unofficial mirror of bug-gnu-emacs@gnu.org 
 help / color / mirror / code / Atom feed
blob fff2a9efe900ace282c5a90eaca2ba3e674a3f3e 14676 bytes (raw)
name: lisp/progmodes/cc-bytecomp.el 	 # note: path name is non-authoritative(*)

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
 
;;; cc-bytecomp.el --- compile time setup for proper compilation

;; Copyright (C) 2000-2015 Free Software Foundation, Inc.

;; Author:     Martin Stjernholm
;; Maintainer: bug-cc-mode@gnu.org
;; Created:    15-Jul-2000
;; Keywords:   c languages
;; Package:    cc-mode

;; This file is part of GNU Emacs.

;; GNU Emacs is free software: you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation, either version 3 of the License, or
;; (at your option) any later version.

;; GNU Emacs is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
;; GNU General Public License for more details.

;; You should have received a copy of the GNU General Public License
;; along with GNU Emacs.  If not, see <http://www.gnu.org/licenses/>.

;;; Commentary:

;; This file is used to ensure that the CC Mode files are correctly
;; compiled regardless the environment (e.g. if an older CC Mode with
;; outdated macros are loaded during compilation).  It also provides
;; features to defeat the compiler warnings for selected symbols.
;;
;; There's really nothing CC Mode specific here; this functionality
;; ought to be provided by the byte compilers or some accompanying
;; library.  To use it from some package "foo.el", begin by putting
;; the following blurb at the top of the file:
;;
;;   (eval-when-compile
;;     (let ((load-path
;;            (if (and (boundp 'byte-compile-dest-file)
;;                     (stringp byte-compile-dest-file))
;;                (cons (file-name-directory byte-compile-dest-file) load-path)
;;              load-path)))
;;       (load "cc-bytecomp" nil t))
;;
;; This (unfortunately rather clumsy) form will ensure that the
;; cc-bytecomp.el in the same directory as foo.el is loaded during
;; byte compilation of the latter.
;;
;; At the end of foo.el there should normally be a "(provide 'foo)".
;; Replace it with "(cc-provide 'foo)"; that is necessary to restore
;; the environment after the byte compilation.  If you don't have a
;; `provide' at the end, you have to add the following as the very
;; last form in the file:
;;
;;   (eval-when-compile (cc-bytecomp-restore-environment))
;;
;; Now everything is set to use the various functions and macros in
;; this package.
;;
;; If your package is split into several files, you should use
;; `cc-require', `cc-require-when-compile' or `cc-load' to load them.
;; That ensures that the files in the same directory always are
;; loaded, to avoid mixup with other versions of them that might exist
;; elsewhere in the load path.
;;
;; To suppress byte compiler warnings, use the macros
;; `cc-bytecomp-defun' and `cc-bytecomp-defvar'.
;;
;; This file is not used at all after the package has been byte
;; compiled.  It is however necessary when running uncompiled.

\f
;;; Code:

(defvar cc-bytecomp-unbound-variables nil)
(defvar cc-bytecomp-original-functions nil)
(defvar cc-bytecomp-loaded-files nil)

(setq cc-bytecomp-unbound-variables nil)
(setq cc-bytecomp-original-functions nil)
(setq cc-bytecomp-loaded-files nil)

(defvar cc-bytecomp-environment-set nil)

(defmacro cc-bytecomp-debug-msg (&rest args)
  ;;`(message ,@args)
  )

(defun cc-bytecomp-compiling-or-loading ()
  ;; Determine whether byte-compilation or loading is currently active,
  ;; returning 'compiling, 'loading or nil.
  ;; If both are active, the "innermost" activity counts.  Note that
  ;; compilation can trigger loading (various `require' type forms)
  ;; and loading can trigger compilation (the package manager does
  ;; this).  We walk the lisp stack if necessary.
  (cond
   ((and load-in-progress
	 (boundp 'byte-compile-dest-file)
	 (stringp byte-compile-dest-file))
    (let ((n 0) elt)
      (while (and
	      (setq elt (backtrace-frame n))
	      (not (and (car elt)
			(memq (cadr elt)
			      '(load require
				byte-compile-file byte-recompile-directory
				batch-byte-compile)))))
	(setq n (1+ n)))
      (cond
       ((memq (cadr elt) '(load require))
	'loading)
       ((memq (cadr elt) '(byte-compile-file
			   byte-recompile-directory
			   batch-byte-compile))
	'compiling)
       (t				; Can't happen.
	(message "cc-bytecomp-compiling-or-loading: System flags spuriously set")
	nil))))
   (load-in-progress
    ;; Being loaded.
    'loading)
   ((and (boundp 'byte-compile-dest-file)
	 (stringp byte-compile-dest-file))
    ;; Being compiled.
    'compiling)
   (t
    ;; Being evaluated interactively.
    nil)))

