/* Execution of byte code produced by bytecomp.el.
Copyright (C) 1985-1988, 1993, 2000-2024 Free Software Foundation,
Inc.
This file is part of GNU Emacs.
GNU Emacs is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or (at
your option) any later version.
GNU Emacs is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU Emacs. If not, see . */
#include
#include "lisp.h"
#include "blockinput.h"
#include "igc.h"
#include "sysstdio.h"
#include "character.h"
#include "buffer.h"
#include "keyboard.h"
#include "syntax.h"
#include "window.h"
#include "puresize.h"
/* Define BYTE_CODE_SAFE true to enable some minor sanity checking,
useful for debugging the byte compiler. It defaults to false. */
#ifndef BYTE_CODE_SAFE
# define BYTE_CODE_SAFE false
#endif
/* Define BYTE_CODE_METER to generate a byte-op usage histogram. */
/* #define BYTE_CODE_METER */
/* If BYTE_CODE_THREADED is defined, then the interpreter will be
indirect threaded, using GCC's computed goto extension. This code,
as currently implemented, is incompatible with BYTE_CODE_SAFE and
BYTE_CODE_METER. */
#if (defined __GNUC__ && !defined __STRICT_ANSI__ \
&& !BYTE_CODE_SAFE && !defined BYTE_CODE_METER)
#define BYTE_CODE_THREADED
#endif
#ifdef BYTE_CODE_METER
#define METER_2(code1, code2) \
(*aref_addr (AREF (Vbyte_code_meter, code1), code2))
#define METER_1(code) METER_2 (0, code)
#define METER_CODE(last_code, this_code) \
{ \
if (byte_metering_on) \
{ \
if (XFIXNAT (METER_1 (this_code)) < MOST_POSITIVE_FIXNUM) \
XSETFASTINT (METER_1 (this_code), \
XFIXNAT (METER_1 (this_code)) + 1); \
if (last_code \
&& (XFIXNAT (METER_2 (last_code, this_code)) \
< MOST_POSITIVE_FIXNUM)) \
XSETFASTINT (METER_2 (last_code, this_code), \
XFIXNAT (METER_2 (last_code, this_code)) + 1); \
} \
}
#endif /* BYTE_CODE_METER */
/* Byte codes: */
#define BYTE_CODES \
DEFINE (Bstack_ref, 0) /* Actually, Bstack_ref+0 is not implemented: use dup. */ \
DEFINE (Bstack_ref1, 1) \
DEFINE (Bstack_ref2, 2) \
DEFINE (Bstack_ref3, 3) \
DEFINE (Bstack_ref4, 4) \
DEFINE (Bstack_ref5, 5) \
DEFINE (Bstack_ref6, 6) \
DEFINE (Bstack_ref7, 7) \
DEFINE (Bvarref, 010) \
DEFINE (Bvarref1, 011) \
DEFINE (Bvarref2, 012) \
DEFINE (Bvarref3, 013) \
DEFINE (Bvarref4, 014) \
DEFINE (Bvarref5, 015) \
DEFINE (Bvarref6, 016) \
DEFINE (Bvarref7, 017) \
DEFINE (Bvarset, 020) \
DEFINE (Bvarset1, 021) \
DEFINE (Bvarset2, 022) \
DEFINE (Bvarset3, 023) \
DEFINE (Bvarset4, 024) \
DEFINE (Bvarset5, 025) \
DEFINE (Bvarset6, 026) \
DEFINE (Bvarset7, 027) \
DEFINE (Bvarbind, 030) \
DEFINE (Bvarbind1, 031) \
DEFINE (Bvarbind2, 032) \
DEFINE (Bvarbind3, 033) \
DEFINE (Bvarbind4, 034) \
DEFINE (Bvarbind5, 035) \
DEFINE (Bvarbind6, 036) \
DEFINE (Bvarbind7, 037) \
DEFINE (Bcall, 040) \
DEFINE (Bcall1, 041) \
DEFINE (Bcall2, 042) \
DEFINE (Bcall3, 043) \
DEFINE (Bcall4, 044) \
DEFINE (Bcall5, 045) \
DEFINE (Bcall6, 046) \
DEFINE (Bcall7, 047) \
DEFINE (Bunbind, 050) \
DEFINE (Bunbind1, 051) \
DEFINE (Bunbind2, 052) \
DEFINE (Bunbind3, 053) \
DEFINE (Bunbind4, 054) \
DEFINE (Bunbind5, 055) \
DEFINE (Bunbind6, 056) \
DEFINE (Bunbind7, 057) \
\
DEFINE (Bpophandler, 060) \
DEFINE (Bpushconditioncase, 061) \
DEFINE (Bpushcatch, 062) \
\
DEFINE (Bnth, 070) \
DEFINE (Bsymbolp, 071) \
DEFINE (Bconsp, 072) \
DEFINE (Bstringp, 073) \
DEFINE (Blistp, 074) \
DEFINE (Beq, 075) \
DEFINE (Bmemq, 076) \
DEFINE (Bnot, 077) \
DEFINE (Bcar, 0100) \
DEFINE (Bcdr, 0101) \
DEFINE (Bcons, 0102) \
DEFINE (Blist1, 0103) \
DEFINE (Blist2, 0104) \
DEFINE (Blist3, 0105) \
DEFINE (Blist4, 0106) \
DEFINE (Blength, 0107) \
DEFINE (Baref, 0110) \
DEFINE (Baset, 0111) \
DEFINE (Bsymbol_value, 0112) \
DEFINE (Bsymbol_function, 0113) \
DEFINE (Bset, 0114) \
DEFINE (Bfset, 0115) \
DEFINE (Bget, 0116) \
DEFINE (Bsubstring, 0117) \
DEFINE (Bconcat2, 0120) \
DEFINE (Bconcat3, 0121) \
DEFINE (Bconcat4, 0122) \
DEFINE (Bsub1, 0123) \
DEFINE (Badd1, 0124) \
DEFINE (Beqlsign, 0125) \
DEFINE (Bgtr, 0126) \
DEFINE (Blss, 0127) \
DEFINE (Bleq, 0130) \
DEFINE (Bgeq, 0131) \
DEFINE (Bdiff, 0132) \
DEFINE (Bnegate, 0133) \
DEFINE (Bplus, 0134) \
DEFINE (Bmax, 0135) \
DEFINE (Bmin, 0136) \
DEFINE (Bmult, 0137) \
\
DEFINE (Bpoint, 0140) \
/* 0141 was Bmark in v17, Bsave_current_buffer in 18-19. */ \
DEFINE (Bsave_current_buffer_OBSOLETE, 0141) /* Obsolete since 20. */ \
DEFINE (Bgoto_char, 0142) \
