfD09Ny2bdvAgQNbOrz6YRAWdAxpeeVLQx49zqpeTclIWzVguns/K0zz VbiClMrYQMGzPwtqLiGpYcRxnsFzmGKoooUlJKEJmp2Smr8SVlFRUUZGBoPB6Nq1q46OTvNu0jxI wNABhD7KXP9HfEVVddtrpANv21QXPQ3s5qtIFMl6VBpzRJBxq7hmtZ61Lm+iegAAIABJREFUuuts ns1oLCEJzaGEBKxESMDQrlVUSdf/ER/6KJMuqrCZX411mOOJ3XwViJJRadeLYo5k5z55YwnJLr20 XefwuvbXYaDLH5qrVZeivHHjRkREREFBgUwmq3UqICCg1v5IAFDTU0HpJ8cePcupnuViZaS5z7+n QxeucqPqwCRCWdKF/NggQclLkbySwSSWw/Rc5vCMHTHSDZSmyS3ggICAFStWvO2sWCxuhRWh0QKG 9oiiyMmHGRvPPxaKq7udp/Yy3zTBUVMFCyophLBI8vhk7uMTOcKi10tIslSYdhMMXGbxuF2xhCS0 jNbrgraxsXFyclq/fr2ZmVndXGtoaNjUCJoBCRjanTKR5MszcRdjq+fQq3FYWyY6Te1lrtyoOqqS TFFssCDpfL5EVGMJSR12D18jJz9jNT1844GW1HoJWEtL68GDB/b29k19pxaEBAztS1R60fLjURmF 1U8fbYy1fp7Rk8/TVm5UHVLu4+olJKkaz8e0zVRdZhrbTTBkq+MBGbS81nsGzOfzi4uL330dABAi lVH7Ip/tvpYslVX/4/Tpaf7NRHQ7tzSKZNwujjkiyHpYWrPa0EHDba5J92G6TBZGuEGb0+QW8Pnz 57dv3x4cHGxhYaGgmN4JLWBoF14WVX52Ivre8wK6qK3G/m6S8weupsqNqoORialnfxXEBgoKUipr 1nftz3Wda2LaC0tIgsK1Xhd0RUWFv79/WFhY9+7d6z7xvXXrFoul8DnsSMDQ9oXFvfryTGypsHr4 j0d3/Z1+bma6WNewxVSVSxPP5MUdE5Tn1FhCksWwHq3vOpunb4tfNbSS1uuCXrp06fnz51VVVYVC YXZ2dlNfDtDhVYqlmy683s2XyWB8PpK/ZAh2820xFbniuJCchNO5VeWvl5DkaDAdphg5zTDW4mEx E2gfmtwCNjIyWrhw4TfffKOiorT/y7EZA7RZidklS0Oi5NN8zXTVA6a797LAbr4tozBVGBuUnRxe IJPUWELSgOM0w7iHj5GKNpaQhFbV2psxiESiDz/8UInZF6BtoigSfPfF5rAnVZLqAbjYzbfFUORV VFlMYHb6zTdGgOp2V3Odw7MZY8BSQe8CtD9NTsB9+/ZNSkqysbFRRDRNgmfA0HYUVlT9LzT2yhMB XVTjsDZ+0GN6725YXfI9UTLqeURRTKAgJ768Zr2Jm5brXJNuA7GEJCgT3QXLaO6/8yYn4J9//vnD Dz8UiUReXl66urrNe1eAjuRuWv6nJ6JfFVdv5G7H0947o6etsZZyo2rvJCJZ0oX82GBBScbrJSQJ g1h66brOMTF2xhKS0O41+Rmwvb19Tk5OYWEhIaTugGeRSIRR0NB5SGVUwPXkPdefyf77v3G2p8VX Yx3UOHgY2XzCYsmTU7nxx3OEhTWXkGTwPzB0mWmsY6GmxNgA6mrVhTjs7Oze1uJudkscoN3JLhGu OB59Ny2fLuqoc7b5uHg7mig3qnat9KUo7lhO4rk8ifD1QlaqXJajr7Gjn5G6Pp6mQ4eC7QgBmuN6 Ys7KUzGFFVV0sU93/d1+bqaY5ttceYkVMYGC1CsFNZeQ1Oqi4jKLZzfBkKOBJ73QdrXqdoQAnZlY Ktt6KfHgP2l0kclgLB9uu9TLho1pvs1Akcw7JTGB2S/vvbmEpJ2Gyxye1Ug9LCEJHVhzErBMJgsL C7ty5UpGRsaWLVscHR2Tk5N5PB6Xiz1NoYN7nl++LCQq7mX1ZJguOmq7p7t7dNdXblTtkUxCpVwu jAnMLkh+YwlJc0+u6xyemQcXS0hCh9ecpSjHjx8vX/7i5s2bAwcO/Pjjj//88887d+506dJFAUHW hi5oUIqzUS/XnYsvr6oeGTTSgbdtqoueBubEN424Qpp4Ni/uaE6ZoEpeyWAyrL31XGfzDOw0lBgb QDO0Xhf0li1b7ty5s2vXrsmTJ8v3Y1i2bNn58+c3bNjw22+/NfWGAG1fuUiy4fzj0EeZdJHNYqwd 4zC/vyUGHTZJRb44PiTnyencqtLXS0iy1ZkOkw2dZ/C0uuCrDHQuTU7Ap0+fXrNmzYoVKySS1zME HB0d161b991337VobABtQnxW8bKQqLS86oUgLA019/i7O5nqKDeq9qXouTA2SJAUli8Tv24lqOtz nPyNe0w1UuVi1hZ0Rk1OwJmZmf37969b7+DggL0ZoIORUdShW8+/v5QgkWI332bKjimLOSJ4caOo ZqWOhZrrbJ7tOH2WCoY3Q+fV5M8RLS0tgUBQtz41NVVLC0v/QMeRX1a18nR05NNcuqipyv52ktMk NzPlRtVeUDLy4kZRTGC2IPaNJSR5rlquc3gWg3WxhCRAkxPwwIEDv//++1GjRtVch/LFixebN28e NGhQi8b2DgwGA7shgYLcTM777GR0Xln1Iogu5joB0927G2D5w3eTVsmSLhbEBguKXwhr1ncfqusy h2fiiq/p0HHU3A2pGZqcgDds2NC/f38+n+/l5UUI2bZt25YtW65fv85isUJDQ5sdB0AbIZbKtv31 9LebqfKaxYOtVo2y47DQZHsHUQm9hGRuZYFYXsnkMPjjDFxm83S7YwlJgDc0ZyWs+/fvr1q16p9/ /pHJZIQQJpM5aNCgbdu2eXh4KCDCemAaEihIam758uNR8VnV03wNtFR2TnMbzDdSblRtX9mrqtij gsRzeZLK1wtZqWizHKcZOU431jDAEpLQkTU7JTV/KcrS0tKXL18SQszNzVv56S8SMLQ4iiInHmRs