/* Execution of byte code produced by bytecomp.el. Copyright (C) 1985-1988, 1993, 2000-2012 Free Software Foundation, Inc. This file is part of GNU Emacs. GNU Emacs is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. GNU Emacs is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU Emacs. If not, see . */ /* hacked on by jwz@lucid.com 17-jun-91 o added a compile-time switch to turn on simple sanity checking; o put back the obsolete byte-codes for error-detection; o added a new instruction, unbind_all, which I will use for tail-recursion elimination; o made temp_output_buffer_show be called with the right number of args; o made the new bytecodes be called with args in the right order; o added metering support. by Hallvard: o added relative jump instructions; o all conditionals now only do QUIT if they jump. */ #include #include #include "lisp.h" #include "character.h" #include "buffer.h" #include "syntax.h" #include "window.h" #ifdef CHECK_FRAME_FONT #include "frame.h" #include "xterm.h" #endif /* * define BYTE_CODE_SAFE to enable some minor sanity checking (useful for * debugging the byte compiler...) * * define BYTE_CODE_METER to enable generation of a byte-op usage histogram. */ /* #define BYTE_CODE_SAFE */ /* #define BYTE_CODE_METER */ /* If BYTE_CODE_THREADED is defined, then the interpreter will be indirect threaded, using GCC's computed goto extension. This is incompatible with BYTE_CODE_SAFE and BYTE_CODE_METER. */ #if defined (__GNUC__) && !defined (BYTE_CODE_SAFE) && !defined (BYTE_CODE_METER) #define BYTE_CODE_THREADED #endif #ifdef BYTE_CODE_METER Lisp_Object Qbyte_code_meter; #define METER_2(code1, code2) AREF (AREF (Vbyte_code_meter, code1), code2) #define METER_1(code) METER_2 (0, code) #define METER_CODE(last_code, this_code) \ { \ if (byte_metering_on) \ { \ if (XFASTINT (METER_1 (this_code)) < MOST_POSITIVE_FIXNUM) \ XSETFASTINT (METER_1 (this_code), \ XFASTINT (METER_1 (this_code)) + 1); \ if (last_code \ && (XFASTINT (METER_2 (last_code, this_code)) \ < MOST_POSITIVE_FIXNUM)) \ XSETFASTINT (METER_2 (last_code, this_code), \ XFASTINT (METER_2 (last_code, this_code)) + 1); \ } \ } #endif /* BYTE_CODE_METER */ Lisp_Object Qbytecode; /* Byte codes: */ #define Bstack_ref 0 /* Actually, Bstack_ref+0 is not implemented: use dup. */ #define Bstack_ref1 1 #define Bstack_ref2 2 #define Bstack_ref3 3 #define Bstack_ref4 4 #define Bstack_ref5 5 #define Bstack_ref6 6 #define Bstack_ref7 7 #define Bvarref 010 #define Bvarref1 011 #define Bvarref2 012 #define Bvarref3 013 #define Bvarref4 014 #define Bvarref5 015 #define Bvarref6 016 #define Bvarref7 017 #define Bvarset 020 #define Bvarset1 021 #define Bvarset2 022 #define Bvarset3 023 #define Bvarset4 024 #define Bvarset5 025 #define Bvarset6 026 #define Bvarset7 027 #define Bvarbind 030 #define Bvarbind1 031 #define Bvarbind2 032 #define Bvarbind3 033 #define Bvarbind4 034 #define Bvarbind5 035 #define Bvarbind6 036 #define Bvarbind7 037 #define Bcall 040 #define Bcall1 041 #define Bcall2 042 #define Bcall3 043 #define Bcall4 044 #define Bcall5 045 #define Bcall6 046 #define Bcall7 047 #define Bunbind 050 #define Bunbind1 051 #define Bunbind2 052 #define Bunbind3 053 #define Bunbind4 054 #define Bunbind5 055 #define Bunbind6 056 #define Bunbind7 057 #define Bnth 070 #define Bsymbolp 071 #define Bconsp 072 #define Bstringp 073 #define Blistp 074 #define Beq 075 #define Bmemq 076 #define Bnot 077 #define Bcar 0100 #define Bcdr 0101 #define Bcons 0102 #define Blist1 0103 #define Blist2 0104 #define Blist3 0105 #define Blist4 0106 #define Blength 0107 #define Baref 0110 #define Baset 0111 #define Bsymbol_value 0112 #define Bsymbol_function 0113 #define Bset 0114 #define Bfset 0115 #define Bget 0116 #define Bsubstring 0117 #define Bconcat2 0120 #define Bconcat3 0121 #define Bconcat4 0122 #define Bsub1 0123 #define Badd1 0124 #define Beqlsign 0125 #define Bgtr 0126 #define Blss 0127 #define Bleq 0130 #define Bgeq 0131 #define Bdiff 0132 #define Bnegate 0133 #define Bplus 0134 #define Bmax 0135 #define Bmin 0136 #define Bmult 0137 #define Bpoint 0140 /* Was Bmark in v17. */ #define Bsave_current_buffer 0141 /* Obsolete. */ #define Bgoto_char 0142 #define Binsert 0143 #define Bpoint_max 0144 #define Bpoint_min 0145 #define Bchar_after 0146 #define Bfollowing_char 0147 #define Bpreceding_char 0150 #define Bcurrent_column 0151 #define Bindent_to 0152 #ifdef BYTE_CODE_SAFE #define Bscan_buffer 0153 /* No longer generated as of v18. */ #endif #define Beolp 0154 #define Beobp 0155 #define Bbolp 0156 #define Bbobp 0157 #define Bcurrent_buffer 0160 #define Bset_buffer 0161 #define Bsave_current_buffer_1 0162 /* Replacing Bsave_current_buffer. */ #if 0 #define Bread_char 0162 /* No longer generated as of v19 */ #endif #ifdef BYTE_CODE_SAFE #define Bset_mark 0163 /* this loser is no longer generated as of v18 */ #endif #define Binteractive_p 0164 /* Obsolete since Emacs-24.1. */ #define Bforward_char 