unofficial mirror of emacs-devel@gnu.org 
 help / color / mirror / code / Atom feed
blob 59faf2b4f1ed77008edb9b362660553f95ad0fb3 51663 bytes (raw)
name: doc/lispref/sequences.texi 	 # note: path name is non-authoritative(*)

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
 
@c -*-texinfo-*-
@c This is part of the GNU Emacs Lisp Reference Manual.
@c Copyright (C) 1990-1995, 1998-1999, 2001-2018 Free Software
@c Foundation, Inc.
@c See the file elisp.texi for copying conditions.
@node Sequences Arrays Vectors
@chapter Sequences, Arrays, and Vectors
@cindex sequence

  The @dfn{sequence} type is the union of two other Lisp types: lists
and arrays.  In other words, any list is a sequence, and any array is
a sequence.  The common property that all sequences have is that each
is an ordered collection of elements.

  An @dfn{array} is a fixed-length object with a slot for each of its
elements.  All the elements are accessible in constant time.  The four
types of arrays are strings, vectors, char-tables and bool-vectors.

  A list is a sequence of elements, but it is not a single primitive
object; it is made of cons cells, one cell per element.  Finding the
@var{n}th element requires looking through @var{n} cons cells, so
elements farther from the beginning of the list take longer to access.
But it is possible to add elements to the list, or remove elements.

  The following diagram shows the relationship between these types:

@example
@group
          _____________________________________________
         |                                             |
         |          Sequence                           |
         |  ______   ________________________________  |
         | |      | |                                | |
         | | List | |             Array              | |
         | |      | |    ________       ________     | |
         | |______| |   |        |     |        |    | |
         |          |   | Vector |     | String |    | |
         |          |   |________|     |________|    | |
         |          |  ____________   _____________  | |
         |          | |            | |             | | |
         |          | | Char-table | | Bool-vector | | |
         |          | |____________| |_____________| | |
         |          |________________________________| |
         |_____________________________________________|
@end group
@end example

@menu
* Sequence Functions::    Functions that accept any kind of sequence.
* Arrays::                Characteristics of arrays in Emacs Lisp.
* Array Functions::       Functions specifically for arrays.
* Vectors::               Special characteristics of Emacs Lisp vectors.
* Vector Functions::      Functions specifically for vectors.
* Char-Tables::           How to work with char-tables.
* Bool-Vectors::          How to work with bool-vectors.
* Rings::                 Managing a fixed-size ring of objects.
@end menu

@node Sequence Functions
@section Sequences

  This section describes functions that accept any kind of sequence.

@defun sequencep object
This function returns @code{t} if @var{object} is a list, vector,
string, bool-vector, or char-table, @code{nil} otherwise.
@end defun

@defun length sequence
@cindex string length
@cindex list length
@cindex vector length
@cindex sequence length
@cindex char-table length
@anchor{Definition of length}
This function returns the number of elements in @var{sequence}.  If
@var{sequence} is a dotted list, a @code{wrong-type-argument} error is
signaled; if it is a circular list, a @code{circular-list} error is
signaled.  For a char-table, the value returned is always one more
than the maximum Emacs character code.

@xref{Definition of safe-length}, for the related function @code{safe-length}.

@example
@group
(length '(1 2 3))
    @result{} 3
@end group
@group
(length ())
    @result{} 0
@end group
@group
(length "foobar")
    @result{} 6
@end group
@group
(length [1 2 3])
    @result{} 3
@end group
@group
(length (make-bool-vector 5 nil))
    @result{} 5
@end group
@end example
@end defun

@noindent
See also @code{string-bytes}, in @ref{Text Representations}.

If you need to compute the width of a string on display, you should use
@code{string-width} (@pxref{Size of Displayed Text}), not @code{length},
since @code{length} only counts the number of characters, but does not
account for the display width of each character.

@defun elt sequence index
@anchor{Definition of elt}
@cindex elements of sequences
This function returns the element of @var{sequence} indexed by
@var{index}.  Legitimate values of @var{index} are integers ranging
from 0 up to one less than the length of @var{sequence}.  If
@var{sequence} is a list, out-of-range values behave as for
@code{nth}.  @xref{Definition of nth}.  Otherwise, out-of-range values
trigger an @code{args-out-of-range} error.

@example
@group
(elt [1 2 3 4] 2)
     @result{} 3
@end group
@group
(elt '(1 2 3 4) 2)
     @result{} 3
@end group
@group
;; @r{We use @code{string} to show clearly which character @code{elt} returns.}
(string (elt "1234" 2))
     @result{} "3"
@end group
@group
(elt [1 2 3 4] 4)
     @error{} Args out of range: [1 2 3 4], 4
@end group
@group
(elt [1 2 3 4] -1)
     @error{} Args out of range: [1 2 3 4], -1
@end group
@end example

This function generalizes @code{aref} (@pxref{Array Functions}) and
@code{nth} (@pxref{Definition of nth}).
@end defun

@defun copy-sequence seqr
@cindex copying sequences
This function returns a copy of @var{seqr}, which should be either a
sequence or a record.  The copy is the same type of object as the
original, and it has the same elements in the same order.  However, if
@var{seqr} is empty, like a string or a vector of zero length, the
value returned by this function might not be a copy, but an empty
object of the same type and identical to @var{seqr}.

Storing a new element into the copy does not affect the original
@var{seqr}, and vice versa.  However, the elements of the copy
are not copies; they are identical (@code{eq}) to the elements
of the original.  Therefore, changes made within these elements, as
found via the copy, are also visible in the original.

If the argument is a string with text properties, the property list in
the copy is itself a copy, not shared with the original's property
list.  However, the actual values of the properties are shared.
@xref{Text Properties}.

This function does not work for dotted lists.  Trying to copy a
circular list may cause an infinite loop.

See also @code{append} in @ref{Building Lists}, @code{concat} in
@ref{Creating Strings}, and @code{vconcat} in @ref{Vector Functions},
for other ways to copy sequences.