DEFINE (Binsert, 0143) \
DEFINE (Bpoint_max, 0144) \
DEFINE (Bpoint_min, 0145) \
DEFINE (Bchar_after, 0146) \
DEFINE (Bfollowing_char, 0147) \
DEFINE (Bpreceding_char, 0150) \
DEFINE (Bcurrent_column, 0151) \
DEFINE (Bindent_to, 0152) \
/* 0153 was Bscan_buffer in v17. */ \
DEFINE (Beolp, 0154) \
DEFINE (Beobp, 0155) \
DEFINE (Bbolp, 0156) \
DEFINE (Bbobp, 0157) \
DEFINE (Bcurrent_buffer, 0160) \
DEFINE (Bset_buffer, 0161) \
DEFINE (Bsave_current_buffer, 0162) \
/* 0163 was Bset_mark in v17. */ \
DEFINE (Binteractive_p, 0164) /* Obsolete since Emacs-24.1. */ \
\
DEFINE (Bforward_char, 0165) \
DEFINE (Bforward_word, 0166) \
DEFINE (Bskip_chars_forward, 0167) \
DEFINE (Bskip_chars_backward, 0170) \
DEFINE (Bforward_line, 0171) \
DEFINE (Bchar_syntax, 0172) \
DEFINE (Bbuffer_substring, 0173) \
DEFINE (Bdelete_region, 0174) \
DEFINE (Bnarrow_to_region, 0175) \
DEFINE (Bwiden, 0176) \
DEFINE (Bend_of_line, 0177) \
\
DEFINE (Bconstant2, 0201) \
DEFINE (Bgoto, 0202) \
DEFINE (Bgotoifnil, 0203) \
DEFINE (Bgotoifnonnil, 0204) \
DEFINE (Bgotoifnilelsepop, 0205) \
DEFINE (Bgotoifnonnilelsepop, 0206) \
DEFINE (Breturn, 0207) \
DEFINE (Bdiscard, 0210) \
DEFINE (Bdup, 0211) \
\
DEFINE (Bsave_excursion, 0212) \
DEFINE (Bsave_window_excursion, 0213) /* Obsolete since Emacs-24.1. */ \
DEFINE (Bsave_restriction, 0214) \
DEFINE (Bcatch, 0215) /* Obsolete since Emacs-25. */ \
\
DEFINE (Bunwind_protect, 0216) \
DEFINE (Bcondition_case, 0217) /* Obsolete since Emacs-25. */ \
DEFINE (Btemp_output_buffer_setup, 0220) /* Obsolete since Emacs-24.1. */ \
DEFINE (Btemp_output_buffer_show, 0221) /* Obsolete since Emacs-24.1. */ \
\
/* 0222 was Bunbind_all, never used. */ \
\
DEFINE (Bset_marker, 0223) \
DEFINE (Bmatch_beginning, 0224) \
DEFINE (Bmatch_end, 0225) \
DEFINE (Bupcase, 0226) \
DEFINE (Bdowncase, 0227) \
\
DEFINE (Bstringeqlsign, 0230) \
DEFINE (Bstringlss, 0231) \
DEFINE (Bequal, 0232) \
DEFINE (Bnthcdr, 0233) \
DEFINE (Belt, 0234) \
DEFINE (Bmember, 0235) \
DEFINE (Bassq, 0236) \
DEFINE (Bnreverse, 0237) \
DEFINE (Bsetcar, 0240) \
DEFINE (Bsetcdr, 0241) \
DEFINE (Bcar_safe, 0242) \
DEFINE (Bcdr_safe, 0243) \
DEFINE (Bnconc, 0244) \
DEFINE (Bquo, 0245) \
DEFINE (Brem, 0246) \
DEFINE (Bnumberp, 0247) \
DEFINE (Bintegerp, 0250) \
\
/* 0252-0256 were relative jumps, apparently never used. */ \
\
DEFINE (BlistN, 0257) \
DEFINE (BconcatN, 0260) \
DEFINE (BinsertN, 0261) \
\
/* Bstack_ref is code 0. */ \
DEFINE (Bstack_set, 0262) \
DEFINE (Bstack_set2, 0263) \
DEFINE (BdiscardN, 0266) \
\
DEFINE (Bswitch, 0267) \
\
DEFINE (Bconstant, 0300)
enum byte_code_op
{
#define DEFINE(name, value) name = value,
BYTE_CODES
#undef DEFINE
};
/* Fetch the next byte from the bytecode stream. */
#define FETCH (*pc++)
/* Fetch two bytes from the bytecode stream and make a 16-bit number
out of them. */
#define FETCH2 (op = FETCH, op | (FETCH << 8))
/* Push X onto the execution stack. The expression X should not
contain TOP, to avoid competing side effects. */
#define PUSH(x) (*++top = (x))
/* Pop a value off the execution stack. */
#define POP (*top--)
/* Discard n values from the execution stack. */
#define DISCARD(n) (top -= (n))
/* Get the value which is at the top of the execution stack, but don't
pop it. */
#define TOP (*top)
DEFUN ("byte-code", Fbyte_code, Sbyte_code, 3, 3, 0,
doc: /* Function used internally in byte-compiled code.
The first argument, BYTESTR, is a string of byte code;
the second, VECTOR, a vector of constants;
the third, MAXDEPTH, the maximum stack depth used in this function.
If the third argument is incorrect, Emacs may crash. */)
(Lisp_Object bytestr, Lisp_Object vector, Lisp_Object maxdepth)
{
if (! (STRINGP (bytestr) && VECTORP (vector) && FIXNATP (maxdepth)))
error ("Invalid byte-code");
if (STRING_MULTIBYTE (bytestr))
{
/* BYTESTR must have been produced by Emacs 20.2 or earlier
because it produced a raw 8-bit string for byte-code and now
such a byte-code string is loaded as multibyte with raw 8-bit
characters converted to multibyte form. Convert them back to
the original unibyte form. */
bytestr = Fstring_as_unibyte (bytestr);
}
Lisp_Object fun = CALLN (Fmake_byte_code, Qnil, bytestr, vector, maxdepth);
return exec_byte_code (fun, 0, 0, NULL);
}
static void
bcall0 (Lisp_Object f)
{
Ffuncall (1, &f);
}
/* The bytecode stack size in bytes.
