1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
| | ;;; peg.el --- Parsing Expression Grammars in Emacs Lisp -*- lexical-binding:t -*-
;; Copyright (C) 2008-2023 Free Software Foundation, Inc.
;;
;; Author: Helmut Eller <eller.helmut@gmail.com>
;; Maintainer: Stefan Monnier <monnier@iro.umontreal.ca>
;; Version: 1.0.1
;;
;; This program is free software: you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation, either version 3 of the License, or
;; (at your option) any later version.
;;
;; This program is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;;
;; You should have received a copy of the GNU General Public License
;; along with this program. If not, see <https://www.gnu.org/licenses/>.
;;
;;; Commentary:
;;
;; This package implements Parsing Expression Grammars for Emacs Lisp.
;; Parsing Expression Grammars (PEG) are a formalism in the spirit of
;; Context Free Grammars (CFG) with some simplifications which makes
;; the implementation of PEGs as recursive descent parsers particularly
;; simple and easy to understand [Ford, Baker].
;; PEGs are more expressive than regexps and potentially easier to use.
;;
;; This file implements the macros `define-peg-rule', `with-peg-rules', and
;; `peg-parse' which parses the current buffer according to a PEG.
;; E.g. we can match integers with:
;;
;; (with-peg-rules
;; ((number sign digit (* digit))
;; (sign (or "+" "-" ""))
;; (digit [0-9]))
;; (peg-run (peg number)))
;; or
;; (define-peg-rule digit ()
;; [0-9])
;; (peg-parse (number sign digit (* digit))
;; (sign (or "+" "-" "")))
;;
;; In contrast to regexps, PEGs allow us to define recursive "rules".
;; A "grammar" is a set of rules. A rule is written as (NAME PEX...)
;; E.g. (sign (or "+" "-" "")) is a rule with the name "sign".
;; The syntax for PEX (Parsing Expression) is a follows:
;;
;; Description Lisp Traditional, as in Ford's paper
;; =========== ==== ===========
;; Sequence (and E1 E2) e1 e2
;; Prioritized Choice (or E1 E2) e1 / e2
;; Not-predicate (not E) !e
;; And-predicate (if E) &e
;; Any character (any) .
;; Literal string "abc" "abc"
;; Character C (char C) 'c'
;; Zero-or-more (* E) e*
;; One-or-more (+ E) e+
;; Optional (opt E) e?
;; Non-terminal SYMBOL A
;; Character range (range A B) [a-b]
;; Character set [a-b "+*" ?x] [a-b+*x] ;Note: it's a vector
;; Character classes [ascii cntrl]
;; Boolean-guard (guard EXP)
;; Syntax-Class (syntax-class NAME)
;; Local definitions (with RULES PEX...)
;; Indirect call (funcall EXP ARGS...)
;; and
;; Empty-string (null) ε
;; Beginning-of-Buffer (bob)
;; End-of-Buffer (eob)
;; Beginning-of-Line (bol)
;; End-of-Line (eol)
;; Beginning-of-Word (bow)
;; End-of-Word (eow)
;; Beginning-of-Symbol (bos)
;; End-of-Symbol (eos)
;;
;; Rules can refer to other rules, and a grammar is often structured
;; as a tree, with a root rule referring to one or more "branch
;; rules", all the way down to the "leaf rules" that deal with actual
;; buffer text. Rules can be recursive or mutually referential,
;; though care must be taken not to create infinite loops.
;;
;;;; Named rulesets:
;;
;; You can define a set of rules for later use with:
;;
;; (define-peg-ruleset myrules
;; (sign () (or "+" "-" ""))
;; (digit () [0-9])
;; (nat () digit (* digit))
;; (int () sign digit (* digit))
;; (float () int "." nat))
;;
;; and later refer to it:
;;
;; (with-peg-rules
;; (myrules
;; (complex float "+i" float))
;; ... (peg-parse nat "," nat "," complex) ...)
;;
;;;; Parsing actions:
;;
;; PEXs also support parsing actions, i.e. Lisp snippets which are
;; executed when a pex matches. This can be used to construct syntax
;; trees or for similar tasks. The most basic form of action is
;; written as:
;;
;; (action FORM) ; evaluate FORM for its side-effects
;;
;; Actions don't consume input, but are executed at the point of
;; match. Another kind of action is called a "stack action", and
;; looks like this:
;;
;; `(VAR... -- FORM...) ; stack action
;;
;; A stack action takes VARs from the "value stack" and pushes the
;; results of evaluating FORMs to that stack.