@example
@group
(setq bar '(1 2))
     @result{} (1 2)
@end group
@group
(setq x (vector 'foo bar))
     @result{} [foo (1 2)]
@end group
@group
(setq y (copy-sequence x))
     @result{} [foo (1 2)]
@end group

@group
(eq x y)
     @result{} nil
@end group
@group
(equal x y)
     @result{} t
@end group
@group
(eq (elt x 1) (elt y 1))
     @result{} t
@end group

@group
;; @r{Replacing an element of one sequence.}
(aset x 0 'quux)
x @result{} [quux (1 2)]
y @result{} [foo (1 2)]
@end group

@group
;; @r{Modifying the inside of a shared element.}
(setcar (aref x 1) 69)
x @result{} [quux (69 2)]
y @result{} [foo (69 2)]
@end group
@end example
@end defun

@defun reverse sequence
@cindex string reverse
@cindex list reverse
@cindex vector reverse
@cindex sequence reverse
This function creates a new sequence whose elements are the elements
of @var{sequence}, but in reverse order.  The original argument @var{sequence}
is @emph{not} altered.  Note that char-tables cannot be reversed.

@example
@group
(setq x '(1 2 3 4))
     @result{} (1 2 3 4)
@end group
@group
(reverse x)
     @result{} (4 3 2 1)
x
     @result{} (1 2 3 4)
@end group
@group
(setq x [1 2 3 4])
     @result{} [1 2 3 4]
@end group
@group
(reverse x)
     @result{} [4 3 2 1]
x
     @result{} [1 2 3 4]
@end group
@group
(setq x "xyzzy")
     @result{} "xyzzy"
@end group
@group
(reverse x)
     @result{} "yzzyx"
x
     @result{} "xyzzy"
@end group
@end example
@end defun

@defun nreverse sequence
@cindex reversing a string
@cindex reversing a list
@cindex reversing a vector
  This function reverses the order of the elements of @var{sequence}.
Unlike @code{reverse} the original @var{sequence} may be modified.

  For example:

@example
@group
(setq x '(a b c))
     @result{} (a b c)
@end group
@group
x
     @result{} (a b c)
(nreverse x)
     @result{} (c b a)
@end group
@group
;; @r{The cons cell that was first is now last.}
x
     @result{} (a)
@end group
@end example

  To avoid confusion, we usually store the result of @code{nreverse}
back in the same variable which held the original list:

@example
(setq x (nreverse x))
@end example

  Here is the @code{nreverse} of our favorite example, @code{(a b c)},
presented graphically:

@smallexample
@group
@r{Original list head:}                       @r{Reversed list:}
 -------------        -------------        ------------
| car  | cdr  |      | car  | cdr  |      | car | cdr  |
|   a  |  nil |<--   |   b  |   o  |<--   |   c |   o  |
|      |      |   |  |      |   |  |   |  |     |   |  |
 -------------    |   --------- | -    |   -------- | -
                  |             |      |            |
                   -------------        ------------
@end group
@end smallexample

  For the vector, it is even simpler because you don't need setq:

@example
(setq x [1 2 3 4])
     @result{} [1 2 3 4]
(nreverse x)
     @result{} [4 3 2 1]
x
     @result{} [4 3 2 1]
@end example

Note that unlike @code{reverse}, this function doesn't work with strings.
Although you can alter string data by using @code{aset}, it is strongly
encouraged to treat strings as immutable.

@end defun

@defun sort sequence predicate
@cindex stable sort
@cindex sorting lists
@cindex sorting vectors
This function sorts @var{sequence} stably.  Note that this function doesn't work
for all sequences; it may be used only for lists and vectors.  If @var{sequence}
is a list, it is modified destructively.  This functions returns the sorted
@var{sequence} and compares elements using @var{predicate}.  A stable sort is
one in which elements with equal sort keys maintain their relative order before
and after the sort.  Stability is important when successive sorts are used to
order elements according to different criteria.

The argument @var{predicate} must be a function that accepts two
arguments.  It is called with two elements of @var{sequence}.  To get an
increasing order sort, the @var{predicate} should return non-@code{nil} if the
first element is ``less'' than the second, or @code{nil} if not.

The comparison function @var{predicate} must give reliable results for
any given pair of arguments, at least within a single call to
@code{sort}.  It must be @dfn{antisymmetric}; that is, if @var{a} is
less than @var{b}, @var{b} must not be less than @var{a}.  It must be
@dfn{transitive}---that is, if @var{a} is less than @var{b}, and @var{b}
is less than @var{c}, then @var{a} must be less than @var{c}.  If you
use a comparison function which does not meet these requirements, the
result of @code{sort} is unpredictable.

The destructive aspect of @code{sort} for lists is that it rearranges the
cons cells forming @var{sequence} by changing @sc{cdr}s.  A nondestructive
sort function would create new cons cells to store the elements in their
sorted order.  If you wish to make a sorted copy without destroying the
original, copy it first with @code{copy-sequence} and then sort.

Sorting does not change the @sc{car}s of the cons cells in @var{sequence};
the cons cell that originally contained the element @code{a} in
@var{sequence} still has @code{a} in its @sc{car} after sorting, but it now
appears in a different position in the list due to the change of
@sc{cdr}s.  For example:

@example
@group
(setq nums '(1 3 2 6 5 4 0))
     @result{} (1 3 2 6 5 4 0)
@end group
@group
(sort nums '<)
     @result{} (0 1 2 3 4 5 6)
@end group
@group
nums
     @result{} (1 2 3 4 5 6)
@end group
@end example

@noindent
@strong{Warning}: Note that the list in @code{nums} no longer contains
0; this is the same cons cell that it was before, but it is no longer
the first one in the list.  Don't assume a variable that formerly held
the argument now holds the entire sorted list!  Instead, save the result
of @code{sort} and use that.  Most often we store the result back into
the variable that held the original list:

@example
(setq nums (sort nums '<))
@end example

For the better understanding of what stable sort is, consider the following
vector example.  After sorting, all items whose @code{car} is 8 are grouped
at the beginning of @code{vector}, but their relative order is preserved.
All items whose @code{car} is 9 are grouped at the end of @code{vector},
but their relative order is also preserved:

@example
@group
(setq
  vector
  (vector '(8 . "xxx") '(9 . "aaa") '(8 . "bbb") '(9 . "zzz")
          '(9 . "ppp") '(8 . "ttt") '(8 . "eee") '(9 . "fff")))
     @result{} [(8 . "xxx") (9 . "aaa") (8 . "bbb") (9 . "zzz")
         (9 . "ppp") (8 . "ttt") (8 . "eee") (9 . "fff")]
@end group
@group
(sort vector (lambda (x y) (< (car x) (car y))))
     @result{} [(8 . "xxx") (8 . "bbb") (8 . "ttt") (8 . "eee")
         (9 . "aaa") (9 . "zzz") (9 . "ppp") (9 . "fff")]
@end group
@end example

@xref{Sorting}, for more functions that perform sorting.
See @code{documentation} in @ref{Accessing Documentation}, for a
useful example of @code{sort}.
@end defun

@cindex sequence functions in seq
@cindex seq library
@cindex sequences, generalized
  The @file{seq.el} library provides the following additional sequence
manipulation macros and functions, prefixed with @code{seq-}.  To use
them, you must first load the @file{seq} library.

