1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
| | ;;; byte-opt.el --- the optimization passes of the emacs-lisp byte compiler -*- lexical-binding: t -*-
;; Copyright (C) 1991, 1994, 2000-2018 Free Software Foundation, Inc.
;; Author: Jamie Zawinski <jwz@lucid.com>
;; Hallvard Furuseth <hbf@ulrik.uio.no>
;; Maintainer: emacs-devel@gnu.org
;; Keywords: internal
;; Package: emacs
;; This file is part of GNU Emacs.
;; GNU Emacs is free software: you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation, either version 3 of the License, or
;; (at your option) any later version.
;; GNU Emacs is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;; You should have received a copy of the GNU General Public License
;; along with GNU Emacs. If not, see <https://www.gnu.org/licenses/>.
;;; Commentary:
;; ========================================================================
;; "No matter how hard you try, you can't make a racehorse out of a pig.
;; You can, however, make a faster pig."
;;
;; Or, to put it another way, the Emacs byte compiler is a VW Bug. This code
;; makes it be a VW Bug with fuel injection and a turbocharger... You're
;; still not going to make it go faster than 70 mph, but it might be easier
;; to get it there.
;;
;; TO DO:
;;
;; (apply (lambda (x &rest y) ...) 1 (foo))
;;
;; maintain a list of functions known not to access any global variables
;; (actually, give them a 'dynamically-safe property) and then
;; (let ( v1 v2 ... vM vN ) <...dynamically-safe...> ) ==>
;; (let ( v1 v2 ... vM ) vN <...dynamically-safe...> )
;; by recursing on this, we might be able to eliminate the entire let.
;; However certain variables should never have their bindings optimized
;; away, because they affect everything.
;; (put 'debug-on-error 'binding-is-magic t)
;; (put 'debug-on-abort 'binding-is-magic t)
;; (put 'debug-on-next-call 'binding-is-magic t)
;; (put 'inhibit-quit 'binding-is-magic t)
;; (put 'quit-flag 'binding-is-magic t)
;; (put 't 'binding-is-magic t)
;; (put 'nil 'binding-is-magic t)
;; possibly also
;; (put 'gc-cons-threshold 'binding-is-magic t)
;; (put 'track-mouse 'binding-is-magic t)
;; others?
;;
;; Simple defsubsts often produce forms like
;; (let ((v1 (f1)) (v2 (f2)) ...)
;; (FN v1 v2 ...))
;; It would be nice if we could optimize this to
;; (FN (f1) (f2) ...)
;; but we can't unless FN is dynamically-safe (it might be dynamically
;; referring to the bindings that the lambda arglist established.)
;; One of the uncountable lossages introduced by dynamic scope...
;;
;; Maybe there should be a control-structure that says "turn on
;; fast-and-loose type-assumptive optimizations here." Then when
;; we see a form like (car foo) we can from then on assume that
;; the variable foo is of type cons, and optimize based on that.
;; But, this won't win much because of (you guessed it) dynamic
;; scope. Anything down the stack could change the value.
;; (Another reason it doesn't work is that it is perfectly valid
;; to call car with a null argument.) A better approach might
;; be to allow type-specification of the form
;; (put 'foo 'arg-types '(float (list integer) dynamic))
;; (put 'foo 'result-type 'bool)
;; It should be possible to have these types checked to a certain
;; degree.
;;
;; collapse common subexpressions
;;
;; It would be nice if redundant sequences could be factored out as well,
;; when they are known to have no side-effects:
;; (list (+ a b c) (+ a b c)) --> a b add c add dup list-2
;; but beware of traps like
;; (cons (list x y) (list x y))
;;
;; Tail-recursion elimination is not really possible in Emacs Lisp.
;; Tail-recursion elimination is almost always impossible when all variables
;; have dynamic scope, but given that the "return" byteop requires the
;; binding stack to be empty (rather than emptying it itself), there can be
;; no truly tail-recursive Emacs Lisp functions that take any arguments or
;; make any bindings.
;;
;; Here is an example of an Emacs Lisp function which could safely be
;; byte-compiled tail-recursively:
;;
;; (defun tail-map (fn list)
;; (cond (list
;; (funcall fn (car list))
;; (tail-map fn (cdr list)))))
;;
;; However, if there was even a single let-binding around the COND,
;; it could not be byte-compiled, because there would be an "unbind"
;; byte-op between the final "call" and "return." Adding a
;; Bunbind_all byteop would fix this.
;;
;; (defun foo (x y z) ... (foo a b c))
;; ... (const foo) (varref a) (varref b) (varref c) (call 3) END: (return)
;; ... (varref a) (varbind x) (varref b) (varbind y) (varref c) (varbind z) (goto 0) END: (unbind-all) (return)
;; ... (varref a) (varset x) (varref b) (varset y) (varref c) (varset z) (goto 0) END: (return)
;;
;; this also can be considered tail recursion:
;;
;; ... (const foo) (varref a) (call 1) (goto X) ... X: (return)
;; could generalize this by doing the optimization
;; (goto X) ... X: (return) --> (return)
;;
;; But this doesn't solve all of the problems: although by doing tail-
;; recursion elimination in this way, the call-stack does not grow, the
;; binding-stack would grow with each recursive step, and would eventually
;; overflow. I don't believe there is any way around this without lexical
;; scope.
;;
;; Wouldn't it be nice if Emacs Lisp had lexical scope.
;;
;; Idea: the form (lexical-scope) in a file means that the file may be
;; compiled lexically. This proclamation is file-local. Then, within
;; that file, "let" would establish lexical bindings, and "let-dynamic"
;; would do things the old way. (Or we could use CL "declare" forms.)
;; We'd have to notice defvars and defconsts, since those variables should
;; always be dynamic, and attempting to do a lexical binding of them
;; should simply do a dynamic binding instead.
;; But! We need to know about variables that were not necessarily defvared
;; in the file being compiled (doing a boundp check isn't good enough.)
;; Fdefvar() would have to be modified to add something to the plist.
;;
;; A major disadvantage of this scheme is that the interpreter and compiler
;; would have different semantics for files compiled with (dynamic-scope).
;; Since this would be a file-local optimization, there would be no way to
;; modify the interpreter to obey this (unless the loader was hacked
;; in some grody way, but that's a really bad idea.)
;; Other things to consider:
;; ;; Associative math should recognize subcalls to identical function:
;; (disassemble (lambda (x) (+ (+ (foo) 1) (+ (bar) 2))))
;; ;; This should generate the same as (1+ x) and (1- x)
;; (disassemble (lambda (x) (cons (+ x 1) (- x 1))))
;; ;; An awful lot of functions always return a non-nil value. If they're
;; ;; error free also they may act as true-constants.
;; (disassemble (lambda (x) (and (point) (foo))))
;; ;; When
;; ;; - all but one arguments to a function are constant
;; ;; - the non-constant argument is an if-expression (cond-expression?)
;; ;; then the outer function can be distributed. If the guarding
;; ;; condition is side-effect-free [assignment-free] then the other
;; ;; arguments may be any expressions. Since, however, the code size
;; ;; can increase this way they should be "simple". Compare:
;; (disassemble (lambda (x) (eq (if (point) 'a 'b) 'c)))
;; (disassemble (lambda (x) (if (point) (eq 'a 'c) (eq 'b 'c))))
;; ;; (car (cons A B)) -> (prog1 A B)
;; (disassemble (lambda (x) (car (cons (foo) 42))))
;; ;; (cdr (cons A B)) -> (progn A B)
;; (disassemble (lambda (x) (cdr (cons 42 (foo)))))
;; ;; (car (list A B ...)) -> (prog1 A B ...)
;; (disassemble (lambda (x) (car (list (foo) 42 (bar)))))
;; ;; (cdr (list A B ...)) -> (progn A (list B ...))
;; (disassemble (lambda (x) (cdr (list 42 (foo) (bar)))))
;;; Code:
(require 'bytecomp)
(eval-when-compile (require 'cl-lib))
(require 'macroexp)
(eval-when-compile (require 'subr-x))
(defun byte-compile-log-lap-1 (format &rest args)
;; Newer byte codes for stack-ref make the slot 0 non-nil again.
;; But the "old disassembler" is *really* ancient by now.
;; (if (aref byte-code-vector 0)
;; (error "The old version of the disassembler is loaded. Reload new-bytecomp as well"))
(byte-compile-log-1
(apply #'format-message format
(let (c a)
(mapcar (lambda (arg)
(if (not (consp arg))
(if (and (symbolp arg)
(string-match "^byte-" (symbol-name arg)))
(intern (substring (symbol-name arg) 5))
arg)
(if (integerp (setq c (car arg)))
(error "non-symbolic byte-op %s" c))
(if (eq c 'TAG)
(setq c arg)
(setq a (cond ((memq c byte-goto-ops)
(car (cdr (cdr arg))))
((memq c byte-constref-ops)
(car (cdr arg)))
(t (cdr arg))))
(setq c (symbol-name c))
(if (string-match "^byte-." c)
(setq c (intern (substring c 5)))))
(if (eq c 'constant) (setq c 'const))
(if (and (eq (cdr arg) 0)
(not (memq c '(unbind call const))))
c
(format "(%s %s)" c a))))
args)))))
(defmacro byte-compile-log-lap (format-string &rest args)
`(and (memq byte-optimize-log '(t byte))
(byte-compile-log-lap-1 ,format-string ,@args)))
\f
;;; byte-compile optimizers to support inlining
(put 'inline 'byte-optimizer 'byte-optimize-inline-handler)
(defun byte-optimize-inline-handler (form)
"byte-optimize-handler for the `inline' special-form."
(cons 'progn
(mapcar
(lambda (sexp)
(let ((f (car-safe sexp)))
(if (and (symbolp f)
(or (cdr (assq f byte-compile-function-environment))
(not (or (not (fboundp f))
(cdr (assq f byte-compile-macro-environment))
(and (consp (setq f (symbol-function f)))
(eq (car f) 'macro))
(subrp f)))))
(byte-compile-inline-expand sexp)
sexp)))
(cdr form))))
(defun byte-compile-inline-expand (form)
(let* ((name (car form))
(localfn (cdr (assq name byte-compile-function-environment)))
(fn (or localfn (symbol-function name))))
(when (autoloadp fn)
(autoload-do-load fn)
(setq fn (or (symbol-function name)
(cdr (assq name byte-compile-function-environment)))))
(pcase fn
(`nil
(byte-compile-warn "attempt to inline `%s' before it was defined"
name)
form)
(`(autoload . ,_)
(error "File `%s' didn't define `%s'" (nth 1 fn) name))
((and (pred symbolp) (guard (not (eq fn t)))) ;A function alias.
(byte-compile-inline-expand (cons fn (cdr form))))
((pred byte-code-function-p)
;; (message "Inlining byte-code for %S!" name)
;; The byte-code will be really inlined in byte-compile-unfold-bcf.