0165 #define Bforward_word 0166 #define Bskip_chars_forward 0167 #define Bskip_chars_backward 0170 #define Bforward_line 0171 #define Bchar_syntax 0172 #define Bbuffer_substring 0173 #define Bdelete_region 0174 #define Bnarrow_to_region 0175 #define Bwiden 0176 #define Bend_of_line 0177 #define Bconstant2 0201 #define Bgoto 0202 #define Bgotoifnil 0203 #define Bgotoifnonnil 0204 #define Bgotoifnilelsepop 0205 #define Bgotoifnonnilelsepop 0206 #define Breturn 0207 #define Bdiscard 0210 #define Bdup 0211 #define Bsave_excursion 0212 #define Bsave_window_excursion 0213 /* Obsolete since Emacs-24.1. */ #define Bsave_restriction 0214 #define Bcatch 0215 #define Bunwind_protect 0216 #define Bcondition_case 0217 #define Btemp_output_buffer_setup 0220 /* Obsolete since Emacs-24.1. */ #define Btemp_output_buffer_show 0221 /* Obsolete since Emacs-24.1. */ #define Bunbind_all 0222 /* Obsolete. Never used. */ #define Bset_marker 0223 #define Bmatch_beginning 0224 #define Bmatch_end 0225 #define Bupcase 0226 #define Bdowncase 0227 #define Bstringeqlsign 0230 #define Bstringlss 0231 #define Bequal 0232 #define Bnthcdr 0233 #define Belt 0234 #define Bmember 0235 #define Bassq 0236 #define Bnreverse 0237 #define Bsetcar 0240 #define Bsetcdr 0241 #define Bcar_safe 0242 #define Bcdr_safe 0243 #define Bnconc 0244 #define Bquo 0245 #define Brem 0246 #define Bnumberp 0247 #define Bintegerp 0250 #define BRgoto 0252 #define BRgotoifnil 0253 #define BRgotoifnonnil 0254 #define BRgotoifnilelsepop 0255 #define BRgotoifnonnilelsepop 0256 #define BlistN 0257 #define BconcatN 0260 #define BinsertN 0261 /* Bstack_ref is code 0. */ #define Bstack_set 0262 #define Bstack_set2 0263 #define BdiscardN 0266 #define Bconstant 0300 /* Whether to maintain a `top' and `bottom' field in the stack frame. */ #define BYTE_MAINTAIN_TOP (BYTE_CODE_SAFE || BYTE_MARK_STACK) /* Structure describing a value stack used during byte-code execution in Fbyte_code. */ struct byte_stack { /* Program counter. This points into the byte_string below and is relocated when that string is relocated. */ const unsigned char *pc; /* Top and bottom of stack. The bottom points to an area of memory allocated with alloca in Fbyte_code. */ #if BYTE_MAINTAIN_TOP Lisp_Object *top, *bottom; #endif /* The string containing the byte-code, and its current address. Storing this here protects it from GC because mark_byte_stack marks it. */ Lisp_Object byte_string; const unsigned char *byte_string_start; /* The vector of constants used during byte-code execution. Storing this here protects it from GC because mark_byte_stack marks it. */ Lisp_Object constants; /* Next entry in byte_stack_list. */ struct byte_stack *next; }; /* A list of currently active byte-code execution value stacks. Fbyte_code adds an entry to the head of this list before it starts processing byte-code, and it removed the entry again when it is done. Signaling an error truncates the list analogous to gcprolist. */ struct byte_stack *byte_stack_list; /* Mark objects on byte_stack_list. Called during GC. */ #if BYTE_MARK_STACK void mark_byte_stack (void) { struct byte_stack *stack; Lisp_Object *obj; for (stack = byte_stack_list; stack; stack = stack->next) { /* If STACK->top is null here, this means there's an opcode in Fbyte_code that wasn't expected to GC, but did. To find out which opcode this is, record the value of `stack', and walk up the stack in a debugger, stopping in frames of Fbyte_code. The culprit is found in the frame of Fbyte_code where the address of its local variable `stack' is equal to the recorded value of `stack' here. */ eassert (stack->top); for (obj = stack->bottom; obj <= stack->top; ++obj) mark_object (*obj); mark_object (stack->byte_string); mark_object (stack->constants); } } #endif /* Unmark objects in the stacks on byte_stack_list. Relocate program counters. Called when GC has completed. */ void unmark_byte_stack (void) { struct byte_stack *stack; for (stack = byte_stack_list; stack; stack = stack->next) { if (stack->byte_string_start != SDATA (stack->byte_string)) { ptrdiff_t offset = stack->pc - stack->byte_string_start; stack->byte_string_start = SDATA (stack->byte_string); stack->pc = stack->byte_string_start + offset; } } } /* Fetch the next byte from the bytecode stream */ #define FETCH *stack.pc++ /* Fetch two bytes from the bytecode stream and make a 16-bit number out of them */ #define FETCH2 (op = FETCH, op + (FETCH << 8)) /* Push x onto the execution stack. This used to be #define PUSH(x) (*++stackp = (x)) This oddity is necessary because Alliant can't be bothered to compile the preincrement operator properly, as of 4/91. -JimB */ #define PUSH(x) (top++, *top = (x)) /* Pop a value off the execution stack. */ #define POP (*top--) /* Discard n values from the execution stack. */ #define DISCARD(n) (top -= (n)) /* Get the value which is at the top of the execution stack, but don't pop it. */ #define TOP (*top) /* Actions that must be performed before and after calling a function that might GC. */ #if !BYTE_MAINTAIN_TOP #define BEFORE_POTENTIAL_GC() ((void)0) #define AFTER_POTENTIAL_GC() ((void)0) #else #define BEFORE_POTENTIAL_GC() stack.top = top #define AFTER_POTENTIAL_GC() stack.top = NULL #endif /* Garbage collect if we have consed enough since the last time. We do this at every branch, to avoid loops that never GC. */ #define MAYBE_GC() \ do { \ if (consing_since_gc > gc_cons_threshold \ && consing_since_gc > gc_relative_threshold) \ { \ BEFORE_POTENTIAL_GC (); \ Fgarbage_collect (); \ AFTER_POTENTIAL_GC (); \ } \ } while (0) /* Check for jumping out of range. */ #ifdef BYTE_CODE_SAFE #define CHECK_RANGE(ARG) \ if (ARG >= bytestr_length) abort () #else /* not BYTE_CODE_SAFE */ #define CHECK_RANGE(ARG) #endif /* not BYTE_CODE_SAFE */ /* A version of the QUIT macro which makes sure that the stack top is set before signaling `quit'. */ #define BYTE_CODE_QUIT \ do { \ if (!NILP (Vquit_flag) && NILP (Vinhibit_quit)) \ { \ Lisp_Object flag = Vquit_flag; \ Vquit_flag = Qnil; \ BEFORE_POTENTIAL_GC (); \ if (EQ (Vthrow_on_input, flag)) \ Fthrow (Vthrow_on_input, Qt); \ Fsignal (Qquit, Qnil); \ AFTER_POTENTIAL_GC (); \ } \ ELSE_PENDING_SIGNALS \ } while (0) DEFUN ("byte-code", Fbyte_code, Sbyte_code, 3, 3, 0, doc: /* Function used internally in byte-compiled code. The first argument, BYTESTR, is a string of byte code; the second, VECTOR, a vector of constants; the third, MAXDEPTH, the maximum stack depth used in this function. If the third argument is incorrect, Emacs may crash. */) (Lisp_Object bytestr, Lisp_Object vector, Lisp_Object maxdepth) { return exec_byte_code (bytestr, vector, maxdepth, Qnil, 0, NULL); } /* Execute the byte-code in BYTESTR. VECTOR is the constant vector, and MAXDEPTH is the maximum stack depth used (if MAXDEPTH is incorrect, emacs may crash!). If ARGS_TEMPLATE is non-nil, it should be a lisp argument list (including &rest, &optional, etc.), and ARGS, of size NARGS, should be a vector of the actual arguments. The arguments in ARGS are pushed on the stack according to ARGS_TEMPLATE before executing BYTESTR. */ Lisp_Object exec_byte_code (Lisp_Object bytestr, Lisp_Object vector, Lisp_Object maxdepth, Lisp_Object args_template, ptrdiff_t nargs, Lisp_Object *args) { ptrdiff_t count = SPECPDL_INDEX (); #ifdef BYTE_CODE_METER int this_op = 0; int prev_op; #endif int op; /* Lisp_Object v1, v2; */ Lisp_Object *vectorp; #ifdef BYTE_CODE_SAFE ptrdiff_t const_length; Lisp_Object *stacke; ptrdiff_t bytestr_length; #endif struct byte_stack stack; Lisp_Object *top; Lisp_Object result; #if 0 /* CHECK_FRAME_FONT */ { struct frame *f = SELECTED_FRAME (); if (FRAME_X_P (f) && FRAME_FONT (f)->direction != 0 && FRAME_FONT (f)->direction != 1) abort (); } #endif CHECK_STRING (bytestr); CHECK_VECTOR (vector); CHECK_NATNUM (maxdepth); #ifdef BYTE_CODE_SAFE const_length = ASIZE (vector); #endif if (STRING_MULTIBYTE (bytestr)) /* BYTESTR must have been produced by Emacs 20.2 or the earlier because they produced a raw 8-bit string for byte-code and now such a byte-code string is loaded as multibyte while raw 8-bit characters converted to multibyte form. Thus, now we must convert them back to the originally intended unibyte form. */ bytestr = Fstring_as_unibyte (bytestr); #ifdef BYTE_CODE_SAFE bytestr_length = SBYTES (bytestr); #endif vectorp = XVECTOR (vector)->contents; stack.byte_string = bytestr; stack.pc = stack.byte_string_start = SDATA (bytestr); stack.constants = vector; if (MAX_ALLOCA / sizeof (Lisp_Object) <= XFASTINT (maxdepth)) memory_full (SIZE_MAX); top = (Lisp_Object *) alloca ((XFASTINT (maxdepth) + 1) * sizeof (Lisp_Object)); #if BYTE_MAINTAIN_TOP stack.bottom = top + 1; stack.top = NULL; #endif stack.next = byte_stack_list; byte_stack_list = &stack; #ifdef BYTE_CODE_SAFE stacke = stack.bottom - 1 + XFASTINT (maxdepth); #endif if (INTEGERP (args_template)) { ptrdiff_t at = XINT (args_template); int rest = at & 128; int mandatory = at & 127; ptrdiff_t nonrest = at >> 8; eassert (mandatory <= nonrest); if (nargs <= nonrest) { ptrdiff_t i; for (i = 0 ; i < nargs; i++, args++) PUSH (*args); if (nargs < mandatory) /* Too few arguments. */ Fsignal (Qwrong_number_of_arguments, Fcons (Fcons (make_number (mandatory), rest ? Qand_rest : make_number (nonrest)), Fcons (make_number (nargs), Qnil))); else { for (; i < nonrest; i++) PUSH (Qnil); if (rest) PUSH (Qnil); } } else if (rest) { ptrdiff_t i; for (i = 0 ; i < nonrest; i++, args++) PUSH (*args); PUSH (Flist (nargs - nonrest, args)); } else /* Too many arguments. */ Fsignal (Qwrong_number_of_arguments, Fcons (Fcons (make_number (mandatory), make_number (nonrest)), Fcons (make_number (nargs), Qnil))); } else if (! NILP (args_template)) /* We should push some arguments on the stack. */ { error ("Unknown args template!"); } while (1) { #ifdef BYTE_CODE_SAFE if (top > stacke) abort (); else