/* Asynchronous subprocess control for GNU Emacs. Copyright (C) 1985-1988, 1993-1996, 1998-1999, 2001-2018 Free Software Foundation, Inc. This file is part of GNU Emacs. GNU Emacs is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. GNU Emacs is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU Emacs. If not, see . */ #include #include #include #include #include /* Some typedefs are used in sys/file.h. */ #include #include #include #include #include "lisp.h" /* Only MS-DOS does not define `subprocesses'. */ #ifdef subprocesses #include #include #include #include #endif /* subprocesses */ #ifdef HAVE_SETRLIMIT # include /* If NOFILE_LIMIT.rlim_cur is greater than FD_SETSIZE, then NOFILE_LIMIT is the initial limit on the number of open files, which should be restored in child processes. */ static struct rlimit nofile_limit; #endif #ifdef subprocesses /* Are local (unix) sockets supported? */ #if defined (HAVE_SYS_UN_H) #if !defined (AF_LOCAL) && defined (AF_UNIX) #define AF_LOCAL AF_UNIX #endif #ifdef AF_LOCAL #define HAVE_LOCAL_SOCKETS #include #endif #endif #include #if defined (HAVE_NET_IF_H) #include #endif /* HAVE_NET_IF_H */ #if defined (HAVE_IFADDRS_H) /* Must be after net/if.h */ #include /* We only use structs from this header when we use getifaddrs. */ #if defined (HAVE_NET_IF_DL_H) #include #endif #endif #ifdef NEED_BSDTTY #include #endif #ifdef USG5_4 # include # include #endif #ifdef HAVE_UTIL_H #include #endif #ifdef HAVE_PTY_H #include #endif #include #include #include #include #endif /* subprocesses */ #include "systime.h" #include "systty.h" #include "window.h" #include "character.h" #include "buffer.h" #include "coding.h" #include "process.h" #include "frame.h" #include "termopts.h" #include "keyboard.h" #include "blockinput.h" #include "atimer.h" #include "sysselect.h" #include "syssignal.h" #include "syswait.h" #ifdef HAVE_GNUTLS #include "gnutls.h" #endif #ifdef HAVE_WINDOW_SYSTEM #include TERM_HEADER #endif /* HAVE_WINDOW_SYSTEM */ #ifdef HAVE_GLIB #include "xgselect.h" #ifndef WINDOWSNT #include #endif #endif #if defined HAVE_GETADDRINFO_A || defined HAVE_GNUTLS /* This is 0.1s in nanoseconds. */ #define ASYNC_RETRY_NSEC 100000000 #endif #ifdef WINDOWSNT extern int sys_select (int, fd_set *, fd_set *, fd_set *, const struct timespec *, const sigset_t *); #endif /* Work around GCC 4.3.0 bug with strict overflow checking; see . This bug appears to be fixed in GCC 5.1, so don't work around it there. */ #if GNUC_PREREQ (4, 3, 0) && ! GNUC_PREREQ (5, 1, 0) # pragma GCC diagnostic ignored "-Wstrict-overflow" #endif /* True if keyboard input is on hold, zero otherwise. */ static bool kbd_is_on_hold; /* Nonzero means don't run process sentinels. This is used when exiting. */ bool inhibit_sentinels; union u_sockaddr { struct sockaddr sa; struct sockaddr_in in; #ifdef AF_INET6 struct sockaddr_in6 in6; #endif #ifdef HAVE_LOCAL_SOCKETS struct sockaddr_un un; #endif }; #ifdef subprocesses #ifndef SOCK_CLOEXEC # define SOCK_CLOEXEC 0 #endif #ifndef SOCK_NONBLOCK # define SOCK_NONBLOCK 0 #endif /* True if ERRNUM represents an error where the system call would block if a blocking variant were used. */ static bool would_block (int errnum) { #ifdef EWOULDBLOCK if (EWOULDBLOCK != EAGAIN && errnum == EWOULDBLOCK) return true; #endif return errnum == EAGAIN; } #ifndef HAVE_ACCEPT4 /* Emulate GNU/Linux accept4 and socket well enough for this module. */ static int close_on_exec (int fd) { if (0 <= fd) fcntl (fd, F_SETFD, FD_CLOEXEC); return fd; } # undef accept4 # define accept4(sockfd, addr, addrlen, flags) \ process_accept4 (sockfd, addr, addrlen, flags) static int accept4 (int sockfd, struct sockaddr *addr, socklen_t *addrlen, int flags) { return close_on_exec (accept (sockfd, addr, addrlen)); } static int process_socket (int domain, int type, int protocol) { return close_on_exec (socket (domain, type, protocol)); } # undef socket # define socket(domain, type, protocol) process_socket (domain, type, protocol) #endif #define NETCONN_P(p) (EQ (XPROCESS (p)->type, Qnetwork)) #define NETCONN1_P(p) (EQ (p->type, Qnetwork)) #define SERIALCONN_P(p) (EQ (XPROCESS (p)->type, Qserial)) #define SERIALCONN1_P(p) (EQ (p->type, Qserial)) #define PIPECONN_P(p) (EQ (XPROCESS (p)->type, Qpipe)) #define PIPECONN1_P(p) (EQ (p->type, Qpipe)) /* Number of events of change of status of a process. */ static EMACS_INT process_tick; /* Number of events for which the user or sentinel has been notified. */ static EMACS_INT update_tick; /* Define DATAGRAM_SOCKETS if datagrams can be used safely on this system. We need to read full packets, so we need a "non-destructive" select. So we require either