uvC4Ulw9Q2aQreFP09yMtFWVG1gbl/+0IiZQkHK5kJK9/veoxVNxnsWzn2TA0cDwZuj4lJCAlQgJ GFpWUYX4yzOxlx5XD+Nnsxirve0XDrRkYp7v21Ak815J7BFB5t2SmtX6tupuc02sRuox2fjVQWfR qmtB37hxIyIioqCggO6CrikgIIDJxKMyaE+i0os+CXmUVVS9IKK1kVbAdHdHU6yrWj+ZlEq9UhgT KMh/WlGz3qwv13UOz7wvlpAEaKwmt4ADAgJWrFjxtrNisZjNVvgUSbSAoUVQFDl4K3Xrn4mS/7pP Z/a1WDfOQR27+dZHXCF7+kde7FFB2as3l5Acpecym2dojyUkoZNqvS5oGxsbJyen9evXm5mZ1c21 hoaGTY2gGZCA4f0VVYhXnY65mlA9qV1HnbN1issYJ+zmW4/KAnH88dwnp3JEJTWWkFRj2k8ydJ7J 0zbFEpLQqTU7JTW5uzg7O3vr1q29evUyMTExrEN+WWFh4dKlS7t166atrd27d+9z587JT1VUVCxf vpzH46mrqw8YMODu3bvyU2lpaRMnTuRyuTo6Or6+vlhaCxTkwYvCMQF/y7OvW1fd8OWDkH3rKn4h vPnti2Pj4qIOvpJnXzU9du8lpjPCnft/0RXZF6DZmtxdzOfzi4uLG76GoqgpU6Y8e/bs+++/NzMz O3TokI+Pz82bN+k1LD/66KOIiIiAgABzc/N9+/aNGjUqPj6+a9euQqFw5MiRPB4vNDSUoqg1a9aM Hz/+3r17eKgMLUgqo36OTNl1LUn6X7fzhwOtVo/GNN/aBLHlMYHZzyOLSI2v9TrdVF1m8WzHG7BV 8esCeF9N7oI+f/789u3bg4OD5Vsh1fXw4cPevXuHhYWNHTuWECKVSrt37z5lypTdu3enpaVZW1uH hoZOnjyZECKRSGxtbadOnbp9+/bDhw8vWrQoIyODx+MRQpKTk+3s7C5cuDBu3LjaQaMLGprlVbHw 0xPRd9Py6SJXjfPjNNeRPXjKjapNoWQk/WZRTKAgO7qsZr2xk6br/2/vvgOautYAgJ+bSRJW2FO2 CIiAE7UqoBYUxVm1at1W2yo4auuqq/VZt6Jt1ffqVrAK2qKUioB7K1tZGpbIJqxAQpL7/rjxGllV BJKQ7/dP7znnJjk5RT7uvec7Z7aJtZcORoFJVgC8o/NmQY8YMeL333+3s7OztrZu+sT3zp07VCrV xcUlNTXVwcGBqKRSqWZmZiUlJQghYs0sPz8/2cfTaL6+vtHR0QihmJiY/v37E9EXIeTg4NC9e/fo 6OimARiANoh+XrTqQiJfIFukqZ+13v6p7ma6LMX2SnlIRHhmZFnSqSJ+9jtLSFoN1XGbZWLirgnT mwFoXx8cgJcsWfLXX38xmcz6+vqWntFqaGg4OzuTxYKCgsTExNmzZyOEMjMzzczMWKy3v/VsbW1P njyJ3lzyyr+Pra1tRkbGh/YQgEbqGyTb/k47cS+bKFIwLNDHfomPAw0u5hBCCImqJc/CSlLOFgvK 5JaQpGEO/vq9ZhpzbWEJSQA6xAcH4IiIiO+//37Lli0MxntNvhCJRNOnT7e2tp43bx5CqLKyUlv7 nQxLbW3turo6kUjUbFNubu6H9hAAeWmF1UGh8elF1UTRRFtj/zT3ATb6iu2VkqgpFCWfLU67WNIg kFtCUpPqPNmw5zQjtiEsIQlAB/rgmRRCoXDBggXvGX0FAsGYMWMyMzMjIiI0NNr572hMjo2NDVG5 efNmOIAD4gDH0fG72f7BN8joO9LZ+O+gIVEnDypJDxV48J+Ve+N+4IUGpCSfKSKjL8eY4bncInfo lf5LzdmGdCXpKhzAgbIdeHt7ywcg1FYffAU8YMCAjIwMe3v7fz2zvLzc39+/vLz89u3bZIDkcrmN JlHz+Xw2m81gMJpt4nK5H9Q98jE4HKj5QR1Om3fiUVx6MUIYQkiDTvXAXxyZ6Y9hytJDhRwgHBU8 qk44UWhwb2gmKkdv6NmxXmjdXXBoPoWOhW9qUIauwgEcKPnBx/vgWdCZmZkLFixYtmyZt7e3/JbA jdTV1fn4+AiFwqtXr8rP1Tpx4sT8+fMrKys5HNnWqvPmzUtKSnr8+PHcuXOfP39+//598mRbW9uJ Eyfu2rWrcadhFjRo1a3MkuV/JJK7+bqYaQdP87AzVOudaKUSnBfDTzxRWJr2zhKSZn213GabWA6E JSQBaKPOmwU9duzY4uLiiRMnIoSo1MYr9gmFQqIyKCiopKTkwYMH+vrvPGwbMWIEQigiImLatGkI ofr6+sjIyC+//BIh5Ovre/r06fz8fAsLC4RQQkICj8cjEpkAeE8NEunuqxmHbr4ga74cYvvtp44M mvrmrYrrpGl/liafKaoukF9CEtkM57rNMjF0hiUkAVCMD74CDggIaOWud3h4OIVCSUlJcXd337hx 45AhQ8gmFos1YMAAhNCiRYsuXboUHBxsbm6+a9euu3fvpqSkGBkZicVid3d3DoezdevWhoaGlStX GhkZXb9+vZlOwxUwaE5uuWBpaHxiHp8oGmox93zmPsShM5ZHVU515eLUc8Wpf5QIq8RkJY1JcRyn 7zrTWNscdloEoB0o13aEBw8eXLp0aaNKOzu7rKwshJBQKFy7du2pU6eqq6s9PT2Dg4NdXV2Jc/Lz 85cuXXrt2jUqlRoQELBv3z49Pb1mOg0BGDQRmfL6uwtJNUJZpBnW3XDPZ+76mmq6UGJVnjDpdFH6 X2US0dvpzRq6tJ7TjJw/M9TQ7fAdUwBQH8oVgDsaBGAgTyiW/nTl2an7OUSRRsVW+/WYN1hNd/Mt TqlNPFnEi62QX0JS25zZa5Zx9zH6NA31vRUPQAfp1P2AAVAevNLaJSFPUwtk28JbcFm/fN7bzbLF 6YFdFS5FeXcqE08Wvn76zhKShi4ct1nGNj66sIQkAMoGAjBQYZcSXq27lFL75razr4vJzsm9tDXU a/kIiQjPiipPOlVY8fKdJSS7DdZxm21s2lsLpjcDoJwgAAOVVCsUb4xIvfAknyjSqNi60c5zBlqr 