;; The value stack is created during the course of parsing. Certain
;; operators (see below) that match buffer text can push values onto
;; this stack. "Upstream" rules can then draw values from the stack,
;; and optionally push new ones back. For instance, consider this
;; very simple grammar:
;;
;; (with-peg-rules
;; ((query (+ term) (eol))
;; (term key ":" value (opt (+ [space]))
;; `(k v -- (cons (intern k) v)))
;; (key (substring (and (not ":") (+ [word]))))
;; (value (or string-value number-value))
;; (string-value (substring (+ [alpha])))
;; (number-value (substring (+ [digit]))
;; `(val -- (string-to-number val))))
;; (peg-run (peg query)))
;;
;; This invocation of `peg-run' would parse this buffer text:
;;
;; name:Jane age:30
;;
;; And return this Elisp sexp:
;;
;; ((age . 30) (name . "Jane"))
;;
;; Note that, in complex grammars, some care must be taken to make
;; sure that the number and type of values drawn from the stack always
;; match those pushed. In the example above, both `string-value' and
;; `number-value' push a single value to the stack. Since the `value'
;; rule only includes these two sub-rules, any upstream rule that
;; makes use of `value' can be confident it will always and only push
;; a single value to the stack.
;;
;; Stack action forms are in a sense analogous to lambda forms: the
;; symbols before the "--" are the equivalent of lambda arguments,
;; while the forms after the "--" are return values. The difference
;; being that a lambda form can only return a single value, while a
;; stack action can push multiple values onto the stack. It's also
;; perfectly valid to use `(-- FORM...)' or `(VAR... --)': the former
;; pushes values to the stack without consuming any, and the latter
;; pops values from the stack and discards them.
;;
;;;; Derived Operators:
;;
;; The following operators are implemented as combinations of
;; primitive expressions:
;;
;; (substring E) ; Match E and push the substring for the matched region.
;; (region E) ; Match E and push the start and end positions.
;; (replace E RPL); Match E and replace the matched region with RPL.
;; (list E) ; Match E and push a list of the items that E produced.
;;
;; See `peg-ex-parse-int' in `peg-tests.el' for further examples.
;;
;; Regexp equivalents:
;;
;; Here a some examples for regexps and how those could be written as pex.
;; [Most are taken from rx.el]
;;
;; "^[a-z]*"
;; (and (bol) (* [a-z]))
;;
;; "\n[^ \t]"
;; (and "\n" (not [" \t"]) (any))
;;
;; "\\*\\*\\* EOOH \\*\\*\\*\n"
;; "*** EOOH ***\n"
;;
;; "\\<\\(catch\\|finally\\)\\>[^_]"
;; (and (bow) (or "catch" "finally") (eow) (not "_") (any))
;;
;; "[ \t\n]*:\\([^:]+\\|$\\)"
;; (and (* [" \t\n"]) ":" (or (+ (not ":") (any)) (eol)))
;;
;; "^content-transfer-encoding:\\(\n?[\t ]\\)*quoted-printable\\(\n?[\t ]\\)*"
;; (and (bol)
;; "content-transfer-encoding:"
;; (* (opt "\n") ["\t "])
;; "quoted-printable"
;; (* (opt "\n") ["\t "]))
;;
;; "\\$[I]d: [^ ]+ \\([^ ]+\\) "
;; (and "$Id: " (+ (not " ") (any)) " " (+ (not " ") (any)) " ")
;;
;; "^;;\\s-*\n\\|^\n"
;; (or (and (bol) ";;" (* (syntax-class whitespace)) "\n")
;; (and (bol) "\n"))
;;
;; "\\\\\\\\\\[\\w+"
;; (and "\\\\[" (+ (syntax-class word)))
;;
;; See ";;; Examples" in `peg-tests.el' for other examples.
;;
;;;; Rule argument and indirect calls:
;;
;; Rules can take arguments and those arguments can themselves be PEGs.
;; For example:
;;
;; (define-peg-rule 2-or-more (peg)
;; (funcall peg)
;; (funcall peg)
;; (* (funcall peg)))
;;
;; ... (peg-parse
;; ...
;; (2-or-more (peg foo))
;; ...
;; (2-or-more (peg bar))
;; ...)
;;
;;;; References:
;;
;; [Ford] Bryan Ford. Parsing Expression Grammars: a Recognition-Based
;; Syntactic Foundation. In POPL'04: Proceedings of the 31st ACM
;; SIGPLAN-SIGACT symposium on Principles of Programming Languages,
;; pages 111-122, New York, NY, USA, 2004. ACM Press.
;; http://pdos.csail.mit.edu/~baford/packrat/
;;
;; [Baker] Baker, Henry G. "Pragmatic Parsing in Common Lisp". ACM Lisp
;; Pointers 4(2), April--June 1991, pp. 3--15.
