/* Primitive operations on floating point for GNU Emacs Lisp interpreter. Copyright (C) 1988, 1993-1994, 1999, 2001-2018 Free Software Foundation, Inc. Author: Wolfgang Rupprecht (according to ack.texi) This file is part of GNU Emacs. GNU Emacs is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. GNU Emacs is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU Emacs. If not, see . */ /* C89 requires only the following math.h functions, and Emacs omits the starred functions since we haven't found a use for them: acos, asin, atan, atan2, ceil, cos, *cosh, exp, fabs, floor, fmod, frexp, ldexp, log, log10 [via (log X 10)], *modf, pow, sin, *sinh, sqrt, tan, *tanh. C99 and C11 require the following math.h functions in addition to the C89 functions. Of these, Emacs currently exports only the starred ones to Lisp, since we haven't found a use for the others: acosh, atanh, cbrt, *copysign, erf, erfc, exp2, expm1, fdim, fma, fmax, fmin, fpclassify, hypot, ilogb, isfinite, isgreater, isgreaterequal, isinf, isless, islessequal, islessgreater, *isnan, isnormal, isunordered, lgamma, log1p, *log2 [via (log X 2)], *logb (approximately), lrint/llrint, lround/llround, nan, nearbyint, nextafter, nexttoward, remainder, remquo, *rint, round, scalbln, scalbn, signbit, tgamma, *trunc. */ #include #include "lisp.h" #include #include #ifndef isfinite # define isfinite(x) ((x) - (x) == 0) #endif #ifndef isnan # define isnan(x) ((x) != (x)) #endif /* Check that X is a floating point number. */ static void CHECK_FLOAT (Lisp_Object x) { CHECK_TYPE (FLOATP (x), Qfloatp, x); } /* Extract a Lisp number as a `double', or signal an error. */ double extract_float (Lisp_Object num) { CHECK_NUMBER (num); return XFLOATINT (num); } /* Trig functions. */ DEFUN ("acos", Facos, Sacos, 1, 1, 0, doc: /* Return the inverse cosine of ARG. */) (Lisp_Object arg) { double d = extract_float (arg); d = acos (d); return make_float (d); } DEFUN ("asin", Fasin, Sasin, 1, 1, 0, doc: /* Return the inverse sine of ARG. */) (Lisp_Object arg) { double d = extract_float (arg); d = asin (d); return make_float (d); } DEFUN ("atan", Fatan, Satan, 1, 2, 0, doc: /* Return the inverse tangent of the arguments. If only one argument Y is given, return the inverse tangent of Y. If two arguments Y and X are given, return the inverse tangent of Y divided by X, i.e. the angle in radians between the vector (X, Y) and the x-axis. */) (Lisp_Object y, Lisp_Object x) { double d = extract_float (y); if (NILP (x)) d = atan (d); else { double d2 = extract_float (x); d = atan2 (d, d2); } return make_float (d); } DEFUN ("cos", Fcos, Scos, 1, 1, 0, doc: /* Return the cosine of ARG. */) (Lisp_Object arg) { double d = extract_float (arg); d = cos (d); return make_float (d); } DEFUN ("sin", Fsin, Ssin, 1, 1, 0, doc: /* Return the sine of ARG. */) (Lisp_Object arg) { double d = extract_float (arg); d = sin (d); return make_float (d); } DEFUN ("tan", Ftan, Stan, 1, 1, 0, doc: /* Return the tangent of ARG. */) (Lisp_Object arg) { double d = extract_float (arg); d = tan (d); return make_float (d); } DEFUN ("isnan", Fisnan, Sisnan, 1, 1, 0, doc: /* Return non nil if argument X is a NaN. */) (Lisp_Object x) { CHECK_FLOAT (x); return isnan (XFLOAT_DATA (x)) ? Qt : Qnil; } /* Although the substitute does not work on NaNs, it is good enough for platforms lacking the signbit macro. */ #ifndef signbit # define signbit(x) ((x) < 0 || (IEEE_FLOATING_POINT && !