1V1nUY3keVhJckixoOSdJSTtR+m5fWHMtYNlrgFQahCAgepJzOMHnovPKZPls1py2Qene7hZqNFt 59oiUXJI8fOw0gaBhKyks6nOkw16fm7MMVKvewAAqCgIwECVSKT4oRsv9l7LEL/ZzXeCh/mWgJ5a Guryk1z+oi7pZFFWVLlU/HbGB9uQ7jrd2GmiAUOzcWo+AEBpqcuvLdAFFFXVLzuXcO+lbDdfTSZt 63jXce5miu1VJ8FRwdPqxBNFeXfeWa6Va6vhNsvE3k+PQlenm+8AdAkqHIAxDPPy8oqLi1N0R0Bn iEkr/vZ8YoVAtpZTXyvuvqkeFtyu/5gTl+K8WH7iicKSZ+8sIWnaR8ttlrHlIB0MEosAUBBvb+9m V4t6TyocgIGaEImlP0elHb3DI4oUDFvibR84vOvv5iuul2ZElCWdKqp6JXxbiyHb4dxes4yNXDiK 6xoAoB3AQhxAqb0sqV0a+jbNV012863ni1P/KEk9V1zPf7uEJJVBcQzQ7zXTWNsSlpAEQInAQhyg C7qU8GrtxWSBSDbRd6ST8Y7Jvbjsrry6ZFW+MOl0UcZfZWKh3BKSOjTnKYY9pxppcOEfLABdB/x7 BsqovkGyKSI19FEeUaRSsA1jnGd5duU035JU2RKS+NvIi7TMmb1mGDkGGNBY8KQXgK4GAjBQOi9K ar45+zStsJoo2hhwfpne29lUW7G96ig4yrtbmXiiqOBJtXy1gRPbfbaJtY8uhdp1/+gAQL1BAAZK BMfRH0/y1l5MlrxJ8w1wM9s2wZXD7HI/qDgqflb74h9+ytnCRk+OLAdpu802MesDS0gC0MV1ud9r QGVV1jWsCU+OTHlNFBk0yuYAl2l9u3Wl285SCV74tIYXx8++zq8tEsk3UaiYnZ+e2xfGeg5dP7cK AIAgAAMl8YBXtuxcwutK2XYCNgacX6f3duoqt50lImn+/WpebEXuzcr6SnHTE5ha1EnnnDWNu/L8 MgBAIxCAgYKJJfjemIxfr2eRd2Kn9bPcMMaFzVD5VRVFNZLc25XZcfzcO5XiOmmjVg0uzXKwzqv7 VXQWZWKoMx126gVAzUAABoqUX1G3NPRpfC6fKOqy6T9P7OXnYqLYXn2kunJxzg0+L47/6kGV/IrN BE0ThrW3ro0P18SdA3v0AqDOIAADhbmS/Hp1eFJ1veyW7CA7/T1T3E20NRTbqzarLhBlx1Xw4viF CTWoSUY+11bD2ptr46Nr4MiG2VUAAAQBGChEXYNks1yaL42CrfzUcdFQW4rKTbjCUcXLOl4cPzuW X5ouaNpu6MKx8dG19tbVtVLVPywAAB0EAjDobGmFVUtC4rOKa4iiJZd94HMPd0tV2s0Xl6KSZ7XZ cXxebEVlrrBRK0bBTHtrWnvrWnvrwrwqAEBLVDgAw25IKgfH0an7OT9FPhOJZTOSAtzMto53VZXd fKVi/PXTmuy4iuzr/NrihkatVAZm4alt7c21Gqqjoasa3wgA8DFgNySgGioEou/CkqKfFRFFFp26 OcDlsz6Wyn/XWSyUvrpfxYvl59ysFFY1TiKis6lWQ3WsvXUtB2nT2So/cxsA0GlgNyTQGR7wyoJC EwqrZGm+TqbaBz/3sDPUVGyvWkckEfFi+Xl3m08ish6ma+Oja9ZPm8pQ+j8iAAAdBnZDAkpKIsUP xGYGx2ZJ3/x0zhlkvWaUE5OmpGmvdeUN2dcrs+MqXj2sbjaJyMZH19obkogAAB8LAjDoQIVV9UGh CQ94ZUSRy2bsnNxrhJOxYnvVrOpXQl4cPzuOX5jYfBKRjQ/X2huSiAAA7QYCMOgocenFK88nltfK VjweYKO/b6q7qY4yZePgqPxlXXYsnxfHL2suicjIhWMNSUQAgI4BARi0P5FY+nNU2tE7PKJIwbCg 4Q5LvO2pynHPFpeiktRaXmwFL45fldd8EpGNj661ly4HkogAAB0GAjBoZy9LapeEPH32uooomupo 7J/q0d9GT7G9QkQS0ZNqYiciQUnzSUQ2PtxuQ3U0dODfBQCgw8EvGtBucByFPc3f8FeKQCQhakY4 Ge+c3IvLVuR1pLhemn+/KjuOn3OTL6ySNGqVSyLSobOVdF4YAKBLggAM2keNULzuUvKfCQVEkU6l rBnVY+4gG0Wl+YqqiSSiiry7VeL65pKIvHRtvCGJCACgMBCAQTtIzOMvDY3PLZfNY7Ix4Bz43KOn mU7n90RQ1pBznc+L5Rc8qpZKmiQRmTJsvHVtfLjGbpBEBABQMAjA4KNIcfzIrZe7/kkXS2XRblJv iy3jXDiMTv3RqnolzI7jZ8fyC5MgiQgAoBogAIO2K6kWrjifcCuzlChyGLStE3qOdzfvpI/HUfmL Ol4sPzuuoiyjrmk7kURk462rA0lEAADlAwEYtNGNjJLlfySQab69LHQOTOttpc/u6M/Fpag4pTY7 roIXy6/Kby6JqI+mjTckEQEAlJ0KB2DYDUlRhGLpdrk0X4TQl0NsV/k60qkdOItYKsYLnlRnx/Kz r/MFpZBEBABQPNgNCXSqzOKapSHxaYWyNF8DTebuz9yGdTfsoI8T10vz71Xx4vg5N/mi6sZJRAwO tdsQSCICAKgk2A0JvC8cR6cf5Px05ZnwzW6+w3sY7Zzspsdp/zu9ompJzq1KXmxF/t0qsbBxEhFL j2Y1DJKIAABKAXZDAh2rqr7huwtJUamFRJFJo/zg7zxjgFX7pvkKShuyr/OzY/kFj1tIIvLh2njr QhIRAKALgAAM/l1SfuU3Z5/mVcjSfJ1MtYOneTgYtdtuvlX5wuw4Pi+OX9RsEpEdy8Zb19pH16A7 JBEBALoOCMCgNTiOTt7P/unK8waJ7D7wTE+rDf7OjI/fzRdH5Vl1xI4I5ZnNJRH15Fh7QxIRAKDL ggAMWlQhEK26kHTteRFR1GTSdkzuNbqn6ce8Jy5Fxck1vFh+dhy/6lULSUQ+XOthOpBEBADo2iAA