;; http://home.pipeline.com/~hbaker1/Prag-Parse.html
;;
;; Roman Redziejowski does good PEG related research
;; http://www.romanredz.se/pubs.htm
;;;; Todo:
;; - Fix the exponential blowup in `peg-translate-exp'.
;; - Add a proper debug-spec for PEXs.
;;; News:
;; Since 1.0.1:
;; - Use OClosures to represent PEG rules when available, and let cl-print
;; display their source code.
;; - New PEX form (with RULES PEX...).
;; - Named rulesets.
;; - You can pass arguments to rules.
;; - New `funcall' rule to call rules indirectly (e.g. a peg you received
;; as argument).
;; Version 1.0:
;; - New official entry points `peg` and `peg-run`.
;;; Code:
(eval-when-compile (require 'cl-lib))
(defvar peg--actions nil
"Actions collected along the current parse.
Used at runtime for backtracking. It's a list ((POS . THUNK)...).
Each THUNK is executed at the corresponding POS. Thunks are
executed in a postprocessing step, not during parsing.")
(defvar peg--errors nil
"Data keeping track of the rightmost parse failure location.
It's a pair (POSITION . EXPS ...). POSITION is the buffer position and
EXPS is a list of rules/expressions that failed.")
;;;; Main entry points
(defmacro peg--when-fboundp (f &rest body)
(declare (indent 1) (debug (sexp body)))
(when (fboundp f)
(macroexp-progn body)))
(peg--when-fboundp oclosure-define
(oclosure-define peg-function
"Parsing function built from PEG rule."
pexs)
(cl-defmethod cl-print-object ((peg peg-function) stream)
(princ "#f<peg " stream)
(let ((args (help-function-arglist peg 'preserve-names)))
(if args
(prin1 args stream)
(princ "()" stream)))
(princ " " stream)
(prin1 (peg-function--pexs peg) stream)
(princ ">" stream)))
(defmacro peg--lambda (pexs args &rest body)
(declare (indent 2)
(debug (&define form lambda-list def-body)))
(if (fboundp 'oclosure-lambda)
`(oclosure-lambda (peg-function (pexs ,pexs)) ,args . ,body)
`(lambda ,args . ,body)))
;; Sometimes (with-peg-rules ... (peg-run (peg ...))) is too
;; longwinded for the task at hand, so `peg-parse' comes in handy.
(defmacro peg-parse (&rest pexs)
"Match PEXS at point.
PEXS is a sequence of PEG expressions, implicitly combined with `and'.
Returns STACK if the match succeed and signals an error on failure,
moving point along the way.
PEXS can also be a list of PEG rules, in which case the first rule is used."
(if (and (consp (car pexs))
(symbolp (caar pexs))
(not (ignore-errors (peg-normalize (car pexs)))))
;; `pexs' is a list of rules: use the first rule as entry point.
`(with-peg-rules ,pexs (peg-run (peg ,(caar pexs)) #'peg-signal-failure))
`(peg-run (peg ,@pexs) #'peg-signal-failure)))
(defmacro peg (&rest pexs)
"Return a PEG-matcher that matches PEXS."
(pcase (peg-normalize `(and . ,pexs))
(`(call ,name) `#',(peg--rule-id name)) ;Optimize this case by η-reduction!
(exp `(peg--lambda ',pexs () ,(peg-translate-exp exp)))))
;; There are several "infos we want to return" when parsing a given PEX:
;; 1- We want to return the success/failure of the parse.
;; 2- We want to return the data of the successful parse (the stack).
;; 3- We want to return the diagnostic of the failures.
;; 4- We want to perform the actions (upon parse success)!
;; `peg-parse' used an error signal to encode the (1) boolean, which
;; lets it return all the info conveniently but the error signal was sometimes
;; inconvenient. Other times one wants to just know (1) maybe without even
;; performing (4).
;; `peg-run' lets you choose all that, and by default gives you
;; (1) as a simple boolean, while also doing (2), and (4).
(defun peg-run (peg-matcher &optional failure-function success-function)
"Parse with PEG-MATCHER at point and run the success/failure function.
If a match was found, move to the end of the match and call SUCCESS-FUNCTION
with one argument: a function which will perform all the actions collected
during the parse and then return the resulting stack (or t if empty).
If no match was found, move to the (rightmost) point of parse failure and call
FAILURE-FUNCTION with one argument, which is a list of PEG expressions that
failed at this point.
SUCCESS-FUNCTION defaults to `funcall' and FAILURE-FUNCTION
defaults to `ignore'."
(let ((peg--actions '()) (peg--errors '(-1)))
(if (funcall peg-matcher)
;; Found a parse: run the actions collected along the way.
