1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
| | ;;; comp-cstr.el --- native compiler constraint library -*- lexical-binding: t -*-
;; Copyright (C) 2020-2023 Free Software Foundation, Inc.
;; Author: Andrea Corallo <acorallo@gnu.org>
;; Keywords: lisp
;; Package: emacs
;; This file is part of GNU Emacs.
;; GNU Emacs is free software: you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation, either version 3 of the License, or
;; (at your option) any later version.
;; GNU Emacs is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;; You should have received a copy of the GNU General Public License
;; along with GNU Emacs. If not, see <https://www.gnu.org/licenses/>.
;;; Commentary:
;; Constraint library in use by the native compiler.
;; In LIMPLE each non immediate value is represented by a `comp-mvar'.
;; The part concerning the set of all values the `comp-mvar' can
;; assume is described into its constraint `comp-cstr'. Each
;; constraint consists in a triplet: type-set, value-set, range-set.
;; This file provide set operations between constraints (union
;; intersection and negation) plus routines to convert from and to a
;; CL like type specifier.
;;; Code:
(require 'cl-lib)
(require 'cl-macs)
(defconst comp--typeof-builtin-types (mapcar (lambda (x)
(append x '(t)))
cl--typeof-types)
;; TODO can we just add t in `cl--typeof-types'?
"Like `cl--typeof-types' but with t as common supertype.")
(cl-defstruct (comp-cstr (:constructor comp-type-to-cstr
(type &aux
(null (eq type 'null))
(integer (eq type 'integer))
(typeset (if (or null integer)
nil
(list type)))
(valset (when null
'(nil)))
(range (when integer
'((- . +))))))
(:constructor comp-value-to-cstr
(value &aux
(integer (integerp value))
(valset (unless integer
(list value)))
(range (when integer
`((,value . ,value))))
(typeset ())))
(:constructor comp-irange-to-cstr
(irange &aux
(range (list irange))
(typeset ())))
(:copier nil))
"Internal representation of a type/value constraint."
(typeset '(t) :type list
:documentation "List of possible types the mvar can assume.
Each element cannot be a subtype of any other element of this slot.")
(valset () :type list
:documentation "List of possible values the mvar can assume.
Integer values are handled in the `range' slot.")
(range () :type list
:documentation "Integer interval.")
(neg nil :type boolean
:documentation "Non-nil if the constraint is negated"))
(cl-defstruct comp-cstr-f
"Internal constraint representation for a function."
(args () :type list
:documentation "List of `comp-cstr' for its arguments.")
(ret nil :type (or comp-cstr comp-cstr-f)
:documentation "Returned value."))
(defun comp--cl-class-hierarchy (x)
"Given a class name `x' return its hierarchy."
`(,@(cl--class-allparents (cl--struct-get-class x))
;; FIXME: AFAICT, `comp--all-classes' will also find those struct types
;; which use :type and can thus be either `vector' or `cons' (the latter
;; isn't `atom').
atom
t))
(defun comp--all-classes ()
"Return all non built-in type names currently defined."
(let (res)
(mapatoms (lambda (x)
(when (cl-find-class x)
(push x res)))
obarray)
res))
(defun comp--compute-typeof-types ()
(append comp--typeof-builtin-types
(mapcar #'comp--cl-class-hierarchy (comp--all-classes))))
(defun comp--compute--pred-type-h ()
(cl-loop with h = (make-hash-table :test #'eq)
for class-name in (comp--all-classes)
for pred = (get class-name 'cl-deftype-satisfies)
when pred
do (puthash pred class-name h)
finally return h))
(cl-defstruct comp-cstr-ctxt
(typeof-types (comp--compute-typeof-types)
:type list
:documentation "Type hierarchy.")
(pred-type-h (comp--compute--pred-type-h)
:type hash-table
:documentation "Hash pred -> type.")
(union-typesets-mem (make-hash-table :test #'equal) :type hash-table
:documentation "Serve memoization for
`comp-union-typesets'.")
;; TODO we should be able to just cons hash this.
(common-supertype-mem (make-hash-table :test #'equal) :type hash-table
:documentation "Serve memoization for
`comp-common-supertype'.")
(subtype-p-mem (make-hash-table :test #'equal) :type hash-table
:documentation "Serve memoization for
`comp-cstr-ctxt-subtype-p-mem'.")
(union-1-mem-no-range (make-hash-table :test #'equal) :type hash-table
:documentation "Serve memoization for
`comp-cstr-union-1'.")
(union-1-mem-range (make-hash-table :test #'equal) :type hash-table
:documentation "Serve memoization for
`comp-cstr-union-1'.")
(intersection-mem (make-hash-table :test #'equal) :type hash-table
:documentation "Serve memoization for
`intersection-mem'."))
(defun comp-cstr-ctxt-update-type-slots (ctxt)
"Update the type related slots of CTXT.
This must run after byte compilation in order to account for user
defined types."
(setf (comp-cstr-ctxt-typeof-types ctxt)
(comp--compute-typeof-types))
(setf (comp-cstr-ctxt-pred-type-h ctxt)
(comp--compute--pred-type-h)))
(defmacro with-comp-cstr-accessors (&rest body)
"Define some quick accessor to reduce code vergosity in BODY."
(declare (debug (form body))
(indent defun))
`(cl-macrolet ((typeset (x)
`(comp-cstr-typeset ,x))
(valset (x)
`(comp-cstr-valset ,x))
(range (x)
`(comp-cstr-range ,x))
(neg (x)
`(comp-cstr-neg ,x)))
,@body))
(defun comp-cstr-copy (cstr)
"Return a deep copy of CSTR."