g+bdeVG64o/Eoqp6otjTTOeX6W1P85U24AVPqnmx/JzrfEFZc0lEA3VsvHUhiQgAoD7glx1orEEi 3XU1/citl+ScvlkDrdaPbsttZ3GdNO9eVXZcRc7NSlENJBEBAMBbEIDBO3iltYGh8cmvKokil83Y ManXSGfjD3oTYZUk5yY/O46ff6/lJCIfrllfLUgiAgCoLQjAQKbpbr5DHAx2TXYz1n7fOVCCkobs G3xeLP81JBEBAMC/gQAMEGqymy+Niq326zFvsA3lPfJ8q/KEvDg+L7aiOLm2aSskEQEAQLMgAAOU mM8PDI3PKZOl+doZau6f5v4vu/niqCxDwIvjZ8fxy7MgiQgAAD6YCgdg2Izh40lx/H+3eTui0sjd fKf2tdw41oXNoDZ7Pi5FRck12bF8Xhy/urkkIrO+mtbeXGsvXY4RvWO7DgAAigabMYA2Kq0Rrjif eDOjhChqMmk/T3Qd08us6ZnSBrzgcTVxvVtX3jSJiGIxUNvGR7fbEEgiAgCA9wWbMaipW5kly/9I LK2RXcW6WeoemObRTe+dNF9xnTTvbiUvjp97C5KIAACgebAZA3hfDRLp7qsZh26+IGu+Gma3cqQj jfp2ilR1gShsWqpIgKMmP1IsPZq1l661N9e8nxaFDrOqAACgjSAAq5ecMsHS0KdJ+bI0X0Mt5p7P 3Ic4GLw9A0dZ/5THbeDh717xapkxrL25Nj66xr0giQgAANoBBGA1EpFYsPpicq1QTBSHdTfc85m7 vubbJZerXglv/yc3/34VWUOhYe5zTGx8dPUhiQgAANoVBGC1IBBJNkeknnucRxRpVOx73x7zP3mb 5iuV4Mlnip8cKiAXrqJQMQ0ubeqfPeka8HwXAADaHwTgri+tsHpJyNOs4hqi2E2PfeBzDzcLXfKE ktTam1tzy9JlecAIQy6fGfb7xpyh2XwyEgAAgI8HAbgrw3F0+kHOj1eeicSy69px7mZbx7tqMmX/ 3xsEkke/FqSeK8bfLNisZ8cast7KuBdHIR0GAAD10YF3FysqKsaNG4dh2OPHj+XrBQJBYGCgsbEx i8UaPHjwgwcPyCYejzdu3DhtbW0dHZ0pU6YUFhZ2XPe6PL6gYfGZJz/8mUJEXxadumuy274pHmT0 zblZeX7ys5QQWfSlMrD+S8wnnnGC6AsAAJ2go66AHz16NGXKFC0traZNCxcujIuLCw4OtrCw+OWX Xz799NOUlBRLS8v6+vqRI0caGxuHhYXhOL5mzZoxY8Y8fPiQQoFnkB/sYXZ5UGj860rZbr5OptoH P/ewM9QkioLShrs7815eqyDPN+unNWStlU43pgL6CgAAaqmjFuKYNGmSu7u7n59f//79Hz161Ldv X6Kex+PZ2dmFhYVNmDABISQWix0cHCZPnrxz587jx49/+eWXeXl5xsbGCKHMzExHR8eIiAh/f//G nYaFOFomkeIH4rKCYzKlb8ZnziDrNaOcmDQKQgiXorSLJQ+CX5ELa2jo0DxXWHT314dJzgAA0AZK txDH/v37LSwsGt18RgjFxsZSqVQ/Pz/Zx9Novr6+0dHRCKGYmJj+/fsT0Rch5ODg0L179+jo6KYB GLTkdWVd0LmEh7xyoshlM3ZO7jXCSTakFS/qbm3NLUysIc938NcfuNxCgwtTAQAAoLN11G9eCwuL ZuszMzPNzMxYLBZZY2tre/LkSfTmklf+ZFtb24yMjA7qYdcT/axoVVgiXyBbq3mAjf6+qe6mOhoI IYlIGv97YcLxQqlY9jeatjlzyLpu5gO0FdZdAABQb539eLWyslJb+51f+tra2nV1dSKRqNkmPp/f 0lthcmxsbIjKzZs3q+FBfYNkw18pC089JqIvhtCKkd3PLhhwZN92hFDBk+rDI28//d9rIvpSqJj7 HJMM90tE9FV45+EADuAADlTrwNvbWz4Aobbqavceybvw6nNQLmUF/HIno6iaKJrpstwF8YE+/ggh TES7sSUn/c9SGpJNbBbpVkw/NFjPgRW5SawMnYcDOIADOFDRg4/XsbshPX78uF+/fvKTsNauXXv6 9Onc3FzynJ9//vnHH3+sra0dNGiQvb09cTua4OfnR6VSr1y50rjTMAkLIYQQjqPj97K3/f2cTPP1 czHZPqmXDotOLOl8b3deXbks0NLZ1P5LzJw/M4SVnAEAoB0p3SRkE9arAAAgAElEQVSsljg6OhYU FNTW1nI4smuyjIwMJycnoun58+fyJ2dkZEycOLGTe6gqSmuEqy4kxaUXE0UNOnXDGOfP+3XDMFT9 SnhrW27+vbdLOlt76Q7+zpJjzGjhzQAAAHS2zn4GPGLECIRQREQEUayvr4+MjBw9ejRCyNfX98mT J/n5+URTQkICj8cjmkAjt7NKffffJKOvi5n2laWfTO/fDZfiSaeKzn/2jIy+bEP6p7vsPt1tB9EX AACUSofcgsZx/MaNGwih9PT0xYsXHzp0yNHRkclkDhw4ECG0aNGiS5cuBQcHm5ub79q16+7duykp KUZGRmKx2N3dncPhbN26taGhYeXKlUZGRtevX2+m02p8C1oixYNjM4NjM8lvv2io7cqRjgwapeSZ 4OZPObCkMwAAdKY2h6QOCcBisZhOpzeqNDc3J65uhULh2rVrT506VV1d7enpGRwc7OrqSpyTn5+/ dOnSa9euUanUgICAffv26enpNdNpdQ3AxdXCwND4+y/LiKK+JmPPZ+7Duhs2CKSPf3uVEgpLOgMA QGdTrgDc0dQzAN/KLF32R3xZjYgoDrTV3z/Nw0iLmXur8vbPuTWFsnoqA+vzpVmvL4wpNJhsBQAA HQ4CcFcmluB7rmX8diOL+MYYhoJ8HJb6OAjLxY2WdDbvrzVkrZW2JSzpDAAAnURlZkGDD5VfUbc0 9Gl8rmxBEgNN5v5p7oNsDNIulT7Ynw9LOgMAgIqCAKzUriS/Xh2eVF0vy+Ud4mCw5zN3WgkesSBd