native select, or emulation of select using FIONREAD. */ #ifndef BROKEN_DATAGRAM_SOCKETS # if defined HAVE_SELECT || defined USABLE_FIONREAD # if defined HAVE_SENDTO && defined HAVE_RECVFROM && defined EMSGSIZE # define DATAGRAM_SOCKETS # endif # endif #endif #if defined HAVE_LOCAL_SOCKETS && defined DATAGRAM_SOCKETS # define HAVE_SEQPACKET #endif #define READ_OUTPUT_DELAY_INCREMENT (TIMESPEC_RESOLUTION / 100) #define READ_OUTPUT_DELAY_MAX (READ_OUTPUT_DELAY_INCREMENT * 5) #define READ_OUTPUT_DELAY_MAX_MAX (READ_OUTPUT_DELAY_INCREMENT * 7) /* Number of processes which have a non-zero read_output_delay, and therefore might be delayed for adaptive read buffering. */ static int process_output_delay_count; /* True if any process has non-nil read_output_skip. */ static bool process_output_skip; static void start_process_unwind (Lisp_Object); static void create_process (Lisp_Object, char **, Lisp_Object); #ifdef USABLE_SIGIO static bool keyboard_bit_set (fd_set *); #endif static void deactivate_process (Lisp_Object); static int status_notify (struct Lisp_Process *, struct Lisp_Process *); static int read_process_output (Lisp_Object, int); static void create_pty (Lisp_Object); static void exec_sentinel (Lisp_Object, Lisp_Object); /* Number of bits set in connect_wait_mask. */ static int num_pending_connects; /* The largest descriptor currently in use; -1 if none. */ static int max_desc; /* Set the external socket descriptor for Emacs to use when `make-network-process' is called with a non-nil `:use-external-socket' option. The value should be either -1, or the file descriptor of a socket that is already bound. */ static int external_sock_fd; /* Indexed by descriptor, gives the process (if any) for that descriptor. */ static Lisp_Object chan_process[FD_SETSIZE]; static void wait_for_socket_fds (Lisp_Object, char const *); /* Alist of elements (NAME . PROCESS). */ static Lisp_Object Vprocess_alist; /* Buffered-ahead input char from process, indexed by channel. -1 means empty (no char is buffered). Used on sys V where the only way to tell if there is any output from the process is to read at least one char. Always -1 on systems that support FIONREAD. */ static int proc_buffered_char[FD_SETSIZE]; /* Table of `struct coding-system' for each process. */ static struct coding_system *proc_decode_coding_system[FD_SETSIZE]; static struct coding_system *proc_encode_coding_system[FD_SETSIZE]; #ifdef DATAGRAM_SOCKETS /* Table of `partner address' for datagram sockets. */ static struct sockaddr_and_len { struct sockaddr *sa; ptrdiff_t len; } datagram_address[FD_SETSIZE]; #define DATAGRAM_CHAN_P(chan) (datagram_address[chan].sa != 0) #define DATAGRAM_CONN_P(proc) \ (PROCESSP (proc) && \ XPROCESS (proc)->infd >= 0 && \ datagram_address[XPROCESS (proc)->infd].sa != 0) #else #define DATAGRAM_CONN_P(proc) (0) #endif /* FOR_EACH_PROCESS (LIST_VAR, PROC_VAR) followed by a statement is a `for' loop which iterates over processes from Vprocess_alist. */ #define FOR_EACH_PROCESS(list_var, proc_var) \ FOR_EACH_ALIST_VALUE (Vprocess_alist, list_var, proc_var) /* These setters are used only in this file, so they can be private. */ static void pset_buffer (struct Lisp_Process *p, Lisp_Object val) { p->buffer = val; } static void pset_command (struct Lisp_Process *p, Lisp_Object val) { p->command = val; } static void pset_decode_coding_system (struct Lisp_Process *p, Lisp_Object val) { p->decode_coding_system = val; } static void pset_decoding_buf (struct Lisp_Process *p, Lisp_Object val) { p->decoding_buf = val; } static void pset_encode_coding_system (struct Lisp_Process *p, Lisp_Object val) { p->encode_coding_system = val; } static void pset_encoding_buf (struct Lisp_Process *p, Lisp_Object val) { p->encoding_buf = val; } static void pset_filter (struct Lisp_Process *p, Lisp_Object val) { p->filter = NILP (val) ? Qinternal_default_process_filter : val; } static void pset_log (struct Lisp_Process *p, Lisp_Object val) { p->log = val; } static void pset_mark (struct Lisp_Process *p, Lisp_Object val) { p->mark = val; } static void pset_thread (struct Lisp_Process *p, Lisp_Object val) { p->thread = val; } static void pset_name (struct Lisp_Process *p, Lisp_Object val) { p->name = val; } static void pset_plist (struct Lisp_Process *p, Lisp_Object val) { p->plist = val; } static void pset_sentinel (struct Lisp_Process *p, Lisp_Object val) { p->sentinel = NILP (val) ? Qinternal_default_process_sentinel : val; } static void pset_tty_name (struct Lisp_Process *p, Lisp_Object val) { p->tty_name = val; } static void pset_type (struct Lisp_Process *p, Lisp_Object val) { p->type = val; } static void pset_write_queue (struct