(with-comp-cstr-accessors
(make-comp-cstr :typeset (copy-sequence (typeset cstr))
:valset (copy-sequence (valset cstr))
:range (copy-tree (range cstr))
:neg (neg cstr))))
(defsubst comp-cstr-shallow-copy (dst src)
"Copy the content of SRC into DST."
(with-comp-cstr-accessors
(setf (range dst) (range src)
(valset dst) (valset src)
(typeset dst) (typeset src)
(neg dst) (neg src))))
(defsubst comp-cstr-empty-p (cstr)
"Return t if CSTR is equivalent to the nil type specifier or nil otherwise."
(with-comp-cstr-accessors
(and (null (typeset cstr))
(null (valset cstr))
(null (range cstr))
(null (neg cstr)))))
(defsubst comp-cstr-null-p (cstr)
"Return t if CSTR is equivalent to the `null' type specifier, nil otherwise."
(with-comp-cstr-accessors
(and (null (typeset cstr))
(null (range cstr))
(null (neg cstr))
(equal (valset cstr) '(nil)))))
(defun comp-cstrs-homogeneous (cstrs)
"Check if constraints CSTRS are all homogeneously negated or non-negated.
Return `pos' if they are all positive, `neg' if they are all
negated or nil otherwise."
(cl-loop
for cstr in cstrs
unless (comp-cstr-neg cstr)
count t into n-pos
else
count t into n-neg
finally
(cond
((zerop n-neg) (cl-return 'pos))
((zerop n-pos) (cl-return 'neg)))))
(defun comp-split-pos-neg (cstrs)
"Split constraints CSTRS into non-negated and negated.
Return them as multiple value."
(cl-loop
for cstr in cstrs
if (comp-cstr-neg cstr)
collect cstr into negatives
else
collect cstr into positives
finally return (cl-values positives negatives)))
;; So we can load comp-cstr.el and comp.el in non native compiled
;; builds.
(defvar comp-ctxt nil)
(defvar comp-cstr-one (comp-value-to-cstr 1)
"Represent the integer immediate one.")
(defvar comp-cstr-t (comp-type-to-cstr t)
"Represent the superclass t.")
\f
;;; Value handling.
(defun comp-normalize-valset (valset)
"Sort and remove duplicates from VALSET then return it."
(cl-sort (cl-remove-duplicates valset :test #'eq)
(lambda (x y)
(cond
((and (symbolp x) (symbolp y))
(string< x y))
((and (symbolp x) (not (symbolp y)))
t)
((and (not (symbolp x)) (symbolp y))
nil)
(t
(< (sxhash-equal x)
(sxhash-equal y)))))))
(defun comp-union-valsets (&rest valsets)
"Union values present into VALSETS."
(comp-normalize-valset (cl-reduce #'cl-union valsets)))
(defun comp-intersection-valsets (&rest valsets)
"Union values present into VALSETS."
(comp-normalize-valset (cl-reduce #'cl-intersection valsets)))
\f
;;; Type handling.
(defun comp--sym-lessp (x y)
"Like `string-lessp' but for symbol names."
(string-lessp (symbol-name x)
(symbol-name y)))
(defun comp--direct-supertype (type) ;FIXME: There can be several!
"Return the direct supertype of TYPE."
(declare (obsolete comp--direct-supertype "30.1"))
(cl-loop
named outer
for i in (comp-cstr-ctxt-typeof-types comp-ctxt)
do (cl-loop for (j y) on i
when (eq j type)
do (cl-return-from outer y))))
(defun comp--direct-supertypes (type)
"Return the direct supertypes of TYPE."
(let ((supers (comp-supertypes type)))
(cl-assert (eq type (car supers)))
(cl-loop
with notdirect = nil
with direct = nil
for parent in (cdr supers)
unless (memq parent notdirect)
do (progn
(push parent direct)
(setq notdirect (append notdirect (comp-supertypes parent))))
finally return direct)))
(defsubst comp-subtype-p (type1 type2)
"Return t if TYPE1 is a subtype of TYPE2 or nil otherwise."
(let ((types (cons type1 type2)))
(or (gethash types (comp-cstr-ctxt-subtype-p-mem comp-ctxt))
(puthash types
(memq type2 (comp-supertypes type1))
(comp-cstr-ctxt-subtype-p-mem comp-ctxt)))))
(defun comp--normalize-typeset0 (typeset)
;; For every type search its supertypes. If all the subtypes of a
;; supertype are presents remove all of them, add the identified
;; supertype and restart.
;; FIXME: The intention is to return a 100% equivalent but simpler
;; typeset, but this is only the case when the supertype is abstract
;; and "final/closed" (i.e. can't have new subtypes).
(when typeset
(while (eq 'restart
(cl-loop
named main
for sup in (cl-remove-duplicates
(apply #'append
(mapcar #'comp--direct-supertypes typeset)))
for subs = (comp--direct-subtypes sup)
when (and (length> subs 1) ;;FIXME: Why?
;; Every subtype of `sup` is a subtype of
;; some element of `typeset`?
;; It's tempting to just check (member x typeset),
;; but think of the typeset (marker number),
;; where `sup' is `integer-or-marker' and `sub'
;; is `integer'.
(cl-every (lambda (sub)
(cl-some (lambda (type)
(comp-subtype-p sub type))
typeset))
subs))
do (progn
(setq typeset (cons sup (cl-set-difference typeset subs)))
(cl-return-from main 'restart)))))
typeset))
(defun comp-normalize-typeset (typeset)
"Sort TYPESET and return it."