`(,fn ,@(cdr form)))
((or `(lambda . ,_) `(closure . ,_))
(if (not (or (eq fn localfn) ;From the same file => same mode.
(eq (car fn) ;Same mode.
(if lexical-binding 'closure 'lambda))))
;; While byte-compile-unfold-bcf can inline dynbind byte-code into
;; letbind byte-code (or any other combination for that matter), we
;; can only inline dynbind source into dynbind source or letbind
;; source into letbind source.
(progn
;; We can of course byte-compile the inlined function
;; first, and then inline its byte-code.
(byte-compile name)
`(,(symbol-function name) ,@(cdr form)))
(let ((newfn (if (eq fn localfn)
;; If `fn' is from the same file, it has already
;; been preprocessed!
`(function ,fn)
(byte-compile-preprocess
(byte-compile--reify-function fn)))))
(if (eq (car-safe newfn) 'function)
(byte-compile-unfold-lambda `(,(cadr newfn) ,@(cdr form)))
;; This can happen because of macroexp-warn-and-return &co.
(byte-compile-warn
"Inlining closure %S failed" name)
form))))
(_ ;; Give up on inlining.
form))))
;; ((lambda ...) ...)
(defun byte-compile-unfold-lambda (form &optional name)
;; In lexical-binding mode, let and functions don't bind vars in the same way
;; (let obey special-variable-p, but functions don't). But luckily, this
;; doesn't matter here, because function's behavior is underspecified so it
;; can safely be turned into a `let', even though the reverse is not true.
(or name (setq name "anonymous lambda"))
(let* ((lambda (car form))
(values (cdr form))
(arglist (nth 1 lambda))
(body (cdr (cdr lambda)))
optionalp restp
bindings)
(if (and (stringp (car body)) (cdr body))
(setq body (cdr body)))
(if (and (consp (car body)) (eq 'interactive (car (car body))))
(setq body (cdr body)))
;; FIXME: The checks below do not belong in an optimization phase.
(while arglist
(cond ((eq (car arglist) '&optional)
;; ok, I'll let this slide because funcall_lambda() does...
;; (if optionalp (error "multiple &optional keywords in %s" name))
(if restp (error "&optional found after &rest in %s" name))
(if (null (cdr arglist))
(error "nothing after &optional in %s" name))
(setq optionalp t))
((eq (car arglist) '&rest)
;; ...but it is by no stretch of the imagination a reasonable
;; thing that funcall_lambda() allows (&rest x y) and
;; (&rest x &optional y) in arglists.
(if (null (cdr arglist))
(error "nothing after &rest in %s" name))
(if (cdr (cdr arglist))
(error "multiple vars after &rest in %s" name))
(setq restp t))
(restp
(setq bindings (cons (list (car arglist)
(and values (cons 'list values)))
bindings)
values nil))
((and (not optionalp) (null values))
(byte-compile-warn "attempt to open-code `%s' with too few arguments" name)
(setq arglist nil values 'too-few))
(t
(setq bindings (cons (list (car arglist) (car values))
bindings)
values (cdr values))))
(setq arglist (cdr arglist)))
(if values
(progn
(or (eq values 'too-few)
(byte-compile-warn
"attempt to open-code `%s' with too many arguments" name))
form)
;; The following leads to infinite recursion when loading a
;; file containing `(defsubst f () (f))', and then trying to
;; byte-compile that file.
;(setq body (mapcar 'byte-optimize-form body)))
(let ((newform
(if bindings
(cons 'let (cons (nreverse bindings) body))
(cons 'progn body))))
(byte-compile-log " %s\t==>\t%s" form newform)
newform))))
\f
;;; implementing source-level optimizers
(defun byte-optimize-form-code-walker (form for-effect)
;;
;; For normal function calls, We can just mapcar the optimizer the cdr. But
;; we need to have special knowledge of the syntax of the special forms
;; like let and defun (that's why they're special forms :-). (Actually,
;; the important aspect is that they are subrs that don't evaluate all of
;; their args.)
;;
(let ((fn (car-safe form))
tmp)
(cond ((not (consp form))
(if (not (and for-effect
(or byte-compile-delete-errors
(not (symbolp form))
(eq form t))))
form))
((eq fn 'quote)
(if (cdr (cdr form))
(byte-compile-warn "malformed quote form: `%s'"
(prin1-to-string form)))
;; map (quote nil) to nil to simplify optimizer logic.
;; map quoted constants to nil if for-effect (just because).
(and (nth 1 form)
(not for-effect)
form))
((eq (car-safe fn) 'lambda)
(let ((newform (byte-compile-unfold-lambda form)))
(if (eq newform form)
;; Some error occurred, avoid infinite recursion
form
(byte-optimize-form-code-walker newform for-effect))))
((eq (car-safe fn) 'closure) form)
((memq fn '(let let*))
;; recursively enter the optimizer for the bindings and body
;; of a let or let*. This for depth-firstness: forms that
;; are more deeply nested are optimized first.
(cons fn
(cons
(mapcar (lambda (binding)
(if (symbolp binding)
binding
(if (cdr (cdr binding))
(byte-compile-warn "malformed let binding: `%s'"
(prin1-to-string binding)))
(list (car binding)
(byte-optimize-form (nth 1 binding) nil))))
(nth 1 form))
(byte-optimize-body (cdr (cdr form)) for-effect))))
((eq fn 'cond)
(cons fn
(mapcar (lambda (clause)
(if (consp clause)
(cons
(byte-optimize-form (car clause) nil)
(byte-optimize-body (cdr clause) for-effect))
(byte-compile-warn "malformed cond form: `%s'"
(prin1-to-string clause))
clause))
(cdr form))))
((eq fn 'progn)
;; As an extra added bonus, this simplifies (progn <x>) --> <x>.
(if (cdr (cdr form))
(macroexp-progn (byte-optimize-body (cdr form) for-effect))
(byte-optimize-form (nth 1 form) for-effect)))
((eq fn 'prog1)
(if (cdr (cdr form))
(cons 'prog1
(cons (byte-optimize-form (nth 1 form) for-effect)
(byte-optimize-body (cdr (cdr form)) t)))
(byte-optimize-form (nth 1 form) for-effect)))
((eq fn 'prog2)
(cons 'prog2
(cons (byte-optimize-form (nth 1 form) t)
(cons (byte-optimize-form (nth 2 form) for-effect)
(byte-optimize-body (cdr (cdr (cdr form))) t)))))
((memq fn '(save-excursion save-restriction save-current-buffer))
;; those subrs which have an implicit progn; it's not quite good
;; enough to treat these like normal function calls.
;; This can turn (save-excursion ...) into (save-excursion) which
;; will be optimized away in the lap-optimize pass.
(cons fn (byte-optimize-body (cdr form) for-effect)))
((eq fn 'with-output-to-temp-buffer)
;; this is just like the above, except for the first argument.
(cons fn
(cons
(byte-optimize-form (nth 1 form) nil)
(byte-optimize-body (cdr (cdr form)) for-effect))))
((eq fn 'if)
(when (< (length form) 3)
(byte-compile-warn "too few arguments for `if'"))
(cons fn
(cons (byte-optimize-form (nth 1 form) nil)
(cons
(byte-optimize-form (nth 2 form) for-effect)
(byte-optimize-body (nthcdr 3 form) for-effect)))))
((memq fn '(and or)) ; Remember, and/or are control structures.
;; Take forms off the back until we can't any more.
;; In the future it could conceivably be a problem that the
;; subexpressions of these forms are optimized in the reverse
;; order, but it's ok for now.
(if for-effect
(let ((backwards (reverse (cdr form))))
(while (and backwards
(null (setcar backwards
(byte-optimize-form (car backwards)
for-effect))))
(setq backwards (cdr backwards)))
(if (and (cdr form) (null backwards))
(byte-compile-log
" all subforms of %s called for effect; deleted" form))
(and backwards
(cons fn (nreverse (mapcar 'byte-optimize-form
backwards)))))
(cons fn (mapcar 'byte-optimize-form (cdr form)))))
((eq fn 'interactive)
(byte-compile-warn "misplaced interactive spec: `%s'"
(prin1-to-string form))
nil)
((eq fn 'function)
;; This forms is compiled as constant or by breaking out
;; all the subexpressions and compiling them separately.
form)
((eq fn 'condition-case)
(if byte-compile--use-old-handlers
;; Will be optimized later.
form
`(condition-case ,(nth 1 form) ;Not evaluated.
,(byte-optimize-form (nth 2 form) for-effect)
,@(mapcar (lambda (clause)
`(,(car clause)
,@(byte-optimize-body (cdr clause) for-effect)))
(nthcdr 3 form)))))
((eq fn 'unwind-protect)
;; the "protected" part of an unwind-protect is compiled (and thus
;; optimized) as a top-level form, so don't do it here. But the
;; non-protected part has the same for-effect status as the
;; unwind-protect itself. (The protected part is always for effect,
;; but that isn't handled properly yet.)
(cons fn
(cons (byte-optimize-form (nth 1 form) for-effect)
(cdr (cdr form)))))
((eq fn 'catch)
(cons fn
(cons (byte-optimize-form (nth 1 form) nil)
(if byte-compile--use-old-handlers
;; The body of a catch is compiled (and thus
;; optimized) as a top-level form, so don't do it
;; here.
(cdr (cdr form))
(byte-optimize-body (cdr form) for-effect)))))
((eq fn 'ignore)
;; Don't treat the args to `ignore' as being
;; computed for effect. We want to avoid the warnings
;; that might occur if they were treated that way.
;; However, don't actually bother calling `ignore'.
`(prog1 nil . ,(mapcar 'byte-optimize-form (cdr form))))
;; Needed as long as we run byte-optimize-form after cconv.
((eq fn 'internal-make-closure) form)
((byte-code-function-p fn)
(cons fn (mapcar #'byte-optimize-form (cdr form))))
((not (symbolp fn))
(byte-compile-warn "`%s' is a malformed function"
(prin1-to-string fn))
form)
((and for-effect (setq tmp (get fn 'side-effect-free))
(or byte-compile-delete-errors
(eq tmp 'error-free)
(progn
(byte-compile-warn "value returned from %s is unused"
(prin1-to-string form))
nil)))
(byte-compile-log " %s called for effect; deleted" fn)
;; appending a nil here might not be necessary, but it can't hurt.
(byte-optimize-form
(cons 'progn (append (cdr form) '(nil))) t))
(t
;; Otherwise, no args can be considered to be for-effect,
;; even if the called function is for-effect, because we
;; don't know anything about that function.
(let ((args (mapcar #'byte-optimize-form (cdr form))))
(if (and (get fn 'pure)
(byte-optimize-all-constp args))
(list 'quote (apply fn (mapcar #'eval args)))
(cons fn args)))))))
(defun byte-optimize-all-constp (list)
"Non-nil if all elements of LIST satisfy `macroexp-const-p'."