Lisp_Process *p, Lisp_Object val) { p->write_queue = val; } static void pset_stderrproc (struct Lisp_Process *p, Lisp_Object val) { p->stderrproc = val; } static Lisp_Object make_lisp_proc (struct Lisp_Process *p) { return make_lisp_ptr (p, Lisp_Vectorlike); } enum fd_bits { /* Read from file descriptor. */ FOR_READ = 1, /* Write to file descriptor. */ FOR_WRITE = 2, /* This descriptor refers to a keyboard. Only valid if FOR_READ is set. */ KEYBOARD_FD = 4, /* This descriptor refers to a process. */ PROCESS_FD = 8, /* A non-blocking connect. Only valid if FOR_WRITE is set. */ NON_BLOCKING_CONNECT_FD = 16 }; static struct fd_callback_data { fd_callback func; void *data; /* Flags from enum fd_bits. */ int flags; /* If this fd is locked to a certain thread, this points to it. Otherwise, this is NULL. If an fd is locked to a thread, then only that thread is permitted to wait on it. */ struct thread_state *thread; /* If this fd is currently being selected on by a thread, this points to the thread. Otherwise it is NULL. */ struct thread_state *waiting_thread; } fd_callback_info[FD_SETSIZE]; /* Add a file descriptor FD to be monitored for when read is possible. When read is possible, call FUNC with argument DATA. */ void add_read_fd (int fd, fd_callback func, void *data) { add_keyboard_wait_descriptor (fd); fd_callback_info[fd].func = func; fd_callback_info[fd].data = data; } static void add_non_keyboard_read_fd (int fd) { eassert (fd >= 0 && fd < FD_SETSIZE); eassert (fd_callback_info[fd].func == NULL); fd_callback_info[fd].flags &= ~KEYBOARD_FD; fd_callback_info[fd].flags |= FOR_READ; if (fd > max_desc) max_desc = fd; } static void add_process_read_fd (int fd) { add_non_keyboard_read_fd (fd); fd_callback_info[fd].flags |= PROCESS_FD; } /* Stop monitoring file descriptor FD for when read is possible. */ void delete_read_fd (int fd) { delete_keyboard_wait_descriptor (fd); if (fd_callback_info[fd].flags == 0) { fd_callback_info[fd].func = 0; fd_callback_info[fd].data = 0; } } /* Add a file descriptor FD to be monitored for when write is possible. When write is possible, call FUNC with argument DATA. */ void add_write_fd (int fd, fd_callback func, void *data) { eassert (fd >= 0 && fd < FD_SETSIZE); fd_callback_info[fd].func = func; fd_callback_info[fd].data = data; fd_callback_info[fd].flags |= FOR_WRITE; if (fd > max_desc) max_desc = fd; } static void add_non_blocking_write_fd (int fd) { eassert (fd >= 0 && fd < FD_SETSIZE); eassert (fd_callback_info[fd].func == NULL); fd_callback_info[fd].flags |= FOR_WRITE | NON_BLOCKING_CONNECT_FD; if (fd > max_desc) max_desc = fd; ++num_pending_connects; } static void recompute_max_desc (void) { int fd; for (fd = max_desc; fd >= 0; --fd) { if (fd_callback_info[fd].flags != 0) { max_desc = fd; break; } } } /* Stop monitoring file descriptor FD for when write is possible. */ void delete_write_fd (int fd) { if ((fd_callback_info[fd].flags & NON_BLOCKING_CONNECT_FD) != 0) { if (--num_pending_connects < 0) emacs_abort (); } fd_callback_info[fd].flags &= ~(FOR_WRITE | NON_BLOCKING_CONNECT_FD); if (fd_callback_info[fd].flags == 0) { fd_callback_info[fd].func = 0; fd_callback_info[fd].data = 0; if (fd == max_desc) recompute_max_desc (); } } static void compute_input_wait_mask (fd_set *mask) { int fd; FD_ZERO (mask); for (fd = 0; fd <= max_desc; ++fd) { if (fd_callback_info[fd].thread != NULL && fd_callback_info[fd].thread != current_thread) continue; if (fd_callback_info[fd].waiting_thread != NULL && fd_callback_info[fd].waiting_thread != current_thread) continue; if ((fd_callback_info[fd].flags & FOR_READ) != 0) { FD_SET (fd, mask); fd_callback_info[fd].waiting_thread = current_thread; } } } static void compute_non_process_wait_mask (fd_set *mask) { int fd; FD_ZERO (mask); for (fd = 0; fd <= max_desc; ++fd) { if (fd_callback_info[fd].thread != NULL && fd_callback_info[fd].thread != current_thread) continue; if (fd_callback_info[fd].waiting_thread != NULL && fd_callback_info[fd].waiting_thread != current_thread) continue; if ((fd_callback_info[fd].flags & FOR_READ) != 0 && (fd_callback_info[fd].flags & PROCESS_FD) == 0) { FD_SET (fd, mask); fd_callback_info[fd].waiting_thread = current_thread; } } } static void compute_non_keyboard_wait_mask (fd_set *mask) { int fd; FD_ZERO (mask); for (fd = 0; fd <= max_desc; ++fd) { if (fd_callback_info[fd].thread != NULL && fd_callback_info[fd].thread != current_thread) continue; if (fd_callback_info[fd].waiting_thread != NULL && fd_callback_info[fd].waiting_thread != current_thread) continue; if ((fd_callback_info[fd].flags & FOR_READ) != 0 && (fd_callback_info[fd].flags & KEYBOARD_FD) == 0) { FD_SET (fd, mask); fd_callback_info[fd].waiting_thread = current_thread; } } } static void compute_write_mask (fd_set *mask) { int fd; FD_ZERO (mask); for (fd = 0; fd <= max_desc; ++fd) { if (fd_callback_info[fd].thread != NULL && fd_callback_info[fd].thread != current_thread) continue; if (fd_callback_info[fd].waiting_thread != NULL && fd_callback_info[fd].waiting_thread != current_thread) continue; if ((fd_callback_info[fd].flags & FOR_WRITE) != 0) { FD_SET (fd, mask); fd_callback_info[fd].waiting_thread = current_thread; } } } static void clear_waiting_thread_info (void) { int fd; for (fd = 0; fd <= max_desc; ++fd) { if (fd_callback_info[fd].waiting_thread == current_thread) fd_callback_info[fd].waiting_thread = NULL; } } /* Compute the Lisp form of the process status, p->status, from the numeric status that was returned by `wait'. */ static Lisp_Object status_convert (int); static void update_status (struct Lisp_Process *p) { eassert (p->raw_status_new); pset_status (p, status_convert (p->raw_status)); p->raw_status_new = 0; } /* Convert a process status word in Unix format to the list that we use internally. */ static Lisp_Object status_convert (int w) { if (WIFSTOPPED (w)) return Fcons (Qstop, Fcons (make_number (WSTOPSIG (w)), Qnil)); else if (WIFEXITED (w)) return Fcons (Qexit, Fcons (make_number (WEXITSTATUS (w)), WCOREDUMP (w) ? Qt : Qnil)); else if (WIFSIGNALED (w)) return Fcons (Qsignal, Fcons (make_number (WTERMSIG (w)), WCOREDUMP (w) ? Qt : Qnil)); else return Qrun; } /* True if STATUS is that of a process attempting connection. */ static bool connecting_status (Lisp_Object status) { return CONSP (status) && EQ (XCAR (status), Qconnect); } /* Given a status-list, extract the three pieces of information and store them individually through the three pointers. */ static void decode_status (Lisp_Object l, Lisp_Object *symbol, Lisp_Object *code, bool *coredump) { Lisp_Object tem; if (connecting_status (l)) l = XCAR (l); if (SYMBOLP (l)) { *symbol = l; *code = make_number (0); *coredump = 0; } else { *symbol = XCAR (l); tem = XCDR (l); *code = XCAR (tem); tem = XCDR (tem); *coredump = !NILP (tem); } } /* Return a string describing a process status list. */ static Lisp_Object status_message (struct Lisp_Process *p) { Lisp_Object status = p->status; Lisp_Object symbol, code; bool coredump; Lisp_Object string; decode_status (status, &symbol, &code, &coredump); if (EQ (symbol, Qsignal) || EQ (symbol, Qstop)) { char const *signame; synchronize_system_messages_locale (); signame = strsignal (XFASTINT (code)); if (signame == 0) string = build_string ("unknown"); else { int c1, c2; string = build_unibyte_string (signame); if (! NILP (Vlocale_coding_system)) string = (code_convert_string_norecord (string, Vlocale_coding_system, 0)); c1 = STRING_CHAR (SDATA (string)); c2 = downcase (c1); if (c1 != c2) Faset (string, make_number (0), make_number (c2)); } AUTO_STRING (suffix, coredump ? " (core dumped)\n" : "\n"); return concat2 (string, suffix); } else if (EQ (symbol, Qexit)) { if (NETCONN1_P (p)) return build_string (XFASTINT (code) == 0 ? "deleted\n" : "connection broken by remote peer\n"); if (XFASTINT (code) == 0) return build_string ("finished\n"); AUTO_STRING (prefix, "exited abnormally with code "); string = Fnumber_to_string (code); AUTO_STRING (suffix, coredump ? " (core dumped)\n" : "\n"); return concat3 (prefix, string, suffix); } else if (EQ (symbol, Qfailed)) { AUTO_STRING (format, "failed with code %s\n"); return CALLN (Fformat, format, code); } else return Fcopy_sequence (Fsymbol_name (symbol)); } enum { PTY_NAME_SIZE = 24 }; /* Open an available pty, returning a file descriptor. Store into PTY_NAME the file name of the terminal corresponding to the pty. Return -1 on failure. */ static int allocate_pty (char pty_name[PTY_NAME_SIZE]) { #ifdef HAVE_PTYS int fd; #ifdef PTY_ITERATION PTY_ITERATION #else register int c, i; for (c = FIRST_PTY_LETTER; c <= 'z'; c++) for (i = 0; i < 16; i++) #endif { #ifdef PTY_NAME_SPRINTF PTY_NAME_SPRINTF #else sprintf (pty_name, "/dev/pty%c%x", c, i); #endif /* no PTY_NAME_SPRINTF */ #ifdef PTY_OPEN PTY_OPEN; #else /* no PTY_OPEN */ fd = emacs_open (pty_name, O_RDWR | O_NONBLOCK, 0); #endif /* no PTY_OPEN */ if (fd >= 0) { #ifdef PTY_TTY_NAME_SPRINTF PTY_TTY_NAME_SPRINTF #else sprintf (pty_name, "/dev/tty%c%x", c, i); #endif /* no PTY_TTY_NAME_SPRINTF */ /* Set FD's close-on-exec flag. This is needed even if PT_OPEN calls posix_openpt with O_CLOEXEC, since POSIX doesn't require support for that combination. Do this after PTY_TTY_NAME_SPRINTF, which on some platforms doesn't work if the close-on-exec flag is set (Bug#20555). Multithreaded platforms where posix_openpt