(funcall (or success-function #'funcall)
(lambda ()
(save-excursion (peg-postprocess peg--actions))))
(goto-char (car peg--errors))
(when failure-function
(funcall failure-function (peg-merge-errors (cdr peg--errors)))))))
(defmacro define-peg-rule (name args &rest pexs)
"Define PEG rule NAME as equivalent to PEXS.
The PEG expressions in PEXS are implicitly combined with the
sequencing `and' operator of PEG grammars."
(declare (indent 1))
(let ((inline nil))
(while (keywordp (car pexs))
(pcase (pop pexs)
(:inline (setq inline (car pexs))))
(setq pexs (cdr pexs)))
(let ((id (peg--rule-id name))
(exp (peg-normalize `(and . ,pexs))))
`(progn
(defalias ',id
(peg--lambda ',pexs ,args
,(if inline
;; Short-circuit to peg--translate in order to skip
;; the extra failure-recording of `peg-translate-exp'.
;; It also skips the cycle detection of
;; `peg--translate-rule-body', which is not the main
;; purpose but we can live with it.
(apply #'peg--translate exp)
(peg--translate-rule-body name exp))))
(eval-and-compile
;; FIXME: We shouldn't need this any more since the info is now
;; stored in the function, but sadly we need to find a name's EXP
;; during compilation (i.e. before the `defalias' is executed)
;; as part of cycle-detection!
(put ',id 'peg--rule-definition ',exp)
,@(when inline
;; FIXME: Copied from `defsubst'.
`(;; Never native-compile defsubsts as we need the byte
;; definition in `byte-compile-unfold-bcf' to perform the
;; inlining (Bug#42664, Bug#43280, Bug#44209).
,(byte-run--set-speed id nil -1)
(put ',id 'byte-optimizer #'byte-compile-inline-expand))))))))
(defmacro define-peg-ruleset (name &rest rules)
"Define a set of PEG rules for later use, e.g., in `with-peg-rules'."
(declare (indent 1))
(let ((defs ())
(aliases ()))
(dolist (rule rules)
(let* ((rname (car rule))
(full-rname (format "%s %s" name rname)))
(push `(define-peg-rule ,full-rname . ,(cdr rule)) defs)
(push `(,(peg--rule-id rname) #',(peg--rule-id full-rname)) aliases)))
`(cl-flet ,aliases
,@defs
(eval-and-compile (put ',name 'peg--rules ',aliases)))))
(defmacro with-peg-rules (rules &rest body)
"Make PEG rules RULES available within the scope of BODY.
RULES is a list of rules of the form (NAME . PEXS), where PEXS is a sequence
of PEG expressions, implicitly combined with `and'.
RULES can also contain symbols in which case these must name
rulesets defined previously with `define-peg-ruleset'."
(declare (indent 1) (debug (sexp form))) ;FIXME: `sexp' is not good enough!
(let* ((rulesets nil)
(rules
;; First, macroexpand the rules.
(delq nil
(mapcar (lambda (rule)
(if (symbolp rule)
(progn (push rule rulesets) nil)
(cons (car rule) (peg-normalize `(and . ,(cdr rule))))))
rules)))
(ctx (assq :peg-rules macroexpand-all-environment)))
(macroexpand-all
`(cl-labels
,(mapcar (lambda (rule)
;; FIXME: Use `peg--lambda' as well.
`(,(peg--rule-id (car rule))
()
,(peg--translate-rule-body (car rule) (cdr rule))))
rules)
,@body)
`((:peg-rules ,@(append rules (cdr ctx)))
,@macroexpand-all-environment))))
;;;;; Old entry points
(defmacro peg-parse-exp (exp)
"Match the parsing expression EXP at point."
(declare (obsolete peg-parse "peg-0.9"))
`(peg-run (peg ,exp)))
;;;; The actual implementation
(defun peg--lookup-rule (name)
(or (cdr (assq name (cdr (assq :peg-rules macroexpand-all-environment))))
;; With `peg-function' objects, we can recover the PEG from which it was
;; defined, but this info is not yet available at compile-time. :-(
;;(let ((id (peg--rule-id name)))
;; (peg-function--pexs (symbol-function id)))
(get (peg--rule-id name) 'peg--rule-definition)))
(defun peg--rule-id (name)
(intern (format "peg-rule %s" name)))
(define-error 'peg-search-failed "Parse error at %d (expecting %S)")
(defun peg-signal-failure (failures)
(signal 'peg-search-failed (list (point) failures)))
(defun peg-parse-at-point (peg-matcher)
"Parse text at point according to the PEG rule PEG-MATCHER."