(cl-sort (comp--normalize-typeset0 (cl-remove-duplicates typeset)) #'comp--sym-lessp))
(defun comp--direct-subtypes (type)
"Return all the direct subtypes of TYPE."
;; TODO: memoize.
(let ((subtypes ()))
(dolist (j (comp-cstr-ctxt-typeof-types comp-ctxt))
(let ((occur (memq type j)))
(when occur
(while (not (eq j occur))
(let ((candidate (pop j)))
(when (and (not (memq candidate subtypes))
(memq type (comp--direct-supertypes candidate)))
(push candidate subtypes)))))))
(cl-sort subtypes #'comp--sym-lessp)))
(defun comp--intersection (list1 list2)
"Like `cl-intersection` but preserves the order of one of its args."
(if (equal list1 list2) list1
(let ((res nil))
(while list2
(if (memq (car list2) list1)
(push (car list2) res))
(pop list2))
(nreverse res))))
(defun comp-supertypes (type)
"Return the ordered list of supertypes of TYPE."
;; FIXME: We should probably keep the results in
;; `comp-cstr-ctxt-typeof-types' (or maybe even precompute them
;; and maybe turn `comp-cstr-ctxt-typeof-types' into a hash-table).
;; Or maybe we shouldn't keep structs and defclasses in it,
;; and just use `cl--class-allparents' when needed (and refuse to
;; compute their direct subtypes since we can't know them).
(cl-loop
named loop
with above
for lane in (comp-cstr-ctxt-typeof-types comp-ctxt)
do (let ((x (memq type lane)))
(cond
((null x) nil)
((eq x lane) (cl-return-from loop x)) ;A base type: easy case.
(t (setq above
(if above (comp--intersection x above) x)))))
finally return above))
(defun comp-union-typesets (&rest typesets)
"Union types present into TYPESETS."
(or (gethash typesets (comp-cstr-ctxt-union-typesets-mem comp-ctxt))
(puthash typesets
(cl-loop
;; List of (TYPE . SUPERTYPES)", ordered from
;; "most general" to "least general"
with typess = (sort (mapcar #'comp-supertypes
(apply #'append typesets))
(lambda (l1 l2)
(<= (length l1) (length l2))))
with res = '()
for types in typess
;; Don't keep this type if it's a subtype of one of
;; the other types.
unless (comp--intersection types res)
do (push (car types) res)
finally return (comp-normalize-typeset res))
(comp-cstr-ctxt-union-typesets-mem comp-ctxt))))
(defun comp-intersect-two-typesets (t1 t2)
"Intersect typesets T1 and T2."
(with-comp-cstr-accessors
(cl-loop
for types in (list t1 t2)
for other-types in (list t2 t1)
append
(cl-loop
for type in types
when (cl-some (lambda (x)
(comp-subtype-p type x))
other-types)
collect type))))
(defun comp-intersect-typesets (&rest typesets)
"Intersect types present into TYPESETS."
(unless (cl-some #'null typesets)
(if (length= typesets 1)
(car typesets)
(comp-normalize-typeset
(cl-reduce #'comp-intersect-two-typesets typesets)))))
\f
;;; Integer range handling
(defsubst comp-star-or-num-p (x)
(or (numberp x) (eq '* x)))
(defsubst comp-range-1+ (x)
(if (symbolp x)
x
(1+ x)))
(defsubst comp-range-1- (x)
(if (symbolp x)
x
(1- x)))
(defsubst comp-range-+ (x y)
(pcase (cons x y)
((or '(+ . -) '(- . +)) '??)
((or `(- . ,_) `(,_ . -)) '-)
((or `(+ . ,_) `(,_ . +)) '+)
(_ (+ x y))))
(defsubst comp-range-- (x y)
(pcase (cons x y)
((or '(+ . +) '(- . -)) '??)
('(+ . -) '+)
('(- . +) '-)
((or `(+ . ,_) `(,_ . -)) '+)
((or `(- . ,_) `(,_ . +)) '-)
(_ (- x y))))
(defsubst comp-range-< (x y)
(cond
((eq x '+) nil)
((eq x '-) t)
((eq y '+) t)
((eq y '-) nil)
(t (< x y))))
(defsubst comp-cstr-smallest-in-range (range)
"Smallest entry in RANGE."
(caar range))
(defsubst comp-cstr-greatest-in-range (range)
"Greater entry in RANGE."
(cdar (last range)))
(defun comp-range-union (&rest ranges)
"Combine integer intervals RANGES by union set operation."
(cl-loop
with all-ranges = (apply #'append ranges)
with lows = (mapcar (lambda (x)
(cons (comp-range-1- (car x)) 'l))
all-ranges)
with highs = (mapcar (lambda (x)
(cons (cdr x) 'h))
all-ranges)
with nest = 0
with low = nil
with res = ()
for (i . x) in (cl-sort (nconc lows highs) #'comp-range-< :key #'car)
if (eq x 'l)
do
(when (zerop nest)
(setf low i))
(cl-incf nest)
else
do
(when (= nest 1)
(push `(,(comp-range-1+ low) . ,i) res))
(cl-decf nest)
finally return (reverse res)))
(defun comp-range-intersection (&rest ranges)
"Combine integer intervals RANGES by intersecting."