(let ((constant t))
(while (and list constant)
(unless (macroexp-const-p (car list))
(setq constant nil))
(setq list (cdr list)))
constant))
(defun byte-optimize-form (form &optional for-effect)
"The source-level pass of the optimizer."
;;
;; First, optimize all sub-forms of this one.
(setq form (byte-optimize-form-code-walker form for-effect))
;;
;; after optimizing all subforms, optimize this form until it doesn't
;; optimize any further. This means that some forms will be passed through
;; the optimizer many times, but that's necessary to make the for-effect
;; processing do as much as possible.
;;
(let (opt new)
(if (and (consp form)
(symbolp (car form))
(or ;; (and for-effect
;; ;; We don't have any of these yet, but we might.
;; (setq opt (get (car form)
;; 'byte-for-effect-optimizer)))
(setq opt (function-get (car form) 'byte-optimizer)))
(not (eq form (setq new (funcall opt form)))))
(progn
;; (if (equal form new) (error "bogus optimizer -- %s" opt))
(byte-compile-log " %s\t==>\t%s" form new)
(setq new (byte-optimize-form new for-effect))
new)
form)))
(defun byte-optimize-body (forms all-for-effect)
;; Optimize the cdr of a progn or implicit progn; all forms is a list of
;; forms, all but the last of which are optimized with the assumption that
;; they are being called for effect. the last is for-effect as well if
;; all-for-effect is true. returns a new list of forms.
(let ((rest forms)
(result nil)
fe new)
(while rest
(setq fe (or all-for-effect (cdr rest)))
(setq new (and (car rest) (byte-optimize-form (car rest) fe)))
(if (or new (not fe))
(setq result (cons new result)))
(setq rest (cdr rest)))
(nreverse result)))
\f
;; some source-level optimizers
;;
;; when writing optimizers, be VERY careful that the optimizer returns
;; something not EQ to its argument if and ONLY if it has made a change.
;; This implies that you cannot simply destructively modify the list;
;; you must return something not EQ to it if you make an optimization.
;;
;; It is now safe to optimize code such that it introduces new bindings.
(defsubst byte-compile-trueconstp (form)
"Return non-nil if FORM always evaluates to a non-nil value."
(while (eq (car-safe form) 'progn)
(setq form (car (last (cdr form)))))
(cond ((consp form)
(pcase (car form)
(`quote (cadr form))
;; Can't use recursion in a defsubst.
;; (`progn (byte-compile-trueconstp (car (last (cdr form)))))
))
((not (symbolp form)))
((eq form t))
((keywordp form))))
(defsubst byte-compile-nilconstp (form)
"Return non-nil if FORM always evaluates to a nil value."
(while (eq (car-safe form) 'progn)
(setq form (car (last (cdr form)))))
(cond ((consp form)
(pcase (car form)
(`quote (null (cadr form)))
;; Can't use recursion in a defsubst.
;; (`progn (byte-compile-nilconstp (car (last (cdr form)))))
))
((not (symbolp form)) nil)
((null form))))
;; If the function is being called with constant integer args,
;; evaluate as much as possible at compile-time. This optimizer
;; assumes that the function is associative, like min or max.
(defun byte-optimize-associative-math (form)
(let ((args nil)
(constants nil)
(rest (cdr form)))
(while rest
(if (integerp (car rest))
(setq constants (cons (car rest) constants))
(setq args (cons (car rest) args)))
(setq rest (cdr rest)))
(if (cdr constants)
(if args
(list (car form)
(apply (car form) constants)
(if (cdr args)
(cons (car form) (nreverse args))
(car args)))
(apply (car form) constants))
form)))
;; Portable Emacs integers fall in this range.
(defconst byte-opt--portable-max #x1fffffff)
(defconst byte-opt--portable-min (- -1 byte-opt--portable-max))
;; True if N is a number that works the same on all Emacs platforms.
;; Portable Emacs fixnums are exactly representable as floats on all
;; Emacs platforms, and (except for -0.0) any floating-point number
;; that equals one of these integers must be the same on all
;; platforms. Although other floating-point numbers such as 0.5 are
;; also portable, it can be tricky to characterize them portably so
;; they are not optimized.
(defun byte-opt--portable-numberp (n)
(and (numberp n)
(<= byte-opt--portable-min n byte-opt--portable-max)
(= n (floor n))
(not (and (floatp n) (zerop n)
(condition-case () (< (/ n) 0) (error))))))
;; Use OP to reduce any leading prefix of portable numbers in the list
;; (cons ACCUM ARGS) down to a single portable number, and return the
;; resulting list A of arguments. The idea is that applying OP to A
;; is equivalent to (but likely more efficient than) applying OP to
;; (cons ACCUM ARGS), on any Emacs platform. Do not make any special
;; provision for (- X) or (/ X); for example, it is the caller’s
;; responsibility that (- 1 0) should not be "optimized" to (- 1).
(defun byte-opt--arith-reduce (op accum args)
(when (byte-opt--portable-numberp accum)
(let (accum1)
(while (and (byte-opt--portable-numberp (car args))
(byte-opt--portable-numberp
(setq accum1 (condition-case ()
(funcall op accum (car args))
(error))))
(= accum1 (funcall op (float accum) (car args))))
(setq accum accum1)
(setq args (cdr args)))))
(cons accum args))
(defun byte-optimize-plus (form)
(let ((args (remq 0 (byte-opt--arith-reduce #'+ 0 (cdr form)))))
(cond
;; (+) -> 0
((null args) 0)
;; (+ n) -> n, where n is a number
((and (null (cdr args)) (numberp (car args))) (car args))
;; (+ x 1) --> (1+ x) and (+ x -1) --> (1- x).
((and (null (cddr args)) (or (memq 1 args) (memq -1 args)))
(let* ((arg1 (car args)) (arg2 (cadr args))
(integer-is-first (memq arg1 '(1 -1)))
(integer (if integer-is-first arg1 arg2))
(other (if integer-is-first arg2 arg1)))
(list (if (eq integer 1) '1+ '1-) other)))
;; not further optimized
((equal args (cdr form)) form)
(t (cons '+ args)))))
(defun byte-optimize-minus (form)
(let ((args (cdr form)))
(if (and (cdr args)
(null (cdr (setq args (byte-opt--arith-reduce
#'- (car args) (cdr args)))))
(numberp (car args)))
;; The entire argument list reduced to a constant; return it.
(car args)
;; Remove non-leading zeros, except for (- x 0).
(when (memq 0 (cdr args))
(setq args (cons (car args) (or (remq 0 (cdr args)) (list 0)))))
(cond
;; (- x 1) --> (1- x)
((equal (cdr args) '(1))
(list '1- (car args)))
;; (- x -1) --> (1+ x)
((equal (cdr args) '(-1))
(list '1+ (car args)))
;; (- n) -> -n, where n and -n are portable numbers.
;; This must be done separately since byte-opt--arith-reduce
;; is not applied to (- n).
((and (null (cdr args))
(byte-opt--portable-numberp (car args))
(byte-opt--portable-numberp (- (car args))))
(- (car args)))
;; not further optimized
((equal args (cdr form)) form)
(t (cons '- args))))))
(defun byte-optimize-1+ (form)
(let ((args (cdr form)))
(when (null (cdr args))
(let ((n (car args)))
(when (and (byte-opt--portable-numberp n)
(byte-opt--portable-numberp (1+ n)))
(setq form (1+ n))))))
form)
(defun byte-optimize-1- (form)
(let ((args (cdr form)))
(when (null (cdr args))
(let ((n (car args)))
(when (and (byte-opt--portable-numberp n)
(byte-opt--portable-numberp (1- n)))
(setq form (1- n))))))
form)
(defun byte-optimize-multiply (form)
(let* ((args (remq 1 (byte-opt--arith-reduce #'* 1 (cdr form)))))
(cond
;; (*) -> 1
((null args) 1)
;; (* n) -> n, where n is a number
((and (null (cdr args)) (numberp (car args))) (car args))
;; not further optimized
((equal args (cdr form)) form)
(t (cons '* args)))))
(defun byte-optimize-divide (form)
(let ((args (cdr form)))
(if (and (cdr args)
(null (cdr (setq args (byte-opt--arith-reduce
#'/ (car args) (cdr args)))))
(numberp (car args)))
;; The entire argument list reduced to a constant; return it.
(car args)
;; Remove non-leading 1s, except for (/ x 1).
(when (memq 1 (cdr args))
(setq args (cons (car args) (or (remq 1 (cdr args)) (list 1)))))
(if (equal args (cdr form))
form
(cons '/ args)))))
(defun byte-optimize-binary-predicate (form)
(cond
((or (not (macroexp-const-p (nth 1 form)))
(nthcdr 3 form)) ;; In case there are more than 2 args.
form)
((macroexp-const-p (nth 2 form))
(condition-case ()
(list 'quote (eval form))
(error form)))
(t ;; This can enable some lapcode optimizations.