This is a fairly generous amount, but:
- if users need more, we could allocate more, or just reserve the address
space and allocate on demand
- if threads are used more, then it might be a good idea to reduce the
per-thread overhead in time and space
- for maximum flexibility but a small runtime penalty, we could allocate
the stack in smaller chunks as needed
*/
#define BC_STACK_SIZE (512 * 1024 * sizeof (Lisp_Object))
/* Bytecode interpreter stack:
|--------------| --
|fun | | ^ stack growth
|saved_pc | | | direction
|saved_top ------- |
fp--->|saved_fp ---- | | current frame
|--------------| | | | (called from bytecode in this example)
| (free) | | | |
top-->| ...stack... | | | |
: ... : | | |
|incoming args | | | |
|--------------| | | --
|fun | | | |
|saved_pc | | | |
|saved_top | | | |
|saved_fp |<- | | previous frame
|--------------| | |
| (free) | | |
| ...stack... |<---- |
: ... : |
|incoming args | |
|--------------| --
: :
*/
/* bytecode stack frame header (footer, actually) */
struct bc_frame {
struct bc_frame *saved_fp; /* previous frame pointer,
NULL if bottommost frame */
/* In a frame called directly from C, the following two members are NULL. */
Lisp_Object *saved_top; /* previous stack pointer */
const unsigned char *saved_pc; /* previous program counter */
Lisp_Object fun; /* current function object */
Lisp_Object next_stack[]; /* data stack of next frame */
};
#ifdef HAVE_MPS
void *
bc_next_frame (struct bc_frame *bc)
{
return bc->next_stack;
}
#endif
void
init_bc_thread (struct bc_thread_state *bc)
{
bc->stack = xmalloc (BC_STACK_SIZE);
bc->stack_end = bc->stack + BC_STACK_SIZE;
/* Put a dummy header at the bottom to indicate the first free location. */
bc->fp = (struct bc_frame *)bc->stack;
memset (bc->fp, 0, sizeof *bc->fp);
}
void
free_bc_thread (struct bc_thread_state *bc)
{
xfree (bc->stack);
}
#ifndef HAVE_MPS
void
mark_bytecode (struct bc_thread_state *bc)
{
struct bc_frame *fp = bc->fp;
Lisp_Object *top = NULL; /* stack pointer of topmost frame not known */
for (;;)
{
struct bc_frame *next_fp = fp->saved_fp;
/* Only the dummy frame at the bottom has saved_fp = NULL. */
if (!next_fp)
break;
mark_object (fp->fun);
Lisp_Object *frame_base = next_fp->next_stack;
if (top)
{
/* The stack pointer of a frame is known: mark the part of the stack
above it conservatively. This includes any outgoing arguments. */
mark_memory (top + 1, fp);
/* Mark the rest of the stack precisely. */
mark_objects (frame_base, top + 1 - frame_base);
}
else
{
/* The stack pointer is unknown -- mark everything conservatively. */
mark_memory (frame_base, fp);
}
top = fp->saved_top;
fp = next_fp;
}
}
#endif // not HAVE_MPS
DEFUN ("internal-stack-stats", Finternal_stack_stats, Sinternal_stack_stats,
0, 0, 0,
doc: /* internal */)
(void)
{
struct bc_thread_state *bc = ¤t_thread->bc;
int nframes = 0;
int nruns = 0;
for (struct bc_frame *fp = bc->fp; fp; fp = fp->saved_fp)
{
nframes++;
if (fp->saved_top == NULL)
nruns++;
}
fprintf (stderr, "%d stack frames, %d runs\n", nframes, nruns);
return Qnil;
}
/* Whether a stack pointer is valid in the current frame. */
static bool
valid_sp (struct bc_thread_state *bc, Lisp_Object *sp)
{
struct bc_frame *fp = bc->fp;
return sp < (Lisp_Object *)fp && sp + 1 >= fp->saved_fp->next_stack;
}
/* Execute the byte-code in FUN. ARGS_TEMPLATE is the function arity
encoded as an integer (the one in FUN is ignored), and ARGS, of
size NARGS, should be a vector of the actual arguments. The
arguments in ARGS are pushed on the stack according to
ARGS_TEMPLATE before executing FUN. */
Lisp_Object
exec_byte_code (Lisp_Object fun, ptrdiff_t args_template,
ptrdiff_t nargs, Lisp_Object *args)
{
#ifdef BYTE_CODE_METER
int volatile this_op = 0;
#endif
unsigned char quitcounter = 1;
struct bc_thread_state *bc = ¤t_thread->bc;
/* Values used for the first stack record when called from C. */
Lisp_Object *top = NULL;
unsigned char const *pc = NULL;
Lisp_Object bytestr = AREF (fun, CLOSURE_CODE);
setup_frame: ;
eassert (!STRING_MULTIBYTE (bytestr));
#ifndef HAVE_MPS
// With MPS, references from the stack pin string data (also interior
// pointers).
eassert (string_immovable_p (bytestr));
#endif
/* FIXME: in debug mode (!NDEBUG, BYTE_CODE_SAFE or enabled checking),
save the specpdl index on function entry and check that it is the same
when returning, to detect unwind imbalances. This would require adding
a field to the frame header. */
Lisp_Object vector = AREF (fun, CLOSURE_CONSTANTS);
Lisp_Object maxdepth = AREF (fun, CLOSURE_STACK_DEPTH);
ptrdiff_t const_length = ASIZE (vector);
ptrdiff_t bytestr_length = SCHARS (bytestr);
Lisp_Object *vectorp = XVECTOR (vector)->contents;
EMACS_INT max_stack = XFIXNAT (maxdepth);
Lisp_Object *frame_base = bc->fp->next_stack;
struct bc_frame *fp = (struct bc_frame *)(frame_base + max_stack);
if ((char *)fp->next_stack > bc->stack_end)
error ("Bytecode stack overflow");
/* Save the function object so that the bytecode and vector are
held from removal by the GC. */
fp->fun = fun;
/* Save previous stack pointer and pc in the new frame. If we came
directly from outside, these will be NULL. */
fp->saved_top = top;
fp->saved_pc = pc;
fp->saved_fp = bc->fp;
bc->fp = fp;
top = frame_base - 1;
unsigned char const *bytestr_data = SDATA (bytestr);
pc = bytestr_data;
/* ARGS_TEMPLATE is composed of bit fields:
bits 0..6 minimum number of arguments
bits 7 1 iff &rest argument present
bits 8..14 maximum number of arguments */
bool rest = (args_template & 128) != 0;
int mandatory = args_template & 127;
ptrdiff_t nonrest = args_template >> 8;
if (! (mandatory <= nargs && (rest || nargs <= nonrest)))
Fsignal (Qwrong_number_of_arguments,
list2 (Fcons (make_fixnum (mandatory), make_fixnum (nonrest)),
make_fixnum (nargs)));
ptrdiff_t pushedargs = min (nonrest, nargs);
for (ptrdiff_t i = 0; i < pushedargs; i++, args++)
PUSH (*args);
if (nonrest < nargs)
PUSH (Flist (nargs - nonrest, args));
else
for (ptrdiff_t i = nargs - rest; i < nonrest; i++)
PUSH (Qnil);
unsigned char volatile saved_quitcounter;
#if GCC_LINT && __GNUC__ && !__clang__
Lisp_Object *volatile saved_vectorp;
unsigned char const *volatile saved_bytestr_data;
#endif
while (true)
{
int op;
enum handlertype type;
if (BYTE_CODE_SAFE && !valid_sp (bc, top))
emacs_abort ();
#ifdef BYTE_CODE_METER
int prev_op = this_op;
this_op = op = FETCH;
METER_CODE (prev_op, op);
#elif !defined BYTE_CODE_THREADED
op = FETCH;
#endif
/* The interpreter can be compiled one of two ways: as an
ordinary switch-based interpreter, or as a threaded
interpreter. The threaded interpreter relies on GCC's
computed goto extension, so it is not available everywhere.