(cl-loop
with all-ranges = (apply #'append ranges)
with n-ranges = (length ranges)
with lows = (mapcar (lambda (x)
(cons (car x) 'l))
all-ranges)
with highs = (mapcar (lambda (x)
(cons (cdr x) 'h))
all-ranges)
with nest = 0
with low = nil
with res = ()
for (i . x) in (cl-sort (nconc lows highs) #'comp-range-< :key #'car)
initially (when (cl-some #'null ranges)
;; Intersecting with a null range always results in a
;; null range.
(cl-return '()))
if (eq x 'l)
do
(cl-incf nest)
(when (= nest n-ranges)
(setf low i))
else
do
(when (= nest n-ranges)
(push `(,low . ,i)
res))
(cl-decf nest)
finally return (reverse res)))
(defun comp-range-negation (range)
"Negate range RANGE."
(if (null range)
'((- . +))
(cl-loop
with res = ()
with last-h = '-
for (l . h) in range
unless (eq l '-)
do (push `(,(comp-range-1+ last-h) . ,(1- l)) res)
do (setf last-h h)
finally
(unless (eq '+ last-h)
(push `(,(1+ last-h) . +) res))
(cl-return (reverse res)))))
(defsubst comp-cstr-set-cmp-range (dst old-dst ext-range)
"Support range comparison functions."
(with-comp-cstr-accessors
(if ext-range
(setf (typeset dst) (when (cl-some (lambda (x)
(comp-subtype-p 'float x))
(typeset old-dst))
'(float))
(valset dst) ()
(range dst) (if (range old-dst)
(comp-range-intersection (range old-dst)
ext-range)
ext-range)
(neg dst) nil)
(comp-cstr-shallow-copy dst old-dst))))
(defmacro comp-cstr-set-range-for-arithm (dst src1 src2 &rest range-body)
;; Prevent some code duplication for `comp-cstr-add-2'
;; `comp-cstr-sub-2'.
(declare (debug (range-body))
(indent defun))
`(with-comp-cstr-accessors
(if (or (neg src1) (neg src2))
(setf (typeset ,dst) '(number))
(when-let ((r1 (range ,src1))
(r2 (range ,src2)))
(let* ((l1 (comp-cstr-smallest-in-range r1))
(l2 (comp-cstr-smallest-in-range r2))
(h1 (comp-cstr-greatest-in-range r1))
(h2 (comp-cstr-greatest-in-range r2)))
(setf (typeset ,dst) (when (cl-some (lambda (x)
(comp-subtype-p 'float x))
(append (typeset src1)
(typeset src2)))
'(float))
(range ,dst) ,@range-body))))))
(defun comp-cstr-add-2 (dst src1 src2)
"Sum SRC1 and SRC2 into DST."
(comp-cstr-set-range-for-arithm dst src1 src2
`((,(comp-range-+ l1 l2) . ,(comp-range-+ h1 h2)))))
(defun comp-cstr-sub-2 (dst src1 src2)
"Subtract SRC1 and SRC2 into DST."
(comp-cstr-set-range-for-arithm dst src1 src2
(let ((l (comp-range-- l1 h2))
(h (comp-range-- h1 l2)))
(if (or (eq l '??) (eq h '??))
'((- . +))
`((,l . ,h))))))
\f
;;; Union specific code.
(defun comp-cstr-union-homogeneous-no-range (dst &rest srcs)
"As `comp-cstr-union' but excluding the irange component.
All SRCS constraints must be homogeneously negated or non-negated."
;; Type propagation.
(setf (comp-cstr-typeset dst)
(apply #'comp-union-typesets (mapcar #'comp-cstr-typeset srcs)))
;; Value propagation.
(setf (comp-cstr-valset dst)
(comp-normalize-valset
(cl-loop
with values = (mapcar #'comp-cstr-valset srcs)
;; TODO sort.
for v in (cl-remove-duplicates (apply #'append values)
:test #'equal)
;; We propagate only values those types are not already
;; into typeset.
when (cl-notany (lambda (x)
(comp-subtype-p (type-of v) x))
(comp-cstr-typeset dst))
collect v)))
dst)
(defun comp-cstr-union-homogeneous (range dst &rest srcs)
"Combine SRCS by union set operation setting the result in DST.
Do range propagation when RANGE is non-nil.
All SRCS constraints must be homogeneously negated or non-negated.
DST is returned."
(apply #'comp-cstr-union-homogeneous-no-range dst srcs)
;; Range propagation.
(setf (comp-cstr-neg dst)
(when srcs
(comp-cstr-neg (car srcs)))
(comp-cstr-range dst)
(when (cl-notany (lambda (x)
(comp-subtype-p 'integer x))
(comp-cstr-typeset dst))
(if range
(apply #'comp-range-union
(mapcar #'comp-cstr-range srcs))
'((- . +)))))
dst)
(cl-defun comp-cstr-union-1-no-mem (range &rest srcs)
"Combine SRCS by union set operation setting the result in DST.
Do range propagation when RANGE is non-nil.
Non memoized version of `comp-cstr-union-1'.
DST is returned."
(with-comp-cstr-accessors
(let ((dst (make-comp-cstr)))
(cl-flet ((give-up ()
(setf (typeset dst) '(t)
(valset dst) ()
(range dst) ()
(neg dst) nil)
(cl-return-from comp-cstr-union-1-no-mem dst)))
;; Check first if we are in the simple case of all input non-negate
;; or negated so we don't have to cons.