(list (car form) (nth 2 form) (nth 1 form)))))
(defun byte-optimize-predicate (form)
(let ((ok t)
(rest (cdr form)))
(while (and rest ok)
(setq ok (macroexp-const-p (car rest))
rest (cdr rest)))
(if ok
(condition-case ()
(list 'quote (eval form))
(error form))
form)))
(defun byte-optimize-identity (form)
(if (and (cdr form) (null (cdr (cdr form))))
(nth 1 form)
(byte-compile-warn "identity called with %d arg%s, but requires 1"
(length (cdr form))
(if (= 1 (length (cdr form))) "" "s"))
form))
(defun byte-optimize-memq (form)
;; (memq foo '(bar)) => (and (eq foo 'bar) '(bar))
(if (/= (length (cdr form)) 2)
(byte-compile-warn "memq called with %d arg%s, but requires 2"
(length (cdr form))
(if (= 1 (length (cdr form))) "" "s"))
(let ((list (nth 2 form)))
(when (and (eq (car-safe list) 'quote)
(listp (setq list (cadr list)))
(= (length list) 1))
(setq form (byte-optimize-and
`(and ,(byte-optimize-predicate
`(eq ,(nth 1 form) ',(nth 0 list)))
',list)))))
(byte-optimize-predicate form)))
(put 'identity 'byte-optimizer 'byte-optimize-identity)
(put 'memq 'byte-optimizer 'byte-optimize-memq)
(put '+ 'byte-optimizer 'byte-optimize-plus)
(put '* 'byte-optimizer 'byte-optimize-multiply)
(put '- 'byte-optimizer 'byte-optimize-minus)
(put '/ 'byte-optimizer 'byte-optimize-divide)
(put 'max 'byte-optimizer 'byte-optimize-associative-math)
(put 'min 'byte-optimizer 'byte-optimize-associative-math)
(put '= 'byte-optimizer 'byte-optimize-binary-predicate)
(put 'eq 'byte-optimizer 'byte-optimize-binary-predicate)
(put 'equal 'byte-optimizer 'byte-optimize-binary-predicate)
(put 'string= 'byte-optimizer 'byte-optimize-binary-predicate)
(put 'string-equal 'byte-optimizer 'byte-optimize-binary-predicate)
(put '< 'byte-optimizer 'byte-optimize-predicate)
(put '> 'byte-optimizer 'byte-optimize-predicate)
(put '<= 'byte-optimizer 'byte-optimize-predicate)
(put '>= 'byte-optimizer 'byte-optimize-predicate)
(put '1+ 'byte-optimizer 'byte-optimize-1+)
(put '1- 'byte-optimizer 'byte-optimize-1-)
(put 'not 'byte-optimizer 'byte-optimize-predicate)
(put 'null 'byte-optimizer 'byte-optimize-predicate)
(put 'consp 'byte-optimizer 'byte-optimize-predicate)
(put 'listp 'byte-optimizer 'byte-optimize-predicate)
(put 'symbolp 'byte-optimizer 'byte-optimize-predicate)
(put 'stringp 'byte-optimizer 'byte-optimize-predicate)
(put 'string< 'byte-optimizer 'byte-optimize-predicate)
(put 'string-lessp 'byte-optimizer 'byte-optimize-predicate)
(put 'logand 'byte-optimizer 'byte-optimize-predicate)
(put 'logior 'byte-optimizer 'byte-optimize-predicate)
(put 'logxor 'byte-optimizer 'byte-optimize-predicate)
(put 'lognot 'byte-optimizer 'byte-optimize-predicate)
(put 'car 'byte-optimizer 'byte-optimize-predicate)
(put 'cdr 'byte-optimizer 'byte-optimize-predicate)
(put 'car-safe 'byte-optimizer 'byte-optimize-predicate)
(put 'cdr-safe 'byte-optimizer 'byte-optimize-predicate)
;; I'm not convinced that this is necessary. Doesn't the optimizer loop
;; take care of this? - Jamie
;; I think this may some times be necessary to reduce ie (quote 5) to 5,
;; so arithmetic optimizers recognize the numeric constant. - Hallvard
(put 'quote 'byte-optimizer 'byte-optimize-quote)
(defun byte-optimize-quote (form)
(if (or (consp (nth 1 form))
(and (symbolp (nth 1 form))
(not (macroexp--const-symbol-p form))))
form
(nth 1 form)))
(defun byte-optimize-and (form)
;; Simplify if less than 2 args.
;; if there is a literal nil in the args to `and', throw it and following
;; forms away, and surround the `and' with (progn ... nil).
(cond ((null (cdr form)))
((memq nil form)
(list 'progn
(byte-optimize-and
(prog1 (setq form (copy-sequence form))
(while (nth 1 form)
(setq form (cdr form)))
(setcdr form nil)))
nil))
((null (cdr (cdr form)))
(nth 1 form))
((byte-optimize-predicate form))))
(defun byte-optimize-or (form)
;; Throw away nil's, and simplify if less than 2 args.
;; If there is a literal non-nil constant in the args to `or', throw away all
;; following forms.
(setq form (remq nil form))
(let ((rest form))
(while (cdr (setq rest (cdr rest)))
(if (byte-compile-trueconstp (car rest))
(setq form (copy-sequence form)
rest (setcdr (memq (car rest) form) nil))))
(if (cdr (cdr form))
(byte-optimize-predicate form)
(nth 1 form))))
(defun byte-optimize-cond (form)
;; if any clauses have a literal nil as their test, throw them away.
;; if any clause has a literal non-nil constant as its test, throw
;; away all following clauses.
(let (rest)
;; This must be first, to reduce (cond (t ...) (nil)) to (progn t ...)
(while (setq rest (assq nil (cdr form)))
(setq form (remq rest form)))
(setq form (remq nil form))
(setq rest form)
(while (setq rest (cdr rest))
(cond ((byte-compile-trueconstp (car-safe (car rest)))
;; This branch will always be taken: kill the subsequent ones.
(cond ((eq rest (cdr form)) ;First branch of `cond'.
(setq form `(progn ,@(car rest))))
((cdr rest)
(setq form (copy-sequence form))
(setcdr (memq (car rest) form) nil)))
(setq rest nil))
((and (consp (car rest))
(byte-compile-nilconstp (caar rest)))
;; This branch will never be taken: kill its body.
(setcdr (car rest) nil)))))
;;
;; Turn (cond (( <x> )) ... ) into (or <x> (cond ... ))
(if (eq 'cond (car-safe form))
(let ((clauses (cdr form)))
(if (and (consp (car clauses))
(null (cdr (car clauses))))
(list 'or (car (car clauses))
(byte-optimize-cond
(cons (car form) (cdr (cdr form)))))
form))
form))
(defun byte-optimize-if (form)
;; (if (progn <insts> <test>) <rest>) ==> (progn <insts> (if <test> <rest>))
;; (if <true-constant> <then> <else...>) ==> <then>
;; (if <false-constant> <then> <else...>) ==> (progn <else...>)
;; (if <test> nil <else...>) ==> (if (not <test>) (progn <else...>))
;; (if <test> <then> nil) ==> (if <test> <then>)
(let ((clause (nth 1 form)))
(cond ((and (eq (car-safe clause) 'progn)
;; `clause' is a proper list.
(null (cdr (last clause))))
(if (null (cddr clause))
;; A trivial `progn'.
(byte-optimize-if `(if ,(cadr clause) ,@(nthcdr 2 form)))
(nconc (butlast clause)
(list
(byte-optimize-if
`(if ,(car (last clause)) ,@(nthcdr 2 form)))))))
((byte-compile-trueconstp clause)
`(progn ,clause ,(nth 2 form)))
((byte-compile-nilconstp clause)
`(progn ,clause ,@(nthcdr 3 form)))
((nth 2 form)
(if (equal '(nil) (nthcdr 3 form))
(list 'if clause (nth 2 form))
form))
((or (nth 3 form) (nthcdr 4 form))
(list 'if
;; Don't make a double negative;
;; instead, take away the one that is there.
(if (and (consp clause) (memq (car clause) '(not null))
(= (length clause) 2)) ; (not xxxx) or (not (xxxx))
(nth 1 clause)
(list 'not clause))
(if (nthcdr 4 form)
(cons 'progn (nthcdr 3 form))
(nth 3 form))))
(t
(list 'progn clause nil)))))
(defun byte-optimize-while (form)
(when (< (length form) 2)
(byte-compile-warn "too few arguments for `while'"))
(if (nth 1 form)
form))
(put 'and 'byte-optimizer 'byte-optimize-and)
(put 'or 'byte-optimizer 'byte-optimize-or)
(put 'cond 'byte-optimizer 'byte-optimize-cond)
(put 'if 'byte-optimizer 'byte-optimize-if)
(put 'while 'byte-optimizer 'byte-optimize-while)
;; byte-compile-negation-optimizer lives in bytecomp.el
(put '/= 'byte-optimizer 'byte-compile-negation-optimizer)
(put 'atom 'byte-optimizer 'byte-compile-negation-optimizer)
(put 'nlistp 'byte-optimizer 'byte-compile-negation-optimizer)
(defun byte-optimize-funcall (form)
;; (funcall (lambda ...) ...) ==> ((lambda ...) ...)
;; (funcall foo ...) ==> (foo ...)
(let ((fn (nth 1 form)))
(if (memq (car-safe fn) '(quote function))
(cons (nth 1 fn) (cdr (cdr form)))
form)))
(defun byte-optimize-apply (form)
;; If the last arg is a literal constant, turn this into a funcall.
;; The funcall optimizer can then transform (funcall 'foo ...) -> (foo ...).
(let ((fn (nth 1 form))
(last (nth (1- (length form)) form))) ; I think this really is fastest
(or (if (or (null last)
(eq (car-safe last) 'quote))
(if (listp (nth 1 last))
(let ((butlast (nreverse (cdr (reverse (cdr (cdr form)))))))
(nconc (list 'funcall fn) butlast
(mapcar (lambda (x) (list 'quote x)) (nth 1 last))))
(byte-compile-warn
"last arg to apply can't be a literal atom: `%s'"
(prin1-to-string last))
nil))
form)))
(put 'funcall 'byte-optimizer 'byte-optimize-funcall)
(put 'apply 'byte-optimizer 'byte-optimize-apply)
(put 'let 'byte-optimizer 'byte-optimize-letX)
(put 'let* 'byte-optimizer 'byte-optimize-letX)
(defun byte-optimize-letX (form)
(cond ((null (nth 1 form))
;; No bindings
(cons 'progn (cdr (cdr form))))
((or (nth 2 form) (nthcdr 3 form))
form)
;; The body is nil
((eq (car form) 'let)
(append '(progn) (mapcar 'car-safe (mapcar 'cdr-safe (nth 1 form)))
'(nil)))
(t
(let ((binds (reverse (nth 1 form))))
(list 'let* (reverse (cdr binds)) (nth 1 (car binds)) nil)))))
(put 'nth 'byte-optimizer 'byte-optimize-nth)
(defun byte-optimize-nth (form)
(if (= (safe-length form) 3)
(if (memq (nth 1 form) '(0 1))
(list 'car (if (zerop (nth 1 form))
(nth 2 form)
(list 'cdr (nth 2 form))))
(byte-optimize-predicate form))
form))
(put 'nthcdr 'byte-optimizer 'byte-optimize-nthcdr)
(defun byte-optimize-nthcdr (form)
(if (= (safe-length form) 3)
(if (memq (nth 1 form) '(0 1 2))
(let ((count (nth 1 form)))
(setq form (nth 2 form))
(while (>= (setq count (1- count)) 0)
(setq form (list 'cdr form)))
form)
(byte-optimize-predicate form))
form))
;; Fixme: delete-char -> delete-region (byte-coded)
;; optimize string-as-unibyte, string-as-multibyte, string-make-unibyte,
;; string-make-multibyte for constant args.
(put 'set 'byte-optimizer 'byte-optimize-set)
(defun byte-optimize-set (form)
(let ((var (car-safe (cdr-safe form))))
(cond
((and (eq (car-safe var) 'quote) (consp (cdr var)))
`(setq ,(cadr var) ,@(cddr form)))
((and (eq (car-safe var) 'make-local-variable)
(eq (car-safe (setq var (car-safe (cdr var)))) 'quote)
(consp (cdr var)))
`(progn ,(cadr form) (setq ,(cadr var) ,@(cddr form))))
(t form))))
\f
;; enumerating those functions which need not be called if the returned
;; value is not used. That is, something like
;; (progn (list (something-with-side-effects) (yow))
;; (foo))
;; may safely be turned into
;; (progn (progn (something-with-side-effects) (yow))
;; (foo))
;; Further optimizations will turn (progn (list 1 2 3) 'foo) into 'foo.