Threading provides a performance boost. These macros are how
we allow the code to be compiled both ways. */
#ifdef BYTE_CODE_THREADED
/* The CASE macro introduces an instruction's body. It is
either a label or a case label. */
#define CASE(OP) insn_ ## OP
/* NEXT is invoked at the end of an instruction to go to the
next instruction. It is either a computed goto, or a
plain break. */
#define NEXT goto *(targets[op = FETCH])
/* FIRST is like NEXT, but is only used at the start of the
interpreter body. In the switch-based interpreter it is the
switch, so the threaded definition must include a semicolon. */
#define FIRST NEXT;
/* Most cases are labeled with the CASE macro, above.
CASE_DEFAULT is one exception; it is used if the interpreter
being built requires a default case. The threaded
interpreter does not, because the dispatch table is
completely filled. */
#define CASE_DEFAULT
/* This introduces an instruction that is known to call abort. */
#define CASE_ABORT CASE (Bstack_ref): CASE (default)
#else
/* See above for the meaning of the various defines. */
#define CASE(OP) case OP
#define NEXT break
#define FIRST switch (op)
#define CASE_DEFAULT case 255: default:
#define CASE_ABORT case 0
#endif
#ifdef BYTE_CODE_THREADED
/* This is the dispatch table for the threaded interpreter. */
static const void *const targets[256] =
{
[0 ... (Bconstant - 1)] = &&insn_default,
[Bconstant ... 255] = &&insn_Bconstant,
#define DEFINE(name, value) [name] = &&insn_ ## name,
BYTE_CODES
#undef DEFINE
};
#endif
FIRST
{
CASE (Bvarref7):
op = FETCH2;
goto varref;
CASE (Bvarref):
CASE (Bvarref1):
CASE (Bvarref2):
CASE (Bvarref3):
CASE (Bvarref4):
CASE (Bvarref5):
op -= Bvarref;
goto varref;
/* This seems to be the most frequently executed byte-code
among the Bvarref's, so avoid a goto here. */
CASE (Bvarref6):
op = FETCH;
varref:
{
Lisp_Object v1 = vectorp[op], v2;
if (XBARE_SYMBOL (v1)->u.s.redirect != SYMBOL_PLAINVAL
|| (v2 = XBARE_SYMBOL (v1)->u.s.val.value,
BASE_EQ (v2, Qunbound)))
v2 = Fsymbol_value (v1);
PUSH (v2);
NEXT;
}
CASE (Bgotoifnil):
{
Lisp_Object v1 = POP;
op = FETCH2;
if (NILP (v1))
goto op_branch;
NEXT;
}
CASE (Bcar):
if (CONSP (TOP))
TOP = XCAR (TOP);
else if (!NILP (TOP))
{
record_in_backtrace (Qcar, &TOP, 1);
wrong_type_argument (Qlistp, TOP);
}
NEXT;
CASE (Beq):
{
Lisp_Object v1 = POP;
TOP = EQ (v1, TOP) ? Qt : Qnil;
NEXT;
}
CASE (Bmemq):
{
Lisp_Object v1 = POP;
TOP = Fmemq (TOP, v1);
NEXT;
}
CASE (Bcdr):
{
if (CONSP (TOP))
TOP = XCDR (TOP);
else if (!NILP (TOP))
{
record_in_backtrace (Qcdr, &TOP, 1);
wrong_type_argument (Qlistp, TOP);
}
NEXT;
}
CASE (Bvarset):
CASE (Bvarset1):
CASE (Bvarset2):
CASE (Bvarset3):
CASE (Bvarset4):
CASE (Bvarset5):
op -= Bvarset;
goto varset;
CASE (Bvarset7):
op = FETCH2;
goto varset;
CASE (Bvarset6):
op = FETCH;
varset:
{
Lisp_Object sym = vectorp[op];
Lisp_Object val = POP;
/* Inline the most common case. */
if (!BASE_EQ (val, Qunbound)
&& XBARE_SYMBOL (sym)->u.s.redirect == SYMBOL_PLAINVAL
&& !XBARE_SYMBOL (sym)->u.s.trapped_write)
SET_SYMBOL_VAL (XBARE_SYMBOL (sym), val);
else
set_internal (sym, val, Qnil, SET_INTERNAL_SET);
}
NEXT;
CASE (Bdup):
{
Lisp_Object v1 = TOP;
PUSH (v1);
NEXT;
}
/* ------------------ */
CASE (Bvarbind6):
op = FETCH;
goto varbind;
CASE (Bvarbind7):
op = FETCH2;
goto varbind;
CASE (Bvarbind):
CASE (Bvarbind1):
CASE (Bvarbind2):
CASE (Bvarbind3):
CASE (Bvarbind4):
CASE (Bvarbind5):
op -= Bvarbind;
varbind:
/* Specbind can signal and thus GC. */
specbind (vectorp[op], POP);
NEXT;
CASE (Bcall6):
op = FETCH;
goto docall;
CASE (Bcall7):
op = FETCH2;
goto docall;
CASE (Bcall):
CASE (Bcall1):
CASE (Bcall2):
CASE (Bcall3):
CASE (Bcall4):
CASE (Bcall5):
op -= Bcall;
docall:
{
DISCARD (op);
#ifdef BYTE_CODE_METER
if (byte_metering_on && SYMBOLP (TOP))
{
Lisp_Object v1 = TOP;
Lisp_Object v2 = Fget (v1, Qbyte_code_meter);
if (FIXNUMP (v2)
&& XFIXNUM (v2) < MOST_POSITIVE_FIXNUM)
{
XSETINT (v2, XFIXNUM (v2) + 1);
Fput (v1, Qbyte_code_meter, v2);
}
}
#endif
maybe_quit ();
if (++lisp_eval_depth > max_lisp_eval_depth)
{
if (max_lisp_eval_depth < 100)
max_lisp_eval_depth = 100;
if (lisp_eval_depth > max_lisp_eval_depth)
error ("Lisp nesting exceeds `max-lisp-eval-depth'");
}
ptrdiff_t call_nargs = op;
Lisp_Object call_fun = TOP;
Lisp_Object *call_args = &TOP + 1;
specpdl_ref count1 = record_in_backtrace (call_fun,
call_args, call_nargs);
maybe_gc ();
if (debug_on_next_call)
do_debug_on_call (Qlambda, count1);
Lisp_Object original_fun = call_fun;
/* Calls to symbols-with-pos don't need to be on the fast path. */
if (BARE_SYMBOL_P (call_fun))