(x) && 1 / (x) < 0)) #endif DEFUN ("copysign", Fcopysign, Scopysign, 2, 2, 0, doc: /* Copy sign of X2 to value of X1, and return the result. Cause an error if X1 or X2 is not a float. */) (Lisp_Object x1, Lisp_Object x2) { double f1, f2; CHECK_FLOAT (x1); CHECK_FLOAT (x2); f1 = XFLOAT_DATA (x1); f2 = XFLOAT_DATA (x2); /* Use signbit instead of copysign, to avoid calling make_float when the result is X1. */ return signbit (f1) != signbit (f2) ? make_float (-f1) : x1; } DEFUN ("frexp", Ffrexp, Sfrexp, 1, 1, 0, doc: /* Get significand and exponent of a floating point number. Breaks the floating point number X into its binary significand SGNFCAND \(a floating point value between 0.5 (included) and 1.0 (excluded)) and an integral exponent EXP for 2, such that: X = SGNFCAND * 2^EXP The function returns the cons cell (SGNFCAND . EXP). If X is zero, both parts (SGNFCAND and EXP) are zero. */) (Lisp_Object x) { double f = extract_float (x); int exponent; double sgnfcand = frexp (f, &exponent); return Fcons (make_float (sgnfcand), make_fixnum (exponent)); } DEFUN ("ldexp", Fldexp, Sldexp, 2, 2, 0, doc: /* Return SGNFCAND * 2**EXPONENT, as a floating point number. EXPONENT must be an integer. */) (Lisp_Object sgnfcand, Lisp_Object exponent) { CHECK_FIXNUM (exponent); int e = min (max (INT_MIN, XINT (exponent)), INT_MAX); return make_float (ldexp (extract_float (sgnfcand), e)); } DEFUN ("exp", Fexp, Sexp, 1, 1, 0, doc: /* Return the exponential base e of ARG. */) (Lisp_Object arg) { double d = extract_float (arg); d = exp (d); return make_float (d); } DEFUN ("expt", Fexpt, Sexpt, 2, 2, 0, doc: /* Return the exponential ARG1 ** ARG2. */) (Lisp_Object arg1, Lisp_Object arg2) { CHECK_FIXNUM_OR_FLOAT (arg1); CHECK_FIXNUM_OR_FLOAT (arg2); if (FIXNUMP (arg1) /* common lisp spec */ && FIXNUMP (arg2) /* don't promote, if both are ints, and */ && XINT (arg2) >= 0) /* we are sure the result is not fractional */ { /* this can be improved by pre-calculating */ EMACS_INT y; /* some binary powers of x then accumulating */ EMACS_UINT acc, x; /* Unsigned so that overflow is well defined. */ Lisp_Object val; x = XINT (arg1); y = XINT (arg2); acc = (y & 1 ? x : 1); while ((y >>= 1) != 0) { x *= x; if (y & 1) acc *= x; } XSETINT (val, acc); return val; } return make_float (pow (XFLOATINT (arg1), XFLOATINT (arg2))); } DEFUN ("log", Flog, Slog, 1, 2, 0, doc: /* Return the natural logarithm of ARG. If the optional argument BASE is given, return log ARG using that base. */) (Lisp_Object arg, Lisp_Object base) { double d = extract_float (arg); if (NILP (base)) d = log (d); else { double b = extract_float (base); if (b == 10.0) d = log10 (d); #if HAVE_LOG2 else if (b == 2.0) d = log2 (d); #endif else d = log (d) / log (b); } return make_float (d); } DEFUN ("sqrt", Fsqrt, Ssqrt, 1, 1, 0, doc: /* Return the square root of ARG. */) (Lisp_Object arg) { double d = extract_float (arg); d = sqrt (d); return make_float (d); } DEFUN ("abs", Fabs, Sabs, 1, 1, 0, doc: /* Return the absolute value of ARG. */) (register Lisp_Object arg) { CHECK_NUMBER (arg); if (BIGNUMP (arg)) { mpz_t val; mpz_init (val); mpz_abs (val, XBIGNUM (arg)->value); arg = make_number (val); mpz_clear (val); } else if (FIXNUMP (arg) && XINT (arg) == MOST_NEGATIVE_FIXNUM) { mpz_t val; mpz_init (val); mpz_set_intmax (val, - MOST_NEGATIVE_FIXNUM); arg = make_number (val); mpz_clear (val); } else if (FLOATP (arg)) arg = make_float (fabs (XFLOAT_DATA (arg))); else if (XINT (arg) < 0) XSETINT (arg, - XINT (arg)); return arg; } DEFUN ("float", Ffloat, Sfloat, 1, 1, 0, doc: /* Return the floating point number equal to ARG. */) (register Lisp_Object arg) { CHECK_NUMBER (arg); if (BIGNUMP (arg)) return make_float (mpz_get_d (XBIGNUM (arg)->value)); if (FIXNUMP (arg)) return make_float ((double) XINT (arg)); else /* give 'em the same float back */ return arg; } static int ecount_leading_zeros (EMACS_UINT x) { return (EMACS_UINT_WIDTH == UINT_WIDTH ? count_leading_zeros (x) : EMACS_UINT_WIDTH == ULONG_WIDTH ? count_leading_zeros_l (x) : count_leading_zeros_ll (x)); } DEFUN ("logb", Flogb, Slogb, 1, 1, 0, doc: /* Returns largest integer <= the base 2 log of the magnitude of ARG. This is the same as the exponent of a float. */) (Lisp_Object arg) { EMACS_INT value; CHECK_NUMBER (arg); if (FLOATP (arg)) { double f = XFLOAT_DATA (arg); if (f == 0) value = MOST_NEGATIVE_FIXNUM; else if (isfinite (f)) { int ivalue; frexp (f, &ivalue); value = ivalue - 1; } else value = MOST_POSITIVE_FIXNUM; } else if (BIGNUMP (arg)) value = mpz_sizeinbase (XBIGNUM (arg)->value, 2) - 1; else { eassert (FIXNUMP (arg)); EMACS_INT i = eabs (XINT (arg)); value = (i == 0 ? MOST_NEGATIVE_FIXNUM : EMACS_UINT_WIDTH - 1 - ecount_leading_zeros (i)); } return make_fixnum (value); } /* the rounding functions */ static Lisp_Object rounding_driver (Lisp_Object arg, Lisp_Object divisor, double (*double_round) (double), EMACS_INT (*int_round2) (EMACS_INT, EMACS_INT), const char *name) { CHECK_FIXNUM_OR_FLOAT (arg); double d; if (NILP (divisor)) { if (! FLOATP (arg)) return arg; d = XFLOAT_DATA (arg); } else { CHECK_FIXNUM_OR_FLOAT (divisor); if (!FLOATP (arg) && !FLOATP (divisor)) { if (XINT (divisor) == 0) xsignal0 (Qarith_error); return make_fixnum (int_round2 (XINT (arg), XINT (divisor))); } double f1 = FLOATP (arg) ? XFLOAT_DATA (arg) : XINT (arg); double f2 = FLOATP (divisor) ? XFLOAT_DATA (divisor) : XINT (divisor); if (! IEEE_FLOATING_POINT && f2 == 0) xsignal0 (Qarith_error); d = f1 / f2; } /* Round, coarsely test for fixnum overflow before converting to EMACS_INT (to avoid undefined C behavior), and then exactly test for overflow after converting (as FIXNUM_OVERFLOW_P is inaccurate on floats). */ double dr = double_round (d); if (fabs (dr) < 2 * (MOST_POSITIVE_FIXNUM + 1)) { EMACS_INT ir = dr; if (! FIXNUM_OVERFLOW_P (ir)) return make_fixnum (ir); } xsignal2 (Qrange_error, build_string (name), arg); } static EMACS_INT ceiling2 (EMACS_INT i1, EMACS_INT i2) { return i1 / i2 + ((i1 % i2 != 0) & ((i1 < 0) == (i2 < 0))); } static EMACS_INT floor2 (EMACS_INT i1, EMACS_INT i2) { return i1 / i2 - ((i1 % i2 != 0) & ((i1 < 0) != (i2 < 0))); } static EMACS_INT truncate2 (EMACS_INT i1, EMACS_INT i2) { return i1 / i2; } static EMACS_INT round2 (EMACS_INT i1, EMACS_INT i2) { /* The C language's division operator gives us one remainder R, but we want the remainder R1 on the other side of 0 if R1 is closer to 0 than R is; because we want to round to even, we also want R1 if R and R1 are the same distance from 0 and if C's quotient is odd. */ EMACS_INT q = i1 / i2; EMACS_INT r = i1 % i2; EMACS_INT abs_r = eabs (r); EMACS_INT abs_r1 = eabs (i2) - abs_r; return q + (abs_r + (q & 1) <= abs_r1 ? 