  All functions defined in this library are free of side-effects;
i.e., they do not modify any sequence (list, vector, or string) that
you pass as an argument.  Unless otherwise stated, the result is a
sequence of the same type as the input.  For those functions that take
a predicate, this should be a function of one argument.

  The @file{seq.el} library can be extended to work with additional
types of sequential data-structures.  For that purpose, all functions
are defined using @code{cl-defgeneric}.  @xref{Generic Functions}, for
more details about using @code{cl-defgeneric} for adding extensions.

@defun seq-elt sequence index
  This function returns the element of @var{sequence} at the specified
@var{index}, which is an integer whose valid value range is zero to
one less than the length of @var{sequence}.  For out-of-range values
on built-in sequence types, @code{seq-elt} behaves like @code{elt}.
For the details, see @ref{Definition of elt}.

@example
@group
(seq-elt [1 2 3 4] 2)
@result{} 3
@end group
@end example

  @code{seq-elt} returns places settable using @code{setf}
(@pxref{Setting Generalized Variables}).

@example
@group
(setq vec [1 2 3 4])
(setf (seq-elt vec 2) 5)
vec
@result{} [1 2 5 4]
@end group
@end example
@end defun

@defun seq-length sequence
  This function returns the number of elements in @var{sequence}.  For
built-in sequence types, @code{seq-length} behaves like @code{length}.
@xref{Definition of length}.
@end defun

@defun seqp object
  This function returns non-@code{nil} if @var{object} is a sequence
(a list or array), or any additional type of sequence defined via
@file{seq.el} generic functions.

@example
@group
(seqp [1 2])
@result{} t
@end group
@group
(seqp 2)
@result{} nil
@end group
@end example
@end defun

@defun seq-drop sequence n
  This function returns all but the first @var{n} (an integer)
elements of @var{sequence}.  If @var{n} is negative or zero,
the result is @var{sequence}.

@example
@group
(seq-drop [1 2 3 4 5 6] 3)
@result{} [4 5 6]
@end group
@group
(seq-drop "hello world" -4)
@result{} "hello world"
@end group
@end example
@end defun

@defun seq-take sequence n
  This function returns the first @var{n} (an integer) elements of
@var{sequence}.  If @var{n} is negative or zero, the result
is @code{nil}.

@example
@group
(seq-take '(1 2 3 4) 3)
@result{} (1 2 3)
@end group
@group
(seq-take [1 2 3 4] 0)
@result{} []
@end group
@end example
@end defun

@defun seq-take-while predicate sequence
  This function returns the members of @var{sequence} in order,
stopping before the first one for which @var{predicate} returns @code{nil}.

@example
@group
(seq-take-while (lambda (elt) (> elt 0)) '(1 2 3 -1 -2))
@result{} (1 2 3)
@end group
@group
(seq-take-while (lambda (elt) (> elt 0)) [-1 4 6])
@result{} []
@end group
@end example
@end defun

@defun seq-drop-while predicate sequence
  This function returns the members of @var{sequence} in order,
starting from the first one for which @var{predicate} returns @code{nil}.

@example
@group
(seq-drop-while (lambda (elt) (> elt 0)) '(1 2 3 -1 -2))
@result{} (-1 -2)
@end group
@group
(seq-drop-while (lambda (elt) (< elt 0)) [1 4 6])
@result{} [1 4 6]
@end group
@end example
@end defun

@defun seq-do function sequence
  This function applies @var{function} to each element of
@var{sequence} in turn (presumably for side effects), and returns
@var{sequence}.
@end defun

@defun seq-map function sequence
  This function returns the result of applying @var{function} to each
element of @var{sequence}.  The returned value is a list.

@example
@group
(seq-map #'1+ '(2 4 6))
@result{} (3 5 7)
@end group
@group
(seq-map #'symbol-name [foo bar])
@result{} ("foo" "bar")
@end group
@end example
@end defun

@defun seq-map-indexed function sequence
  This function returns the result of applying @var{function} to each
element of @var{sequence} and its index within @var{seq}.  The
returned value is a list.

@example
@group
(seq-map-indexed (lambda (elt idx)
                   (list idx elt))
                 '(a b c))
@result{} ((0 a) (b 1) (c 2))
@end group
@end example
@end defun

@defun seq-mapn function &rest sequences
  This function returns the result of applying @var{function} to each
element of @var{sequences}.  The arity (@pxref{What Is a Function,
sub-arity}) of @var{function} must match the number of sequences.
Mapping stops at the end of the shortest sequence, and the returned
value is a list.

@example
@group
(seq-mapn #'+ '(2 4 6) '(20 40 60))
@result{} (22 44 66)
@end group
@group
(seq-mapn #'concat '("moskito" "bite") ["bee" "sting"])
@result{} ("moskitobee" "bitesting")
@end group
@end example
@end defun

@defun seq-filter predicate sequence
@cindex filtering sequences
  This function returns a list of all the elements in @var{sequence}
for which @var{predicate} returns non-@code{nil}.

@example
@group
(seq-filter (lambda (elt) (> elt 0)) [1 -1 3 -3 5])
@result{} (1 3 5)
@end group
@group
(seq-filter (lambda (elt) (> elt 0)) '(-1 -3 -5))
@result{} nil
@end group
@end example
@end defun

@defun seq-remove predicate sequence
@cindex removing from sequences
  This function returns a list of all the elements in @var{sequence}
for which @var{predicate} returns @code{nil}.

@example
@group
(seq-remove (lambda (elt) (> elt 0)) [1 -1 3 -3 5])
@result{} (-1 -3)
@end group
@group
(seq-remove (lambda (elt) (< elt 0)) '(-1 -3 -5))
@result{} nil
@end group
@end example
@end defun

@defun seq-reduce function sequence initial-value
@cindex reducing sequences
  This function returns the result of calling @var{function} with
@var{initial-value} and the first element of @var{sequence}, then calling
@var{function} with that result and the second element of @var{sequence},
then with that result and the third element of @var{sequence}, etc.
@var{function} should be a function of two arguments.  If
@var{sequence} is empty, this returns @var{initial-value} without
calling @var{function}.