(when-let ((res (comp-cstrs-homogeneous srcs)))
(apply #'comp-cstr-union-homogeneous range dst srcs)
(cl-return-from comp-cstr-union-1-no-mem dst))
;; Some are negated and some are not
(cl-multiple-value-bind (positives negatives) (comp-split-pos-neg srcs)
(let* ((pos (apply #'comp-cstr-union-homogeneous range
(make-comp-cstr) positives))
;; We'll always use neg as result as this is almost
;; always necessary for describing open intervals
;; resulting from negated constraints.
(neg (apply #'comp-cstr-union-homogeneous range
(make-comp-cstr :neg t) negatives)))
;; Type propagation.
(when (and (typeset pos)
;; When every pos type is a subtype of some neg ones.
(cl-every (lambda (x)
(cl-some (lambda (y)
(comp-subtype-p x y))
(append (typeset neg)
(when (range neg)
'(integer)))))
(typeset pos)))
;; This is a conservative choice, ATM we can't represent such
;; a disjoint set of types unless we decide to add a new slot
;; into `comp-cstr' or adopt something like
;; `intersection-type' `union-type' in SBCL. Keep it
;; "simple" for now.
(give-up))
;; When every neg type is a subtype of some pos one.
;; In case return pos.
(when (and (typeset neg)
(cl-every (lambda (x)
(cl-some (lambda (y)
(comp-subtype-p x y))
(append (typeset pos)
(when (range pos)
'(integer)))))
(typeset neg)))
(comp-cstr-shallow-copy dst pos)
(setf (neg dst) nil)
(cl-return-from comp-cstr-union-1-no-mem dst))
;; Verify disjoint condition between positive types and
;; negative types coming from values, in case give-up.
(let ((neg-value-types (nconc (mapcar #'type-of (valset neg))
(when (range neg)
'(integer)))))
(when (cl-some (lambda (x)
(cl-some (lambda (y)
(and (not (eq y x))
(comp-subtype-p y x)))
neg-value-types))
(typeset pos))
(give-up)))
;; Value propagation.
(cond
((and (valset pos) (valset neg)
(equal (comp-union-valsets (valset pos) (valset neg))
(valset pos)))
;; Pos is a superset of neg.
(give-up))
((cl-some (lambda (x)
(cl-some (lambda (y)
(comp-subtype-p y x))
(mapcar #'type-of (valset pos))))
(typeset neg))
(give-up))
(t
;; pos is a subset or eq to neg
(setf (valset neg)
(cl-nset-difference (valset neg) (valset pos)))))
;; Range propagation
(when range
;; Handle apart (or (integer 1 1) (not (integer 1 1)))
;; like cases.
(if (and (range pos) (range neg)
(equal (range pos) (range neg)))
(give-up)
(setf (range neg)
(comp-range-negation
(comp-range-union
(comp-range-negation (range neg))
(range pos))))))
(comp-cstr-shallow-copy dst (if (comp-cstr-empty-p neg)
pos
neg))))
;; (not null) => t
(when (and (neg dst)
(null (typeset dst))
(null (valset dst))
(null (range dst)))
(give-up)))
dst)))
(defun comp-cstr-union-1 (range dst &rest srcs)
"Combine SRCS by union set operation setting the result in DST.
Do range propagation when RANGE is non-nil.
DST is returned."
(with-comp-cstr-accessors
(let* ((mem-h (if range
(comp-cstr-ctxt-union-1-mem-range comp-ctxt)
(comp-cstr-ctxt-union-1-mem-no-range comp-ctxt)))
(res (or (gethash srcs mem-h)
(puthash
(mapcar #'comp-cstr-copy srcs)
(apply #'comp-cstr-union-1-no-mem range srcs)
mem-h))))
(comp-cstr-shallow-copy dst res)
res)))
(cl-defun comp-cstr-intersection-homogeneous (dst &rest srcs)
"Combine SRCS by intersection set operation setting the result in DST.
All SRCS constraints must be homogeneously negated or non-negated.
DST is returned."
(with-comp-cstr-accessors
(when (cl-some #'comp-cstr-empty-p srcs)
(setf (valset dst) nil
(range dst) nil
(typeset dst) nil)
(cl-return-from comp-cstr-intersection-homogeneous dst))
(setf (neg dst) (when srcs
(neg (car srcs))))
;; Type propagation.
(setf (typeset dst)
(apply #'comp-intersect-typesets
(mapcar #'comp-cstr-typeset srcs)))
;; Value propagation.
(setf (valset dst)
(comp-normalize-valset
(cl-loop
for src in srcs
append
(cl-loop
for val in (valset src)
;; If (member value) is subtypep of all other sources then
;; is good to be colleted.
when (cl-every (lambda (s)
(or (memql val (valset s))
(cl-some (lambda (type)
(cl-typep val type))
(typeset s))))
(remq src srcs))
collect val))))
;; Range propagation.
(setf (range dst)
;; Do range propagation only if the destination typeset
;; doesn't cover it already.
(unless (cl-some (lambda (type)
(comp-subtype-p 'integer type))
(typeset dst))
(apply #'comp-range-intersection
(cl-loop
for src in srcs
;; Collect effective ranges.
collect (or (range src)
(when (cl-some (lambda (s)
(comp-subtype-p 'integer s))
(typeset src))
'((- . +))))))))
dst))
(cl-defun comp-cstr-intersection-no-mem (&rest srcs)
"Combine SRCS by intersection set operation.
Non memoized version of `comp-cstr-intersection-no-mem'."