(defsubst cc-bytecomp-is-compiling ()
  "Return non-nil if eval'ed during compilation."
  (eq (cc-bytecomp-compiling-or-loading) 'compiling))

(defsubst cc-bytecomp-is-loading ()
  "Return non-nil if eval'ed during loading.
Nil will be returned if we're in a compilation triggered by the loading."
  (eq (cc-bytecomp-compiling-or-loading) 'loading))

(defun cc-bytecomp-setup-environment ()
  ;; Eval'ed during compilation to setup variables, functions etc
  ;; declared with `cc-bytecomp-defvar' et al.
  (if (not (cc-bytecomp-is-loading))
      (let (p)
	(if cc-bytecomp-environment-set
	    (error "Byte compilation environment already set - \
perhaps a `cc-bytecomp-restore-environment' is forgotten somewhere"))
	(setq p cc-bytecomp-unbound-variables)
	(while p
	  (if (not (boundp (car p)))
	      (progn
		(eval `(defvar ,(car p)))
		(set (car p) (intern (concat "cc-bytecomp-ignore-var:"
					     (symbol-name (car p)))))
		(cc-bytecomp-debug-msg
		 "cc-bytecomp-setup-environment: Covered variable %s"
		 (car p))))
	  (setq p (cdr p)))
	(setq p cc-bytecomp-original-functions)
	(while p
	  (let ((fun (car (car p)))
		(temp-macro (car (cdr (car p)))))
	    (if (not (fboundp fun))
		(if temp-macro
		    (progn
		      (eval `(defmacro ,fun ,@temp-macro))
		      (cc-bytecomp-debug-msg
		       "cc-bytecomp-setup-environment: Bound macro %s" fun))
		  (fset fun (intern (concat "cc-bytecomp-ignore-fun:"
					    (symbol-name fun))))
		  (cc-bytecomp-debug-msg
		   "cc-bytecomp-setup-environment: Covered function %s" fun))))
	  (setq p (cdr p)))
	(setq cc-bytecomp-environment-set t)
	(cc-bytecomp-debug-msg
	 "cc-bytecomp-setup-environment: Done"))))

(defun cc-bytecomp-restore-environment ()
  ;; Eval'ed during compilation to restore variables, functions etc
  ;; declared with `cc-bytecomp-defvar' et al.
  (if (not (cc-bytecomp-is-loading))
      (let (p)
	(setq p cc-bytecomp-unbound-variables)
	(while p
	  (let ((var (car p)))
	    (if (boundp var)
		(if (eq (intern (concat "cc-bytecomp-ignore-var:"
					(symbol-name var)))
			(symbol-value var))
		    (progn
		      (makunbound var)
		      (cc-bytecomp-debug-msg
		       "cc-bytecomp-restore-environment: Unbound variable %s"
		       var))
		  (cc-bytecomp-debug-msg
		   "cc-bytecomp-restore-environment: Not restoring variable %s"
		   var))))
	  (setq p (cdr p)))
	(setq p cc-bytecomp-original-functions)
	(while p
	  (let ((fun (car (car p)))
		(temp-macro (car (cdr (car p))))
		(def (car (cdr (cdr (car p))))))
	    (if (fboundp fun)
		(if (eq (or temp-macro
			    (intern (concat "cc-bytecomp-ignore-fun:"
					    (symbol-name fun))))
			   (symbol-function fun))
		    (if (eq def 'unbound)
			(progn
			  (fmakunbound fun)
			  (cc-bytecomp-debug-msg
			   "cc-bytecomp-restore-environment: Unbound function %s"
			   fun))
		      (fset fun def)
		      (cc-bytecomp-debug-msg
		       "cc-bytecomp-restore-environment: Restored function %s"
		       fun))
		  (cc-bytecomp-debug-msg
		   "cc-bytecomp-restore-environment: Not restoring function %s"
		   fun))))
	  (setq p (cdr p)))
	(setq cc-bytecomp-environment-set nil)
	(cc-bytecomp-debug-msg
	 "cc-bytecomp-restore-environment: Done"))))