;; Some of these functions have the side effect of allocating memory
;; and it would be incorrect to replace two calls with one.
;; But we don't try to do those kinds of optimizations,
;; so it is safe to list such functions here.
;; Some of these functions return values that depend on environment
;; state, so that constant folding them would be wrong,
;; but we don't do constant folding based on this list.
;; However, at present the only optimization we normally do
;; is delete calls that need not occur, and we only do that
;; with the error-free functions.
;; I wonder if I missed any :-\)
(let ((side-effect-free-fns
'(% * + - / /= 1+ 1- < <= = > >= abs acos append aref ash asin atan
assoc assq
boundp buffer-file-name buffer-local-variables buffer-modified-p
buffer-substring byte-code-function-p
capitalize car-less-than-car car cdr ceiling char-after char-before
char-equal char-to-string char-width compare-strings
compare-window-configurations concat coordinates-in-window-p
copy-alist copy-sequence copy-marker cos count-lines
current-time-string current-time-zone
decode-char
decode-time default-boundp default-value documentation downcase
elt encode-char exp expt encode-time error-message-string
fboundp fceiling featurep ffloor
file-directory-p file-exists-p file-locked-p file-name-absolute-p
file-newer-than-file-p file-readable-p file-symlink-p file-writable-p
float float-time floor format format-time-string frame-first-window
frame-root-window frame-selected-window
frame-visible-p fround ftruncate
get gethash get-buffer get-buffer-window getenv get-file-buffer
hash-table-count
int-to-string intern-soft
keymap-parent
length line-beginning-position line-end-position
local-variable-if-set-p local-variable-p locale-info
log log10 logand logb logcount logior lognot logxor lsh
make-list make-string make-symbol marker-buffer max member memq min
minibuffer-selected-window minibuffer-window
mod multibyte-char-to-unibyte next-window nth nthcdr number-to-string
parse-colon-path plist-get plist-member
prefix-numeric-value previous-window prin1-to-string propertize
degrees-to-radians
radians-to-degrees rassq rassoc read-from-string regexp-quote
region-beginning region-end reverse round
sin sqrt string string< string= string-equal string-lessp string-to-char
string-to-number substring
sxhash sxhash-equal sxhash-eq sxhash-eql
symbol-function symbol-name symbol-plist symbol-value string-make-unibyte
string-make-multibyte string-as-multibyte string-as-unibyte
string-to-multibyte
tan truncate
unibyte-char-to-multibyte upcase user-full-name
user-login-name user-original-login-name custom-variable-p
vconcat
window-absolute-pixel-edges window-at window-body-height
window-body-width window-buffer window-dedicated-p window-display-table
window-combination-limit window-edges window-frame window-fringes
window-height window-hscroll window-inside-edges
window-inside-absolute-pixel-edges window-inside-pixel-edges
window-left-child window-left-column window-margins window-minibuffer-p
window-next-buffers window-next-sibling window-new-normal
window-new-total window-normal-size window-parameter window-parameters
window-parent window-pixel-edges window-point window-prev-buffers
window-prev-sibling window-redisplay-end-trigger window-scroll-bars
window-start window-text-height window-top-child window-top-line
window-total-height window-total-width window-use-time window-vscroll
window-width zerop))
(side-effect-and-error-free-fns
'(arrayp atom
bobp bolp bool-vector-p
buffer-end buffer-list buffer-size buffer-string bufferp
car-safe case-table-p cdr-safe char-or-string-p characterp
charsetp commandp cons consp
current-buffer current-global-map current-indentation
current-local-map current-minor-mode-maps current-time
eobp eolp eq equal eventp
floatp following-char framep
get-largest-window get-lru-window
hash-table-p
identity ignore integerp integer-or-marker-p interactive-p
invocation-directory invocation-name
keymapp keywordp
list listp
make-marker mark mark-marker markerp max-char
memory-limit
mouse-movement-p
natnump nlistp not null number-or-marker-p numberp
one-window-p overlayp
point point-marker point-min point-max preceding-char primary-charset
processp
recent-keys recursion-depth
safe-length selected-frame selected-window sequencep
standard-case-table standard-syntax-table stringp subrp symbolp
syntax-table syntax-table-p
this-command-keys this-command-keys-vector this-single-command-keys
this-single-command-raw-keys
user-real-login-name user-real-uid user-uid
vector vectorp visible-frame-list
wholenump window-configuration-p window-live-p
window-valid-p windowp)))
(while side-effect-free-fns
(put (car side-effect-free-fns) 'side-effect-free t)
(setq side-effect-free-fns (cdr side-effect-free-fns)))
(while side-effect-and-error-free-fns
(put (car side-effect-and-error-free-fns) 'side-effect-free 'error-free)
(setq side-effect-and-error-free-fns (cdr side-effect-and-error-free-fns)))
nil)
\f
;; Pure functions are side-effect free functions whose values depend
;; only on their arguments, not on the platform. For these functions,
;; calls with constant arguments can be evaluated at compile time.
;; This may shift runtime errors to compile time. For example, logand
;; is pure since its results are machine-independent, whereas ash is
;; not pure because (ash 1 29)'s value depends on machine word size.
;;
;; When deciding whether a function is pure, do not worry about
;; mutable strings or markers, as they are so unlikely in real code
;; that they are not worth worrying about. Thus string-to-char is
;; pure even though it might return different values if a string is
;; changed, and logand is pure even though it might return different
;; values if a marker is moved.
(let ((pure-fns
'(% concat logand logcount logior lognot logxor
regexp-opt regexp-quote
string-to-char string-to-syntax symbol-name)))
(while pure-fns
(put (car pure-fns) 'pure t)
(setq pure-fns (cdr pure-fns)))
nil)
\f
(defconst byte-constref-ops
'(byte-constant byte-constant2 byte-varref byte-varset byte-varbind))
;; Used and set dynamically in byte-decompile-bytecode-1.
(defvar bytedecomp-op)
(defvar bytedecomp-ptr)
;; This function extracts the bitfields from variable-length opcodes.
;; Originally defined in disass.el (which no longer uses it.)
(defun disassemble-offset (bytes)
"Don't call this!"
;; Fetch and return the offset for the current opcode.
;; Return nil if this opcode has no offset.
(cond ((< bytedecomp-op byte-pophandler)
(let ((tem (logand bytedecomp-op 7)))
(setq bytedecomp-op (logand bytedecomp-op 248))
(cond ((eq tem 6)
;; Offset in next byte.
(setq bytedecomp-ptr (1+ bytedecomp-ptr))
(aref bytes bytedecomp-ptr))
((eq tem 7)
;; Offset in next 2 bytes.
(setq bytedecomp-ptr (1+ bytedecomp-ptr))
(+ (aref bytes bytedecomp-ptr)
(progn (setq bytedecomp-ptr (1+ bytedecomp-ptr))
(lsh (aref bytes bytedecomp-ptr) 8))))
(t tem)))) ;Offset was in opcode.
((>= bytedecomp-op byte-constant)
(prog1 (- bytedecomp-op byte-constant) ;Offset in opcode.
(setq bytedecomp-op byte-constant)))
((or (and (>= bytedecomp-op byte-constant2)
(<= bytedecomp-op byte-goto-if-not-nil-else-pop))
(memq bytedecomp-op (eval-when-compile
(list byte-stack-set2 byte-pushcatch
byte-pushconditioncase))))
;; Offset in next 2 bytes.
(setq bytedecomp-ptr (1+ bytedecomp-ptr))
(+ (aref bytes bytedecomp-ptr)
(progn (setq bytedecomp-ptr (1+ bytedecomp-ptr))
(lsh (aref bytes bytedecomp-ptr) 8))))
((and (>= bytedecomp-op byte-listN)
(<= bytedecomp-op byte-discardN))
(setq bytedecomp-ptr (1+ bytedecomp-ptr)) ;Offset in next byte.
(aref bytes bytedecomp-ptr))))
(defvar byte-compile-tag-number)
;; This de-compiler is used for inline expansion of compiled functions,
;; and by the disassembler.
;;
;; This list contains numbers, which are pc values,
;; before each instruction.
(defun byte-decompile-bytecode (bytes constvec)
"Turn BYTECODE into lapcode, referring to CONSTVEC."
(let ((byte-compile-constants nil)
(byte-compile-variables nil)
(byte-compile-tag-number 0))
(byte-decompile-bytecode-1 bytes constvec)))
;; As byte-decompile-bytecode, but updates
;; byte-compile-{constants, variables, tag-number}.
;; If MAKE-SPLICEABLE is true, then `return' opcodes are replaced
;; with `goto's destined for the end of the code.
;; That is for use by the compiler.
;; If MAKE-SPLICEABLE is nil, we are being called for the disassembler.
;; In that case, we put a pc value into the list
;; before each insn (or its label).
(defun byte-decompile-bytecode-1 (bytes constvec &optional make-spliceable)
(let ((length (length bytes))
(bytedecomp-ptr 0) optr tags bytedecomp-op offset
lap tmp last-constant)
(while (not (= bytedecomp-ptr length))
(or make-spliceable
(push bytedecomp-ptr lap))
(setq bytedecomp-op (aref bytes bytedecomp-ptr)
optr bytedecomp-ptr
;; This uses dynamic-scope magic.
offset (disassemble-offset bytes))
(let ((opcode (aref byte-code-vector bytedecomp-op)))
(cl-assert opcode)
(setq bytedecomp-op opcode))
(cond ((memq bytedecomp-op byte-goto-ops)
;; It's a pc.
(setq offset
(cdr (or (assq offset tags)
(let ((new (cons offset (byte-compile-make-tag))))
(push new tags)
new)))))
((cond ((eq bytedecomp-op 'byte-constant2)
(setq bytedecomp-op 'byte-constant) t)
((memq bytedecomp-op byte-constref-ops)))
(setq tmp (if (>= offset (length constvec))
(list 'out-of-range offset)
(aref constvec offset))
offset (if (eq bytedecomp-op 'byte-constant)
(byte-compile-get-constant tmp)
(or (assq tmp byte-compile-variables)
(let ((new (list tmp)))
(push new byte-compile-variables)
new)))
last-constant tmp))
((eq bytedecomp-op 'byte-stack-set2)
(setq bytedecomp-op 'byte-stack-set))
((and (eq bytedecomp-op 'byte-discardN) (>= offset #x80))
;; The top bit of the operand for byte-discardN is a flag,
;; saying whether the top-of-stack is preserved. In
;; lapcode, we represent this by using a different opcode
;; (with the flag removed from the operand).