(let ((dst (make-comp-cstr)))
(with-comp-cstr-accessors
(cl-flet ((return-empty ()
(setf (typeset dst) ()
(valset dst) ()
(range dst) ()
(neg dst) nil)
(cl-return-from comp-cstr-intersection-no-mem dst)))
(when-let ((res (comp-cstrs-homogeneous srcs)))
(if (eq res 'neg)
(apply #'comp-cstr-union-homogeneous t dst srcs)
(apply #'comp-cstr-intersection-homogeneous dst srcs))
(cl-return-from comp-cstr-intersection-no-mem dst))
;; Some are negated and some are not
(cl-multiple-value-bind (positives negatives) (comp-split-pos-neg srcs)
(let* ((pos (apply #'comp-cstr-intersection-homogeneous
(make-comp-cstr) positives))
(neg (apply #'comp-cstr-intersection-homogeneous
(make-comp-cstr) negatives)))
;; In case pos is not relevant return directly the content
;; of neg.
(when (equal (typeset pos) '(t))
(comp-cstr-shallow-copy dst neg)
(setf (neg dst) t)
;; (not t) => nil
(when (and (null (valset dst))
(null (range dst))
(neg dst)
(equal '(t) (typeset dst)))
(setf (typeset dst) ()
(neg dst) nil))
(cl-return-from comp-cstr-intersection-no-mem dst))
(when (cl-some
(lambda (ty)
(memq ty (typeset neg)))
(typeset pos))
(return-empty))
;; Some negated types are subtypes of some non-negated one.
;; Transform the corresponding set of types from neg to pos.
(cl-loop
for neg-type in (typeset neg)
do (cl-loop
for pos-type in (copy-sequence (typeset pos))
when (and (not (eq neg-type pos-type))
(comp-subtype-p neg-type pos-type))
do (cl-loop
with found
for type in (comp-supertypes neg-type)
when found
collect type into res
when (eq type pos-type)
do (setf (typeset pos) (cl-union (typeset pos) res))
(cl-return)
when (eq type neg-type)
do (setf found t))))
(setf (range pos)
(comp-range-intersection (range pos)
(comp-range-negation (range neg)))
(valset pos)
(cl-set-difference (valset pos) (valset neg)))
;; Return a non negated form.
(comp-cstr-shallow-copy dst pos)
(setf (neg dst) nil)))
dst))))
\f
;;; Entry points.
(defun comp-cstr-imm-vld-p (cstr)
"Return t if one and only one immediate value can be extracted from CSTR."
(with-comp-cstr-accessors
(when (and (null (typeset cstr))
(null (neg cstr)))
(let* ((v (valset cstr))
(r (range cstr))
(valset-len (length v))
(range-len (length r)))
(if (and (= valset-len 1)
(= range-len 0))
t
(when (and (= valset-len 0)
(= range-len 1))
(let* ((low (caar r))
(high (cdar r)))
(and (integerp low)
(integerp high)
(= low high)))))))))
(defun comp-cstr-imm (cstr)
"Return the immediate value of CSTR.
`comp-cstr-imm-vld-p' *must* be satisfied before calling
`comp-cstr-imm'."
(declare (gv-setter
(lambda (val)
`(with-comp-cstr-accessors
(if (integerp ,val)
(setf (typeset ,cstr) nil
(range ,cstr) (list (cons ,val ,val)))
(setf (typeset ,cstr) nil
(valset ,cstr) (list ,val)))))))
(with-comp-cstr-accessors
(let ((v (valset cstr)))
(if (length= v 1)
(car v)
(caar (range cstr))))))
(defun comp-cstr-fixnum-p (cstr)
"Return t if CSTR is certainly a fixnum."
(with-comp-cstr-accessors
(when (null (neg cstr))
(when-let (range (range cstr))
(let* ((low (caar range))
(high (cdar (last range))))
(unless (or (eq low '-)
(< low most-negative-fixnum)
(eq high '+)
(> high most-positive-fixnum))
t))))))
(defun comp-cstr-symbol-p (cstr)
"Return t if CSTR is certainly a symbol."
(with-comp-cstr-accessors
(and (null (range cstr))
(null (neg cstr))
(or (and (null (valset cstr))
(equal (typeset cstr) '(symbol)))
(and (or (null (typeset cstr))
(equal (typeset cstr) '(symbol)))
(cl-every #'symbolp (valset cstr)))))))
(defsubst comp-cstr-cons-p (cstr)
"Return t if CSTR is certainly a cons."
(with-comp-cstr-accessors
(and (null (valset cstr))
(null (range cstr))
(null (neg cstr))
(equal (typeset cstr) '(cons)))))
;; Move to comp.el?
(defsubst comp-cstr-cl-tag-p (cstr)
"Return non-nil if CSTR is a CL tag."
(with-comp-cstr-accessors
(and (null (range cstr))
(null (neg cstr))
(null (typeset cstr))
(length= (valset cstr) 1)
(string-match (rx "cl-struct-" (group-n 1 (1+ not-newline)) "-tags")
(symbol-name (car (valset cstr)))))))
(defsubst comp-cstr-cl-tag (cstr)
"If CSTR is a CL tag return its tag name."
(with-comp-cstr-accessors
(and (comp-cstr-cl-tag-p cstr)
(intern (match-string 1 (symbol-name (car (valset cstr))))))))
(defun comp-cstr-= (dst op1 op2)
"Constraint OP1 being = OP2 setting the result into DST."
(with-comp-cstr-accessors
(cl-flet ((relax-cstr (cstr)
(setf cstr (copy-sequence cstr))
;; If can be any float extend it to all integers.