fknn7mP0PZdbaOjC/00AAFAZ8CtbSdUKxRv+Sg17KkvKolGwb30d5w+wTjxWlHBMbklnC+aQtbCk MwAAqB4IwMooMY8feC4+p0yWUGTJZR/43MO4mHrx8zR+jmyLXwoV6zXLuPdCUxoT9ksGAADVAwFY uUik+G83Xuy9liGRyq5xx7ubr/fp8exQ0cNLpeRpRj05Q9db6TmwWngbAAAAyk6FAzCGYV5eXnFx cYruSLt5XVm/7FzCA54szVeTSds6zrVnscbf09NhSWcAAFA23t7eza4W9Z5UOAB3MY128+1rxd3q 1fPlL0Uxd1+T58CSzgAA0GVAHrDiCcXS/0Q+P3Evm6xZPtxh6Gvt+EOvxfWypa3YhvRPvu9m7a2r kB4CAABoCSzEoaqyimuWhMSnFcr2TjDVYf04sEfV4crSRks6LzFncGBJZwAAUDoQgFUPjqMLT/N+ +DO1vkG2mMbIHsZTSgyzz5XKL+k89AcrI1dY0hkAAJQUBGAVIxBJfvgzhUzzZdIoS3rY6J1tqH27 pDOlz5emsKQzAAAoOQjAqiSjqPrrs0+zimVLWVlz2XPKTUTRAvIEWNIZAABUBawFrRpwHIU+zt0S 8ayOvO1saNDvMkNUKYu+sKQzAACoCbgC7jx8QcOai0l/pxQSRQ0adXK5Qbf7byMtLOkMAAAqB66A ld39l2XLziUUVskWkrSka4y+raVfKYu+sKQzAACoGwjAHU4swXdfSz904wX551H/Ss2hjzkMCYZg SWcAAFBXEIA7Vm65YGlofGKebDdfTYzqm6DlWKRBFI16cob+YKVnD0s6AwCA2oEA3IH+SixYczG5 Vihbxtm2mukfr61VT0XEks5LzZ0nG8CSzgAAoJ5U+LYnhmHe3t6K7kXzBCLJqgtJgaHxRPSl4Mg7 U2vqfV0i+lp760654OwyBTZUAAAAFebt7U3MwGobuAJuf89fV30T8vRlSS1R5NZTxyfomlbRESzp DAAA4A1IQ2pPOI5CHuVuikgViWWLSfau1vR5xGGIMYQQXYMy42ovWNIZAAC6EkhDUrxaoXjNxeS/ EguIIoNKCeBxu6fRiSKLS5t22ZWuocL3/AEAALQjCMDt4/nrqq/PPuWVym47O3A1R8VpahYjhBCF hnlvsbbz1VNk/wAAACgZCMAfC8fRyfvZP15+JpbK7j8EdDNxOYNhdThCiM6mfLrLDlbYAAAA0AgE 4I9SViNaFZYYm1ZMFNkMaqC1LfXXGlyKI4Q0uLRRwQ6GzmyF9hEAAIAyggDcdjczSlacTyytERLF Hibagexu+QdLiQthLXPm6IMOOt1gRyMAAADNgADcFkKxdHtU2tE7PLJm/mAbr3St54dkl8L63Vmj DjiwDegK6iAAAABlBwH4g2UV1ywJiU8rrCKKhlrM3RN6iU/XPo+SRV+zPlqf7rFjaEK6EQAAgBZB AP4AOI7+eJK36a/Ut7v5Ohn/NLrnk415+fdl8dhmONfnJ2sqA9KNAAAAtAYC8PuqrhevuZh8OelN mi+NsnaU09QeFlHLskpSZdlHzpMNB39vCQtMAgAA+FcQgN9LfC5/aejT/Io6omhryPnl894WuMZf 89Mqc2WTsPouNuu9wBRB8AUAAPAeIAD/CymOH77xcld0uuRNmu+UvpabxrrU54j+XJImKG1ACGEU 9Mnqbk6TDBXaUwAAAKpEhR9VdsJuSMXVwi9+f7j9nzQi+moyaQemeeyY1KsyWfDXgnQi+lIZ2Ijt dhB9AQBA3cBuSB3lRkbJ8j8SymtFRNHdUjd4mkc3PXZ2HD9m7UuJCEcIMThU3712pn20FNpTAAAA qgd2Q2pGg0S685/0I7dekjVfDbNbOdKRRsWeh5fe3paDSxFCiK1PH3XQQb87q4O6AQAAQPnBbkjt JrdcsDQ0PjGPTxQNNJl7p7gPcTBAOHr639ePD8lmQet0Y44+6KBlDgtdAQAAaAsIwO+4nPR6dXhS jVBMFL0djXZNdtPXZOBS/M6OvGfnS4h6Q2f2qGAHDS6MHgAAgDaCECJT1yDZEvEs5FEuUaRRsTV+ TvMG22AYkoikcT9kv7xWQTRZDNAeucuWzoaFrgAAALQdBGCEEEorrF4S8jSruIYoWumzD0zr3ctC ByEkqpFcXfGi4Ek10WTvp+e1yZpCh2xfAAAAH0XdAzCOo9MPcn688kwklhI1Y93Mtk1w1WTSEEKC soa/l2aVpQuIJtfpRp7LLTEVTt0CAACgLNQ6APMFDd+HJ/2TWkgUWXTq5gCXz/pYEmldVXnCK99k Vr+SLXTVf6m5+2wTWOgKAABAu1DfAPwwuzwoNP51ZT1RdDLVPvi5h52hJlEsfS6IXJpZXyFGCGEU bOgPVo4B+grrKwAAgC5HHQOwRIofiMsKjsmUvknbmjPIes0oJyZNdnP51YOqq9++aBBIEUI0JmXE dttuQ3QU1l0AAABdkdoF4NeV9UHn4h/yyomiLpu+c7LbSCdj8oQXVyvifuBJxThCiKlN9dtnb+ym qZi+AgAA6LrUKwBHprxeE55cWddAFAfY6O+f5m6irUGekBJafHdXHsIRQohjzBh90IFrq9HsWwEA AAAfQ10CcK1IvDni2R+P84giBcOWjXD4xsue+mbvXolIGrc6++UNWbKvro3G6F8cNI0ZiukuAACA rk6FU2refzekpPzKMQduk9HXVId17kvPQB8HMvoWp9aGz3hORl8agzLuqCNEXwAAAK2A3ZBaI8Xx wzdf7r6aLn6zm6+/q+l/JrjqsOhEUSKSPjn8OvFkIS59+yq2MYOp3cVHBgAAgGJ15d2QymtFy/5I uJkhW8CZzaBuCeg5qbcF+fdKcWrtjU3ZFS9lmUh0NpXOpNC1qBNDnOgaKnxvAAAAQKeB3ZAae5hd vjQkvqhKFlzdLHX3T3W31ucQxaYXvhYDtIdusNI0gdvOAAAAOkMXDMBSHP/t+ovd0Rlkmu+iobar