@example
@group
(seq-reduce #'+ [1 2 3 4] 0)
@result{} 10
@end group
@group
(seq-reduce #'+ '(1 2 3 4) 5)
@result{} 15
@end group
@group
(seq-reduce #'+ '() 3)
@result{} 3
@end group
@end example
@end defun

@defun seq-some predicate sequence
  This function returns the first non-@code{nil} value returned by
applying @var{predicate} to each element of @var{sequence} in turn.

@example
@group
(seq-some #'numberp ["abc" 1 nil])
@result{} t
@end group
@group
(seq-some #'numberp ["abc" "def"])
@result{} nil
@end group
@group
(seq-some #'null ["abc" 1 nil])
@result{} t
@end group
@group
(seq-some #'1+ [2 4 6])
@result{} 3
@end group
@end example
@end defun

@defun seq-find predicate sequence &optional default
  This function returns the first element in @var{sequence} for which
@var{predicate} returns non-@code{nil}.  If no element matches
@var{predicate}, the function returns @var{default}.

Note that this function has an ambiguity if the found element is
identical to @var{default}, as in that case it cannot be known whether
an element was found or not.

@example
@group
(seq-find #'numberp ["abc" 1 nil])
@result{} 1
@end group
@group
(seq-find #'numberp ["abc" "def"])
@result{} nil
@end group
@end example
@end defun

@defun seq-every-p predicate sequence
  This function returns non-@code{nil} if applying @var{predicate}
to every element of @var{sequence} returns non-@code{nil}.

@example
@group
(seq-every-p #'numberp [2 4 6])
@result{} t
@end group
@group
(seq-every-p #'numberp [2 4 "6"])
@result{} nil
@end group
@end example
@end defun

@defun seq-empty-p sequence
  This function returns non-@code{nil} if @var{sequence} is empty.

@example
@group
(seq-empty-p "not empty")
@result{} nil
@end group
@group
(seq-empty-p "")
@result{} t
@end group
@end example
@end defun

@defun seq-count predicate sequence
  This function returns the number of elements in @var{sequence} for which
@var{predicate} returns non-@code{nil}.

@example
(seq-count (lambda (elt) (> elt 0)) [-1 2 0 3 -2])
@result{} 2
@end example
@end defun

@cindex sorting sequences
@defun seq-sort function sequence
  This function returns a copy of @var{sequence} that is sorted
according to @var{function}, a function of two arguments that returns
non-@code{nil} if the first argument should sort before the second.
@end defun

@defun seq-sort-by function predicate sequence
  This function is similar to @code{seq-sort}, but the elements of
@var{sequence} are transformed by applying @var{function} on them
before being sorted.  @var{function} is a function of one argument.

@example
(seq-sort-by #'seq-length #'> ["a" "ab" "abc"])
@result{} ["abc" "ab" "a"]
@end example
@end defun


@defun seq-contains sequence elt &optional function
  This function returns the first element in @var{sequence} that is equal to
@var{elt}.  If the optional argument @var{function} is non-@code{nil},
it is a function of two arguments to use instead of the default @code{equal}.

@example
@group
(seq-contains '(symbol1 symbol2) 'symbol1)
@result{} symbol1
@end group
@group
(seq-contains '(symbol1 symbol2) 'symbol3)
@result{} nil
@end group
@end example

@end defun

@defun seq-set-equal-p sequence1 sequence2 &optional testfn
This function checks whether @var{sequence1} and @var{sequence2}
contain the same elements, regardless of the order. If the optional
argument @var{testfn} is non-@code{nil}, it is a function of two
arguments to use instead of the default @code{equal}.

@example
@group
(seq-set-equal-p '(a b c) '(c b a))
@result{} t
@end group
@group
(seq-set-equal-p '(a b c) '(c b))
@result{} nil
@end group
@group
(seq-set-equal-p '("a" "b" "c") '("c" "b" "a"))
@result{} t
@end group
@group
(seq-set-equal-p '("a" "b" "c") '("c" "b" "a") #'eq)
@result{} nil
@end group
@end example

@end defun

@defun seq-position sequence elt &optional function
  This function returns the index of the first element in
@var{sequence} that is equal to @var{elt}.  If the optional argument
@var{function} is non-@code{nil}, it is a function of two arguments to
use instead of the default @code{equal}.

@example
@group
(seq-position '(a b c) 'b)
@result{} 1
@end group
@group
(seq-position '(a b c) 'd)
@result{} nil
@end group
@end example
@end defun


@defun seq-uniq sequence &optional function
  This function returns a list of the elements of @var{sequence} with
duplicates removed.  If the optional argument @var{function} is non-@code{nil},
it is a function of two arguments to use instead of the default @code{equal}.

@example
@group
(seq-uniq '(1 2 2 1 3))
@result{} (1 2 3)
@end group
@group
(seq-uniq '(1 2 2.0 1.0) #'=)
@result{} (1 2)
@end group
@end example
@end defun

@defun seq-subseq sequence start &optional end
@cindex sub-sequence
  This function returns a subset of @var{sequence} from @var{start}
to @var{end}, both integers (@var{end} defaults to the last element).
If @var{start} or @var{end} is negative, it counts from the end of
@var{sequence}.

@example
@group
(seq-subseq '(1 2 3 4 5) 1)
@result{} (2 3 4 5)
@end group
@group
(seq-subseq '[1 2 3 4 5] 1 3)
@result{} [2 3]
@end group
@group
(seq-subseq '[1 2 3 4 5] -3 -1)
@result{} [3 4]
@end group
@end example
@end defun

@defun seq-concatenate type &rest sequences
  This function returns a sequence of type @var{type} made of the
concatenation of @var{sequences}.  @var{type} may be: @code{vector},
@code{list} or @code{string}.

@example
@group
(seq-concatenate 'list '(1 2) '(3 4) [5 6])
@result{} (1 2 3 4 5 6)
@end group
@group
(seq-concatenate 'string "Hello " "world")
@result{} "Hello world"
@end group
@end example
@end defun

@defun seq-mapcat function sequence &optional type
  This function returns the result of applying @code{seq-concatenate}
to the result of applying @var{function} to each element of
@var{sequence}.  The result is a sequence of type @var{type}, or a
list if @var{type} is @code{nil}.