(declare (obsolete peg-run "peg-1.0"))
(peg-run peg-matcher
#'peg-signal-failure
(lambda (f) (let ((r (funcall f))) (if (listp r) r)))))
;; Internally we use a regularized syntax, e.g. we only have binary OR
;; nodes. Regularized nodes are lists of the form (OP ARGS...).
(cl-defgeneric peg-normalize (exp)
"Return a \"normalized\" form of EXP."
(error "Invalid parsing expression: %S" exp))
(cl-defmethod peg-normalize ((exp string))
(let ((len (length exp)))
(cond ((zerop len) '(guard t))
((= len 1) `(char ,(aref exp 0)))
(t `(str ,exp)))))
(cl-defmethod peg-normalize ((exp symbol))
;; (peg--lookup-rule exp)
`(call ,exp))
(cl-defmethod peg-normalize ((exp vector))
(peg-normalize `(set . ,(append exp '()))))
(cl-defmethod peg-normalize ((exp cons))
(apply #'peg--macroexpand exp))
(defconst peg-leaf-types '(any call action char range str set
guard syntax-class = funcall))
(cl-defgeneric peg--macroexpand (head &rest args)
(cond
((memq head peg-leaf-types) (cons head args))
(t `(call ,head ,@args))))
(cl-defmethod peg--macroexpand ((_ (eql or)) &rest args)
(cond ((null args) '(guard nil))
((null (cdr args)) (peg-normalize (car args)))
(t `(or ,(peg-normalize (car args))
,(peg-normalize `(or . ,(cdr args)))))))
(cl-defmethod peg--macroexpand ((_ (eql and)) &rest args)
(cond ((null args) '(guard t))
((null (cdr args)) (peg-normalize (car args)))
(t `(and ,(peg-normalize (car args))
,(peg-normalize `(and . ,(cdr args)))))))
(cl-defmethod peg--macroexpand ((_ (eql *)) &rest args)
`(* ,(peg-normalize `(and . ,args))))
;; FIXME: this duplicates code; could use some loop to avoid that
(cl-defmethod peg--macroexpand ((_ (eql +)) &rest args)
(let ((e (peg-normalize `(and . ,args))))
`(and ,e (* ,e))))
(cl-defmethod peg--macroexpand ((_ (eql opt)) &rest args)
(let ((e (peg-normalize `(and . ,args))))
`(or ,e (guard t))))
(cl-defmethod peg--macroexpand ((_ (eql if)) &rest args)
`(if ,(peg-normalize `(and . ,args))))
(cl-defmethod peg--macroexpand ((_ (eql not)) &rest args)
`(not ,(peg-normalize `(and . ,args))))
(cl-defmethod peg--macroexpand ((_ (eql \`)) form)
(peg-normalize `(stack-action ,form)))
(cl-defmethod peg--macroexpand ((_ (eql stack-action)) form)
(unless (member '-- form)
(error "Malformed stack action: %S" form))
(let ((args (cdr (member '-- (reverse form))))
(values (cdr (member '-- form))))
(let ((form `(let ,(mapcar (lambda (var) `(,var (pop peg--stack))) args)
,@(mapcar (lambda (val) `(push ,val peg--stack)) values))))
`(action ,form))))
(defvar peg-char-classes
'(ascii alnum alpha blank cntrl digit graph lower multibyte nonascii print
punct space unibyte upper word xdigit))
(cl-defmethod peg--macroexpand ((_ (eql set)) &rest specs)
(cond ((null specs) '(guard nil))
((and (null (cdr specs))
(let ((range (peg-range-designator (car specs))))
(and range `(range ,(car range) ,(cdr range))))))
(t
(let ((chars '()) (ranges '()) (classes '()))
(while specs
(let* ((spec (pop specs))
(range (peg-range-designator spec)))
(cond (range
(push range ranges))
((peg-characterp spec)
(push spec chars))
((stringp spec)
(setq chars (append (reverse (append spec ())) chars)))
((memq spec peg-char-classes)
(push spec classes))
(t (error "Invalid set specifier: %S" spec)))))
(setq ranges (reverse ranges))
(setq chars (delete-dups (reverse chars)))
(setq classes (reverse classes))
(cond ((and (null ranges)
(null classes)
(cond ((null chars) '(guard nil))
((null (cdr chars)) `(char ,(car chars))))))
(t `(set ,ranges ,chars ,classes)))))))
(defun peg-range-designator (x)
(and (symbolp x)
(let ((str (symbol-name x)))
(and (= (length str) 3)
(eq (aref str 1) ?-)
(< (aref str 0) (aref str 2))
(cons (aref str 0) (aref str 2))))))
;; characterp is new in Emacs 23.