call_fun = XBARE_SYMBOL (call_fun)->u.s.function;
if (CLOSUREP (call_fun))
{
Lisp_Object template = AREF (call_fun, CLOSURE_ARGLIST);
if (FIXNUMP (template))
{
/* Fast path for lexbound functions. */
fun = call_fun;
bytestr = AREF (call_fun, CLOSURE_CODE),
args_template = XFIXNUM (template);
nargs = call_nargs;
args = call_args;
goto setup_frame;
}
}
Lisp_Object val;
if (SUBRP (call_fun) && !NATIVE_COMP_FUNCTION_DYNP (call_fun))
val = funcall_subr (XSUBR (call_fun), call_nargs, call_args);
else
val = funcall_general (original_fun, call_nargs, call_args);
lisp_eval_depth--;
if (backtrace_debug_on_exit (specpdl_ptr - 1))
val = call_debugger (list2 (Qexit, val));
specpdl_ptr--;
TOP = val;
NEXT;
}
CASE (Bunbind6):
op = FETCH;
goto dounbind;
CASE (Bunbind7):
op = FETCH2;
goto dounbind;
CASE (Bunbind):
CASE (Bunbind1):
CASE (Bunbind2):
CASE (Bunbind3):
CASE (Bunbind4):
CASE (Bunbind5):
op -= Bunbind;
dounbind:
unbind_to (specpdl_ref_add (SPECPDL_INDEX (), -op), Qnil);
NEXT;
CASE (Bgoto):
op = FETCH2;
op_branch:
op -= pc - bytestr_data;
if (BYTE_CODE_SAFE
&& ! (bytestr_data - pc <= op
&& op < bytestr_data + bytestr_length - pc))
emacs_abort ();
quitcounter += op < 0;
if (!quitcounter)
{
quitcounter = 1;
maybe_gc ();
maybe_quit ();
}
pc += op;
NEXT;
CASE (Bgotoifnonnil):
op = FETCH2;
if (!NILP (POP))
goto op_branch;
NEXT;
CASE (Bgotoifnilelsepop):
op = FETCH2;
if (NILP (TOP))
goto op_branch;
DISCARD (1);
NEXT;
CASE (Bgotoifnonnilelsepop):
op = FETCH2;
if (!NILP (TOP))
goto op_branch;
DISCARD (1);
NEXT;
CASE (Breturn):
{
Lisp_Object *saved_top = bc->fp->saved_top;
if (saved_top)
{
Lisp_Object val = TOP;
lisp_eval_depth--;
if (backtrace_debug_on_exit (specpdl_ptr - 1))
val = call_debugger (list2 (Qexit, val));
specpdl_ptr--;
top = saved_top;
pc = bc->fp->saved_pc;
struct bc_frame *fp = bc->fp->saved_fp;
bc->fp = fp;
Lisp_Object fun = fp->fun;
Lisp_Object bytestr = AREF (fun, CLOSURE_CODE);
Lisp_Object vector = AREF (fun, CLOSURE_CONSTANTS);
bytestr_data = SDATA (bytestr);
vectorp = XVECTOR (vector)->contents;
if (BYTE_CODE_SAFE)
{
/* Only required for checking, not for execution. */
const_length = ASIZE (vector);
bytestr_length = SCHARS (bytestr);
}
TOP = val;
NEXT;
}
else
goto exit;
}
CASE (Bdiscard):
DISCARD (1);
NEXT;
CASE (Bconstant2):
PUSH (vectorp[FETCH2]);
NEXT;
CASE (Bsave_excursion):
record_unwind_protect_excursion ();
NEXT;
CASE (Bsave_current_buffer_OBSOLETE): /* Obsolete since 20. */
CASE (Bsave_current_buffer):
record_unwind_current_buffer ();
NEXT;
CASE (Bsave_window_excursion): /* Obsolete since 24.1. */
{
specpdl_ref count1 = SPECPDL_INDEX ();
record_unwind_protect (restore_window_configuration,
Fcurrent_window_configuration (Qnil));
TOP = Fprogn (TOP);
unbind_to (count1, TOP);
NEXT;
}
CASE (Bsave_restriction):
record_unwind_protect (save_restriction_restore,
save_restriction_save ());
NEXT;
CASE (Bcatch): /* Obsolete since 25. */
{
Lisp_Object v1 = POP;
TOP = internal_catch (TOP, eval_sub, v1);
NEXT;
}
CASE (Bpushcatch): /* New in 24.4. */
type = CATCHER;
goto pushhandler;
CASE (Bpushconditioncase): /* New in 24.4. */
type = CONDITION_CASE;
pushhandler:
{
struct handler *c = push_handler (POP, type);
c->bytecode_dest = FETCH2;
c->bytecode_top = top;
if (sys_setjmp (c->jmp))
{
quitcounter = saved_quitcounter;
struct handler *c = handlerlist;
handlerlist = c->next;
top = c->bytecode_top;
op = c->bytecode_dest;
bc = ¤t_thread->bc;
struct bc_frame *fp = bc->fp;
Lisp_Object fun = fp->fun;
Lisp_Object bytestr = AREF (fun, CLOSURE_CODE);
Lisp_Object vector = AREF (fun, CLOSURE_CONSTANTS);
#if GCC_LINT && __GNUC__ && !__clang__
/* These useless assignments pacify GCC 14.2.1 x86-64
. */
bytestr_data = saved_bytestr_data;
vectorp = saved_vectorp;
#endif
bytestr_data = SDATA (bytestr);
vectorp = XVECTOR (vector)->contents;
if (BYTE_CODE_SAFE)
{
/* Only required for checking, not for execution. */
const_length = ASIZE (vector);
bytestr_length = SCHARS (bytestr);
}
pc = bytestr_data;
PUSH (c->val);
goto op_branch;
}
saved_quitcounter = quitcounter;
#if GCC_LINT && __GNUC__ && !__clang__
saved_vectorp = vectorp;
saved_bytestr_data = bytestr_data;
#endif
NEXT;
}
CASE (Bpophandler): /* New in 24.4. */
handlerlist = handlerlist->next;
NEXT;
CASE (Bunwind_protect): /* FIXME: avoid closure for lexbind. */
{
Lisp_Object handler = POP;
/* Support for a function here is new in 24.4. */
record_unwind_protect (FUNCTIONP (handler) ? bcall0 : prog_ignore,
handler);
NEXT;
}
CASE (Bcondition_case): /* Obsolete since 25. */
{
Lisp_Object handlers = POP, body = POP;
TOP = internal_lisp_condition_case (TOP, body, handlers);