@example
@group
(seq-mapcat #'seq-reverse '((3 2 1) (6 5 4)))
@result{} (1 2 3 4 5 6)
@end group
@end example
@end defun

@defun seq-partition sequence n
  This function returns a list of the elements of @var{sequence}
grouped into sub-sequences of length @var{n}.  The last sequence may
contain less elements than @var{n}.  @var{n} must be an integer.  If
@var{n} is a negative integer or 0, the return value is @code{nil}.

@example
@group
(seq-partition '(0 1 2 3 4 5 6 7) 3)
@result{} ((0 1 2) (3 4 5) (6 7))
@end group
@end example
@end defun

@defun seq-intersection sequence1 sequence2 &optional function
@cindex sequences, intersection of
@cindex intersection of sequences
  This function returns a list of the elements that appear both in
@var{sequence1} and @var{sequence2}.  If the optional argument
@var{function} is non-@code{nil}, it is a function of two arguments to
use to compare elements instead of the default @code{equal}.

@example
@group
(seq-intersection [2 3 4 5] [1 3 5 6 7])
@result{} (3 5)
@end group
@end example
@end defun


@defun seq-difference sequence1 sequence2 &optional function
  This function returns a list of the elements that appear in
@var{sequence1} but not in @var{sequence2}.  If the optional argument
@var{function} is non-@code{nil}, it is a function of two arguments to
use to compare elements instead of the default @code{equal}.

@example
@group
(seq-difference '(2 3 4 5) [1 3 5 6 7])
@result{} (2 4)
@end group
@end example
@end defun

@defun seq-group-by function sequence
  This function separates the elements of @var{sequence} into an alist
whose keys are the result of applying @var{function} to each element
of @var{sequence}.  Keys are compared using @code{equal}.

@example
@group
(seq-group-by #'integerp '(1 2.1 3 2 3.2))
@result{} ((t 1 3 2) (nil 2.1 3.2))
@end group
@group
(seq-group-by #'car '((a 1) (b 2) (a 3) (c 4)))
@result{} ((b (b 2)) (a (a 1) (a 3)) (c (c 4)))
@end group
@end example
@end defun

@defun seq-into sequence type
@cindex convert sequence to another type
@cindex list to vector
@cindex vector to list
@cindex string to vector
  This function converts the sequence @var{sequence} into a sequence
of type @var{type}.  @var{type} can be one of the following symbols:
@code{vector}, @code{string} or @code{list}.

@example
@group
(seq-into [1 2 3] 'list)
@result{} (1 2 3)
@end group
@group
(seq-into nil 'vector)
@result{} []
@end group
@group
(seq-into "hello" 'vector)
@result{} [104 101 108 108 111]
@end group
@end example
@end defun

@defun seq-min sequence
@cindex minimum value of sequence
@cindex sequence minimum
  This function returns the smallest element of @var{sequence}.  The
elements of @var{sequence} must be numbers or markers
(@pxref{Markers}).

@example
@group
(seq-min [3 1 2])
@result{} 1
@end group
@group
(seq-min "Hello")
@result{} 72
@end group
@end example
@end defun

@defun seq-max sequence
@cindex maximum value of sequence
@cindex sequence maximum
  This function returns the largest element of @var{sequence}.  The
elements of @var{sequence} must be numbers or markers.

@example
@group
(seq-max [1 3 2])
@result{} 3
@end group
@group
(seq-max "Hello")
@result{} 111
@end group
@end example
@end defun

@defmac seq-doseq (var sequence) body@dots{}
@cindex sequence iteration
@cindex iteration over vector or string
  This macro is like @code{dolist} (@pxref{Iteration, dolist}), except
that @var{sequence} can be a list, vector or string.  This is
primarily useful for side-effects.
@end defmac

@defmac seq-let arguments sequence body@dots{}
@cindex sequence destructuring
  This macro binds the variables defined in @var{arguments} to the
elements of @var{sequence}.  @var{arguments} can themselves include
sequences, allowing for nested destructuring.

The @var{arguments} sequence can also include the @code{&rest} marker
followed by a variable name to be bound to the rest of
@code{sequence}.

@example
@group
(seq-let [first second] [1 2 3 4]
  (list first second))
@result{} (1 2)
@end group
@group
(seq-let (_ a _ b) '(1 2 3 4)
  (list a b))
@result{} (2 4)
@end group
@group
(seq-let [a [b [c]]] [1 [2 [3]]]
  (list a b c))
@result{} (1 2 3)
@end group
@group
(seq-let [a b &rest others] [1 2 3 4]
  others)
@end group
@result{} [3 4]
@end example
@end defmac

@defun seq-random-elt sequence
  This function returns an element of @var{sequence} taken at random.

@example
@group
(seq-random-elt [1 2 3 4])
@result{} 3
(seq-random-elt [1 2 3 4])
@result{} 2
(seq-random-elt [1 2 3 4])
@result{} 4
(seq-random-elt [1 2 3 4])
@result{} 2
(seq-random-elt [1 2 3 4])
@result{} 1
@end group
@end example

  If @var{sequence} is empty, this function signals an error.
@end defun

@node Arrays
@section Arrays
@cindex array

  An @dfn{array} object has slots that hold a number of other Lisp
objects, called the elements of the array.  Any element of an array
may be accessed in constant time.  In contrast, the time to access an
element of a list is proportional to the position of that element in
the list.

  Emacs defines four types of array, all one-dimensional:
@dfn{strings} (@pxref{String Type}), @dfn{vectors} (@pxref{Vector
Type}), @dfn{bool-vectors} (@pxref{Bool-Vector Type}), and
@dfn{char-tables} (@pxref{Char-Table Type}).  Vectors and char-tables
can hold elements of any type, but strings can only hold characters,
and bool-vectors can only hold @code{t} and @code{nil}.

  All four kinds of array share these characteristics:

@itemize @bullet
@item
The first element of an array has index zero, the second element has
index 1, and so on.  This is called @dfn{zero-origin} indexing.  For
example, an array of four elements has indices 0, 1, 2, @w{and 3}.

@item
The length of the array is fixed once you create it; you cannot
change the length of an existing array.

@item
For purposes of evaluation, the array is a constant---i.e.,
it evaluates to itself.

@item
The elements of an array may be referenced or changed with the functions
@code{aref} and @code{aset}, respectively (@pxref{Array Functions}).
@end itemize

    When you create an array, other than a char-table, you must specify
its length.  You cannot specify the length of a char-table, because that
is determined by the range of character codes.

  In principle, if you want an array of text characters, you could use
either a string or a vector.  In practice, we always choose strings for
such applications, for four reasons:

@itemize @bullet
@item
They occupy one-fourth the space of a vector of the same elements.