(defun peg-characterp (x)
(if (fboundp 'characterp)
(characterp x)
(integerp x)))
(cl-defmethod peg--macroexpand ((_ (eql list)) &rest args)
(peg-normalize
(let ((marker (make-symbol "magic-marker")))
`(and (stack-action (-- ',marker))
,@args
(stack-action (--
(let ((l '()))
(while
(let ((e (pop peg--stack)))
(cond ((eq e ',marker) nil)
((null peg--stack)
(error "No marker on stack"))
(t (push e l) t))))
l)))))))
(cl-defmethod peg--macroexpand ((_ (eql substring)) &rest args)
(peg-normalize
`(and `(-- (point))
,@args
`(start -- (buffer-substring-no-properties start (point))))))
(cl-defmethod peg--macroexpand ((_ (eql region)) &rest args)
(peg-normalize
`(and `(-- (point))
,@args
`(-- (point)))))
(cl-defmethod peg--macroexpand ((_ (eql replace)) pe replacement)
(peg-normalize
`(and (stack-action (-- (point)))
,pe
(stack-action (start -- (progn
(delete-region start (point))
(insert-before-markers ,replacement))))
(stack-action (_ --)))))
(cl-defmethod peg--macroexpand ((_ (eql quote)) _form)
(error "quote is reserved for future use"))
(cl-defgeneric peg--translate (head &rest args)
(error "No translator for: %S" (cons head args)))
(defun peg--translate-rule-body (name exp)
(let ((msg (condition-case err
(progn (peg-detect-cycles exp (list name)) nil)
(error (error-message-string err))))
(code (peg-translate-exp exp)))
(cond
((null msg) code)
((fboundp 'macroexp--warn-and-return)
(macroexp--warn-and-return msg code))
(t
(message "%s" msg)
code))))
;; This is the main translation function.
(defun peg-translate-exp (exp)
"Return the ELisp code to match the PE EXP."
;; FIXME: This expansion basically duplicates `exp' in the output, which is
;; a serious problem because it's done recursively, so it makes the output
;; code's size exponentially larger than the input!
`(or ,(apply #'peg--translate exp)
(peg--record-failure ',exp))) ; for error reporting
(define-obsolete-function-alias 'peg-record-failure
#'peg--record-failure "peg-1.0")
(defun peg--record-failure (exp)
(cond ((= (point) (car peg--errors))
(setcdr peg--errors (cons exp (cdr peg--errors))))
((> (point) (car peg--errors))
(setq peg--errors (list (point) exp))))
nil)
(cl-defmethod peg--translate ((_ (eql and)) e1 e2)
`(and ,(peg-translate-exp e1)
,(peg-translate-exp e2)))
;; Choicepoints are used for backtracking. At a choicepoint we save
;; enough state, so that we can continue from there if needed.
(defun peg--choicepoint-moved-p (choicepoint)
`(/= ,(car choicepoint) (point)))
(defun peg--choicepoint-restore (choicepoint)
`(progn
(goto-char ,(car choicepoint))
(setq peg--actions ,(cdr choicepoint))))
(defmacro peg--with-choicepoint (var &rest body)
(declare (indent 1) (debug (symbolp form)))
`(let ((,var (cons (make-symbol "point") (make-symbol "actions"))))
`(let ((,(car ,var) (point))
(,(cdr ,var) peg--actions))
,@(list ,@body))))
(cl-defmethod peg--translate ((_ (eql or)) e1 e2)
(peg--with-choicepoint cp
`(or ,(peg-translate-exp e1)
(,@(peg--choicepoint-restore cp)
,(peg-translate-exp e2)))))
(cl-defmethod peg--translate ((_ (eql with)) rules &rest exps)
`(with-peg-rules ,rules ,(peg--translate `(and . ,exps))))
(cl-defmethod peg--translate ((_ (eql guard)) exp) exp)
(defvar peg-syntax-classes
'((whitespace ?-) (word ?w) (symbol ?s) (punctuation ?.)
(open ?\() (close ?\)) (string ?\") (escape ?\\) (charquote ?/)
(math ?$) (prefix ?') (comment ?<) (endcomment ?>)
(comment-fence ?!) (string-fence ?|)))
(cl-defmethod peg--translate ((_ (eql syntax-class)) class)
(let ((probe (assoc class peg-syntax-classes)))
(cond (probe `(when (looking-at ,(format "\\s%c" (cadr probe)))
(forward-char)
t))
(t (error "Invalid syntax class: %S\nMust be one of: %s" class
(mapcar #'car peg-syntax-classes))))))
(cl-defmethod peg--translate ((_ (eql =)) string)
`(let ((str ,string))
(when (zerop (length str))
(error "Empty strings not allowed for ="))
(search-forward str (+ (point) (length str)) t)))
(cl-defmethod peg--translate ((_ (eql *)) e)
`(progn (while ,(peg--with-choicepoint cp
`(if ,(peg-translate-exp e)
;; Just as regexps do for the `*' operator,
;; we allow the body of `*' loops to match
;; the empty string, but we don't repeat the loop if
;; we haven't moved, to avoid inf-loops.