ignores O_CLOEXEC (or where PTY_OPEN doesn't call posix_openpt) have a race condition between the PTY_OPEN and here. */ fcntl (fd, F_SETFD, FD_CLOEXEC); /* Check to make certain that both sides are available. This avoids a nasty yet stupid bug in rlogins. */ if (faccessat (AT_FDCWD, pty_name, R_OK | W_OK, AT_EACCESS) != 0) { emacs_close (fd); continue; } setup_pty (fd); return fd; } } #endif /* HAVE_PTYS */ return -1; } /* Allocate basically initialized process. */ static struct Lisp_Process * allocate_process (void) { return ALLOCATE_ZEROED_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS); } static Lisp_Object make_process (Lisp_Object name) { struct Lisp_Process *p = allocate_process (); /* Initialize Lisp data. Note that allocate_process initializes all Lisp data to nil, so do it only for slots which should not be nil. */ pset_status (p, Qrun); pset_mark (p, Fmake_marker ()); pset_thread (p, Fcurrent_thread ()); /* Initialize non-Lisp data. Note that allocate_process zeroes out all non-Lisp data, so do it only for slots which should not be zero. */ p->infd = -1; p->outfd = -1; for (int i = 0; i < PROCESS_OPEN_FDS; i++) p->open_fd[i] = -1; #ifdef HAVE_GNUTLS verify (GNUTLS_STAGE_EMPTY == 0); eassert (p->gnutls_initstage == GNUTLS_STAGE_EMPTY); eassert (NILP (p->gnutls_boot_parameters)); #endif /* If name is already in use, modify it until it is unused. */ Lisp_Object name1 = name; for (printmax_t i = 1; ; i++) { Lisp_Object tem = Fget_process (name1); if (NILP (tem)) break; char const suffix_fmt[] = "<%"pMd">"; char suffix[sizeof suffix_fmt + INT_STRLEN_BOUND (printmax_t)]; AUTO_STRING_WITH_LEN (lsuffix, suffix, sprintf (suffix, suffix_fmt, i)); name1 = concat2 (name, lsuffix); } name = name1; pset_name (p, name); pset_sentinel (p, Qinternal_default_process_sentinel); pset_filter (p, Qinternal_default_process_filter); Lisp_Object val; XSETPROCESS (val, p); Vprocess_alist = Fcons (Fcons (name, val), Vprocess_alist); return val; } static void remove_process (register Lisp_Object proc) { register Lisp_Object pair; pair = Frassq (proc, Vprocess_alist); Vprocess_alist = Fdelq (pair, Vprocess_alist); deactivate_process (proc); } void update_processes_for_thread_death (Lisp_Object dying_thread) { Lisp_Object pair; for (pair = Vprocess_alist; !NILP (pair); pair = XCDR (pair)) { Lisp_Object process = XCDR (XCAR (pair)); if (EQ (XPROCESS (process)->thread, dying_thread)) { struct Lisp_Process *proc = XPROCESS (process); pset_thread (proc, Qnil); if (proc->infd >= 0) fd_callback_info[proc->infd].thread = NULL; if (proc->outfd >= 0) fd_callback_info[proc->outfd].thread = NULL; } } } #ifdef HAVE_GETADDRINFO_A static void free_dns_request (Lisp_Object proc) { struct Lisp_Process *p = XPROCESS (proc); if (p->dns_request->ar_result) freeaddrinfo (p->dns_request->ar_result); xfree (p->dns_request); p->dns_request = NULL; } #endif DEFUN ("processp", Fprocessp, Sprocessp, 1, 1, 0, doc: /* Return t if OBJECT is a process. */) (Lisp_Object object) { return PROCESSP (object) ? Qt : Qnil; } DEFUN ("get-process", Fget_process, Sget_process, 1, 1, 0, doc: /* Return the process named NAME, or nil if there is none. */) (register Lisp_Object name) { if (PROCESSP (name)) return name; CHECK_STRING (name); return Fcdr (Fassoc (name, Vprocess_alist, Qnil)); } /* This is how commands for the user decode process arguments. It accepts a process, a process name, a buffer, a buffer name, or nil. Buffers denote the first process in the buffer, and nil denotes the current buffer. */ static Lisp_Object get_process (register Lisp_Object name) { register Lisp_Object proc, obj; if (STRINGP (name)) { obj = Fget_process (name); if (NILP (obj)) obj = Fget_buffer (name); if (NILP (obj)) error ("Process %s does not exist", SDATA (name)); } else if (NILP (name)) obj = Fcurrent_buffer (); else obj = name; /* Now obj should be either a buffer object or a process object. */ if (BUFFERP (obj)) { if (NILP (BVAR (XBUFFER (obj), name))) error ("Attempt to get process for a dead buffer"); proc = Fget_buffer_process (obj); if (NILP (proc)) error ("Buffer %s has no process", SDATA (BVAR (XBUFFER (obj), name))); } else { CHECK_PROCESS (obj); proc = obj; } return proc; } /* Fdelete_process promises to immediately forget about the process, but in reality, Emacs needs to remember those processes until they have been treated by the SIGCHLD handler and waitpid has been invoked on them; otherwise they might fill up the kernel's process table. Some processes created by call-process are also put onto this list. Members of this list are (process-ID . filename) pairs. The process-ID is a number; the filename, if a string, is a file that