1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
| | /* Thread definitions
Copyright (C) 2012 Free Software Foundation, Inc.
This file is part of GNU Emacs.
GNU Emacs is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
GNU Emacs is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
#ifndef THREAD_H
#define THREAD_H
#include "regex.h"
struct thread_state
{
struct vectorlike_header header;
/* The buffer in which the last search was performed, or
Qt if the last search was done in a string;
Qnil if no searching has been done yet. */
Lisp_Object m_last_thing_searched;
#define last_thing_searched (current_thread->m_last_thing_searched)
Lisp_Object m_saved_last_thing_searched;
#define saved_last_thing_searched (current_thread->m_saved_last_thing_searched)
/* The thread's name. */
Lisp_Object name;
/* The thread's function. */
Lisp_Object function;
/* If non-nil, this thread has been signalled. */
Lisp_Object error_symbol;
Lisp_Object error_data;
/* m_gcprolist must be the first non-lisp field. */
/* Recording what needs to be marked for gc. */
struct gcpro *m_gcprolist;
#define gcprolist (current_thread->m_gcprolist)
/* A list of currently active byte-code execution value stacks.
Fbyte_code adds an entry to the head of this list before it starts
processing byte-code, and it removed the entry again when it is
done. Signalling an error truncates the list analoguous to
gcprolist. */
struct byte_stack *m_byte_stack_list;
#define byte_stack_list (current_thread->m_byte_stack_list)
/* An address near the bottom of the stack.
Tells GC how to save a copy of the stack. */
char *m_stack_bottom;
#define stack_bottom (current_thread->m_stack_bottom)
/* An address near the top of the stack. */
char *stack_top;
struct backtrace *m_backtrace_list;
#define backtrace_list (current_thread->m_backtrace_list)
struct catchtag *m_catchlist;
#define catchlist (current_thread->m_catchlist)
/* Chain of condition handlers currently in effect.
The elements of this chain are contained in the stack frames
of Fcondition_case and internal_condition_case.
When an error is signaled (by calling Fsignal, below),
this chain is searched for an element that applies. */
struct handler *m_handlerlist;
#define handlerlist (current_thread->m_handlerlist)
/* Count levels of GCPRO to detect failure to UNGCPRO. */
int m_gcpro_level;
#define gcpro_level (current_thread->m_gcpro_level)
/* Current number of specbindings allocated in specpdl. */
ptrdiff_t m_specpdl_size;
#define specpdl_size (current_thread->m_specpdl_size)
/* Pointer to beginning of specpdl. */
struct specbinding *m_specpdl;
#define specpdl (current_thread->m_specpdl)
/* Pointer to first unused element in specpdl. */
struct specbinding *m_specpdl_ptr;
#define specpdl_ptr (current_thread->m_specpdl_ptr)
/* Pointer to the first "saved" element in specpdl. When this
thread is swapped out, the current values of all specpdl bindings
are pushed onto the specpdl; then these are popped again when
switching back to this thread. */
struct specbinding *m_saved_specpdl_ptr;
/* Depth in Lisp evaluations and function calls. */
EMACS_INT m_lisp_eval_depth;
#define lisp_eval_depth (current_thread->m_lisp_eval_depth)
/* This points to the current buffer. */
struct buffer *m_current_buffer;
#define current_buffer (current_thread->m_current_buffer)
/* Every call to re_match, etc., must pass &search_regs as the regs
argument unless you can show it is unnecessary (i.e., if re_match
is certainly going to be called again before region-around-match
can be called).
Since the registers are now dynamically allocated, we need to make
sure not to refer to the Nth register before checking that it has
been allocated by checking search_regs.num_regs.
The regex code keeps track of whether it has allocated the search
buffer using bits in the re_pattern_buffer. This means that whenever
you compile a new pattern, it completely forgets whether it has
allocated any registers, and will allocate new registers the next
time you call a searching or matching function. Therefore, we need
to call re_set_registers after compiling a new pattern or after
setting the match registers, so that the regex functions will be
able to free or re-allocate it properly. */
struct re_registers m_search_regs;
#define search_regs (current_thread->m_search_regs)
/* If non-zero the match data have been saved in saved_search_regs
during the execution of a sentinel or filter. */
int m_search_regs_saved;
#define search_regs_saved (current_thread->m_search_regs_saved)
struct re_registers m_saved_search_regs;
#define saved_search_regs (current_thread->m_saved_search_regs)
/* This is the string or buffer in which we
are matching. It is used for looking up syntax properties. */
Lisp_Object m_re_match_object;
#define re_match_object (current_thread->m_re_match_object)
/* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
also be assigned to arbitrarily: each pattern buffer stores its own
syntax, so it can be changed between regex compilations. */
reg_syntax_t m_re_syntax_options;
#define re_syntax_options (current_thread->m_re_syntax_options)
/* Regexp to use to replace spaces, or NULL meaning don't. */
/*re_char*/ unsigned char *m_whitespace_regexp;
#define whitespace_regexp (current_thread->m_whitespace_regexp)
/* The OS identifier for this thread. */
sys_thread_t thread_id;
/* The condition variable for this thread. This is associated with
the global lock. This thread broadcasts to it when it exits. */
sys_cond_t thread_condvar;
/* This thread might be waiting for some condition. If so, this
points to the condition. If the thread is interrupted, the
interrupter should broadcast to this condition. */
sys_cond_t *wait_condvar;
/* Threads are kept on a linked list. */
struct thread_state *next_thread;
};
extern struct thread_state *current_thread;
extern sys_mutex_t global_lock;
extern void post_acquire_global_lock (struct thread_state *);
extern void unmark_threads (void);
extern void finalize_one_thread (struct thread_state *state);
extern void init_threads_once (void);
extern void init_threads (void);
extern void syms_of_threads (void);
#endif /* THREAD_H */
|