,(peg--choicepoint-moved-p cp)
,(peg--choicepoint-restore cp)
nil)))
t))
(cl-defmethod peg--translate ((_ (eql if)) e)
(peg--with-choicepoint cp
`(when ,(peg-translate-exp e)
,(peg--choicepoint-restore cp)
t)))
(cl-defmethod peg--translate ((_ (eql not)) e)
(peg--with-choicepoint cp
`(unless ,(peg-translate-exp e)
,(peg--choicepoint-restore cp)
t)))
(cl-defmethod peg--translate ((_ (eql any)) )
'(when (not (eobp))
(forward-char)
t))
(cl-defmethod peg--translate ((_ (eql char)) c)
`(when (eq (char-after) ',c)
(forward-char)
t))
(cl-defmethod peg--translate ((_ (eql set)) ranges chars classes)
`(when (looking-at ',(peg-make-charset-regexp ranges chars classes))
(forward-char)
t))
(defun peg-make-charset-regexp (ranges chars classes)
(when (and (not ranges) (not classes) (<= (length chars) 1))
(error "Bug"))
(let ((rbracket (member ?\] chars))
(minus (member ?- chars))
(hat (member ?^ chars)))
(dolist (c '(?\] ?- ?^))
(setq chars (remove c chars)))
(format "[%s%s%s%s%s%s]"
(if rbracket "]" "")
(if minus "-" "")
(mapconcat (lambda (x) (format "%c-%c" (car x) (cdr x))) ranges "")
(mapconcat (lambda (c) (format "[:%s:]" c)) classes "")
(mapconcat (lambda (c) (format "%c" c)) chars "")
(if hat "^" ""))))
(cl-defmethod peg--translate ((_ (eql range)) from to)
`(when (and (char-after)
(<= ',from (char-after))
(<= (char-after) ',to))
(forward-char)
t))
(cl-defmethod peg--translate ((_ (eql str)) str)
`(when (looking-at ',(regexp-quote str))
(goto-char (match-end 0))
t))
(cl-defmethod peg--translate ((_ (eql call)) name &rest args)
`(,(peg--rule-id name) ,@args))
(cl-defmethod peg--translate ((_ (eql funcall)) exp &rest args)
`(funcall ,exp ,@args))
(cl-defmethod peg--translate ((_ (eql action)) form)
`(progn
(push (cons (point) (lambda () ,form)) peg--actions)
t))
(defvar peg--stack nil)
(defun peg-postprocess (actions)
"Execute \"actions\"."
(let ((peg--stack '())
(forw-actions ()))
(pcase-dolist (`(,pos . ,thunk) actions)
(push (cons (copy-marker pos) thunk) forw-actions))
(pcase-dolist (`(,pos . ,thunk) forw-actions)
(goto-char pos)
(funcall thunk))
(or peg--stack t)))
;; Left recursion is presumably a common mistake when using PEGs.
;; Here we try to detect such mistakes. Essentially we traverse the
;; graph as long as we can without consuming input. When we find a
;; recursive call we signal an error.
(defun peg-detect-cycles (exp path)
"Signal an error on a cycle.
Otherwise traverse EXP recursively and return T if EXP can match
without consuming input. Return nil if EXP definitely consumes
input. PATH is the list of rules that we have visited so far."
(apply #'peg--detect-cycles path exp))
(cl-defgeneric peg--detect-cycles (head _path &rest args)
(error "No detect-cycle method for: %S" (cons head args)))
(cl-defmethod peg--detect-cycles (path (_ (eql call)) name)
(if (member name path)
(error "Possible left recursion: %s"
(mapconcat (lambda (x) (format "%s" x))
(reverse (cons name path)) " -> "))
(let ((exp (peg--lookup-rule name)))
(if (null exp)
;; If there's no rule by that name, either we'll fail at
;; run-time or it will be defined later. In any case, at this
;; point there's no evidence of a cycle, and if a cycle appears
;; later we'll hopefully catch it when the rule gets defined.