(setq bytedecomp-op 'byte-discardN-preserve-tos)
(setq offset (- offset #x80)))
((eq bytedecomp-op 'byte-switch)
(cl-assert (hash-table-p last-constant) nil
"byte-switch used without preceding hash table")
;; We cannot use the original hash table referenced in the op,
;; so we create a copy of it, and replace the addresses with
;; TAGs.
(let ((orig-table last-constant))
(cl-loop for e across constvec
when (eq e last-constant)
do (setq last-constant (copy-hash-table e))
and return nil)
;; Replace all addresses with TAGs.
(maphash #'(lambda (value tag)
(let (newtag)
(setq newtag (byte-compile-make-tag))
(push (cons tag newtag) tags)
(puthash value newtag last-constant)))
last-constant)
;; Replace the hash table referenced in the lapcode with our
;; modified one.
(cl-loop for el in-ref lap
when (and (listp el) ;; make sure we're at the correct op
(eq (nth 1 el) 'byte-constant)
(eq (nth 2 el) orig-table))
;; Jump tables are never reused, so do this exactly
;; once.
do (setf (nth 2 el) last-constant) and return nil))))
;; lap = ( [ (pc . (op . arg)) ]* )
(push (cons optr (cons bytedecomp-op (or offset 0)))
lap)
(setq bytedecomp-ptr (1+ bytedecomp-ptr)))
(let ((rest lap))
(while rest
(cond ((numberp (car rest)))
((setq tmp (assq (car (car rest)) tags))
;; This addr is jumped to.
(setcdr rest (cons (cons nil (cdr tmp))
(cdr rest)))
(setq tags (delq tmp tags))
(setq rest (cdr rest))))
(setq rest (cdr rest))))
(if tags (error "optimizer error: missed tags %s" tags))
;; Remove addrs, lap = ( [ (op . arg) | (TAG tagno) ]* )
(mapcar (function (lambda (elt)
(if (numberp elt)
elt
(cdr elt))))
(nreverse lap))))
\f
;;; peephole optimizer
(defconst byte-tagref-ops (cons 'TAG byte-goto-ops))
(defconst byte-conditional-ops
'(byte-goto-if-nil byte-goto-if-not-nil byte-goto-if-nil-else-pop
byte-goto-if-not-nil-else-pop))
(defconst byte-after-unbind-ops
'(byte-constant byte-dup
byte-symbolp byte-consp byte-stringp byte-listp byte-numberp byte-integerp
byte-eq byte-not
byte-cons byte-list1 byte-list2 ; byte-list3 byte-list4
byte-interactive-p)
;; How about other side-effect-free-ops? Is it safe to move an
;; error invocation (such as from nth) out of an unwind-protect?
;; No, it is not, because the unwind-protect forms can alter
;; the inside of the object to which nth would apply.
;; For the same reason, byte-equal was deleted from this list.
"Byte-codes that can be moved past an unbind.")
(defconst byte-compile-side-effect-and-error-free-ops
'(byte-constant byte-dup byte-symbolp byte-consp byte-stringp byte-listp
byte-integerp byte-numberp byte-eq byte-equal byte-not byte-car-safe
byte-cdr-safe byte-cons byte-list1 byte-list2 byte-point byte-point-max
byte-point-min byte-following-char byte-preceding-char
byte-current-column byte-eolp byte-eobp byte-bolp byte-bobp
byte-current-buffer byte-stack-ref))
(defconst byte-compile-side-effect-free-ops
(nconc
'(byte-varref byte-nth byte-memq byte-car byte-cdr byte-length byte-aref
byte-symbol-value byte-get byte-concat2 byte-concat3 byte-sub1 byte-add1
byte-eqlsign byte-gtr byte-lss byte-leq byte-geq byte-diff byte-negate
byte-plus byte-max byte-min byte-mult byte-char-after byte-char-syntax
byte-buffer-substring byte-string= byte-string< byte-nthcdr byte-elt
byte-member byte-assq byte-quo byte-rem)
byte-compile-side-effect-and-error-free-ops))
;; This crock is because of the way DEFVAR_BOOL variables work.
;; Consider the code
;;
;; (defun foo (flag)
;; (let ((old-pop-ups pop-up-windows)
;; (pop-up-windows flag))
;; (cond ((not (eq pop-up-windows old-pop-ups))
;; (setq old-pop-ups pop-up-windows)
;; ...))))
;;
;; Uncompiled, old-pop-ups will always be set to nil or t, even if FLAG is
;; something else. But if we optimize
;;
;; varref flag
;; varbind pop-up-windows
;; varref pop-up-windows
;; not
;; to
;; varref flag
;; dup
;; varbind pop-up-windows
;; not
;;
;; we break the program, because it will appear that pop-up-windows and
;; old-pop-ups are not EQ when really they are. So we have to know what
;; the BOOL variables are, and not perform this optimization on them.
;; The variable `byte-boolean-vars' is now primitive and updated
;; automatically by DEFVAR_BOOL.
(defun byte-optimize-lapcode (lap &optional _for-effect)
"Simple peephole optimizer. LAP is both modified and returned.
If FOR-EFFECT is non-nil, the return value is assumed to be of no importance."
(let (lap0
lap1
lap2
(keep-going 'first-time)
(add-depth 0)
rest tmp tmp2 tmp3
(side-effect-free (if byte-compile-delete-errors
byte-compile-side-effect-free-ops
byte-compile-side-effect-and-error-free-ops)))
(while keep-going
(or (eq keep-going 'first-time)
(byte-compile-log-lap " ---- next pass"))
(setq rest lap
keep-going nil)
(while rest
(setq lap0 (car rest)
lap1 (nth 1 rest)
lap2 (nth 2 rest))
;; You may notice that sequences like "dup varset discard" are
;; optimized but sequences like "dup varset TAG1: discard" are not.
;; You may be tempted to change this; resist that temptation.
(cond ;;
;; <side-effect-free> pop --> <deleted>
;; ...including:
;; const-X pop --> <deleted>
;; varref-X pop --> <deleted>
;; dup pop --> <deleted>
;;
((and (eq 'byte-discard (car lap1))
(memq (car lap0) side-effect-free))
(setq keep-going t)
(setq tmp (aref byte-stack+-info (symbol-value (car lap0))))
(setq rest (cdr rest))
(cond ((= tmp 1)
(byte-compile-log-lap
" %s discard\t-->\t<deleted>" lap0)
(setq lap (delq lap0 (delq lap1 lap))))
((= tmp 0)
(byte-compile-log-lap
" %s discard\t-->\t<deleted> discard" lap0)
(setq lap (delq lap0 lap)))
((= tmp -1)
(byte-compile-log-lap
" %s discard\t-->\tdiscard discard" lap0)
(setcar lap0 'byte-discard)
(setcdr lap0 0))
((error "Optimizer error: too much on the stack"))))
;;
;; goto*-X X: --> X:
;;
((and (memq (car lap0) byte-goto-ops)
(eq (cdr lap0) lap1))
(cond ((eq (car lap0) 'byte-goto)
(setq lap (delq lap0 lap))
(setq tmp "<deleted>"))
((memq (car lap0) byte-goto-always-pop-ops)
(setcar lap0 (setq tmp 'byte-discard))
(setcdr lap0 0))
((error "Depth conflict at tag %d" (nth 2 lap0))))
(and (memq byte-optimize-log '(t byte))
(byte-compile-log " (goto %s) %s:\t-->\t%s %s:"
(nth 1 lap1) (nth 1 lap1)
tmp (nth 1 lap1)))
(setq keep-going t))
;;
;; varset-X varref-X --> dup varset-X
;; varbind-X varref-X --> dup varbind-X
;; const/dup varset-X varref-X --> const/dup varset-X const/dup
;; const/dup varbind-X varref-X --> const/dup varbind-X const/dup
;; The latter two can enable other optimizations.
;;
;; For lexical variables, we could do the same
;; stack-set-X+1 stack-ref-X --> dup stack-set-X+2
;; but this is a very minor gain, since dup is stack-ref-0,
;; i.e. it's only better if X>5, and even then it comes
;; at the cost of an extra stack slot. Let's not bother.
((and (eq 'byte-varref (car lap2))
(eq (cdr lap1) (cdr lap2))
(memq (car lap1) '(byte-varset byte-varbind)))
(if (and (setq tmp (memq (car (cdr lap2)) byte-boolean-vars))
(not (eq (car lap0) 'byte-constant)))
nil
(setq keep-going t)
(if (memq (car lap0) '(byte-constant byte-dup))
(progn
(setq tmp (if (or (not tmp)
(macroexp--const-symbol-p
(car (cdr lap0))))
(cdr lap0)
(byte-compile-get-constant t)))
(byte-compile-log-lap " %s %s %s\t-->\t%s %s %s"
lap0 lap1 lap2 lap0 lap1
(cons (car lap0) tmp))
(setcar lap2 (car lap0))
(setcdr lap2 tmp))
(byte-compile-log-lap " %s %s\t-->\tdup %s" lap1 lap2 lap1)
(setcar lap2 (car lap1))
(setcar lap1 'byte-dup)
(setcdr lap1 0)
;; The stack depth gets locally increased, so we will
;; increase maxdepth in case depth = maxdepth here.
;; This can cause the third argument to byte-code to
;; be larger than necessary.
(setq add-depth 1))))
;;
;; dup varset-X discard --> varset-X
;; dup varbind-X discard --> varbind-X
;; dup stack-set-X discard --> stack-set-X-1
;; (the varbind variant can emerge from other optimizations)
;;
((and (eq 'byte-dup (car lap0))
(eq 'byte-discard (car lap2))
(memq (car lap1) '(byte-varset byte-varbind
byte-stack-set)))
(byte-compile-log-lap " dup %s discard\t-->\t%s" lap1 lap1)
(setq keep-going t
rest (cdr rest))
(if (eq 'byte-stack-set (car lap1)) (cl-decf (cdr lap1)))
(setq lap (delq lap0 (delq lap2 lap))))
;;
;; not goto-X-if-nil --> goto-X-if-non-nil
;; not goto-X-if-non-nil --> goto-X-if-nil
;;
;; it is wrong to do the same thing for the -else-pop variants.
;;
((and (eq 'byte-not (car lap0))
(memq (car lap1) '(byte-goto-if-nil byte-goto-if-not-nil)))
(byte-compile-log-lap " not %s\t-->\t%s"
lap1
(cons
(if (eq (car lap1) 'byte-goto-if-nil)
'byte-goto-if-not-nil
'byte-goto-if-nil)
(cdr lap1)))
(setcar lap1 (if (eq (car lap1) 'byte-goto-if-nil)
'byte-goto-if-not-nil
'byte-goto-if-nil))
(setq lap (delq lap0 lap))
(setq keep-going t))
;;
;; goto-X-if-nil goto-Y X: --> goto-Y-if-non-nil X:
;; goto-X-if-non-nil goto-Y X: --> goto-Y-if-nil X:
;;
;; it is wrong to do the same thing for the -else-pop variants.