@item
Strings are printed in a way that shows the contents more clearly
as text.

@item
Strings can hold text properties.  @xref{Text Properties}.

@item
Many of the specialized editing and I/O facilities of Emacs accept only
strings.  For example, you cannot insert a vector of characters into a
buffer the way you can insert a string.  @xref{Strings and Characters}.
@end itemize

  By contrast, for an array of keyboard input characters (such as a key
sequence), a vector may be necessary, because many keyboard input
characters are outside the range that will fit in a string.  @xref{Key
Sequence Input}.

@node Array Functions
@section Functions that Operate on Arrays

  In this section, we describe the functions that accept all types of
arrays.

@defun arrayp object
This function returns @code{t} if @var{object} is an array (i.e., a
vector, a string, a bool-vector or a char-table).

@example
@group
(arrayp [a])
     @result{} t
(arrayp "asdf")
     @result{} t
(arrayp (syntax-table))    ;; @r{A char-table.}
     @result{} t
@end group
@end example
@end defun

@defun aref arr index
@cindex array elements
This function returns the @var{index}th element of the array or record
@var{arr}.  The first element is at index zero.

@example
@group
(setq primes [2 3 5 7 11 13])
     @result{} [2 3 5 7 11 13]
(aref primes 4)
     @result{} 11
@end group
@group
(aref "abcdefg" 1)
     @result{} 98           ; @r{@samp{b} is @acronym{ASCII} code 98.}
@end group
@end example

See also the function @code{elt}, in @ref{Sequence Functions}.
@end defun

@defun aset array index object
This function sets the @var{index}th element of @var{array} to be
@var{object}.  It returns @var{object}.

@example
@group
(setq w [foo bar baz])
     @result{} [foo bar baz]
(aset w 0 'fu)
     @result{} fu
w
     @result{} [fu bar baz]
@end group

@group
(setq x "asdfasfd")
     @result{} "asdfasfd"
(aset x 3 ?Z)
     @result{} 90
x
     @result{} "asdZasfd"
@end group
@end example

If @var{array} is a string and @var{object} is not a character, a
@code{wrong-type-argument} error results.  The function converts a
unibyte string to multibyte if necessary to insert a character.
@end defun

@defun fillarray array object
This function fills the array @var{array} with @var{object}, so that
each element of @var{array} is @var{object}.  It returns @var{array}.

@example
@group
(setq a [a b c d e f g])
     @result{} [a b c d e f g]
(fillarray a 0)
     @result{} [0 0 0 0 0 0 0]
a
     @result{} [0 0 0 0 0 0 0]
@end group
@group
(setq s "When in the course")
     @result{} "When in the course"
(fillarray s ?-)
     @result{} "------------------"
@end group
@end example

If @var{array} is a string and @var{object} is not a character, a
@code{wrong-type-argument} error results.
@end defun

The general sequence functions @code{copy-sequence} and @code{length}
are often useful for objects known to be arrays.  @xref{Sequence Functions}.

@node Vectors
@section Vectors
@cindex vector (type)

  A @dfn{vector} is a general-purpose array whose elements can be any
Lisp objects.  (By contrast, the elements of a string can only be
characters.  @xref{Strings and Characters}.)  Vectors are used in
Emacs for many purposes: as key sequences (@pxref{Key Sequences}), as
symbol-lookup tables (@pxref{Creating Symbols}), as part of the
representation of a byte-compiled function (@pxref{Byte Compilation}),
and more.

  Like other arrays, vectors use zero-origin indexing: the first
element has index 0.

  Vectors are printed with square brackets surrounding the elements.
Thus, a vector whose elements are the symbols @code{a}, @code{b} and
@code{a} is printed as @code{[a b a]}.  You can write vectors in the
same way in Lisp input.

  A vector, like a string or a number, is considered a constant for
evaluation: the result of evaluating it is the same vector.  This does
not evaluate or even examine the elements of the vector.
@xref{Self-Evaluating Forms}.

  Here are examples illustrating these principles:

@example
@group
(setq avector [1 two '(three) "four" [five]])
     @result{} [1 two (quote (three)) "four" [five]]
(eval avector)
     @result{} [1 two (quote (three)) "four" [five]]
(eq avector (eval avector))
     @result{} t
@end group
@end example

@node Vector Functions
@section Functions for Vectors

  Here are some functions that relate to vectors:

@defun vectorp object
This function returns @code{t} if @var{object} is a vector.

@example
@group
(vectorp [a])
     @result{} t
(vectorp "asdf")
     @result{} nil
@end group
@end example
@end defun

@defun vector &rest objects
This function creates and returns a vector whose elements are the
arguments, @var{objects}.

@example
@group
(vector 'foo 23 [bar baz] "rats")
     @result{} [foo 23 [bar baz] "rats"]
(vector)
     @result{} []
@end group
@end example
@end defun

@defun make-vector length object
This function returns a new vector consisting of @var{length} elements,
each initialized to @var{object}.

@example
@group
(setq sleepy (make-vector 9 'Z))
     @result{} [Z Z Z Z Z Z Z Z Z]
@end group
@end example
@end defun

@defun vconcat &rest sequences
@cindex copying vectors
This function returns a new vector containing all the elements of
@var{sequences}.  The arguments @var{sequences} may be true lists,
vectors, strings or bool-vectors.  If no @var{sequences} are given,
the empty vector is returned.

The value is either the empty vector, or is a newly constructed
nonempty vector that is not @code{eq} to any existing vector.

@example
@group
(setq a (vconcat '(A B C) '(D E F)))
     @result{} [A B C D E F]
(eq a (vconcat a))
     @result{} nil
@end group
@group
(vconcat)
     @result{} []
(vconcat [A B C] "aa" '(foo (6 7)))
     @result{} [A B C 97 97 foo (6 7)]
@end group
@end example

The @code{vconcat} function also allows byte-code function objects as
arguments.  This is a special feature to make it easy to access the entire
contents of a byte-code function object.  @xref{Byte-Code Objects}.