Pu1Bo7594tvownfgCose4w1glSsAAACdpqsF4NIa4bJzCbezSomiHoexb4r70O6GRBEufAEAACgJ FQ7Ax4cljPrFwbgnh6y5lVmy/I/E0hrZ6s39rPWCp3mY6sgSeeHCFwAAgPJQ4UlYh3s/plCxBQ96 Iww1SKS7r2YcuvmCPOerYXYrP3WkUTAEF74AAAA6TJsnYSnXXF+BQBAYGGhsbMxisQYPHvzgwYPW z5dK8PKsutxyweTD98joa6jFPDVvwPd+PYjoS+T4JhyXRV86mzp0vdXoXxy6XvQdMGDAgAEDFN0L ZQQj0xIYmWbBsLTE29v7PVdfAO9Dua6AZ8yYERcXt3fvXgsLi19++eXKlSspKSmWlpaNTiOvgBFC tTM0/leVXysUE03Duhvu+cyd00ApTq0tTqnlXa2oyKknX9i1L3zb/FdYlwcj0xIYmWbBsLQERqZZ bR4WJQrAPB7Pzs4uLCxswoQJCCGxWOzg4DB58uSdO3c2OpP4tsH9H0U5V6aayOIrBUef5ulOtDAt ey4gN/GVf8mQdd269hNf+LfREhiZlsDINAuGpSUwMs3qCnnAsbGxVCrVz8+PKNJoNF9f3+jo6JbO /9/A0kqWhDjWq6ONS9QxraJnp1U0e7KmKeOr4M9QMIqLi/vQjhG3XDrthcS9r3+9/d6O2vyJbXth J3/cx1CVL9jJI6MqX1BVfmDa/EJV+YFBbf1l2Mm/ez/mhW2jRFfAq1evDgkJycnJIWt27NixadMm gUAgf1pDjZShRUUIWa2+TNS4vWKNTNdiiN8+z6YyMIMebKOeHP3urCeHCyl0bGKIE4NFRW27S9Dm 2wttemEnf1znv1BV+tnmF6pKP9v8QuinkrxQVfrZ5hd2+X4q0RVwZWWltra2fI22tnZdXZ1IJGIw 3j61PTsrhTjI+XmM7AChv5q+3f13iyzZf9u8cHYnv1BV+tnmF6pKP9v8QlXpZ5tfCP1UkheqSj/b /EJV6WcbKNcs6PdBE1N0zNwU3QsAAABApm0xW4mugLlcbmVlpXwNn89ns9nyl78IoSnnnMX+xwsc ReOX2yT9XowjfFKoM+ydAAAAQLUoUQB2dHQsKCiora3lcGSLW2VkZDg5OTU6jc6izI51J46dxhp2 ahcBAACAdqJEF44jRoxACEVERBDF+vr6yMjI0aNHK7RTAAAAQIdQoitgc3Pz+fPnBwUFYRhmbm6+ a9cuqVS6ZMkSRfcLAAAAaH9KFIARQsHBwZqamkuXLq2urvb09IyJiTEyMlJ0pwAAAID2p0R5wAAA AID6UKJnwAAAAID6UMkAHBsb279/fxaLZWpq+v333zc0NCi6R53t4sWLurq6Y8aMaVTfysgcOHDA wcGByWT26NHj+PHjndrdTvH33397enpqampaWlouWLCgtLSUbFLnYUEIHT16tFevXhwOx9LScuHC hSUlJWSTmo8MacaMGRiGpaWlkTVqOzL79+/H3mVvb0+2qu2wEMrKymbNmqWrq8vlcidMmJCfn082 tXFkcFWTnJzMZDLnzZt3586dM2fO6OvrL1++XNGd6jwikSgoKEhHR8fKysrf31++qZWROXLkCJ1O 37Vr171797Zu3UqhUC5duqSI7neUmJgYCoWyYMGCuLi4EydOGBkZ+fr6Ek3qPCw4jh8+fJhCoWza tOnGjRsnTpwwMTHx8vIimtR8ZEjR0dF0Oh0h9Pz5c6JGnUfmxx9/NDc3j5Nz//59okmdhwXHcYlE 4unp2adPn6ioqH/++cfDw6Nv375EU5tHRvUC8OzZs93c3KRSKVH873//y2AwysvLFdurThMfH+/s 7JyWlubv798oALcyMtbW1oGBgeSZM2bMIH90uoYxY8b069ePLB4+fBghRHx3dR4WHMeHDRs2e/Zs snjo0CGEUGlpKa72I0Ooq6uzs7P76quv5AOwOo/Md99916tXr2ab1HlYcBwPDw+n0Wj5+flEMT09 /ejRo/X19fhHjIzqBWALC4t169aRxdevXyOELl68qMAudaaKiorq6mocx5sG4JZGJisrCyEUHR1N NoWEhGAY1pX+ann16lVubi5ZjIyMRAilp6fj6j0sTRF3wIjvCCOD4/iaNWv69u2bmJgoH4DVeWQW L148aNCgZpvUeVhwHJ81a9bIkSObbWrzyKjYM+D6+vr8/Hw7OzuyxsTEhM1mZ2RkKLBXnUlXV1dT U7NpfSsjk5mZiRCSb7K1tcVxnKjvGszMzCwtLcliZGSkiYmJnZ2dmg8LqaGhoays7OrVq5s2bZo/ fz6Xy4WRQQilpqbu27ePuEtPVqr5yFRXV5NrEcpT82FBCCUnJzs4OGzevNnKykpPT2/SpEmvXr1C HzcyKhaAicWiG22apKWlxefzFdQjZdHKyDRtIo676qD9/fffv/7667Zt26hUKgwLYfv27QYGBqNG jRo/fvyRI0cQ/MAghOP4okWLFi9e3Lt3b/l6NR+Z6urq8vLycePGcblcExOTKVOmEFvEqvmwIIRK SkrCw8Ozs7PPnTt39OjRp0+fTpgwAcfxjxkZ5VqIA4CPFBERMWXKlJUrV86ZM0fRfVEis2fPHjhw YHJy8vbt2/Pz88+fP6/oHinekSNHcnNzo6KiFN0R5YLjeGFh4fTp07/77rvc3NwffvjBx8eHuEWv 5hoaGrhc7u+//07cL9HS0hoxYsSNGzeabljw/lQsAOvo6GAY1mjTpMrKSi6Xq6guKYlWRoYYnMrK Sn19faKe+Pur6w3ayZMnFyxYsGHDhvXr1xM1MCwES0tLS0vL4cOH9+7de9iwYVFRUV5eXuo8MkVF RWvWrDl58mTTBzpq/jPz119vd1cfPHhwjx49evfuffny5fHjx6vzsCCEtLS03NzcyKcVgwcPxjDs +fPnnp6ebR4ZFbsFraGhYWVlJf/ENzc3t76+/mP+BukaWhkZR0dHhJB8U0ZGBoVC6d69uwI62mHC