;; FIXME: In practice, if `name' is part of the cycle, we will
;; indeed detect it when it gets defined, but OTOH if `name'
;; is not part of a cycle but it *enables* a cycle because
;; it matches the empty string (i.e. we should have returned t
;; here), then we may not catch the problem at all :-(
nil
(peg-detect-cycles exp (cons name path))))))
(cl-defmethod peg--detect-cycles (path (_ (eql and)) e1 e2)
(and (peg-detect-cycles e1 path)
(peg-detect-cycles e2 path)))
(cl-defmethod peg--detect-cycles (path (_ (eql or)) e1 e2)
(or (peg-detect-cycles e1 path)
(peg-detect-cycles e2 path)))
(cl-defmethod peg--detect-cycles (path (_ (eql *)) e)
(peg-detect-cycles e path)
t)
(cl-defmethod peg--detect-cycles (path (_ (eql if)) e)
(peg-unary-nullable e path))
(cl-defmethod peg--detect-cycles (path (_ (eql not)) e)
(peg-unary-nullable e path))
(defun peg-unary-nullable (exp path)
(peg-detect-cycles exp path)
t)
(cl-defmethod peg--detect-cycles (_path (_ (eql any))) nil)
(cl-defmethod peg--detect-cycles (_path (_ (eql char)) _c) nil)
(cl-defmethod peg--detect-cycles (_path (_ (eql set)) _r _c _k) nil)
(cl-defmethod peg--detect-cycles (_path (_ (eql range)) _c1 _c2) nil)
(cl-defmethod peg--detect-cycles (_path (_ (eql str)) s) (equal s ""))
(cl-defmethod peg--detect-cycles (_path (_ (eql guard)) _e) t)
(cl-defmethod peg--detect-cycles (_path (_ (eql =)) _s) nil)
(cl-defmethod peg--detect-cycles (_path (_ (eql syntax-class)) _n) nil)
(cl-defmethod peg--detect-cycles (_path (_ (eql action)) _form) t)
(defun peg-merge-errors (exps)
"Build a more readable error message out of failed expression."
(let ((merged '()))
(dolist (exp exps)
(setq merged (peg-merge-error exp merged)))
merged))
(defun peg-merge-error (exp merged)
(apply #'peg--merge-error merged exp))
(cl-defgeneric peg--merge-error (_merged head &rest args)
(error "No merge-error method for: %S" (cons head args)))
(cl-defmethod peg--merge-error (merged (_ (eql or)) e1 e2)
(peg-merge-error e2 (peg-merge-error e1 merged)))
(cl-defmethod peg--merge-error (merged (_ (eql and)) e1 _e2)
;; FIXME: Why is `e2' not used?
(peg-merge-error e1 merged))
(cl-defmethod peg--merge-error (merged (_ (eql str)) str)
;;(add-to-list 'merged str)
(cl-adjoin str merged :test #'equal))
(cl-defmethod peg--merge-error (merged (_ (eql call)) rule)
;; (add-to-list 'merged rule)
(cl-adjoin rule merged :test #'equal))
(cl-defmethod peg--merge-error (merged (_ (eql char)) char)
;; (add-to-list 'merged (string char))
(cl-adjoin (string char) merged :test #'equal))
(cl-defmethod peg--merge-error (merged (_ (eql set)) r c k)
;; (add-to-list 'merged (peg-make-charset-regexp r c k))
(cl-adjoin (peg-make-charset-regexp r c k) merged :test #'equal))
(cl-defmethod peg--merge-error (merged (_ (eql range)) from to)
;; (add-to-list 'merged (format "[%c-%c]" from to))
(cl-adjoin (format "[%c-%c]" from to) merged :test #'equal))
(cl-defmethod peg--merge-error (merged (_ (eql *)) exp)
(peg-merge-error exp merged))
(cl-defmethod peg--merge-error (merged (_ (eql any)))
;; (add-to-list 'merged '(any))
(cl-adjoin '(any) merged :test #'equal))
(cl-defmethod peg--merge-error (merged (_ (eql not)) x)
;; (add-to-list 'merged `(not ,x))
(cl-adjoin `(not ,x) merged :test #'equal))
(cl-defmethod peg--merge-error (merged (_ (eql action)) _action) merged)
(cl-defmethod peg--merge-error (merged (_ (eql null))) merged)
(provide 'peg)
(require 'peg)
(define-peg-rule null () :inline t (guard t))
(define-peg-rule fail () :inline t (guard nil))
(define-peg-rule bob () :inline t (guard (bobp)))
(define-peg-rule eob () :inline t (guard (eobp)))
(define-peg-rule bol () :inline t (guard (bolp)))
(define-peg-rule eol () :inline t (guard (eolp)))
(define-peg-rule bow () :inline t (guard (looking-at "\\<")))
(define-peg-rule eow () :inline t (guard (looking-at "\\>")))
(define-peg-rule bos () :inline t (guard (looking-at "\\_<")))
(define-peg-rule eos () :inline t (guard (looking-at "\\_>")))
;;; peg.el ends here
|