(eval
 ;; This eval is to avoid byte compilation of the function below.
 ;; There's some bug in XEmacs 21.4.6 that can cause it to dump core
 ;; here otherwise.  My theory is that `cc-bytecomp-load' might be
 ;; redefined recursively during the `load' inside it, and if it in
 ;; that case is byte compiled then the byte interpreter gets
 ;; confused.  I haven't succeeded in isolating the bug, though. /mast

 '(defun cc-bytecomp-load (cc-part)
    ;; Eval'ed during compilation to load a CC Mode file from the source
    ;; directory (assuming it's the same as the compiled file
    ;; destination dir).
    (if (and (boundp 'byte-compile-dest-file)
	     (stringp byte-compile-dest-file))
	(progn
	  (cc-bytecomp-restore-environment)
	  (let ((load-path
		 (cons (file-name-directory byte-compile-dest-file)
		       load-path))
		(cc-file (concat cc-part ".el")))
	    (if (member cc-file cc-bytecomp-loaded-files)
		()
	      (setq cc-bytecomp-loaded-files
		    (cons cc-file cc-bytecomp-loaded-files))
	      (cc-bytecomp-debug-msg
	       "cc-bytecomp-load: Loading %S" cc-file)
	      (load cc-file nil t t)
	      (cc-bytecomp-debug-msg
	       "cc-bytecomp-load: Loaded %S" cc-file)))
	  (cc-bytecomp-setup-environment)
	  t))))

(defvar cc-bytecomp-noruntime-functions nil
  "Saved value of `byte-compile-noruntime-functions'.")

(defmacro cc-require (cc-part)
  "Force loading of the corresponding .el file in the current directory
during compilation, but compile in a `require'.  Don't use within
`eval-when-compile'.

Having cyclic cc-require's will result in infinite recursion.  That's
somewhat intentional."
  `(progn
     (eval-when-compile
       (if (boundp 'byte-compile-noruntime-functions) ; in case load uncompiled
	   (setq cc-bytecomp-noruntime-functions
		 byte-compile-noruntime-functions))
       (cc-bytecomp-load (symbol-name ,cc-part)))
     ;; Hack to suppress spurious "might not be defined at runtime" warnings.
     ;; The basic issue is that
     ;;   (eval-when-compile (require 'foo))
     ;;   (require 'foo)
     ;; produces bogus noruntime warnings about functions from foo.
     (eval-when-compile
       (setq byte-compile-noruntime-functions cc-bytecomp-noruntime-functions))
     (require ,cc-part)))

(defmacro cc-provide (feature)
  "A replacement for the `provide' form that restores the environment
after the compilation.  Don't use within `eval-when-compile'."
  `(progn
     (eval-when-compile (cc-bytecomp-restore-environment))
     (provide ,feature)))

(defmacro cc-load (cc-part)
  "Force loading of the corresponding .el file in the current directory
during compilation.  Don't use outside `eval-when-compile' or
`eval-and-compile'.

Having cyclic cc-load's will result in infinite recursion.  That's
somewhat intentional."
  `(or (and (featurep 'cc-bytecomp)
	    (cc-bytecomp-load ,cc-part))
       (load ,cc-part nil t nil)))

(defmacro cc-require-when-compile (cc-part)
  "Force loading of the corresponding .el file in the current directory
during compilation, but do a compile time `require' otherwise.  Don't
use within `eval-when-compile'."
  `(eval-when-compile
     (if (and (fboundp 'cc-bytecomp-is-compiling)
	      (cc-bytecomp-is-compiling))
	 (if (not (featurep ,cc-part))
	     (cc-bytecomp-load (symbol-name ,cc-part)))
       (require ,cc-part))))

(defmacro cc-external-require (feature)
  "Do a `require' of an external package.
This restores and sets up the compilation environment before and
afterwards.  Don't use within `eval-when-compile'."
  `(progn
     (eval-when-compile (cc-bytecomp-restore-environment))
     (require ,feature)
     (eval-when-compile (cc-bytecomp-setup-environment))))

(defmacro cc-bytecomp-defvar (var)
  "Bind the symbol as a variable during compilation of the file,
to silence the byte compiler.  Don't use within `eval-when-compile'."
  (if (not (featurep 'xemacs))
      `(defvar ,var)
    ;; Not sure if XEmacs's ‘defvar’ works in the same way.
    `(eval-when-compile
       (if (boundp ',var)
	   (cc-bytecomp-debug-msg
	    "cc-bytecomp-defvar: %s bound already as variable" ',var)
	 (if (not (memq ',var cc-bytecomp-unbound-variables))
	     (progn
	       (cc-bytecomp-debug-msg
		"cc-bytecomp-defvar: Saving %s (as unbound)" ',var)
	       (setq cc-bytecomp-unbound-variables
		     (cons ',var cc-bytecomp-unbound-variables))))
	 (if (cc-bytecomp-is-compiling)
	     (progn
	       (defvar ,var)
	       (set ',var (intern (concat "cc-bytecomp-ignore-var:"
					  (symbol-name ',var))))
	       (cc-bytecomp-debug-msg
		"cc-bytecomp-defvar: Covered variable %s" ',var)))))))