0 : (i2 ^ r) < 0 ? -1 : 1); } /* The code uses emacs_rint, so that it works to undefine HAVE_RINT if `rint' exists but does not work right. */ #ifdef HAVE_RINT #define emacs_rint rint #else static double emacs_rint (double d) { double d1 = d + 0.5; double r = floor (d1); return r - (r == d1 && fmod (r, 2) != 0); } #endif #ifndef HAVE_TRUNC double trunc (double d) { return (d < 0 ? ceil : floor) (d); } #endif DEFUN ("ceiling", Fceiling, Sceiling, 1, 2, 0, doc: /* Return the smallest integer no less than ARG. This rounds the value towards +inf. With optional DIVISOR, return the smallest integer no less than ARG/DIVISOR. */) (Lisp_Object arg, Lisp_Object divisor) { return rounding_driver (arg, divisor, ceil, ceiling2, "ceiling"); } DEFUN ("floor", Ffloor, Sfloor, 1, 2, 0, doc: /* Return the largest integer no greater than ARG. This rounds the value towards -inf. With optional DIVISOR, return the largest integer no greater than ARG/DIVISOR. */) (Lisp_Object arg, Lisp_Object divisor) { return rounding_driver (arg, divisor, floor, floor2, "floor"); } DEFUN ("round", Fround, Sround, 1, 2, 0, doc: /* Return the nearest integer to ARG. With optional DIVISOR, return the nearest integer to ARG/DIVISOR. Rounding a value equidistant between two integers may choose the integer closer to zero, or it may prefer an even integer, depending on your machine. For example, (round 2.5) can return 3 on some systems, but 2 on others. */) (Lisp_Object arg, Lisp_Object divisor) { return rounding_driver (arg, divisor, emacs_rint, round2, "round"); } DEFUN ("truncate", Ftruncate, Struncate, 1, 2, 0, doc: /* Truncate a floating point number to an int. Rounds ARG toward zero. With optional DIVISOR, truncate ARG/DIVISOR. */) (Lisp_Object arg, Lisp_Object divisor) { return rounding_driver (arg, divisor, trunc, truncate2, "truncate"); } Lisp_Object fmod_float (Lisp_Object x, Lisp_Object y) { double f1, f2; f1 = FLOATP (x) ? XFLOAT_DATA (x) : XINT (x); f2 = FLOATP (y) ? XFLOAT_DATA (y) : XINT (y); f1 = fmod (f1, f2); /* If the "remainder" comes out with the wrong sign, fix it. */ if (f2 < 0 ? f1 > 0 : f1 < 0) f1 += f2; return make_float (f1); } DEFUN ("fceiling", Ffceiling, Sfceiling, 1, 1, 0, doc: /* Return the smallest integer no less than ARG, as a float. \(Round toward +inf.) */) (Lisp_Object arg) { CHECK_FLOAT (arg); double d = XFLOAT_DATA (arg); d = ceil (d); return make_float (d); } DEFUN ("ffloor", Fffloor, Sffloor, 1, 1, 0, doc: /* Return the largest integer no greater than ARG, as a float. \(Round toward -inf.) */) (Lisp_Object arg) { CHECK_FLOAT (arg); double d = XFLOAT_DATA (arg); d = floor (d); return make_float (d); } DEFUN ("fround", Ffround, Sfround, 1, 1, 0, doc: /* Return the nearest integer to ARG, as a float. */) (Lisp_Object arg) { CHECK_FLOAT (arg); double d = XFLOAT_DATA (arg); d = emacs_rint (d); return make_float (d); } DEFUN ("ftruncate", Fftruncate, Sftruncate, 1, 1, 0, doc: /* Truncate a floating point number to an integral float value. \(Round toward zero.) */) (Lisp_Object arg) { CHECK_FLOAT (arg); double d = XFLOAT_DATA (arg); d = trunc (d); return make_float (d); } void syms_of_floatfns (void) { defsubr (&Sacos); defsubr (&Sasin); defsubr (&Satan); defsubr (&Scos); defsubr (&Ssin); defsubr (&Stan); defsubr (&Sisnan); defsubr (&Scopysign); defsubr (&Sfrexp); defsubr (&Sldexp); defsubr (&Sfceiling); defsubr (&Sffloor); defsubr (&Sfround); defsubr (&Sftruncate); defsubr (&Sexp); defsubr (&Sexpt); defsubr (&Slog); defsubr (&Ssqrt); defsubr (&Sabs); defsubr (&Sfloat); defsubr (&Slogb); defsubr (&Sceiling); defsubr (&Sfloor); defsubr (&Sround); defsubr (&Struncate); }