(when (memq 'float (typeset cstr))
(setf (range cstr) '((- . +))))
;; For each float value that can be represented
;; precisely as an integer add the integer as well.
(cl-loop
for v in (valset cstr)
do
(when-let* ((ok (floatp v))
(truncated (ignore-error overflow-error
(truncate v)))
(ok (= v truncated)))
(push (cons truncated truncated) (range cstr))))
(cl-loop
with vals-to-add
for (l . h) in (range cstr)
;; If an integer range reduces to single value add
;; its float value too.
if (eql l h)
do (push (float l) vals-to-add)
;; Otherwise can be any float.
else
do (cl-pushnew 'float (typeset cstr))
(cl-return cstr)
finally (setf (valset cstr)
(append vals-to-add (valset cstr))))
(when (memql 0.0 (valset cstr))
(cl-pushnew -0.0 (valset cstr)))
(when (memql -0.0 (valset cstr))
(cl-pushnew 0.0 (valset cstr)))
cstr))
(comp-cstr-intersection dst (relax-cstr op1) (relax-cstr op2)))))
(defun comp-cstr-> (dst old-dst src)
"Constraint DST being > than SRC.
SRC can be either a comp-cstr or an integer."
(with-comp-cstr-accessors
(let ((ext-range
(if (integerp src)
`((,(1+ src) . +))
(when-let* ((range (range src))
(low (comp-cstr-smallest-in-range range))
(okay (integerp low)))
`((,(1+ low) . +))))))
(comp-cstr-set-cmp-range dst old-dst ext-range))))
(defun comp-cstr->= (dst old-dst src)
"Constraint DST being >= than SRC.
SRC can be either a comp-cstr or an integer."
(with-comp-cstr-accessors
(let ((ext-range
(if (integerp src)
`((,src . +))
(when-let* ((range (range src))
(low (comp-cstr-smallest-in-range range))
(okay (integerp low)))
`((,low . +))))))
(comp-cstr-set-cmp-range dst old-dst ext-range))))
(defun comp-cstr-< (dst old-dst src)
"Constraint DST being < than SRC.
SRC can be either a comp-cstr or an integer."
(with-comp-cstr-accessors
(let ((ext-range
(if (integerp src)
`((- . ,(1- src)))
(when-let* ((range (range src))
(low (comp-cstr-greatest-in-range range))
(okay (integerp low)))
`((- . ,(1- low)))))))
(comp-cstr-set-cmp-range dst old-dst ext-range))))
(defun comp-cstr-<= (dst old-dst src)
"Constraint DST being > than SRC.
SRC can be either a comp-cstr or an integer."
(with-comp-cstr-accessors
(let ((ext-range
(if (integerp src)
`((- . ,src))
(when-let* ((range (range src))
(low (comp-cstr-greatest-in-range range))
(okay (integerp low)))
`((- . ,low))))))
(comp-cstr-set-cmp-range dst old-dst ext-range))))
(defun comp-cstr-add (dst srcs)
"Sum SRCS into DST."
(comp-cstr-add-2 dst (cl-first srcs) (cl-second srcs))
(cl-loop
for src in (nthcdr 2 srcs)
do (comp-cstr-add-2 dst dst src)))
(defun comp-cstr-sub (dst srcs)
"Subtract SRCS into DST."
(comp-cstr-sub-2 dst (cl-first srcs) (cl-second srcs))
(cl-loop
for src in (nthcdr 2 srcs)
do (comp-cstr-sub-2 dst dst src)))
(defun comp-cstr-union-no-range (dst &rest srcs)
"Combine SRCS by union set operation setting the result in DST.
Do not propagate the range component.
DST is returned."
(apply #'comp-cstr-union-1 nil dst srcs))
(defun comp-cstr-union (dst &rest srcs)
"Combine SRCS by union set operation setting the result in DST.
DST is returned."
(apply #'comp-cstr-union-1 t dst srcs))
(defun comp-cstr-union-make (&rest srcs)
"Combine SRCS by union set operation and return a new constraint."
(apply #'comp-cstr-union (make-comp-cstr) srcs))
(defun comp-cstr-intersection (dst &rest srcs)
"Combine SRCS by intersection set operation setting the result in DST.
DST is returned."
(with-comp-cstr-accessors
(let* ((mem-h (comp-cstr-ctxt-intersection-mem comp-ctxt))
(res (or (gethash srcs mem-h)
(puthash
(mapcar #'comp-cstr-copy srcs)
(apply #'comp-cstr-intersection-no-mem srcs)
mem-h))))
(comp-cstr-shallow-copy dst res)
res)))
(defun comp-cstr-intersection-no-hashcons (dst &rest srcs)
"Combine SRCS by intersection set operation setting the result in DST.
Non hash consed values are not propagated as values but rather
promoted to their types.
DST is returned."
(with-comp-cstr-accessors
(apply #'comp-cstr-intersection dst srcs)
(if (and (neg dst)
(valset dst)
(cl-notevery #'symbolp (valset dst)))
(setf (valset dst) ()
(typeset dst) '(t)
(range dst) ()
(neg dst) nil)
(let (strip-values strip-types)
(cl-loop for v in (valset dst)
unless (symbolp v)
do (push v strip-values)
(push (type-of v) strip-types))
(when strip-values
(setf (typeset dst) (comp-union-typesets (typeset dst) strip-types)
(valset dst) (cl-set-difference (valset dst) strip-values)))
(cl-loop for (l . h) in (range dst)
when (or (bignump l) (bignump h))
do (setf (range dst) '((- . +)))
(cl-return))))
dst))
(defun comp-cstr-intersection-make (&rest srcs)
"Combine SRCS by intersection set operation and return a new constraint."