;;
((and (memq (car lap0)
'(byte-goto-if-nil byte-goto-if-not-nil)) ; gotoX
(eq 'byte-goto (car lap1)) ; gotoY
(eq (cdr lap0) lap2)) ; TAG X
(let ((inverse (if (eq 'byte-goto-if-nil (car lap0))
'byte-goto-if-not-nil 'byte-goto-if-nil)))
(byte-compile-log-lap " %s %s %s:\t-->\t%s %s:"
lap0 lap1 lap2
(cons inverse (cdr lap1)) lap2)
(setq lap (delq lap0 lap))
(setcar lap1 inverse)
(setq keep-going t)))
;;
;; const goto-if-* --> whatever
;;
((and (eq 'byte-constant (car lap0))
(memq (car lap1) byte-conditional-ops)
;; If the `byte-constant's cdr is not a cons cell, it has
;; to be an index into the constant pool); even though
;; it'll be a constant, that constant is not known yet
;; (it's typically a free variable of a closure, so will
;; only be known when the closure will be built at
;; run-time).
(consp (cdr lap0)))
(cond ((if (memq (car lap1) '(byte-goto-if-nil
byte-goto-if-nil-else-pop))
(car (cdr lap0))
(not (car (cdr lap0))))
(byte-compile-log-lap " %s %s\t-->\t<deleted>"
lap0 lap1)
(setq rest (cdr rest)
lap (delq lap0 (delq lap1 lap))))
(t
(byte-compile-log-lap " %s %s\t-->\t%s"
lap0 lap1
(cons 'byte-goto (cdr lap1)))
(when (memq (car lap1) byte-goto-always-pop-ops)
(setq lap (delq lap0 lap)))
(setcar lap1 'byte-goto)))
(setq keep-going t))
;;
;; varref-X varref-X --> varref-X dup
;; varref-X [dup ...] varref-X --> varref-X [dup ...] dup
;; stackref-X [dup ...] stackref-X+N --> stackref-X [dup ...] dup
;; We don't optimize the const-X variations on this here,
;; because that would inhibit some goto optimizations; we
;; optimize the const-X case after all other optimizations.
;;
((and (memq (car lap0) '(byte-varref byte-stack-ref))
(progn
(setq tmp (cdr rest))
(setq tmp2 0)
(while (eq (car (car tmp)) 'byte-dup)
(setq tmp2 (1+ tmp2))
(setq tmp (cdr tmp)))
t)
(eq (if (eq 'byte-stack-ref (car lap0))
(+ tmp2 1 (cdr lap0))
(cdr lap0))
(cdr (car tmp)))
(eq (car lap0) (car (car tmp))))
(if (memq byte-optimize-log '(t byte))
(let ((str ""))
(setq tmp2 (cdr rest))
(while (not (eq tmp tmp2))
(setq tmp2 (cdr tmp2)
str (concat str " dup")))
(byte-compile-log-lap " %s%s %s\t-->\t%s%s dup"
lap0 str lap0 lap0 str)))
(setq keep-going t)
(setcar (car tmp) 'byte-dup)
(setcdr (car tmp) 0)
(setq rest tmp))
;;
;; TAG1: TAG2: --> TAG1: <deleted>
;; (and other references to TAG2 are replaced with TAG1)
;;
((and (eq (car lap0) 'TAG)
(eq (car lap1) 'TAG))
(and (memq byte-optimize-log '(t byte))
(byte-compile-log " adjacent tags %d and %d merged"
(nth 1 lap1) (nth 1 lap0)))
(setq tmp3 lap)
(while (setq tmp2 (rassq lap0 tmp3))
(setcdr tmp2 lap1)
(setq tmp3 (cdr (memq tmp2 tmp3))))
(setq lap (delq lap0 lap)
keep-going t)
;; replace references to tag in jump tables, if any
(dolist (table byte-compile-jump-tables)
(catch 'break
(maphash #'(lambda (value tag)
(when (equal tag lap0)
;; each tag occurs only once in the jump table
(puthash value lap1 table)
(throw 'break nil)))
table))))
;;
;; unused-TAG: --> <deleted>
;;
((and (eq 'TAG (car lap0))
(not (rassq lap0 lap))
;; make sure this tag isn't used in a jump-table
(cl-loop for table in byte-compile-jump-tables
when (member lap0 (hash-table-values table))
return nil finally return t))
(and (memq byte-optimize-log '(t byte))
(byte-compile-log " unused tag %d removed" (nth 1 lap0)))
(setq lap (delq lap0 lap)
keep-going t))
;;
;; goto ... --> goto <delete until TAG or end>
;; return ... --> return <delete until TAG or end>
;; (unless a jump-table is being used, where deleting may affect
;; other valid case bodies)
;;
((and (memq (car lap0) '(byte-goto byte-return))
(not (memq (car lap1) '(TAG nil)))
;; FIXME: Instead of deferring simply when jump-tables are
;; being used, keep a list of tags used for switch tags and
;; use them instead (see `byte-compile-inline-lapcode').
(not byte-compile-jump-tables))
(setq tmp rest)
(let ((i 0)
(opt-p (memq byte-optimize-log '(t lap)))
str deleted)
(while (and (setq tmp (cdr tmp))
(not (eq 'TAG (car (car tmp)))))
(if opt-p (setq deleted (cons (car tmp) deleted)
str (concat str " %s")
i (1+ i))))
(if opt-p
(let ((tagstr
(if (eq 'TAG (car (car tmp)))
(format "%d:" (car (cdr (car tmp))))
(or (car tmp) ""))))
(if (< i 6)
(apply 'byte-compile-log-lap-1
(concat " %s" str
" %s\t-->\t%s <deleted> %s")
lap0
(nconc (nreverse deleted)
(list tagstr lap0 tagstr)))
(byte-compile-log-lap
" %s <%d unreachable op%s> %s\t-->\t%s <deleted> %s"
lap0 i (if (= i 1) "" "s")
tagstr lap0 tagstr))))
(rplacd rest tmp))
(setq keep-going t))
;;
;; <safe-op> unbind --> unbind <safe-op>
;; (this may enable other optimizations.)
;;
((and (eq 'byte-unbind (car lap1))
(memq (car lap0) byte-after-unbind-ops))
(byte-compile-log-lap " %s %s\t-->\t%s %s" lap0 lap1 lap1 lap0)
(setcar rest lap1)
(setcar (cdr rest) lap0)
(setq keep-going t))
;;
;; varbind-X unbind-N --> discard unbind-(N-1)
;; save-excursion unbind-N --> unbind-(N-1)
;; save-restriction unbind-N --> unbind-(N-1)
;;
((and (eq 'byte-unbind (car lap1))
(memq (car lap0) '(byte-varbind byte-save-excursion
byte-save-restriction))
(< 0 (cdr lap1)))
(if (zerop (setcdr lap1 (1- (cdr lap1))))
(delq lap1 rest))
(if (eq (car lap0) 'byte-varbind)
(setcar rest (cons 'byte-discard 0))
(setq lap (delq lap0 lap)))
(byte-compile-log-lap " %s %s\t-->\t%s %s"
lap0 (cons (car lap1) (1+ (cdr lap1)))
(if (eq (car lap0) 'byte-varbind)
(car rest)
(car (cdr rest)))
(if (and (/= 0 (cdr lap1))
(eq (car lap0) 'byte-varbind))
(car (cdr rest))
""))
(setq keep-going t))
;;
;; goto*-X ... X: goto-Y --> goto*-Y
;; goto-X ... X: return --> return
;;
((and (memq (car lap0) byte-goto-ops)
(memq (car (setq tmp (nth 1 (memq (cdr lap0) lap))))
'(byte-goto byte-return)))
(cond ((and (not (eq tmp lap0))
(or (eq (car lap0) 'byte-goto)
(eq (car tmp) 'byte-goto)))
(byte-compile-log-lap " %s [%s]\t-->\t%s"
(car lap0) tmp tmp)
(if (eq (car tmp) 'byte-return)
(setcar lap0 'byte-return))
(setcdr lap0 (cdr tmp))
(setq keep-going t))))
;;
;; goto-*-else-pop X ... X: goto-if-* --> whatever
;; goto-*-else-pop X ... X: discard --> whatever
;;
((and (memq (car lap0) '(byte-goto-if-nil-else-pop
byte-goto-if-not-nil-else-pop))
(memq (car (car (setq tmp (cdr (memq (cdr lap0) lap)))))
(eval-when-compile
(cons 'byte-discard byte-conditional-ops)))
(not (eq lap0 (car tmp))))
(setq tmp2 (car tmp))
(setq tmp3 (assq (car lap0) '((byte-goto-if-nil-else-pop
byte-goto-if-nil)
(byte-goto-if-not-nil-else-pop
byte-goto-if-not-nil))))
(if (memq (car tmp2) tmp3)
(progn (setcar lap0 (car tmp2))
(setcdr lap0 (cdr tmp2))
(byte-compile-log-lap " %s-else-pop [%s]\t-->\t%s"
(car lap0) tmp2 lap0))
;; Get rid of the -else-pop's and jump one step further.
(or (eq 'TAG (car (nth 1 tmp)))
(setcdr tmp (cons (byte-compile-make-tag)
(cdr tmp))))
(byte-compile-log-lap " %s [%s]\t-->\t%s <skip>"
(car lap0) tmp2 (nth 1 tmp3))
(setcar lap0 (nth 1 tmp3))
(setcdr lap0 (nth 1 tmp)))
(setq keep-going t))
;;
;; const goto-X ... X: goto-if-* --> whatever
;; const goto-X ... X: discard --> whatever
;;
((and (eq (car lap0) 'byte-constant)
(eq (car lap1) 'byte-goto)
(memq (car (car (setq tmp (cdr (memq (cdr lap1) lap)))))
(eval-when-compile
(cons 'byte-discard byte-conditional-ops)))
(not (eq lap1 (car tmp))))
(setq tmp2 (car tmp))
(cond ((when (consp (cdr lap0))
(memq (car tmp2)
(if (null (car (cdr lap0)))
'(byte-goto-if-nil byte-goto-if-nil-else-pop)
'(byte-goto-if-not-nil
byte-goto-if-not-nil-else-pop))))
(byte-compile-log-lap " %s goto [%s]\t-->\t%s %s"
lap0 tmp2 lap0 tmp2)
(setcar lap1 (car tmp2))
(setcdr lap1 (cdr tmp2))
;; Let next step fix the (const,goto-if*) sequence.