wsLmz5//66+/ktEXqf2wiESi0NDQ58+fkzV9+/ZFCGVmZqr5yFy7dq2iomL8+PE0Go1Go7m7uyOE evbsOW7cODUfmUZcXV0xDMvOzoZh6d69u3wOPTGLislkfszIqFgARgj5+vpGRERIpVKiGBYWxmaz vby8FNoppdDSyFhZWfXo0ePSpUvkmWFhYYMHD9bR0VFQT9vfy5cvZ86cuXPnzgULFjRqUudhodPp y5Yt27VrF1mTkJCAELKxsUHqPTJjxoxJTk5OeOPChQsIoYsXLx44cACp8chIJJJ58+adOXOGrHnw 4AGO47a2tkiNh4Xg5+d3586doqIionj9+nWEkKurK/qYkWnnmdodLzMzk8PhzJ49++7du8eOHdPS 0tq4caOiO9V5Xr58SWTHe3p6enp6EscFBQV4qyNz9uxZKpW6Y8eO+/fvr1u3jkKhXLt2TZFfo71N mTLF1tY27l2FhYW4eg8LjuM7d+7EMGzt2rXXr18PCQmxs7NzdHQkkhfVfGTkJScnI7k0JHUemTlz 5nA4nIMHD967d+/06dPW1tY9evSAHxgcx2tqaqytrfv37x8dHR0WFkY80yGa2jwyqheAcRy/detW //79mUymubn55s2bJRKJonvUedatW9f0T7P//ve/RGsrI3PkyBF7e3sGg+Hi4nL+/HkFdb+jkI9Y 5J06dYpoVdthIRw6dMjV1ZXNZpubm8+YMUM+YVrNR4bUKADjajwy9fX1a9eutbW11dDQsLGx+frr r4llWwhqOyyEFy9ejB49ms1m6+joTJ8+vaSkhGxq28jAbkgAAACAAqjeM2AAAACgC4AADAAAACgA BGAAAABAASAAAwAAAAoAARgAAABQAAjAAAAAgAJAAAYAAAAUAAIwAAAAoAAQgAHoOiZPnoxhmKp8 3JgxYzQ0NFpqzc7OxjDs22+/fZ+3SklJwTAMw7DQ0NCmrWKx2MTEBMOw1atXEzW7du3CMOz+/ftt 6zkA7QICMAAq7PTp0xYWForuhbJgMBi///570/rIyMjy8vLO7w8ArYMADIAKu3XrVptfKxKJ2rEn ymDo0KExMTE5OTmN6o8dOzZo0CCFdAmAVkAABmohODi4e/fuTCbT3t4+ODg4MjISw7CwsDCiVSgU rl+/3s7OjslkWltbBwUFtX7B9OrVqzlz5piYmLBYLBcXl3379pE7kSGETp482b9/f01NTRaL1bNn z+3bt0skEqJp7969GIalpaWtWrXKwsKCxWI5OzsfO3aMfG1FRcWKFSvs7OxYLJa+vv6wYcMuX77c Ujc0NTWPHDny6tUrDMNGjBhBVFKp1PLy8tmzZ+vr62tpaQ0ePPjevXtE08OHDzEMO3bsWGBgoKam 5oYNG4j6S5cuffLJJ5qammw228PD47fffpP/lCtXrnh7exsZGRGr8wcGBsrvPd7KxyGE6uvrN2zY 4OjoyGQytbW1hwwZIr81WyOxsbH9+vXT0NAwNDScO3duRUVFK/8LmuXr60ulUuXHEyFUUlJy5cqV UaNGNT2/vr4+MDDQ1NSUyWS6uLjIb8MHQGfotH0kAFAUIqIMGTIkPDw8PDzcw8Nj6NChCKGIiAji hICAACqVumrVqgsXLmzbto3D4fTr108kEjX7buXl5VZWVgYGBrt37w4LC/vqq68QQsuWLSNa//Of /yCExowZc/HixaioqIULFyKE5s6dS7QGBwcjhAYOHLhx48b09PRnz54RgeHWrVvECX5+ftra2sHB wdeuXbt48WJAQACGYS3t7JaUlOTq6mpkZBQfH5+VlYXj+KRJk9hs9tChQ7/77rsrV64cOnRIT09P R0enuroax/H4+HiE0KhRoz755JPff//94cOH5OCMGzcuIiLi6tWrixcvRgitXr2a+Ig7d+5QqdQx Y8ZcunTp2rVre/fu5XK5Q4cOJVpb/zipVOrr64th2IoVK65evXrhwgVi2I8fP0683N/fn8lkEsep qalMJtPKyurMmTPR0dErVqxwc3NDCK1cufJ9/hcT2xkdOnTI39/fyspKfi+aPXv20Ol0YlP077// nqjcuXMnQqhv376TJ08+f/78iRMniL3To6Ki3ufjAGgXEIBB1+fg4GBgYFBbW0sUKyoqDA0NyQAc GxuLENq6dSt5/t69e1ksVkthj7hwvHPnDlkzbtw4fX39ysrKiooKFos1cOBAqVRKtk6dOhUhlJ6e juM4sd/7rFmzyNbHjx8jhNavX4/juEgkotFos2fPJlslEsnmzZtv3LjR0lcbMGCAubk5WZw0aRJC aMeOHWTN1q1bEULEdyGilKGhoUAgIFpramq0tbUHDRok3+EpU6bQaDRiN2Xiy/J4PLI1JiZmx44d xAaxrX9cVFSUfCzHcVwoFHbr1s3CwoL4OPkAvGjRIoTQ48ePyZODgoI+NAD/9ttvxF2Nq1evkk2u rq7jx48nrqcbBWB/f3/yNB6Ph2HYqFGj3ufjAGgXcAsadHHl5eWZmZleXl5sNpuo0dXV/fzzz8kT /vnnH4TQ2LFjyZply5YJBILhw4c3NDRkySHuS//zzz96enryzxQvXbpUWlqqra19+/bturq6SZMm yc8NHjduHELo+vXrZM3o0aPJY2IKVVlZGUKITqebmppeuXLl0qVLDQ0NCCEKhbJhwwbiwrGoqEi+ M6185ZkzZ5LHtra25PsTRo0axWKxiOPbt29XVVVNmDBBKBTWvzF27FixWEx0uFu3bgihDRs2kA9W fXx8Vq1axWQy//XjoqOjEUKTJ08mWxkMhp+fX35+fmZmZqM+3717V19fv0+fPmTNhAkTWvmOLRk7 dqyRkdHRo0eJ4uPHj5OTk+fNm9fsyVOmTCGPiZ3nHz582IYPBaBtIACDLq6wsBAhZGZmJl/p7OxM Hufl5SGETE1Nm742JyfHQQ5xAzkvL6/ZkxFC+fn56E3QIhEhtqCggKwxNjYmj6lUKkKIfIQcHh6u