For other concatenation functions, see @code{mapconcat} in @ref{Mapping
Functions}, @code{concat} in @ref{Creating Strings}, and @code{append}
in @ref{Building Lists}.
@end defun

  The @code{append} function also provides a way to convert a vector into a
list with the same elements:

@example
@group
(setq avector [1 two (quote (three)) "four" [five]])
     @result{} [1 two (quote (three)) "four" [five]]
(append avector nil)
     @result{} (1 two (quote (three)) "four" [five])
@end group
@end example

@node Char-Tables
@section Char-Tables
@cindex char-tables
@cindex extra slots of char-table

  A char-table is much like a vector, except that it is indexed by
character codes.  Any valid character code, without modifiers, can be
used as an index in a char-table.  You can access a char-table's
elements with @code{aref} and @code{aset}, as with any array.  In
addition, a char-table can have @dfn{extra slots} to hold additional
data not associated with particular character codes.  Like vectors,
char-tables are constants when evaluated, and can hold elements of any
type.

@cindex subtype of char-table
  Each char-table has a @dfn{subtype}, a symbol, which serves two
purposes:

@itemize @bullet
@item
The subtype provides an easy way to tell what the char-table is for.
For instance, display tables are char-tables with @code{display-table}
as the subtype, and syntax tables are char-tables with
@code{syntax-table} as the subtype.  The subtype can be queried using
the function @code{char-table-subtype}, described below.

@item
The subtype controls the number of @dfn{extra slots} in the
char-table.  This number is specified by the subtype's
@code{char-table-extra-slots} symbol property (@pxref{Symbol
Properties}), whose value should be an integer between 0 and 10.  If
the subtype has no such symbol property, the char-table has no extra
slots.
@end itemize

@cindex parent of char-table
  A char-table can have a @dfn{parent}, which is another char-table.  If
it does, then whenever the char-table specifies @code{nil} for a
particular character @var{c}, it inherits the value specified in the
parent.  In other words, @code{(aref @var{char-table} @var{c})} returns
the value from the parent of @var{char-table} if @var{char-table} itself
specifies @code{nil}.

@cindex default value of char-table
  A char-table can also have a @dfn{default value}.  If so, then
@code{(aref @var{char-table} @var{c})} returns the default value
whenever the char-table does not specify any other non-@code{nil} value.

@defun make-char-table subtype &optional init
Return a newly-created char-table, with subtype @var{subtype} (a
symbol).  Each element is initialized to @var{init}, which defaults to
@code{nil}.  You cannot alter the subtype of a char-table after the
char-table is created.

There is no argument to specify the length of the char-table, because
all char-tables have room for any valid character code as an index.

If @var{subtype} has the @code{char-table-extra-slots} symbol
property, that specifies the number of extra slots in the char-table.
This should be an integer between 0 and 10; otherwise,
@code{make-char-table} raises an error.  If @var{subtype} has no
@code{char-table-extra-slots} symbol property (@pxref{Property
Lists}), the char-table has no extra slots.
@end defun

@defun char-table-p object
This function returns @code{t} if @var{object} is a char-table, and
@code{nil} otherwise.
@end defun

@defun char-table-subtype char-table
This function returns the subtype symbol of @var{char-table}.
@end defun

There is no special function to access default values in a char-table.
To do that, use @code{char-table-range} (see below).

@defun char-table-parent char-table
This function returns the parent of @var{char-table}.  The parent is
always either @code{nil} or another char-table.
@end defun

@defun set-char-table-parent char-table new-parent
This function sets the parent of @var{char-table} to @var{new-parent}.
@end defun

@defun char-table-extra-slot char-table n
This function returns the contents of extra slot @var{n} (zero based)
of @var{char-table}.  The number of extra slots in a char-table is
determined by its subtype.
@end defun

@defun set-char-table-extra-slot char-table n value
This function stores @var{value} in extra slot @var{n} (zero based) of
@var{char-table}.
@end defun

  A char-table can specify an element value for a single character code;
it can also specify a value for an entire character set.

@defun char-table-range char-table range
This returns the value specified in @var{char-table} for a range of
characters @var{range}.  Here are the possibilities for @var{range}:

@table @asis
@item @code{nil}
Refers to the default value.

@item @var{char}
Refers to the element for character @var{char}
(supposing @var{char} is a valid character code).

@item @code{(@var{from} . @var{to})}
A cons cell refers to all the characters in the inclusive range
@samp{[@var{from}..@var{to}]}.
@end table
@end defun

@defun set-char-table-range char-table range value
This function sets the value in @var{char-table} for a range of
characters @var{range}.  Here are the possibilities for @var{range}:

@table @asis
@item @code{nil}
Refers to the default value.

@item @code{t}
Refers to the whole range of character codes.

@item @var{char}
Refers to the element for character @var{char}
(supposing @var{char} is a valid character code).

@item @code{(@var{from} . @var{to})}
A cons cell refers to all the characters in the inclusive range
@samp{[@var{from}..@var{to}]}.
@end table
@end defun

@defun map-char-table function char-table
This function calls its argument @var{function} for each element of
@var{char-table} that has a non-@code{nil} value.  The call to
@var{function} is with two arguments, a key and a value.  The key
is a possible @var{range} argument for @code{char-table-range}---either
a valid character or a cons cell @code{(@var{from} . @var{to})},
specifying a range of characters that share the same value.  The value is
what @code{(char-table-range @var{char-table} @var{key})} returns.

Overall, the key-value pairs passed to @var{function} describe all the
values stored in @var{char-table}.

The return value is always @code{nil}; to make calls to
@code{map-char-table} useful, @var{function} should have side effects.
For example, here is how to examine the elements of the syntax table:

@example
(let (accumulator)
   (map-char-table
    #'(lambda (key value)
        (setq accumulator
              (cons (list
                     (if (consp key)
                         (list (car key) (cdr key))
                       key)
                     value)
                    accumulator)))
    (syntax-table))
   accumulator)
@result{}
(((2597602 4194303) (2)) ((2597523 2597601) (3))
 ... (65379 (5 . 65378)) (65378 (4 . 65379)) (65377 (1))
 ... (12 (0)) (11 (3)) (10 (12)) (9 (0)) ((0 8) (3)))
@end example
@end defun

@node Bool-Vectors
@section Bool-vectors
@cindex Bool-vectors

  A bool-vector is much like a vector, except that it stores only the
values @code{t} and @code{nil}.  If you try to store any non-@code{nil}
value into an element of the bool-vector, the effect is to store
@code{t} there.  As with all arrays, bool-vector indices start from 0,
and the length cannot be changed once the bool-vector is created.
Bool-vectors are constants when evaluated.

  Several functions work specifically with bool-vectors; aside
from that, you manipulate them with same functions used for other kinds
of arrays.