(setq rest (cons nil rest))
(setq keep-going t))
((or (consp (cdr lap0))
(eq (car tmp2) 'byte-discard))
;; Jump one step further
(byte-compile-log-lap
" %s goto [%s]\t-->\t<deleted> goto <skip>"
lap0 tmp2)
(or (eq 'TAG (car (nth 1 tmp)))
(setcdr tmp (cons (byte-compile-make-tag)
(cdr tmp))))
(setcdr lap1 (car (cdr tmp)))
(setq lap (delq lap0 lap))
(setq keep-going t))))
;;
;; X: varref-Y ... varset-Y goto-X -->
;; X: varref-Y Z: ... dup varset-Y goto-Z
;; (varset-X goto-BACK, BACK: varref-X --> copy the varref down.)
;; (This is so usual for while loops that it is worth handling).
;;
;; Here again, we could do it for stack-ref/stack-set, but
;; that's replacing a stack-ref-Y with a stack-ref-0, which
;; is a very minor improvement (if any), at the cost of
;; more stack use and more byte-code. Let's not do it.
;;
((and (eq (car lap1) 'byte-varset)
(eq (car lap2) 'byte-goto)
(not (memq (cdr lap2) rest)) ;Backwards jump
(eq (car (car (setq tmp (cdr (memq (cdr lap2) lap)))))
'byte-varref)
(eq (cdr (car tmp)) (cdr lap1))
(not (memq (car (cdr lap1)) byte-boolean-vars)))
;;(byte-compile-log-lap " Pulled %s to end of loop" (car tmp))
(let ((newtag (byte-compile-make-tag)))
(byte-compile-log-lap
" %s: %s ... %s %s\t-->\t%s: %s %s: ... %s %s %s"
(nth 1 (cdr lap2)) (car tmp)
lap1 lap2
(nth 1 (cdr lap2)) (car tmp)
(nth 1 newtag) 'byte-dup lap1
(cons 'byte-goto newtag)
)
(setcdr rest (cons (cons 'byte-dup 0) (cdr rest)))
(setcdr tmp (cons (setcdr lap2 newtag) (cdr tmp))))
(setq add-depth 1)
(setq keep-going t))
;;
;; goto-X Y: ... X: goto-if*-Y --> goto-if-not-*-X+1 Y:
;; (This can pull the loop test to the end of the loop)
;;
((and (eq (car lap0) 'byte-goto)
(eq (car lap1) 'TAG)
(eq lap1
(cdr (car (setq tmp (cdr (memq (cdr lap0) lap))))))
(memq (car (car tmp))
'(byte-goto byte-goto-if-nil byte-goto-if-not-nil
byte-goto-if-nil-else-pop)))
;; (byte-compile-log-lap " %s %s, %s %s --> moved conditional"
;; lap0 lap1 (cdr lap0) (car tmp))
(let ((newtag (byte-compile-make-tag)))
(byte-compile-log-lap
"%s %s: ... %s: %s\t-->\t%s ... %s:"
lap0 (nth 1 lap1) (nth 1 (cdr lap0)) (car tmp)
(cons (cdr (assq (car (car tmp))
'((byte-goto-if-nil . byte-goto-if-not-nil)
(byte-goto-if-not-nil . byte-goto-if-nil)
(byte-goto-if-nil-else-pop .
byte-goto-if-not-nil-else-pop)
(byte-goto-if-not-nil-else-pop .
byte-goto-if-nil-else-pop))))
newtag)
(nth 1 newtag)
)
(setcdr tmp (cons (setcdr lap0 newtag) (cdr tmp)))
(if (eq (car (car tmp)) 'byte-goto-if-nil-else-pop)
;; We can handle this case but not the -if-not-nil case,
;; because we won't know which non-nil constant to push.
(setcdr rest (cons (cons 'byte-constant
(byte-compile-get-constant nil))
(cdr rest))))
(setcar lap0 (nth 1 (memq (car (car tmp))
'(byte-goto-if-nil-else-pop
byte-goto-if-not-nil
byte-goto-if-nil
byte-goto-if-not-nil
byte-goto byte-goto))))
)
(setq keep-going t))
)
(setq rest (cdr rest)))
)
;; Cleanup stage:
;; Rebuild byte-compile-constants / byte-compile-variables.
;; Simple optimizations that would inhibit other optimizations if they
;; were done in the optimizing loop, and optimizations which there is no
;; need to do more than once.
(setq byte-compile-constants nil
byte-compile-variables nil)
(setq rest lap)
(byte-compile-log-lap " ---- final pass")
(while rest
(setq lap0 (car rest)
lap1 (nth 1 rest))
(if (memq (car lap0) byte-constref-ops)
(if (memq (car lap0) '(byte-constant byte-constant2))
(unless (memq (cdr lap0) byte-compile-constants)
(setq byte-compile-constants (cons (cdr lap0)
byte-compile-constants)))
(unless (memq (cdr lap0) byte-compile-variables)
(setq byte-compile-variables (cons (cdr lap0)
byte-compile-variables)))))
(cond (;;
;; const-C varset-X const-C --> const-C dup varset-X
;; const-C varbind-X const-C --> const-C dup varbind-X
;;
(and (eq (car lap0) 'byte-constant)
(eq (car (nth 2 rest)) 'byte-constant)
(eq (cdr lap0) (cdr (nth 2 rest)))
(memq (car lap1) '(byte-varbind byte-varset)))
(byte-compile-log-lap " %s %s %s\t-->\t%s dup %s"
lap0 lap1 lap0 lap0 lap1)
(setcar (cdr (cdr rest)) (cons (car lap1) (cdr lap1)))
(setcar (cdr rest) (cons 'byte-dup 0))
(setq add-depth 1))
;;
;; const-X [dup/const-X ...] --> const-X [dup ...] dup
;; varref-X [dup/varref-X ...] --> varref-X [dup ...] dup
;;
((memq (car lap0) '(byte-constant byte-varref))
(setq tmp rest
tmp2 nil)
(while (progn
(while (eq 'byte-dup (car (car (setq tmp (cdr tmp))))))
(and (eq (cdr lap0) (cdr (car tmp)))
(eq (car lap0) (car (car tmp)))))
(setcar tmp (cons 'byte-dup 0))
(setq tmp2 t))
(if tmp2
(byte-compile-log-lap
" %s [dup/%s]...\t-->\t%s dup..." lap0 lap0 lap0)))
;;
;; unbind-N unbind-M --> unbind-(N+M)
;;
((and (eq 'byte-unbind (car lap0))
(eq 'byte-unbind (car lap1)))
(byte-compile-log-lap " %s %s\t-->\t%s" lap0 lap1
(cons 'byte-unbind
(+ (cdr lap0) (cdr lap1))))
(setq lap (delq lap0 lap))
(setcdr lap1 (+ (cdr lap1) (cdr lap0))))
;;
;; stack-set-M [discard/discardN ...] --> discardN-preserve-tos
;; stack-set-M [discard/discardN ...] --> discardN
;;
((and (eq (car lap0) 'byte-stack-set)
(memq (car lap1) '(byte-discard byte-discardN))
(progn
;; See if enough discard operations follow to expose or
;; destroy the value stored by the stack-set.
(setq tmp (cdr rest))
(setq tmp2 (1- (cdr lap0)))
(setq tmp3 0)
(while (memq (car (car tmp)) '(byte-discard byte-discardN))
(setq tmp3
(+ tmp3 (if (eq (car (car tmp)) 'byte-discard)
1
(cdr (car tmp)))))
(setq tmp (cdr tmp)))
(>= tmp3 tmp2)))
;; Do the optimization.
(setq lap (delq lap0 lap))
(setcar lap1
(if (= tmp2 tmp3)
;; The value stored is the new TOS, so pop one more
;; value (to get rid of the old value) using the
;; TOS-preserving discard operator.
'byte-discardN-preserve-tos
;; Otherwise, the value stored is lost, so just use a
;; normal discard.
'byte-discardN))
(setcdr lap1 (1+ tmp3))
(setcdr (cdr rest) tmp)
(byte-compile-log-lap " %s [discard/discardN]...\t-->\t%s"
lap0 lap1))
;;
;; discard/discardN/discardN-preserve-tos-X discard/discardN-Y -->
;; discardN-(X+Y)
;;
((and (memq (car lap0)
'(byte-discard byte-discardN
byte-discardN-preserve-tos))
(memq (car lap1) '(byte-discard byte-discardN)))
(setq lap (delq lap0 lap))
(byte-compile-log-lap
" %s %s\t-->\t(discardN %s)"
lap0 lap1
(+ (if (eq (car lap0) 'byte-discard) 1 (cdr lap0))
(if (eq (car lap1) 'byte-discard) 1 (cdr lap1))))
(setcdr lap1 (+ (if (eq (car lap0) 'byte-discard) 1 (cdr lap0))
(if (eq (car lap1) 'byte-discard) 1 (cdr lap1))))
(setcar lap1 'byte-discardN))
;;
;; discardN-preserve-tos-X discardN-preserve-tos-Y -->
;; discardN-preserve-tos-(X+Y)
;;
((and (eq (car lap0) 'byte-discardN-preserve-tos)
(eq (car lap1) 'byte-discardN-preserve-tos))
(setq lap (delq lap0 lap))
(setcdr lap1 (+ (cdr lap0) (cdr lap1)))
(byte-compile-log-lap " %s %s\t-->\t%s" lap0 lap1 (car rest)))
;;
;; discardN-preserve-tos return --> return
;; dup return --> return
;; stack-set-N return --> return ; where N is TOS-1
;;
((and (eq (car lap1) 'byte-return)
(or (memq (car lap0) '(byte-discardN-preserve-tos byte-dup))
(and (eq (car lap0) 'byte-stack-set)
(= (cdr lap0) 1))))
;; The byte-code interpreter will pop the stack for us, so
;; we can just leave stuff on it.
(setq lap (delq lap0 lap))
(byte-compile-log-lap " %s %s\t-->\t%s" lap0 lap1 lap1))
)
(setq rest (cdr rest)))
(setq byte-compile-maxdepth (+ byte-compile-maxdepth add-depth)))
lap)
(provide 'byte-opt)
\f
;; To avoid "lisp nesting exceeds max-lisp-eval-depth" when this file compiles
;; itself, compile some of its most used recursive functions (at load time).
;;
(eval-when-compile
(or (byte-code-function-p (symbol-function 'byte-optimize-form))
(assq 'byte-code (symbol-function 'byte-optimize-form))
(let ((byte-optimize nil)
(byte-compile-warnings nil))
(mapc (lambda (x)
(or noninteractive (message "compiling %s..." x))
(byte-compile x)
(or noninteractive (message "compiling %s...done" x)))
'(byte-optimize-form
byte-optimize-body
byte-optimize-predicate
byte-optimize-binary-predicate
;; Inserted some more than necessary, to speed it up.
byte-optimize-form-code-walker
byte-optimize-lapcode))))
nil)
;;; byte-opt.el ends here
|