needs to be removed after the process exits. */ static Lisp_Object deleted_pid_list; void record_deleted_pid (pid_t pid, Lisp_Object filename) { deleted_pid_list = Fcons (Fcons (make_fixnum_or_float (pid), filename), /* GC treated elements set to nil. */ Fdelq (Qnil, deleted_pid_list)); } DEFUN ("delete-process", Fdelete_process, Sdelete_process, 1, 1, 0, doc: /* Delete PROCESS: kill it and forget about it immediately. PROCESS may be a process, a buffer, the name of a process or buffer, or nil, indicating the current buffer's process. */) (register Lisp_Object process) { register struct Lisp_Process *p; process = get_process (process); p = XPROCESS (process); #ifdef HAVE_GETADDRINFO_A if (p->dns_request) { /* Cancel the request. Unless shutting down, wait until completion. Free the request if completely canceled. */ bool canceled = gai_cancel (p->dns_request) != EAI_NOTCANCELED; if (!canceled && !inhibit_sentinels) { struct gaicb const *req = p->dns_request; while (gai_suspend (&req, 1, NULL) != 0) continue; canceled = true; } if (canceled) free_dns_request (process); } #endif p->raw_status_new = 0; if (NETCONN1_P (p) || SERIALCONN1_P (p) || PIPECONN1_P (p)) { pset_status (p, list2 (Qexit, make_number (0))); p->tick = ++process_tick; status_notify (p, NULL); redisplay_preserve_echo_area (13); } else { if (p->alive) record_kill_process (p, Qnil); if (p->infd >= 0) { /* Update P's status, since record_kill_process will make the SIGCHLD handler update deleted_pid_list, not *P. */ Lisp_Object symbol; if (p->raw_status_new) update_status (p); symbol = CONSP (p->status) ? XCAR (p->status) : p->status; if (! (EQ (symbol, Qsignal) || EQ (symbol, Qexit))) pset_status (p, list2 (Qsignal, make_number (SIGKILL))); p->tick = ++process_tick; status_notify (p, NULL); redisplay_preserve_echo_area (13); } } remove_process (process); return Qnil; } DEFUN ("process-status", Fprocess_status, Sprocess_status, 1, 1, 0, doc: /* Return the status of PROCESS. The returned value is one of the following symbols: run -- for a process that is running. stop -- for a process stopped but continuable. exit -- for a process that has exited. signal -- for a process that has got a fatal signal. open -- for a network stream connection that is open. listen -- for a network stream server that is listening. closed -- for a network stream connection that is closed. connect -- when waiting for a non-blocking connection to complete. failed -- when a non-blocking connection has failed. nil -- if arg is a process name and no such process exists. PROCESS may be a process, a buffer, the name of a process, or nil, indicating the current buffer's process. */) (register Lisp_Object process) { register struct Lisp_Process *p; register Lisp_Object status; if (STRINGP (process)) process = Fget_process (process); else process = get_process (process); if (NILP (process)) return process; p = XPROCESS (process); if (p->raw_status_new) update_status (p); status = p->status; if (CONSP (status)) status = XCAR (status); if (NETCONN1_P (p) || SERIALCONN1_P (p) || PIPECONN1_P (p)) { if (EQ (status, Qexit)) status = Qclosed; else if (EQ (p->command, Qt)) status = Qstop; else if (EQ (status, Qrun)) status = Qopen; } return status; } DEFUN ("process-exit-status", Fprocess_exit_status, Sprocess_exit_status, 1, 1, 0, doc: /* Return the exit status of PROCESS or the signal number that killed it. If PROCESS has not yet exited or died, return 0. */) (register Lisp_Object process) { CHECK_PROCESS (process); if (XPROCESS (process)->raw_status_new) update_status (XPROCESS (process)); if (CONSP (XPROCESS (process)->status)) return XCAR (XCDR (XPROCESS (process)->status)); return make_number (0); } DEFUN ("process-id", Fprocess_id, Sprocess_id, 1, 1, 0, doc: /* Return the process id of PROCESS. This is the pid of the external process which PROCESS uses or talks to. For a network, serial, and pipe connections, this value is nil. */) (register Lisp_Object process) { pid_t pid; CHECK_PROCESS (process); pid = XPROCESS (process)->pid; return (pid ? make_fixnum_or_float (pid) : Qnil); } DEFUN ("process-name", Fprocess_name, Sprocess_name, 1, 1, 0, doc: /* Return the name of PROCESS, as a string. This is the name of the program invoked in PROCESS, possibly modified to make it unique among process names. */) (register Lisp_Object process) { CHECK_PROCESS (process); return XPROCESS (process)->name; } DEFUN ("process-command", Fprocess_command, Sprocess_command, 1, 1, 0, doc: /* Return the command that was executed to start PROCESS. This is a list of strings, the first string being the program executed and the rest of the strings being the arguments given to