@defun make-bool-vector length initial
Return a new bool-vector of @var{length} elements,
each one initialized to @var{initial}.
@end defun

@defun bool-vector &rest objects
This function creates and returns a bool-vector whose elements are the
arguments, @var{objects}.
@end defun

@defun bool-vector-p object
This returns @code{t} if @var{object} is a bool-vector,
and @code{nil} otherwise.
@end defun

There are also some bool-vector set operation functions, described below:

@defun bool-vector-exclusive-or a b &optional c
Return @dfn{bitwise exclusive or} of bool vectors @var{a} and @var{b}.
If optional argument @var{c} is given, the result of this operation is
stored into @var{c}.  All arguments should be bool vectors of the same length.
@end defun

@defun bool-vector-union a b &optional c
Return @dfn{bitwise or} of bool vectors @var{a} and @var{b}.  If
optional argument @var{c} is given, the result of this operation is
stored into @var{c}.  All arguments should be bool vectors of the same length.
@end defun

@defun bool-vector-intersection a b &optional c
Return @dfn{bitwise and} of bool vectors @var{a} and @var{b}.  If
optional argument @var{c} is given, the result of this operation is
stored into @var{c}.  All arguments should be bool vectors of the same length.
@end defun

@defun bool-vector-set-difference a b &optional c
Return @dfn{set difference} of bool vectors @var{a} and @var{b}.  If
optional argument @var{c} is given, the result of this operation is
stored into @var{c}.  All arguments should be bool vectors of the same length.
@end defun

@defun bool-vector-not a &optional b
Return @dfn{set complement} of bool vector @var{a}.  If optional
argument @var{b} is given, the result of this operation is stored into
@var{b}.  All arguments should be bool vectors of the same length.
@end defun

@defun bool-vector-subsetp a b
Return @code{t} if every @code{t} value in @var{a} is also @code{t} in
@var{b}, @code{nil} otherwise.  All arguments should be bool vectors of the
same length.
@end defun

@defun bool-vector-count-consecutive a b i
Return the number of consecutive elements in @var{a} equal @var{b}
starting at @var{i}.  @code{a} is a bool vector, @var{b} is @code{t}
or @code{nil}, and @var{i} is an index into @code{a}.
@end defun

@defun bool-vector-count-population a
Return the number of elements that are @code{t} in bool vector @var{a}.
@end defun

  The printed form represents up to 8 boolean values as a single
character:

@example
@group
(bool-vector t nil t nil)
     @result{} #&4"^E"
(bool-vector)
     @result{} #&0""
@end group
@end example

You can use @code{vconcat} to print a bool-vector like other vectors:

@example
@group
(vconcat (bool-vector nil t nil t))
     @result{} [nil t nil t]
@end group
@end example

  Here is another example of creating, examining, and updating a
bool-vector:

@example
(setq bv (make-bool-vector 5 t))
     @result{} #&5"^_"
(aref bv 1)
     @result{} t
(aset bv 3 nil)
     @result{} nil
bv
     @result{} #&5"^W"
@end example

@noindent
These results make sense because the binary codes for control-_ and
control-W are 11111 and 10111, respectively.

@node Rings
@section Managing a Fixed-Size Ring of Objects

@cindex ring data structure
  A @dfn{ring} is a fixed-size data structure that supports insertion,
deletion, rotation, and modulo-indexed reference and traversal.  An
efficient ring data structure is implemented by the @code{ring}
package.  It provides the functions listed in this section.

  Note that several rings in Emacs, like the kill ring and the
mark ring, are actually implemented as simple lists, @emph{not} using
the @code{ring} package; thus the following functions won't work on
them.

@defun make-ring size
This returns a new ring capable of holding @var{size} objects.
@var{size} should be an integer.
@end defun

@defun ring-p object
This returns @code{t} if @var{object} is a ring, @code{nil} otherwise.
@end defun

@defun ring-size ring
This returns the maximum capacity of the @var{ring}.
@end defun

@defun ring-length ring
This returns the number of objects that @var{ring} currently contains.
The value will never exceed that returned by @code{ring-size}.
@end defun

@defun ring-elements ring
This returns a list of the objects in @var{ring}, in order, newest first.
@end defun

@defun ring-copy ring
This returns a new ring which is a copy of @var{ring}.
The new ring contains the same (@code{eq}) objects as @var{ring}.
@end defun

@defun ring-empty-p ring
This returns @code{t} if @var{ring} is empty, @code{nil} otherwise.
@end defun

  The newest element in the ring always has index 0.  Higher indices
correspond to older elements.  Indices are computed modulo the ring
length.  Index @minus{}1 corresponds to the oldest element, @minus{}2
to the next-oldest, and so forth.

@defun ring-ref ring index
This returns the object in @var{ring} found at index @var{index}.
@var{index} may be negative or greater than the ring length.  If
@var{ring} is empty, @code{ring-ref} signals an error.
@end defun

@defun ring-insert ring object
This inserts @var{object} into @var{ring}, making it the newest
element, and returns @var{object}.

If the ring is full, insertion removes the oldest element to
make room for the new element.
@end defun

@defun ring-remove ring &optional index
Remove an object from @var{ring}, and return that object.  The
argument @var{index} specifies which item to remove; if it is
@code{nil}, that means to remove the oldest item.  If @var{ring} is
empty, @code{ring-remove} signals an error.
@end defun

@defun ring-insert-at-beginning ring object
This inserts @var{object} into @var{ring}, treating it as the oldest
element.  The return value is not significant.

If the ring is full, this function removes the newest element to make
room for the inserted element.
@end defun

@cindex fifo data structure
  If you are careful not to exceed the ring size, you can
use the ring as a first-in-first-out queue.  For example:

@lisp
(let ((fifo (make-ring 5)))
  (mapc (lambda (obj) (ring-insert fifo obj))
        '(0 one "two"))
  (list (ring-remove fifo) t
        (ring-remove fifo) t
        (ring-remove fifo)))
     @result{} (0 t one t "two")
@end lisp

debug log:

solving 59faf2b ...
found 59faf2b in https://git.savannah.gnu.org/cgit/emacs.git

(*) Git path names are given by the tree(s) the blob belongs to.
    Blobs themselves have no identifier aside from the hash of its contents.^

Code repositories for project(s) associated with this public inbox

	https://git.savannah.gnu.org/cgit/emacs.git

This is a public inbox, see mirroring instructions
for how to clone and mirror all data and code used for this inbox;
as well as URLs for read-only IMAP folder(s) and NNTP newsgroup(s).