p6c3YcIELpfr5+e3f/9+MnauXLlSvjOtfGX57tFoNPn3RwiZm5uTx7m5uQihVatWseR88cUX5HeZ O3duUFBQaGiotbW1o6Pj119/fePGjff8uPccDUJhYaGJiYl8jXw/3x+dTv/iiy8uXrxIXPIeO3bM xMSk2QfACCFra2v5opmZWVlZmfxYAdChaIruAAAdC8dxhBCF8s7fmo2KCKG6urqmrzU1Nb148SJZ 7NGjRysnk4RCYdMOvGe+bN++fdPS0h48eHD16lXiUejmzZtjYmI8PDyWL18ufzXZZgwGgzwmevXD Dz/IX5QTLC0tEUIUCmXfvn3r16+Pioq6du1aeHj4b7/9NmfOnEYTnVrR5tEQi8Xv+RGNzJ8/f/fu 3WfOnFm4cGFISMiCBQuIPwuaIifHkX3rzCxqACAAgy5OX18fIVRUVCRfmZaWRh4Tl2h5eXlEyEEI iUSigoICLpero6Mzfvz4Rm/YrVu3xMREsVhM/lqvqqoqLy83NTUl3oq4rCQRN2/JN/9XGIZ5enp6 enpu2LAhKSlp4MCBmzZt+vPPP/v06SN/h7ZdEJeAdDrd09OzldMMDAxmzpw5c+ZMsVi8cOHC48eP BwYGenh4tP7m5GjIZyq3NBqGhoavX7+Wr8nOzn7/LyLPyclp4MCBISEh5ubmFRUVc+fObenMV69e yRcLCwsNDQ2b/nEGQAeBHzXQxZmYmJiZmd28eZN4qooQqqqqOnv2LHmCr68vQujUqVNkzYkTJ2xs bOSf2srz9fWtq6sjU5gQQl999ZW9vX1NTc2QIUM4HE5oaKj8bczz589TKJThw4f/a1cTExOnT59O zNcl9OrVy9jYuNFfD/IwDGvzlSJCaNCgQTo6OidPniQHByEUGhr63Xff1dbWIoR++umnzZs3k000 Gs3b2xs1+YOmWcSNX/mhrq2tjYyMtLe3Jx4VyxswYEB5ebn8I9iQkJA2fiuE5s+ff//+/aNHj3p6 ejo5ObV02oULF8jjvLy8tLQ0SBcGnQmugEHXt2jRoo0bNwYEBHz99dcSiWTr1q29e/eOjIwkWr28 vAICAg4dOiSVSn18fF68ePHzzz8PGDCgpQeHQUFBx44dmzdvXkZGhqOj4/Xr18+ePbt8+XLiUnvL li0rV64cO3bswoULMQwLCQmJiIhYsWKFlZXVv/bT0tIyOjr6wYMHK1eutLe3FwgE4eHhPB6PmA/c LHNz8wcPHhw8eNDc3LwNs5bYbPb27dsXL17s5eX1zTffGJS2KHsAAALnSURBVBgY3Lp1a8eOHb6+ vhwOByGE4/imTZvy8vL8/f05HE5WVta2bdssLCyGDBnyr2/u7e0dEBDw66+/0ul0Pz+/0tLSPXv2 FBcXHzp0qOnJ33zzzalTpyZMmLBhwwZ9ff2IiIgXL17In7Bjx461a9eePXtWfuZUS6ZOnbps2bLL ly8fPny4ldNyc3Pnz58/adKk6urqLVu2IIRWrFjxr28OQLtR6BxsADqDWCxet26dmZkZg8FwcXE5 ceLEyZMnEUKXL18mTqivr1+3bp2NjQ2DwbCysgoMDCwrK2vlDfPy8mbNmmVoaKihoeHs7Lx3716x WEy2njp1qm/fviwWS0NDw8PD49dffyWbiDSkuLg4sqakpAQhtGjRIqKYnp4+Y8YMCwsLJpOpr68/ ePDgU6dOtdKTR48e2dvbs9nsTz75BH+TFyR/wvnz5xFCISEh+JtcnY0bNzZ6k/Dw8E8++YTD4bBY LCcnpy1btgiFQrL14MGDffr00dXVJRbiWLx4cU5ODtHU+scRA7tx40YHBwc6na6trT18+PCYmBjy ZPk0JBzHL1++7O7uzmAw9PX158yZQ9yRXrJkCdG6bds2hNC5c+eaHQcyDYmsmTdvHovFqqysJIqN 0pB++uknhFBCQsKSJUuMjY0ZDEbPnj3DwsJaGWoA2h2G47hCAj8ACrR79+5vv/325s2b73MlB5SE t7f36tWriUcGAHQB8AwYdH3/+9///P395Zc2/Pvvv+l0uqurqwJ7BT5IeXl5ampq//79Fd0RANoN PAMGXZ+lpWVUVNTo0aOXL1/OYDAuXLgQExMTFBSkq6ur6K6B98Xj8YiFMBXdEQDaDdyCBmrhypUr 27dvT05OFggEdnZ2c+fOXblyJSScAAAUCAIwAAAAoABwBQAAAAAoAARgAAAAQAEgAAMAAAAKAAEY AAAAUAAIwAAAAIACQAAGAAAAFAACMAAAAKAAEIABAAAABYAADAAAACjA/wFbAddiwt9otQAAAABJ RU5ErkJggg== --=-=-= Content-Type: text/plain The 0.7% is to ensure safe 800kb lower bound on low-end computers. > Anyway, how about if you try running with the threshold you think we > should adopt, and report back after a month or so, say? I am using 250Mb threshold for the last 3 years or so. GCs are sometimes noticeable, but not annoying: - gc-elapsed 297 sec / gcs-done 290 -> ~1 sec per GC - Emacs uptime 2 days 5 hours 21 minutes -> 1 GC per 10 minutes - memory-limit 6,518,516, stable 37x from Emacs -Q memory-limit 10x from Emacs loading with my init.el -- Ihor Radchenko // yantar92, Org mode contributor, Learn more about Org mode at . Support Org development at , or support my work at --=-=-=--