(defmacro cc-bytecomp-defun (fun)
  "Bind the symbol as a function during compilation of the file,
to silence the byte compiler.  Don't use within `eval-when-compile'.

If the symbol already is bound as a function, it will keep that
definition.  That means that this macro will not shut up warnings
about incorrect number of arguments.  It's dangerous to try to replace
existing functions since the byte compiler might need the definition
at compile time, e.g. for macros and inline functions."
  (if (fboundp 'declare-function)
      `(declare-function ,fun nil)
    `(eval-when-compile
       (if (fboundp ',fun)
	   (cc-bytecomp-debug-msg
	    "cc-bytecomp-defun: %s bound already as function" ',fun)
	 (if (not (assq ',fun cc-bytecomp-original-functions))
	     (progn
	       (cc-bytecomp-debug-msg
		"cc-bytecomp-defun: Saving %s (as unbound)" ',fun)
	       (setq cc-bytecomp-original-functions
		     (cons (list ',fun nil 'unbound)
			   cc-bytecomp-original-functions))))
	 (if (cc-bytecomp-is-compiling)
	     (progn
	       (fset ',fun (intern (concat "cc-bytecomp-ignore-fun:"
					   (symbol-name ',fun))))
	       (cc-bytecomp-debug-msg
		"cc-bytecomp-defun: Covered function %s" ',fun)))))))

(defmacro cc-bytecomp-boundp (symbol)
  "Return non-nil if the given symbol is bound as a variable outside
the compilation.  This is the same as using `boundp' but additionally
exclude any variables that have been bound during compilation with
`cc-bytecomp-defvar'."
  (if (and (featurep 'xemacs)
	   (cc-bytecomp-is-compiling)
	   (memq (car (cdr symbol)) cc-bytecomp-unbound-variables))
      nil
    `(boundp ,symbol)))

(defmacro cc-bytecomp-fboundp (symbol)
  "Return non-nil if the given symbol is bound as a function outside
the compilation.  This is the same as using `fboundp' but additionally
exclude any functions that have been bound during compilation with
`cc-bytecomp-defun'."
  (let (fun-elem)
    (if (and (not (fboundp 'declare-function))
	     (cc-bytecomp-is-compiling)
	     (setq fun-elem (assq (car (cdr symbol))
				  cc-bytecomp-original-functions))
	     (eq (elt fun-elem 2) 'unbound))
	nil
      `(fboundp ,symbol))))

\f
(provide 'cc-bytecomp)

;; Local Variables:
;; indent-tabs-mode: t
;; tab-width: 8
;; End:
;;; cc-bytecomp.el ends here

debug log:

solving fff2a9e ...
found fff2a9e in https://yhetil.org/emacs-bugs/jwvlhcc1f76.fsf@iro.umontreal.ca/
found 81b7a82 in https://git.savannah.gnu.org/cgit/emacs.git
preparing index
index prepared:
100644 81b7a822b82e94f8446e7fac7edf9fea2b38c71d	lisp/progmodes/cc-bytecomp.el

applying [1/1] https://yhetil.org/emacs-bugs/jwvlhcc1f76.fsf@iro.umontreal.ca/
diff --git a/lisp/progmodes/cc-bytecomp.el b/lisp/progmodes/cc-bytecomp.el
index 81b7a82..fff2a9e 100644

Checking patch lisp/progmodes/cc-bytecomp.el...
Applied patch lisp/progmodes/cc-bytecomp.el cleanly.

index at:
100644 fff2a9efe900ace282c5a90eaca2ba3e674a3f3e	lisp/progmodes/cc-bytecomp.el

(*) Git path names are given by the tree(s) the blob belongs to.
    Blobs themselves have no identifier aside from the hash of its contents.^

Code repositories for project(s) associated with this public inbox

	https://git.savannah.gnu.org/cgit/emacs.git

This is a public inbox, see mirroring instructions
for how to clone and mirror all data and code used for this inbox;
as well as URLs for read-only IMAP folder(s) and NNTP newsgroup(s).