NEXT;
}
CASE (Btemp_output_buffer_setup): /* Obsolete since 24.1. */
CHECK_STRING (TOP);
temp_output_buffer_setup (SSDATA (TOP));
TOP = Vstandard_output;
NEXT;
CASE (Btemp_output_buffer_show): /* Obsolete since 24.1. */
{
Lisp_Object v1 = POP;
temp_output_buffer_show (TOP);
TOP = v1;
/* pop binding of standard-output */
unbind_to (specpdl_ref_add (SPECPDL_INDEX (), -1), Qnil);
NEXT;
}
CASE (Bnth):
{
Lisp_Object v2 = POP, v1 = TOP;
if (RANGED_FIXNUMP (0, v1, SMALL_LIST_LEN_MAX))
{
for (EMACS_INT n = XFIXNUM (v1); 0 < n && CONSP (v2); n--)
v2 = XCDR (v2);
if (CONSP (v2))
TOP = XCAR (v2);
else if (NILP (v2))
TOP = Qnil;
else
{
record_in_backtrace (Qnth, &TOP, 2);
wrong_type_argument (Qlistp, v2);
}
}
else
TOP = Fnth (v1, v2);
NEXT;
}
CASE (Bsymbolp):
TOP = SYMBOLP (TOP) ? Qt : Qnil;
NEXT;
CASE (Bconsp):
TOP = CONSP (TOP) ? Qt : Qnil;
NEXT;
CASE (Bstringp):
TOP = STRINGP (TOP) ? Qt : Qnil;
NEXT;
CASE (Blistp):
TOP = CONSP (TOP) || NILP (TOP) ? Qt : Qnil;
NEXT;
CASE (Bnot):
TOP = NILP (TOP) ? Qt : Qnil;
NEXT;
CASE (Bcons):
{
Lisp_Object v1 = POP;
TOP = Fcons (TOP, v1);
NEXT;
}
CASE (Blist1):
TOP = list1 (TOP);
NEXT;
CASE (Blist2):
{
Lisp_Object v1 = POP;
TOP = list2 (TOP, v1);
NEXT;
}
CASE (Blist3):
DISCARD (2);
TOP = list3 (TOP, top[1], top[2]);
NEXT;
CASE (Blist4):
DISCARD (3);
TOP = list4 (TOP, top[1], top[2], top[3]);
NEXT;
CASE (BlistN):
op = FETCH;
DISCARD (op - 1);
TOP = Flist (op, &TOP);
NEXT;
CASE (Blength):
TOP = Flength (TOP);
NEXT;
CASE (Baref):
{
Lisp_Object idxval = POP;
Lisp_Object arrayval = TOP;
if (!FIXNUMP (idxval))
{
record_in_backtrace (Qaref, &TOP, 2);
wrong_type_argument (Qfixnump, idxval);
}
ptrdiff_t size;
if (((VECTORP (arrayval) && (size = ASIZE (arrayval), true))
|| (RECORDP (arrayval) && (size = PVSIZE (arrayval), true))))
{
ptrdiff_t idx = XFIXNUM (idxval);
if (idx >= 0 && idx < size)
TOP = AREF (arrayval, idx);
else
{
record_in_backtrace (Qaref, &TOP, 2);
args_out_of_range (arrayval, idxval);
}
}
else
TOP = Faref (arrayval, idxval);
NEXT;
}
CASE (Baset):
{
Lisp_Object newelt = POP;
Lisp_Object idxval = POP;
Lisp_Object arrayval = TOP;
if (!FIXNUMP (idxval))
{
record_in_backtrace (Qaset, &TOP, 3);
wrong_type_argument (Qfixnump, idxval);
}
ptrdiff_t size;
if (((VECTORP (arrayval) && (size = ASIZE (arrayval), true))
|| (RECORDP (arrayval) && (size = PVSIZE (arrayval), true))))
{
ptrdiff_t idx = XFIXNUM (idxval);
if (idx >= 0 && idx < size)
{
ASET (arrayval, idx, newelt);
TOP = newelt;
}
else
{
record_in_backtrace (Qaset, &TOP, 3);
args_out_of_range (arrayval, idxval);
}
}
else
TOP = Faset (arrayval, idxval, newelt);
NEXT;
}
CASE (Bsymbol_value):
TOP = Fsymbol_value (TOP);
NEXT;
CASE (Bsymbol_function):
TOP = Fsymbol_function (TOP);
NEXT;
CASE (Bset):
{
Lisp_Object v1 = POP;
TOP = Fset (TOP, v1);
NEXT;
}
CASE (Bfset):
{
Lisp_Object v1 = POP;
TOP = Ffset (TOP, v1);
NEXT;
}
CASE (Bget):
{
Lisp_Object v1 = POP;
TOP = Fget (TOP, v1);
NEXT;
}
CASE (Bsubstring):
{
Lisp_Object v2 = POP, v1 = POP;
TOP = Fsubstring (TOP, v1, v2);
NEXT;
}
CASE (Bconcat2):
DISCARD (1);
TOP = Fconcat (2, &TOP);
NEXT;
CASE (Bconcat3):
DISCARD (2);
TOP = Fconcat (3, &TOP);
NEXT;
CASE (Bconcat4):
DISCARD (3);
TOP = Fconcat (4, &TOP);
NEXT;
CASE (BconcatN):
op = FETCH;
DISCARD (op - 1);
TOP = Fconcat (op, &TOP);
NEXT;
CASE (Bsub1):
TOP = (FIXNUMP (TOP) && XFIXNUM (TOP) != MOST_NEGATIVE_FIXNUM
? make_fixnum (XFIXNUM (TOP) - 1)
: Fsub1 (TOP));
NEXT;
CASE (Badd1):
TOP = (FIXNUMP (TOP) && XFIXNUM (TOP) != MOST_POSITIVE_FIXNUM
? make_fixnum (XFIXNUM (TOP) + 1)
: Fadd1 (TOP));
NEXT;
CASE (Beqlsign):
{
Lisp_Object v2 = POP;
Lisp_Object v1 = TOP;
if (FIXNUMP (v1) && FIXNUMP (v2))
TOP = BASE_EQ (v1, v2) ? Qt : Qnil;
else
TOP = arithcompare (v1, v2) & Cmp_EQ ? Qt : Qnil;
NEXT;
}
CASE (Bgtr):
{
Lisp_Object v2 = POP;
Lisp_Object v1 = TOP;
if (FIXNUMP (v1) && FIXNUMP (v2))
TOP = XFIXNUM (v1) > XFIXNUM (v2) ? Qt : Qnil;
else
TOP = arithcompare (v1, v2) & Cmp_GT ? Qt : Qnil;
NEXT;
}
CASE (Blss):
{
Lisp_Object v2 = POP;
Lisp_Object v1 = TOP;
if (FIXNUMP (v1) && FIXNUMP (v2))
TOP = XFIXNUM (v1) < XFIXNUM (v2) ? Qt : Qnil;
else
TOP = arithcompare (v1, v2) & Cmp_LT ? Qt : Qnil;
NEXT;
}
CASE (Bleq):
{
Lisp_Object v2 = POP;
Lisp_Object v1 = TOP;
if (FIXNUMP (v1) && FIXNUMP (v2))
TOP = XFIXNUM (v1) <= XFIXNUM (v2) ? Qt : Qnil;
else
TOP = arithcompare (v1, v2) & (Cmp_LT | Cmp_EQ) ? Qt : Qnil;
NEXT;
}
CASE (Bgeq):
{
Lisp_Object v2 = POP;
Lisp_Object v1 = TOP;
if (FIXNUMP (v1) && FIXNUMP (v2))
TOP = XFIXNUM (v1) >= XFIXNUM (v2) ? Qt : Qnil;
else
TOP = arithcompare (v1, v2) & (Cmp_GT | Cmp_EQ) ? Qt : Qnil;