(apply #'comp-cstr-intersection (make-comp-cstr) srcs))
(defun comp-cstr-negation (dst src)
"Negate SRC setting the result in DST.
DST is returned."
(with-comp-cstr-accessors
(cond
((and (null (valset src))
(null (range src))
(null (neg src))
(equal (typeset src) '(t)))
(setf (typeset dst) ()
(valset dst) ()
(range dst) nil
(neg dst) nil))
((and (null (valset src))
(null (range src))
(null (neg src))
(null (typeset src)))
(setf (typeset dst) '(t)
(valset dst) ()
(range dst) nil
(neg dst) nil))
(t
(comp-cstr-shallow-copy dst src)
(setf (neg dst) (not (neg src)))))
dst))
(defun comp-cstr-value-negation (dst src)
"Negate values in SRC setting the result in DST.
DST is returned."
(with-comp-cstr-accessors
(if (or (valset src) (range src))
(setf (typeset dst) ()
(valset dst) (valset src)
(range dst) (range src)
(neg dst) (not (neg src)))
(setf (typeset dst) (typeset src)
(valset dst) ()
(range dst) ()))
dst))
(defun comp-cstr-negation-make (src)
"Negate SRC and return a new constraint."
(comp-cstr-negation (make-comp-cstr) src))
(defun comp-type-spec-to-cstr (type-spec &optional fn)
"Convert a type specifier TYPE-SPEC into a `comp-cstr'.
FN non-nil indicates we are parsing a function lambda list."
(pcase type-spec
((and (or '&optional '&rest) x)
(if fn
x
(error "Invalid `%s` in type specifier" x)))
('nil
(make-comp-cstr :typeset ()))
('fixnum
(comp-irange-to-cstr `(,most-negative-fixnum . ,most-positive-fixnum)))
('boolean
(comp-type-spec-to-cstr '(member t nil)))
('integer
(comp-irange-to-cstr '(- . +)))
('null (comp-value-to-cstr nil))
((pred atom)
(comp-type-to-cstr type-spec))
(`(or . ,rest)
(apply #'comp-cstr-union-make
(mapcar #'comp-type-spec-to-cstr rest)))
(`(and . ,rest)
(apply #'comp-cstr-intersection-make
(mapcar #'comp-type-spec-to-cstr rest)))
(`(not ,cstr)
(comp-cstr-negation-make (comp-type-spec-to-cstr cstr)))
(`(integer ,(and (pred integerp) l) ,(and (pred integerp) h))
(comp-irange-to-cstr `(,l . ,h)))
(`(integer * ,(and (pred integerp) h))
(comp-irange-to-cstr `(- . ,h)))
(`(integer ,(and (pred integerp) l) *)
(comp-irange-to-cstr `(,l . +)))
(`(float ,(pred comp-star-or-num-p) ,(pred comp-star-or-num-p))
;; No float range support :/
(comp-type-to-cstr 'float))
(`(member . ,rest)
(apply #'comp-cstr-union-make (mapcar #'comp-value-to-cstr rest)))
(`(function ,args ,ret)
(make-comp-cstr-f
:args (mapcar (lambda (x)
(comp-type-spec-to-cstr x t))
args)
:ret (comp-type-spec-to-cstr ret)))
(_ (error "Invalid type specifier"))))
(defun comp--simple-cstr-to-type-spec (cstr)
"Given a non comp-cstr-f CSTR return its type specifier."
(let ((valset (comp-cstr-valset cstr))
(typeset (comp-cstr-typeset cstr))
(range (comp-cstr-range cstr))
(negated (comp-cstr-neg cstr)))
(when valset
(when (memq nil valset)
(if (memq t valset)
(progn
;; t and nil are values, convert into `boolean'.
(push 'boolean typeset)
(setf valset (remove t (remove nil valset))))
;; Only nil is a value, convert it into a `null' type specifier.
(setf valset (remove nil valset))
(push 'null typeset))))
;; Form proper integer type specifiers.
(setf range (cl-loop for (l . h) in range
for low = (if (integerp l) l '*)
for high = (if (integerp h) h '*)
if (and (eq low '*) (eq high '*))
collect 'integer
else
collect `(integer ,low , high))
valset (cl-remove-duplicates valset))
;; Form the final type specifier.
(let* ((types-ints (append typeset range))
(res (cond
((and types-ints valset)
`((member ,@valset) ,@types-ints))
(types-ints types-ints)
(valset `(member ,@valset))
(t
;; Empty type specifier
nil)))
(final
(pcase res
((or `(member . ,rest)
`(integer ,(pred comp-star-or-num-p)
,(pred comp-star-or-num-p)))
(if rest
res
(car res)))
((pred atom) res)
(`(,_first . ,rest)
(if rest
`(or ,@res)
(car res))))))
(if negated
`(not ,final)
final))))
(defun comp-cstr-to-type-spec (cstr)
"Given CSTR return its type specifier."
(cl-etypecase cstr
(comp-cstr-f
`(function
,(mapcar (lambda (x)
(cl-etypecase x
(comp-cstr (comp-cstr-to-type-spec x))
(symbol x)))
(comp-cstr-f-args cstr))
,(comp--simple-cstr-to-type-spec (comp-cstr-f-ret cstr))))
(comp-cstr
(comp--simple-cstr-to-type-spec cstr))))
(provide 'comp-cstr)
;;; comp-cstr.el ends here
|