if (top < stack.bottom - 1) abort (); #endif #ifdef BYTE_CODE_METER prev_op = this_op; this_op = op = FETCH; METER_CODE (prev_op, op); #else #ifndef BYTE_CODE_THREADED op = FETCH; #endif #endif /* The interpreter can be compiled one of two ways: as an ordinary switch-based interpreter, or as a threaded interpreter. The threaded interpreter relies on GCC's computed goto extension, so it is not available everywhere. Threading provides a performance boost. These macros are how we allow the code to be compiled both ways. */ #ifdef BYTE_CODE_THREADED /* The CASE macro introduces an instruction's body. It is either a label or a case label. */ #define CASE(OP) insn_ ## OP /* NEXT is invoked at the end of an instruction to go to the next instruction. It is either a computed goto, or a plain break. */ #define NEXT goto *(targets[op = FETCH]) /* FIRST is like NEXT, but is only used at the start of the interpreter body. In the switch-based interpreter it is the switch, so the threaded definition must include a semicolon. */ #define FIRST NEXT; /* Most cases are labeled with the CASE macro, above. CASE_DEFAULT is one exception; it is used if the interpreter being built requires a default case. The threaded interpreter does not, because the dispatch table is completely filled. */ #define CASE_DEFAULT /* This introduces an instruction that is known to call abort. */ #define CASE_ABORT CASE (default) #else /* See above for the meaning of the various defines. */ #define CASE(OP) case OP #define NEXT break #define FIRST switch (op) #define CASE_DEFAULT case 255: default: #define CASE_ABORT case 0 #endif #ifdef BYTE_CODE_THREADED /* A convenience define that saves us a lot of typing and makes the table clearer. */ #define LABEL(OP) [OP] = &&insn_ ## OP /* This is the dispatch table for the threaded interpreter. */ static const void *const targets[256] = { [0 ... (Bconstant - 1)] = &&insn_default, [Bconstant ... 255] = &&insn_Bconstant, LABEL (Bstack_ref1), LABEL (Bstack_ref2), LABEL (Bstack_ref3), LABEL (Bstack_ref4), LABEL (Bstack_ref5), LABEL (Bstack_ref6), LABEL (Bstack_ref7), LABEL (Bvarref), LABEL (Bvarref1), LABEL (Bvarref2), LABEL (Bvarref3), LABEL (Bvarref4), LABEL (Bvarref5), LABEL (Bvarref6), LABEL (Bvarref7), LABEL (Bvarset), LABEL (Bvarset1), LABEL (Bvarset2), LABEL (Bvarset3), LABEL (Bvarset4), LABEL (Bvarset5), LABEL (Bvarset6), LABEL (Bvarset7), LABEL (Bvarbind), LABEL (Bvarbind1), LABEL (Bvarbind2), LABEL (Bvarbind3), LABEL (Bvarbind4), LABEL (Bvarbind5), LABEL (Bvarbind6), LABEL (Bvarbind7), LABEL (Bcall), LABEL (Bcall1), LABEL (Bcall2), LABEL (Bcall3), LABEL (Bcall4), LABEL (Bcall5), LABEL (Bcall6), LABEL (Bcall7), LABEL (Bunbind), LABEL (Bunbind1), LABEL (Bunbind2), LABEL (Bunbind3), LABEL (Bunbind4), LABEL (Bunbind5), LABEL (Bunbind6), LABEL (Bunbind7), LABEL (Bnth), LABEL (Bsymbolp), LABEL (Bconsp), LABEL (Bstringp), LABEL (Blistp), LABEL (Beq), LABEL (Bmemq), LABEL (Bnot), LABEL (Bcar), LABEL (Bcdr), LABEL (Bcons), LABEL (Blist1), LABEL (Blist2), LABEL (Blist3), LABEL (Blist4), LABEL (Blength), LABEL (Baref), LABEL (Baset), LABEL (Bsymbol_value), LABEL (Bsymbol_function), LABEL (Bset), LABEL (Bfset), LABEL (Bget), LABEL (Bsubstring), LABEL (Bconcat2), LABEL (Bconcat3), LABEL (Bconcat4), LABEL (Bsub1), LABEL (Badd1), LABEL (Beqlsign), LABEL (Bgtr), LABEL (Blss), LABEL (Bleq), LABEL (Bgeq), LABEL (Bdiff), LABEL (Bnegate), LABEL (Bplus), LABEL (Bmax), LABEL (Bmin), LABEL (Bmult), LABEL (Bpoint), LABEL (Bsave_current_buffer), LABEL (Bgoto_char), LABEL (Binsert), LABEL (Bpoint_max), LABEL (Bpoint_min), LABEL (Bchar_after), LABEL (Bfollowing_char), LABEL (Bpreceding_char), LABEL (Bcurrent_column), LABEL (Bindent_to), LABEL (Beolp), LABEL (Beobp), LABEL (Bbolp), LABEL (Bbobp), LABEL (Bcurrent_buffer), LABEL (Bset_buffer), LABEL (Bsave_current_buffer_1), LABEL (Binteractive_p), LABEL (Bforward_char), LABEL (Bforward_word), LABEL (Bskip_chars_forward), LABEL (Bskip_chars_backward), LABEL (Bforward_line), LABEL (Bchar_syntax), LABEL (Bbuffer_substring), LABEL (Bdelete_region), LABEL (Bnarrow_to_region), LABEL (Bwiden), LABEL (Bend_of_line), LABEL (Bconstant2), LABEL (Bgoto), LABEL (Bgotoifnil), LABEL (Bgotoifnonnil), LABEL (Bgotoifnilelsepop), LABEL (Bgotoifnonnilelsepop), LABEL (Breturn), LABEL (Bdiscard), LABEL (Bdup), LABEL (Bsave_excursion), LABEL (Bsave_window_excursion), LABEL (Bsave_restriction), LABEL (Bcatch), LABEL (Bunwind_protect), LABEL (Bcondition_case), LABEL (Btemp_output_buffer_setup), LABEL (Btemp_output_buffer_show), LABEL (Bunbind_all), LABEL (Bset_marker), LABEL (Bmatch_beginning), LABEL (Bmatch_end), LABEL (Bupcase), LABEL (Bdowncase), LABEL (Bstringeqlsign), LABEL (Bstringlss), LABEL (Bequal), LABEL (Bnthcdr), LABEL (Belt), LABEL (Bmember), LABEL (Bassq), LABEL (Bnreverse), LABEL (Bsetcar), LABEL (Bsetcdr), LABEL (Bcar_safe), LABEL (Bcdr_safe), LABEL (Bnconc), LABEL (Bquo), LABEL (Brem), LABEL (Bnumberp), LABEL (Bintegerp), LABEL (BRgoto), LABEL (BRgotoifnil), LABEL (BRgotoifnonnil), LABEL (BRgotoifnilelsepop), LABEL (BRgotoifnonnilelsepop), LABEL (BlistN), LABEL (BconcatN), LABEL (BinsertN), LABEL (Bstack_set), LABEL (Bstack_set2), LABEL (BdiscardN), LABEL (Bconstant) }; #endif FIRST { CASE (Bvarref7): op = FETCH2; goto varref; CASE (Bvarref): CASE (Bvarref1): CASE (Bvarref2): CASE (Bvarref3): CASE (Bvarref4): CASE (Bvarref5): op = op - Bvarref; goto varref; /* This seems to be the most frequently executed byte-code among the Bvarref's, so avoid a goto here. */ CASE (Bvarref6): op = FETCH; varref: { Lisp_Object v1, v2; v1 = vectorp[op]; if (SYMBOLP (v1)) { if (XSYMBOL (v1)->redirect != SYMBOL_PLAINVAL || (v2 = SYMBOL_VAL (XSYMBOL (v1)), EQ (v2, Qunbound))) { BEFORE_POTENTIAL_GC (); v2 = Fsymbol_value (v1); AFTER_POTENTIAL_GC (); } } else { BEFORE_POTENTIAL_GC (); v2 = Fsymbol_value (v1); AFTER_POTENTIAL_GC (); } PUSH (v2); NEXT; } CASE (Bgotoifnil): { Lisp_Object v1; MAYBE_GC (); op = FETCH2; v1 = POP; if (NILP (v1)) { BYTE_CODE_QUIT; CHECK_RANGE (op); stack.pc = stack.byte_string_start + op; } NEXT; } CASE (Bcar): { Lisp_Object v1; v1 = TOP; if (CONSP (v1)) TOP = XCAR (v1); else if (NILP (v1)) TOP = Qnil; else { BEFORE_POTENTIAL_GC (); wrong_type_argument (Qlistp, v1); AFTER_POTENTIAL_GC (); } NEXT; } CASE (Beq): { Lisp_Object v1; v1 = POP; TOP = EQ (v1, TOP) ? Qt : Qnil; NEXT; } CASE (Bmemq): { Lisp_Object v1; BEFORE_POTENTIAL_GC (); v1 = POP; TOP = Fmemq (TOP, v1); AFTER_POTENTIAL_GC (); NEXT; } CASE (Bcdr): { Lisp_Object v1; v1 = TOP; if (CONSP (v1)) TOP = XCDR (v1); else if (NILP (v1)) TOP = Qnil; else { BEFORE_POTENTIAL_GC (); wrong_type_argument (Qlistp, v1); AFTER_POTENTIAL_GC (); } NEXT; } CASE (Bvarset): CASE (Bvarset1): CASE (Bvarset2): CASE (Bvarset3): CASE (Bvarset4): CASE (Bvarset5): op -= Bvarset; goto varset; CASE (Bvarset7): op = FETCH2; goto varset; CASE (Bvarset6): op = FETCH; varset: { Lisp_Object sym, val; sym = vectorp[op]; val = TOP; /* Inline the most common case. */ if (SYMBOLP (sym) && !EQ (val, Qunbound) && !XSYMBOL (sym)->redirect && !SYMBOL_CONSTANT_P (sym)) XSYMBOL (sym)->val.value = val; else { BEFORE_POTENTIAL_GC (); set_internal (sym, val, Qnil, 0); AFTER_POTENTIAL_GC (); } } (void) POP; NEXT; CASE (Bdup): { Lisp_Object v1; v1 = TOP; PUSH (v1); NEXT; } /* ------------------ */ CASE (Bvarbind6): op = FETCH; goto varbind; CASE (Bvarbind7): op = FETCH2; goto varbind; CASE (Bvarbind): CASE (Bvarbind1): CASE (Bvarbind2): CASE (Bvarbind3): CASE (Bvarbind4): CASE (Bvarbind5): op -= Bvarbind; varbind: /* Specbind can signal and thus GC. */ BEFORE_POTENTIAL_GC (); specbind (vectorp[op], POP); AFTER_POTENTIAL_GC (); NEXT; CASE (Bcall6): op = FETCH; goto docall; CASE (Bcall7): op = FETCH2; goto docall; CASE (Bcall): CASE (Bcall1): CASE (Bcall2): CASE (Bcall3): CASE (Bcall4): CASE (Bcall5): op -= Bcall; docall: { BEFORE_POTENTIAL_GC (); DISCARD (op); #ifdef BYTE_CODE_METER if (byte_metering_on && SYMBOLP (TOP)) { Lisp_Object v1, v2; v1 = TOP; v2 = Fget (v1, Qbyte_code_meter); if (INTEGERP (v2) && XINT (v2) < MOST_POSITIVE_FIXNUM) { XSETINT (v2, XINT (v2) + 1); Fput (v1, Qbyte_code_meter, v2); } } #endif TOP = Ffuncall (op + 1, &TOP); AFTER_POTENTIAL_GC (); NEXT; } CASE (Bunbind6): op = FETCH; goto dounbind; CASE (Bunbind7): op = FETCH2; goto dounbind; CASE (Bunbind): CASE (Bunbind1): CASE (Bunbind2): CASE (Bunbind3): CASE (Bunbind4): CASE (Bunbind5): op -= Bunbind; dounbind: BEFORE_POTENTIAL_GC (); unbind_to (SPECPDL_INDEX () - op, Qnil); AFTER_POTENTIAL_GC (); NEXT; CASE (Bunbind_all): /* Obsolete. Never used. */ /* To unbind back to the beginning of this frame. Not used yet, but will be needed for tail-recursion elimination. */ BEFORE_POTENTIAL_GC (); unbind_to (count, Qnil); AFTER_POTENTIAL_GC (); NEXT; CASE (Bgoto): MAYBE_GC (); BYTE_CODE_QUIT; op = FETCH2; /* pc = FETCH2 loses since FETCH2 contains pc++ */ CHECK_RANGE (op); stack.pc = stack.byte_string_start + op; NEXT; CASE (Bgotoifnonnil): { Lisp_Object v1; MAYBE_GC (); op = FETCH2; v1 = POP; if (!NILP (v1)) { BYTE_CODE_QUIT; CHECK_RANGE (op); stack.pc = stack.byte_string_start + op; } NEXT; } CASE (Bgotoifnilelsepop): MAYBE_GC (); op = FETCH2; if (NILP (TOP)) { BYTE_CODE_QUIT; CHECK_RANGE (op); stack.pc = stack.byte_string_start + op; } else DISCARD (1); NEXT; CASE (Bgotoifnonnilelsepop): MAYBE_GC (); op = FETCH2; if (!NILP (TOP)) { BYTE_CODE_QUIT; CHECK_RANGE (op); stack.pc = stack.byte_string_start + op; } else DISCARD (1); NEXT; CASE (BRgoto): MAYBE_GC (); BYTE_CODE_QUIT; stack.pc += (int) *stack.pc - 127; NEXT; CASE (BRgotoifnil): { Lisp_Object v1; MAYBE_GC (); v1 = POP; if (NILP (v1)) { BYTE_CODE_QUIT; stack.pc += (int) *stack.pc - 128; } stack.pc++; NEXT; } CASE (BRgotoifnonnil): { Lisp_Object v1; MAYBE_GC (); v1 = POP; if (!NILP (v1)) { BYTE_CODE_QUIT; stack.pc += (int) *stack.pc - 128; } stack.pc++; NEXT; } CASE (BRgotoifnilelsepop): MAYBE_GC (); op = *stack.pc++; if (NILP (TOP)) { BYTE_CODE_QUIT; stack.pc += op - 128; } else DISCARD (1); NEXT; CASE (BRgotoifnonnilelsepop): MAYBE_GC (); op = *stack.pc++; if (!NILP (TOP)) { BYTE_CODE_QUIT; stack.pc += op - 128; } else DISCARD (1); NEXT; CASE (Breturn): result = POP; goto exit; CASE (Bdiscard): DISCARD (1); NEXT; CASE (Bconstant2): PUSH (vectorp[FETCH2]); NEXT; CASE (Bsave_excursion): record_unwind_protect (save_excursion_restore, save_excursion_save ()); NEXT; CASE (Bsave_current_buffer): /* Obsolete since ??. */ CASE (Bsave_current_buffer_1): record_unwind_protect (set_buffer_if_live, Fcurrent_buffer ()); NEXT; CASE (Bsave_window_excursion): /* Obsolete since 24.1. */ { register ptrdiff_t count1 = SPECPDL_INDEX (); record_unwind_protect (Fset_window_configuration, Fcurrent_window_configuration (Qnil)); BEFORE_POTENTIAL_GC (); TOP = Fprogn (TOP); unbind_to (count1, TOP); AFTER_POTENTIAL_GC (); NEXT; } CASE (Bsave_restriction): record_unwind_protect (save_restriction_restore, save_restriction_save ()); NEXT; CASE (Bcatch): /* FIXME: ill-suited for lexbind. */ { Lisp_Object v1; BEFORE_POTENTIAL_GC (); v1 = POP; TOP = internal_catch (TOP, eval_sub, v1); AFTER_POTENTIAL_GC (); NEXT; } CASE (Bunwind_protect): /* FIXME: avoid closure for lexbind. */ record_unwind_protect (Fprogn, POP); NEXT; CASE (Bcondition_case): /* FIXME: ill-suited for lexbind. */ { Lisp_Object handlers, body; handlers = POP; body = POP; BEFORE_POTENTIAL_GC (); TOP = internal_lisp_condition_case (TOP, body, handlers); AFTER_POTENTIAL_GC (); NEXT; } CASE (Btemp_output_buffer_setup): /* Obsolete since 24.1. */ BEFORE_POTENTIAL_GC (); CHECK_STRING (TOP); temp_output_buffer_setup (SSDATA (TOP)); AFTER_POTENTIAL_GC (); TOP = Vstandard_output; NEXT; CASE (Btemp_output_buffer_show): /* Obsolete since 24.1. */ { Lisp_Object v1; BEFORE_POTENTIAL_GC (); v1 = POP; temp_output_buffer_show (TOP); TOP = v1; /* pop binding of standard-output */ unbind_to (SPECPDL_INDEX () - 1, Qnil); AFTER_POTENTIAL_GC (); NEXT; } CASE (Bnth): { Lisp_Object v1, v2; EMACS_INT n; BEFORE_POTENTIAL_GC (); v1 = POP; v2 = TOP; CHECK_NUMBER (v2); n = XINT (v2); immediate_quit = 1; while (--n >= 0 && CONSP (v1)) v1 = XCDR (v1); immediate_quit = 0; TOP = CAR (v1); AFTER_POTENTIAL_GC (); NEXT; } CASE (Bsymbolp): TOP = SYMBOLP (TOP) ? Qt : Qnil; NEXT; CASE (Bconsp): TOP = CONSP (TOP) ? Qt : Qnil; NEXT; CASE (Bstringp): TOP = STRINGP (TOP) ? Qt : Qnil; NEXT; CASE (Blistp): TOP = CONSP (TOP) || NILP (TOP) ? Qt : Qnil; NEXT; CASE (Bnot): TOP = NILP (TOP) ? Qt : Qnil; NEXT; CASE (Bcons): { Lisp_Object v1; v1 = POP; TOP = Fcons (TOP, v1); NEXT; } CASE (Blist1): TOP = Fcons (TOP, Qnil); NEXT; CASE (Blist2): { Lisp_Object v1; v1 = POP; TOP = Fcons (TOP, Fcons (v1, Qnil)); NEXT; } CASE (Blist3): DISCARD (2); TOP = Flist (3, &TOP); NEXT; CASE (Blist4): DISCARD (3); TOP = Flist (4, &TOP); NEXT; CASE (BlistN): op = FETCH; DISCARD (op - 1); TOP = Flist (op, &TOP); NEXT; CASE (Blength): BEFORE_POTENTIAL_GC (); TOP = Flength (TOP); AFTER_POTENTIAL_GC (); NEXT; CASE (Baref): { Lisp_Object v1; BEFORE_POTENTIAL_GC (); v1 = POP; TOP = Faref (TOP, v1); AFTER_POTENTIAL_GC (); NEXT; } CASE (Baset): { Lisp_Object v1, v2; BEFORE_POTENTIAL_GC (); v2 = POP; v1 = POP; TOP = Faset (TOP, v1, v2); AFTER_POTENTIAL_GC (); NEXT; } CASE (Bsymbol_value): BEFORE_POTENTIAL_GC (); TOP = Fsymbol_value (TOP); AFTER_POTENTIAL_GC (); NEXT; CASE (Bsymbol_function): BEFORE_POTENTIAL_GC (); TOP = Fsymbol_function (TOP); AFTER_POTENTIAL_GC (); NEXT; CASE (Bset): { Lisp_Object v1; BEFORE_POTENTIAL_GC (); v1 = POP; TOP = Fset (TOP, v1); AFTER_POTENTIAL_GC (); NEXT; } CASE (Bfset): { Lisp_Object v1; BEFORE_POTENTIAL_GC (); v1 = POP; TOP = Ffset (TOP, v1); AFTER_POTENTIAL_GC (); NEXT; } CASE (Bget): { Lisp_Object v1; BEFORE_POTENTIAL_GC (); v1 = POP; TOP = Fget (TOP, v1); AFTER_POTENTIAL_GC (); NEXT; } CASE (Bsubstring): { Lisp_Object v1, v2; BEFORE_POTENTIAL_GC (); v2 = POP; v1 = POP; TOP = Fsubstring (TOP, v1, v2); AFTER_POTENTIAL_GC (); NEXT; } CASE (Bconcat2): BEFORE_POTENTIAL_GC (); DISCARD (1); TOP = Fconcat (2, &TOP); AFTER_POTENTIAL_GC (); NEXT; CASE (Bconcat3): BEFORE_POTENTIAL_GC (); DISCARD (2); TOP = Fconcat (3, &TOP); AFTER_POTENTIAL_GC (); NEXT; CASE (Bconcat4): BEFORE_POTENTIAL_GC (); DISCARD (3); TOP = Fconcat (4, &TOP); AFTER_POTENTIAL_GC (); NEXT; CASE (BconcatN): op = FETCH; BEFORE_POTENTIAL_GC (); DISCARD (op - 1); TOP = Fconcat (op, &TOP); AFTER_POTENTIAL_GC (); NEXT; CASE (Bsub1): { Lisp_Object v1; v1 = TOP; if (INTEGERP (v1)) { XSETINT (v1, XINT (v1) - 1); TOP = v1; } else { BEFORE_POTENTIAL_GC (); TOP = Fsub1 (v1); AFTER_POTENTIAL_GC (); } NEXT; } CASE (Badd1): { Lisp_Object v1; v1 = TOP; if (INTEGERP (v1)) { XSETINT (v1, XINT (v1) + 1); TOP = v1; } else { BEFORE_POTENTIAL_GC (); TOP = Fadd1 (v1); AFTER_POTENTIAL_GC (); } NEXT; } CASE (Beqlsign): { Lisp_Object v1, v2; BEFORE_POTENTIAL_GC (); v2 = POP; v1 = TOP; CHECK_NUMBER_OR_FLOAT_COERCE_MARKER (v1); CHECK_NUMBER_OR_FLOAT_COERCE_MARKER (v2); AFTER_POTENTIAL_GC (); if (FLOATP (v1) || FLOATP (v2)) { double f1, f2; f1 = (FLOATP (v1) ? XFLOAT_DATA (v1) : XINT (v1)); f2 = (FLOATP (v2) ? XFLOAT_DATA (v2) : XINT (v2)); TOP = (f1 == f2 ? Qt : Qnil); } else TOP = (XINT (v1) == XINT (v2) ? Qt : Qnil); NEXT; } CASE (Bgtr): { Lisp_Object v1; BEFORE_POTENTIAL_GC (); v1 = POP; TOP = Fgtr (TOP, v1); AFTER_POTENTIAL_GC (); NEXT; } CASE (Blss): { Lisp_Object v1; BEFORE_POTENTIAL_GC (); v1 = POP; TOP = Flss (TOP, v1); AFTER_POTENTIAL_GC (); NEXT; } CASE (Bleq): { Lisp_Object v1; BEFORE_POTENTIAL_GC (); v1 = POP; TOP = Fleq (TOP, v1); AFTER_POTENTIAL_GC (); NEXT; } CASE (Bgeq): { Lisp_Object v1; BEFORE_POTENTIAL_GC (); v1 = POP; TOP = Fgeq (TOP, v1); AFTER_POTENTIAL_GC (); NEXT; } CASE (Bdiff): BEFORE_POTENTIAL_GC (); DISCARD (1); TOP = Fminus (2, &TOP); AFTER_POTENTIAL_GC (); NEXT; CASE (Bnegate): { Lisp_Object v1; v1 = TOP; if (INTEGERP (v1)) { XSETINT (v1, - XINT (v1)); TOP = v1; } else { BEFORE_POTENTIAL_GC (); TOP = Fminus (1, &TOP); AFTER_POTENTIAL_GC (); } NEXT; } CASE (Bplus): BEFORE_POTENTIAL_GC (); DISCARD (1); TOP = Fplus (2, &TOP); AFTER_POTENTIAL_GC (); NEXT; CASE (Bmax): BEFORE_POTENTIAL_GC (); DISCARD (1); TOP = Fmax (2, &TOP); AFTER_POTENTIAL_GC (); NEXT; CASE (Bmin): BEFORE_POTENTIAL_GC (); DISCARD (1); TOP = Fmin (2, &TOP); AFTER_POTENTIAL_GC (); NEXT; CASE (Bmult): BEFORE_POTENTIAL_GC (); DISCARD (1); TOP = Ftimes (2, &TOP); AFTER_POTENTIAL_GC (); NEXT; CASE (Bquo): BEFORE_POTENTIAL_GC (); DISCARD (1); TOP = Fquo (2, &TOP); AFTER_POTENTIAL_GC (); NEXT; CASE (Brem): { Lisp_Object v1; BEFORE_POTENTIAL_GC (); v1 = POP; TOP = Frem (TOP, v1); AFTER_POTENTIAL_GC (); NEXT; } CASE (Bpoint): { Lisp_Object v1; XSETFASTINT (v1, PT); PUSH (v1); NEXT; } CASE (Bgoto_char): BEFORE_POTENTIAL_GC (); TOP = Fgoto_char (TOP); AFTER_POTENTIAL_GC (); NEXT; CASE (Binsert): BEFORE_POTENTIAL_GC (); TOP = Finsert (1, &TOP); AFTER_POTENTIAL_GC (); NEXT; CASE (BinsertN): op = FETCH; BEFORE_POTENTIAL_GC (); DISCARD (op - 1); TOP = Finsert (op, &TOP); AFTER_POTENTIAL_GC (); NEXT; CASE (Bpoint_max): { Lisp_Object v1; XSETFASTINT (v1, ZV); PUSH (v1); NEXT; } CASE (Bpoint_min): { Lisp_Object v1; XSETFASTINT (v1, BEGV); PUSH (v1); NEXT; } CASE (Bchar_after): BEFORE_POTENTIAL_GC (); TOP = Fchar_after (TOP); AFTER_POTENTIAL_GC (); NEXT; CASE (Bfollowing_char): { Lisp_Object v1; BEFORE_POTENTIAL_GC (); v1 = Ffollowing_char (); AFTER_POTENTIAL_GC (); PUSH (v1); NEXT; } CASE (Bpreceding_char): { Lisp_Object v1; BEFORE_POTENTIAL_GC (); v1 = Fprevious_char (); AFTER_POTENTIAL_GC (); PUSH (v1); NEXT; } CASE (Bcurrent_column): { Lisp_Object v1; BEFORE_POTENTIAL_GC (); XSETFASTINT (v1, current_column ()); AFTER_POTENTIAL_GC (); PUSH (v1); NEXT; } CASE (Bindent_to): BEFORE_POTENTIAL_GC (); TOP = Findent_to (TOP, Qnil); AFTER_POTENTIAL_GC (); NEXT; CASE (Beolp): PUSH (Feolp ()); NEXT; CASE (Beobp): PUSH (Feobp ()); NEXT; CASE (Bbolp): PUSH (Fbolp ()); NEXT; CASE (Bbobp): PUSH (Fbobp ()); NEXT; CASE (Bcurrent_buffer): PUSH (Fcurrent_buffer ()); NEXT; CASE (Bset_buffer): BEFORE_POTENTIAL_GC (); TOP = Fset_buffer (TOP); AFTER_POTENTIAL_GC (); NEXT; CASE (Binteractive_p): /* Obsolete since 24.1. */ PUSH (Finteractive_p ()); NEXT; CASE (Bforward_char): BEFORE_POTENTIAL_GC (); TOP = Fforward_char (TOP); AFTER_POTENTIAL_GC (); NEXT; CASE (Bforward_word): BEFORE_POTENTIAL_GC (); TOP = Fforward_word (TOP); AFTER_POTENTIAL_GC (); NEXT; CASE (Bskip_chars_forward): { Lisp_Object v1; BEFORE_POTENTIAL_GC (); v1 = POP; TOP = Fskip_chars_forward (TOP, v1); AFTER_POTENTIAL_GC (); NEXT; } CASE (Bskip_chars_backward): { Lisp_Object v1; BEFORE_POTENTIAL_GC (); v1 = POP; TOP = Fskip_chars_backward (TOP, v1); AFTER_POTENTIAL_GC (); NEXT; } CASE (Bforward_line): BEFORE_POTENTIAL_GC (); TOP = Fforward_line (TOP); AFTER_POTENTIAL_GC (); NEXT; CASE (Bchar_syntax): { int c; BEFORE_POTENTIAL_GC (); CHECK_CHARACTER (TOP); AFTER_POTENTIAL_GC (); c = XFASTINT (TOP); if (NILP (BVAR (current_buffer, enable_multibyte_characters))) MAKE_CHAR_MULTIBYTE (c); XSETFASTINT (TOP, syntax_code_spec[(int) SYNTAX (c)]); } NEXT; CASE (Bbuffer_substring): { Lisp_Object v1; BEFORE_POTENTIAL_GC (); v1 = POP; TOP = Fbuffer_substring (TOP, v1); AFTER_POTENTIAL_GC (); NEXT; } CASE (Bdelete_region): { Lisp_Object v1; BEFORE_POTENTIAL_GC (); v1 = POP; TOP = Fdelete_region (TOP, v1); AFTER_POTENTIAL_GC (); NEXT; } CASE (Bnarrow_to_region): { Lisp_Object v1; BEFORE_POTENTIAL_GC (); v1 = POP; TOP = Fnarrow_to_region (TOP, v1); AFTER_POTENTIAL_GC (); NEXT; } CASE (Bwiden): BEFORE_POTENTIAL_GC (); PUSH (Fwiden ()); AFTER_POTENTIAL_GC (); NEXT; CASE (Bend_of_line): BEFORE_POTENTIAL_GC (); TOP = Fend_of_line (TOP); AFTER_POTENTIAL_GC (); NEXT; CASE (Bset_marker): { Lisp_Object v1, v2; BEFORE_POTENTIAL_GC (); v1 = POP; v2 = POP; TOP = Fset_marker (TOP, v2, v1); AFTER_POTENTIAL_GC (); NEXT; } CASE (Bmatch_beginning): BEFORE_POTENTIAL_GC (); TOP = Fmatch_beginning (TOP); AFTER_POTENTIAL_GC (); NEXT; CASE (Bmatch_end): BEFORE_POTENTIAL_GC (); TOP = Fmatch_end (TOP); AFTER_POTENTIAL_GC (); NEXT; CASE (Bupcase): BEFORE_POTENTIAL_GC (); TOP = Fupcase (TOP); AFTER_POTENTIAL_GC (); NEXT; CASE (Bdowncase): BEFORE_POTENTIAL_GC (); TOP = Fdowncase (TOP); AFTER_POTENTIAL_GC (); NEXT; CASE (Bstringeqlsign): { Lisp_Object v1; BEFORE_POTENTIAL_GC (); v1 = POP; TOP = Fstring_equal (TOP, v1); AFTER_POTENTIAL_GC (); NEXT; } CASE (Bstringlss): { Lisp_Object v1; BEFORE_POTENTIAL_GC (); v1 = POP; TOP = Fstring_lessp (TOP, v1); AFTER_POTENTIAL_GC (); NEXT; } CASE (Bequal): { Lisp_Object v1; v1 = POP; TOP = Fequal (TOP, v1); NEXT; } CASE (Bnthcdr): { Lisp_Object v1; BEFORE_POTENTIAL_GC (); v1 = POP; TOP = Fnthcdr (TOP, v1); AFTER_POTENTIAL_GC (); NEXT; } CASE (Belt): { Lisp_Object v1, v2; if (CONSP (TOP)) { /* Exchange args and then do nth. */ EMACS_INT n; BEFORE_POTENTIAL_GC (); v2 = POP; v1 = TOP; CHECK_NUMBER (v2); AFTER_POTENTIAL_GC (); n = XINT (v2); immediate_quit = 1; while (--n >= 0 && CONSP (v1)) v1 = XCDR (v1); immediate_quit = 0; TOP = CAR (v1); } else { BEFORE_POTENTIAL_GC (); v1 = POP; TOP = Felt (TOP, v1); AFTER_POTENTIAL_GC (); } NEXT; } CASE (Bmember): { Lisp_Object v1; BEFORE_POTENTIAL_GC (); v1 = POP; TOP = Fmember (TOP, v1); AFTER_POTENTIAL_GC (); NEXT; } CASE (Bassq): { Lisp_Object v1; BEFORE_POTENTIAL_GC (); v1 = POP; TOP = Fassq (TOP, v1); AFTER_POTENTIAL_GC (); NEXT; } CASE (Bnreverse): BEFORE_POTENTIAL_GC (); TOP = Fnreverse (TOP); AFTER_POTENTIAL_GC (); NEXT; CASE (Bsetcar): { Lisp_Object v1; BEFORE_POTENTIAL_GC (); v1 = POP; TOP = Fsetcar (TOP, v1); AFTER_POTENTIAL_GC (); NEXT; } CASE (Bsetcdr): { Lisp_Object v1; BEFORE_POTENTIAL_GC (); v1 = POP; TOP = Fsetcdr (TOP, v1); AFTER_POTENTIAL_GC (); NEXT; } CASE (Bcar_safe): { Lisp_Object v1; v1 = TOP; TOP = CAR_SAFE (v1); NEXT; } CASE (Bcdr_safe): { Lisp_Object v1; v1 = TOP; TOP = CDR_SAFE (v1); NEXT; } CASE (Bnconc): BEFORE_POTENTIAL_GC (); DISCARD (1); TOP = Fnconc (2, &TOP); AFTER_POTENTIAL_GC (); NEXT; CASE (Bnumberp): TOP = (NUMBERP (TOP) ? Qt : Qnil); NEXT; CASE (Bintegerp): TOP = INTEGERP (TOP) ? Qt : Qnil; NEXT; #ifdef BYTE_CODE_SAFE /* These are intentionally written using 'case' syntax, because they are incompatible with the threaded interpreter. */ case Bset_mark: BEFORE_POTENTIAL_GC (); error ("set-mark is an obsolete bytecode"); AFTER_POTENTIAL_GC (); break; case Bscan_buffer: BEFORE_POTENTIAL_GC (); error ("scan-buffer is an obsolete bytecode"); AFTER_POTENTIAL_GC (); break; #endif CASE_ABORT: /* Actually this is Bstack_ref with offset 0, but we use Bdup for that instead. */ /* CASE (Bstack_ref): */ abort (); /* Handy byte-codes for lexical binding. */ CASE (Bstack_ref1): CASE (Bstack_ref2): CASE (Bstack_ref3): CASE (Bstack_ref4): CASE (Bstack_ref5): { Lisp_Object *ptr = top - (op - Bstack_ref); PUSH (*ptr); NEXT; } CASE (Bstack_ref6): { Lisp_Object *ptr = top - (FETCH); PUSH (*ptr); NEXT; } CASE (Bstack_ref7): { Lisp_Object *ptr = top - (FETCH2); PUSH (*ptr); NEXT; } CASE (Bstack_set): /* stack-set-0 = discard; stack-set-1 = discard-1-preserve-tos. */ { Lisp_Object *ptr = top - (FETCH); *ptr = POP; NEXT; } CASE (Bstack_set2): { Lisp_Object *ptr = top - (FETCH2); *ptr = POP; NEXT; } CASE (BdiscardN): op = FETCH; if (op & 0x80) { op &= 0x7F; top[-op] = TOP; } DISCARD (op); NEXT; CASE_DEFAULT CASE (Bconstant): #ifdef BYTE_CODE_SAFE if (op < Bconstant) { abort (); } if ((op -= Bconstant) >= const_length) { abort (); } PUSH (vectorp[op]); #else PUSH (vectorp[op - Bconstant]); #endif NEXT; } } exit: byte_stack_list = byte_stack_list->next; /* Binds and unbinds are supposed to be compiled balanced. */ if (SPECPDL_INDEX () != count) #ifdef BYTE_CODE_SAFE error ("binding stack not balanced (serious byte compiler bug)"); #else abort (); #endif return result; } void syms_of_bytecode (void) { DEFSYM (Qbytecode, "byte-code"); defsubr (&Sbyte_code); #ifdef BYTE_CODE_METER DEFVAR_LISP ("byte-code-meter", Vbyte_code_meter, doc: /* A vector of vectors which holds a histogram of byte-code usage. \(aref (aref byte-code-meter 0) CODE) indicates how many times the byte opcode CODE has been executed. \(aref (aref byte-code-meter CODE1) CODE2), where CODE1 is not 0, indicates how many times the byte opcodes CODE1 and CODE2 have been executed in succession. */); DEFVAR_BOOL ("byte-metering-on", byte_metering_on, doc: /* If non-nil, keep profiling information on byte code usage. The variable byte-code-meter indicates how often each byte opcode is used. If a symbol has a property named `byte-code-meter' whose value is an integer, it is incremented each time that symbol's function is called. */); byte_metering_on = 0; Vbyte_code_meter = Fmake_vector (make_number (256), make_number (0)); DEFSYM (Qbyte_code_meter, "byte-code-meter"); { int i = 256; while (i--) ASET (Vbyte_code_meter, i, Fmake_vector (make_number (256), make_number (0))); } #endif }