NEXT;
}
CASE (Bdiff):
{
Lisp_Object v2 = POP;
Lisp_Object v1 = TOP;
EMACS_INT res;
if (FIXNUMP (v1) && FIXNUMP (v2)
&& (res = XFIXNUM (v1) - XFIXNUM (v2),
!FIXNUM_OVERFLOW_P (res)))
TOP = make_fixnum (res);
else
TOP = Fminus (2, &TOP);
NEXT;
}
CASE (Bnegate):
TOP = (FIXNUMP (TOP) && XFIXNUM (TOP) != MOST_NEGATIVE_FIXNUM
? make_fixnum (- XFIXNUM (TOP))
: Fminus (1, &TOP));
NEXT;
CASE (Bplus):
{
Lisp_Object v2 = POP;
Lisp_Object v1 = TOP;
EMACS_INT res;
if (FIXNUMP (v1) && FIXNUMP (v2)
&& (res = XFIXNUM (v1) + XFIXNUM (v2),
!FIXNUM_OVERFLOW_P (res)))
TOP = make_fixnum (res);
else
TOP = Fplus (2, &TOP);
NEXT;
}
CASE (Bmax):
{
Lisp_Object v2 = POP;
Lisp_Object v1 = TOP;
if (FIXNUMP (v1) && FIXNUMP (v2))
{
if (XFIXNUM (v2) > XFIXNUM (v1))
TOP = v2;
}
else
TOP = Fmax (2, &TOP);
NEXT;
}
CASE (Bmin):
{
Lisp_Object v2 = POP;
Lisp_Object v1 = TOP;
if (FIXNUMP (v1) && FIXNUMP (v2))
{
if (XFIXNUM (v2) < XFIXNUM (v1))
TOP = v2;
}
else
TOP = Fmin (2, &TOP);
NEXT;
}
CASE (Bmult):
{
Lisp_Object v2 = POP;
Lisp_Object v1 = TOP;
intmax_t res;
if (FIXNUMP (v1) && FIXNUMP (v2)
&& !ckd_mul (&res, XFIXNUM (v1), XFIXNUM (v2))
&& !FIXNUM_OVERFLOW_P (res))
TOP = make_fixnum (res);
else
TOP = Ftimes (2, &TOP);
NEXT;
}
CASE (Bquo):
{
Lisp_Object v2 = POP;
Lisp_Object v1 = TOP;
EMACS_INT res;
if (FIXNUMP (v1) && FIXNUMP (v2) && XFIXNUM (v2) != 0
&& (res = XFIXNUM (v1) / XFIXNUM (v2),
!FIXNUM_OVERFLOW_P (res)))
TOP = make_fixnum (res);
else
TOP = Fquo (2, &TOP);
NEXT;
}
CASE (Brem):
{
Lisp_Object v2 = POP;
Lisp_Object v1 = TOP;
if (FIXNUMP (v1) && FIXNUMP (v2) && XFIXNUM (v2) != 0)
TOP = make_fixnum (XFIXNUM (v1) % XFIXNUM (v2));
else
TOP = Frem (v1, v2);
NEXT;
}
CASE (Bpoint):
PUSH (make_fixed_natnum (PT));
NEXT;
CASE (Bgoto_char):
TOP = Fgoto_char (TOP);
NEXT;
CASE (Binsert):
TOP = Finsert (1, &TOP);
NEXT;
CASE (BinsertN):
op = FETCH;
DISCARD (op - 1);
TOP = Finsert (op, &TOP);
NEXT;
CASE (Bpoint_max):
PUSH (make_fixed_natnum (ZV));
NEXT;
CASE (Bpoint_min):
PUSH (make_fixed_natnum (BEGV));
NEXT;
CASE (Bchar_after):
TOP = Fchar_after (TOP);
NEXT;
CASE (Bfollowing_char):
PUSH (Ffollowing_char ());
NEXT;
CASE (Bpreceding_char):
PUSH (Fprevious_char ());
NEXT;
CASE (Bcurrent_column):
PUSH (make_fixed_natnum (current_column ()));
NEXT;
CASE (Bindent_to):
TOP = Findent_to (TOP, Qnil);
NEXT;
CASE (Beolp):
PUSH (Feolp ());
NEXT;
CASE (Beobp):
PUSH (Feobp ());
NEXT;
CASE (Bbolp):
PUSH (Fbolp ());
NEXT;
CASE (Bbobp):
PUSH (Fbobp ());
NEXT;
CASE (Bcurrent_buffer):
PUSH (Fcurrent_buffer ());
NEXT;
CASE (Bset_buffer):
TOP = Fset_buffer (TOP);
NEXT;
CASE (Binteractive_p): /* Obsolete since 24.1. */
PUSH (call0 (Qinteractive_p));
NEXT;
CASE (Bforward_char):
TOP = Fforward_char (TOP);
NEXT;
CASE (Bforward_word):
TOP = Fforward_word (TOP);
NEXT;
CASE (Bskip_chars_forward):
{
Lisp_Object v1 = POP;
TOP = Fskip_chars_forward (TOP, v1);
NEXT;
}
CASE (Bskip_chars_backward):
{
Lisp_Object v1 = POP;
TOP = Fskip_chars_backward (TOP, v1);
NEXT;
}
CASE (Bforward_line):
TOP = Fforward_line (TOP);
NEXT;
CASE (Bchar_syntax):
TOP = Fchar_syntax (TOP);
NEXT;
CASE (Bbuffer_substring):
{
Lisp_Object v1 = POP;
TOP = Fbuffer_substring (TOP, v1);
NEXT;
}
CASE (Bdelete_region):
{
Lisp_Object v1 = POP;
TOP = Fdelete_region (TOP, v1);
NEXT;
}
CASE (Bnarrow_to_region):
{
Lisp_Object v1 = POP;
TOP = Fnarrow_to_region (TOP, v1);
NEXT;
}
CASE (Bwiden):
PUSH (Fwiden ());
NEXT;
CASE (Bend_of_line):
TOP = Fend_of_line (TOP);
NEXT;
CASE (Bset_marker):
{
Lisp_Object v2 = POP, v1 = POP;
TOP = Fset_marker (TOP, v1, v2);
NEXT;
}
CASE (Bmatch_beginning):
TOP = Fmatch_beginning (TOP);
NEXT;
CASE (Bmatch_end):
TOP = Fmatch_end (TOP);
NEXT;
CASE (Bupcase):
TOP = Fupcase (TOP);
NEXT;
CASE (Bdowncase):
TOP = Fdowncase (TOP);
NEXT;
CASE (Bstringeqlsign):
{
Lisp_Object v1 = POP;
TOP = Fstring_equal (TOP, v1);
NEXT;
}
CASE (Bstringlss):
{
Lisp_Object v1 = POP;
TOP = Fstring_lessp (TOP, v1);
NEXT;
}
CASE (Bequal):
{
Lisp_Object v1 = POP;
TOP = Fequal (TOP, v1);
NEXT;
}
CASE (Bnthcdr):
{
Lisp_Object v1 = POP;
TOP = Fnthcdr (TOP, v1);
NEXT;
}
CASE (Belt):
{
Lisp_Object v2 = POP, v1 = TOP;
if (CONSP (v1) && RANGED_FIXNUMP (0, v2, SMALL_LIST_LEN_MAX))
{
/* Like the fast case for Bnth, but with args reversed. */
for (EMACS_INT n = XFIXNUM (v2); 0 < n && CONSP (v1); n--)
v1 = XCDR (v1);
if (CONSP (v1))
TOP = XCAR (v1);
else if (NILP (v1))
TOP = Qnil;
else
{
record_in_backtrace (Qelt, &TOP, 2);
wrong_type_argument (Qlistp, v1);
}
}
else
TOP = Felt (v1, v2);
NEXT;
}
CASE (Bmember):
{
Lisp_Object v1 = POP;
TOP = Fmember (TOP, v1);
NEXT;
}
CASE (Bassq):
{
Lisp_Object v1 = POP;
TOP = Fassq (TOP, v1);
NEXT;
}
CASE (Bnreverse):
TOP = Fnreverse (TOP);
NEXT;
CASE (Bsetcar):
{
Lisp_Object newval = POP;
Lisp_Object cell = TOP;
if (!CONSP (cell))
{
record_in_backtrace (Qsetcar, &TOP, 2);
wrong_type_argument (Qconsp, cell);
}
CHECK_IMPURE (cell, XCONS (cell));
XSETCAR (cell, newval);
TOP = newval;
NEXT;
}
CASE (Bsetcdr):
{
Lisp_Object newval = POP;
Lisp_Object cell = TOP;
if (!CONSP (cell))
{
record_in_backtrace (Qsetcdr, &TOP, 2);
wrong_type_argument (Qconsp, cell);
}
CHECK_IMPURE (cell, XCONS (cell));
XSETCDR (cell, newval);
TOP = newval;
NEXT;
}
CASE (Bcar_safe):
TOP = CAR_SAFE (TOP);
NEXT;
CASE (Bcdr_safe):
TOP = CDR_SAFE (TOP);
NEXT;
CASE (Bnconc):
DISCARD (1);
TOP = Fnconc (2, &TOP);
NEXT;
CASE (Bnumberp):
TOP = NUMBERP (TOP) ? Qt : Qnil;
NEXT;
CASE (Bintegerp):
TOP = INTEGERP (TOP) ? Qt : Qnil;
NEXT;
CASE_ABORT:
/* Actually this is Bstack_ref with offset 0, but we use Bdup
for that instead. */
/* CASE (Bstack_ref): */
error ("Invalid byte opcode: op=%d, ptr=%"pD"d",
op, pc - 1 - bytestr_data);
/* Handy byte-codes for lexical binding. */
CASE (Bstack_ref1):
CASE (Bstack_ref2):
CASE (Bstack_ref3):
CASE (Bstack_ref4):
CASE (Bstack_ref5):
{
Lisp_Object v1 = top[Bstack_ref - op];
PUSH (v1);
NEXT;
}
CASE (Bstack_ref6):
{
Lisp_Object v1 = top[- FETCH];
PUSH (v1);
NEXT;
}
CASE (Bstack_ref7):
{
Lisp_Object v1 = top[- FETCH2];
PUSH (v1);
NEXT;
}
CASE (Bstack_set):
/* stack-set-0 = discard; stack-set-1 = discard-1-preserve-tos. */
{
Lisp_Object *ptr = top - FETCH;
*ptr = POP;
NEXT;
}
CASE (Bstack_set2):
{
Lisp_Object *ptr = top - FETCH2;
*ptr = POP;
NEXT;
}
CASE (BdiscardN):
op = FETCH;
if (op & 0x80)
{
op &= 0x7F;
top[-op] = TOP;
}
DISCARD (op);
NEXT;
CASE (Bswitch):
{
/* TODO: Perhaps introduce another byte-code for switch when the
number of cases is less, which uses a simple vector for linear
search as the jump table. */
/* TODO: Instead of pushing the table in a separate
Bconstant op, use an immediate argument (maybe separate
switch opcodes for 1-byte and 2-byte constant indices).
This would also get rid of some hacks that assume each
Bswitch to be preceded by a Bconstant. */
Lisp_Object jmp_table = POP;
if (BYTE_CODE_SAFE && !HASH_TABLE_P (jmp_table))
emacs_abort ();
Lisp_Object v1 = POP;
struct Lisp_Hash_Table *h = XHASH_TABLE (jmp_table);
/* Do a linear search if there are few cases and the test is `eq'.
(The table is assumed to be sized exactly; all entries are
consecutive at the beginning.)
FIXME: 5 is arbitrarily chosen. */
if (h->count <= 5 && !h->test->cmpfn && !symbols_with_pos_enabled)
{
eassume (h->count >= 2);
for (ptrdiff_t i = h->count - 1; i >= 0; i--)
if (BASE_EQ (v1, HASH_KEY (h, i)))
{
op = XFIXNUM (HASH_VALUE (h, i));
goto op_branch;
}
}
else
{
ptrdiff_t i = hash_lookup (h, v1);
if (i >= 0)
{
op = XFIXNUM (HASH_VALUE (h, i));
goto op_branch;
}
}
}
NEXT;
CASE_DEFAULT
CASE (Bconstant):
if (BYTE_CODE_SAFE
&& ! (Bconstant <= op && op < Bconstant + const_length))
emacs_abort ();
PUSH (vectorp[op - Bconstant]);
NEXT;
}
}
exit:
bc->fp = bc->fp->saved_fp;
Lisp_Object result = TOP;
return result;
}
/* `args_template' has the same meaning as in exec_byte_code() above. */
Lisp_Object
get_byte_code_arity (Lisp_Object args_template)
{
eassert (FIXNATP (args_template));
EMACS_INT at = XFIXNUM (args_template);
bool rest = (at & 128) != 0;
int mandatory = at & 127;
EMACS_INT nonrest = at >> 8;
return Fcons (make_fixnum (mandatory),
rest ? Qmany : make_fixnum (nonrest));
}
void
syms_of_bytecode (void)
{
DEFSYM (Qinteractive_p, "interactive-p");
defsubr (&Sbyte_code);
defsubr (&Sinternal_stack_stats);
#ifdef BYTE_CODE_METER
DEFVAR_LISP ("byte-code-meter", Vbyte_code_meter,
doc: /* A vector of vectors which holds a histogram of byte-code usage.
\(aref (aref byte-code-meter 0) CODE) indicates how many times the byte
opcode CODE has been executed.
\(aref (aref byte-code-meter CODE1) CODE2), where CODE1 is not 0,
indicates how many times the byte opcodes CODE1 and CODE2 have been
executed in succession. */);
DEFVAR_BOOL ("byte-metering-on", byte_metering_on,
doc: /* If non-nil, keep profiling information on byte code usage.
The variable byte-code-meter indicates how often each byte opcode is used.
If a symbol has a property named `byte-code-meter' whose value is an
integer, it is incremented each time that symbol's function is called. */);
byte_metering_on = false;
Vbyte_code_meter = make_nil_vector (256);
DEFSYM (Qbyte_code_meter, "byte-code-meter");
for (int i = 0; i < 256; i++)
ASET (Vbyte_code_meter, i, make_vector (256, make_fixnum (0)));
#endif
}