it. For a network or serial or pipe connection, this is nil (process is running) or t (process is stopped). */) (register Lisp_Object process) { CHECK_PROCESS (process); return XPROCESS (process)->command; } DEFUN ("process-tty-name", Fprocess_tty_name, Sprocess_tty_name, 1, 1, 0, doc: /* Return the name of the terminal PROCESS uses, or nil if none. This is the terminal that the process itself reads and writes on, not the name of the pty that Emacs uses to talk with that terminal. */) (register Lisp_Object process) { CHECK_PROCESS (process); return XPROCESS (process)->tty_name; } DEFUN ("set-process-buffer", Fset_process_buffer, Sset_process_buffer, 2, 2, 0, doc: /* Set buffer associated with PROCESS to BUFFER (a buffer, or nil). Return BUFFER. */) (register Lisp_Object process, Lisp_Object buffer) { struct Lisp_Process *p; CHECK_PROCESS (process); if (!NILP (buffer)) CHECK_BUFFER (buffer); p = XPROCESS (process); pset_buffer (p, buffer); if (NETCONN1_P (p) || SERIALCONN1_P (p) || PIPECONN1_P (p)) pset_childp (p, Fplist_put (p->childp, QCbuffer, buffer)); setup_process_coding_systems (process); return buffer; } DEFUN ("process-buffer", Fprocess_buffer, Sprocess_buffer, 1, 1, 0, doc: /* Return the buffer PROCESS is associated with. The default process filter inserts output from PROCESS into this buffer. */) (register Lisp_Object process) { CHECK_PROCESS (process); return XPROCESS (process)->buffer; } DEFUN ("process-mark", Fprocess_mark, Sprocess_mark, 1, 1, 0, doc: /* Return the marker for the end of the last output from PROCESS. */) (register Lisp_Object process) { CHECK_PROCESS (process); return XPROCESS (process)->mark; } static void set_process_filter_masks (struct Lisp_Process *p) { if (EQ (p->filter, Qt) && !EQ (p->status, Qlisten)) delete_read_fd (p->infd); else if (EQ (p->filter, Qt) /* Network or serial process not stopped: */ && !EQ (p->command, Qt)) add_process_read_fd (p->infd); } DEFUN ("set-process-filter", Fset_process_filter, Sset_process_filter, 2, 2, 0, doc: /* Give PROCESS the filter function FILTER; nil means default. A value of t means stop accepting output from the process. When a process has a non-default filter, its buffer is not used for output. Instead, each time it does output, the entire string of output is passed to the filter. The filter gets two arguments: the process and the string of output. The string argument is normally a multibyte string, except: - if the process's input coding system is no-conversion or raw-text, it is a unibyte string (the non-converted input). */) (Lisp_Object process, Lisp_Object filter) { CHECK_PROCESS (process); struct Lisp_Process *p = XPROCESS (process); /* Don't signal an error if the process's input file descriptor is closed. This could make debugging Lisp more difficult, for example when doing something like (setq process (start-process ...)) (debug) (set-process-filter process ...) */ if (NILP (filter)) filter = Qinternal_default_process_filter; pset_filter (p, filter); if (p->infd >= 0) set_process_filter_masks (p); if (NETCONN1_P (p) || SERIALCONN1_P (p) || PIPECONN1_P (p)) pset_childp (p, Fplist_put (p->childp, QCfilter, filter)); setup_process_coding_systems (process); return filter; } DEFUN ("process-filter", Fprocess_filter, Sprocess_filter, 1, 1, 0, doc: /* Return the filter function of PROCESS. See `set-process-filter' for more info on filter functions. */) (register Lisp_Object process) { CHECK_PROCESS (process); return XPROCESS (process)->filter; } DEFUN ("set-process-sentinel", Fset_process_sentinel, Sset_process_sentinel, 2, 2, 0, doc: /* Give PROCESS the sentinel SENTINEL; nil for default. The sentinel is called as a function when the process changes state. It gets two arguments: the process, and a string describing the change. */) (register Lisp_Object process, Lisp_Object sentinel) { struct Lisp_Process *p; CHECK_PROCESS (process); p = XPROCESS (process); if (NILP (sentinel)) sentinel = Qinternal_default_process_sentinel; pset_sentinel (p, sentinel); if (NETCONN1_P (p) || SERIALCONN1_P (p) || PIPECONN1_P (p)) pset_childp (p, Fplist_put (p->childp, QCsentinel, sentinel)); return sentinel; } DEFUN ("process-sentinel", Fprocess_sentinel, Sprocess_sentinel, 1, 1, 0, doc: /* Return the sentinel of PROCESS. See `set-process-sentinel' for more info on sentinels. */) (register Lisp_Object process) { CHECK_PROCESS (process); return XPROCESS (process)->sentinel; } DEFUN ("set-process-thread", Fset_process_thread, Sset_process_thread, 2, 2, 0, doc: /* Set the locking thread of PROCESS to be THREAD. If THREAD is nil, the process is unlocked. */) (Lisp_Object process, Lisp_Object thread) { struct Lisp_Process *proc; struct thread_state *tstate; CHECK_PROCESS (process); if (NILP (thread)) tstate = NULL; else { CHECK_THREAD (thread); tstate = XTHREAD (thread); } proc = XPROCESS (process); pset_thread (proc, thread); if (proc->infd >= 0) fd_callback_info[proc->infd].thread = tstate; if (proc->outfd >= 0) fd_callback_info[proc->outfd].thread = tstate; return thread; } DEFUN ("process-thread", Fprocess_thread, Sprocess_thread, 1, 1, 0, doc: /* Ret the locking thread of PROCESS. If PROCESS is unlocked, this function returns nil. */) (Lisp_Object process) { CHECK_PROCESS (process); return XPROCESS (process)->thread; } DEFUN ("set-process-window-size", Fset_process_window_size, Sset_process_window_size, 3, 3, 0, doc: /* Tell PROCESS that it has logical window size WIDTH by HEIGHT. Value is t if PROCESS was successfully told about the window size, nil otherwise. */) (Lisp_Object process, Lisp_Object height, Lisp_Object width) { CHECK_PROCESS (process); /* All known platforms store window sizes as 'unsigned short'. */ CHECK_RANGED_INTEGER (height, 0, USHRT_MAX); CHECK_RANGED_INTEGER (width, 0, USHRT_MAX); if (NETCONN_P (process) || XPROCESS (process)->infd < 0 || (set_window_size (XPROCESS (process)->infd, XINT (height), XINT (width)) < 0)) return Qnil; else return Qt; } DEFUN ("set-process-inherit-coding-system-flag", Fset_process_inherit_coding_system_flag, Sset_process_inherit_coding_system_flag, 2, 2, 0, doc: /* Determine whether buffer of PROCESS will inherit coding-system. If the second argument FLAG is non-nil, then the variable `buffer-file-coding-system' of the buffer associated with PROCESS will be bound to the value of the coding system used to decode the process output. This is useful when the coding system specified for the process buffer leaves either the character code conversion or the end-of-line conversion unspecified, or if the coding system used to decode the process output is more appropriate for saving the process buffer. Binding the variable `inherit-process-coding-system' to non-nil before starting the process is an alternative way of setting the inherit flag for the process which will run. This function returns FLAG. */) (register Lisp_Object process, Lisp_Object flag) { CHECK_PROCESS (process); XPROCESS (process)->inherit_coding_system_flag = !NILP (flag); return flag; } DEFUN ("set-process-query-on-exit-flag", Fset_process_query_on_exit_flag, Sset_process_query_on_exit_flag, 2, 2, 0, doc: /* Specify if query is needed for PROCESS when Emacs is exited. If the second argument FLAG is non-nil, Emacs will query the user before exiting or killing a buffer if PROCESS is running. This function returns FLAG. */) (register Lisp_Object process, Lisp_Object flag) { CHECK_PROCESS (process); XPROCESS (process)->kill_without_query = NILP (flag); return flag; } DEFUN ("process-query-on-exit-flag", Fprocess_query_on_exit_flag, Sprocess_query_on_exit_flag, 1, 1, 0, doc: /* Return the current value of query-on-exit flag for PROCESS. */) (register Lisp_Object process) { CHECK_PROCESS (process); return (XPROCESS (process)->kill_without_query ? Qnil : Qt); } DEFUN ("process-contact", Fprocess_contact, Sprocess_contact, 1, 2, 0, doc: /* Return the contact info of PROCESS; t for a real child. For a network or serial or pipe connection, the value depends on the optional KEY arg. If KEY is nil, value is a cons cell of the form \(HOST SERVICE) for a network connection or (PORT SPEED) for a serial connection; it is t for a pipe connection. If KEY is t, the complete contact information for the connection is returned, else the specific value for the keyword KEY is returned. See `make-network-process', `make-serial-process', or `make-pipe-process' for the list of keywords. If PROCESS is a non-blocking network process that hasn't been fully set up yet, this function will block until socket setup has completed. */) (Lisp_Object process, Lisp_Object key) { Lisp_Object contact; CHECK_PROCESS (process); contact = XPROCESS (process)->childp; #ifdef DATAGRAM_SOCKETS if (NETCONN_P (process)) wait_for_socket_fds (process, "process-contact"); if (DATAGRAM_CONN_P (process) && (EQ (key, Qt) || EQ (key, QCremote))) contact = Fplist_put (contact, QCremote, Fprocess_datagram_address (process)); #endif if ((!NETCONN_P (process) && !SERIALCONN_P (process) && !PIPECONN_P (process)) || EQ (key, Qt)) return contact; if (NILP (key) && NETCONN_P (process)) return list2 (Fplist_get (contact, QChost), Fplist_get (contact, QCservice)); if (NILP (key) && SERIALCONN_P (process)) return list2 (Fplist_get (contact, QCport), Fplist_get (contact, QCspeed)); /* FIXME: Return a meaningful value (e.g., the child end of the pipe) if the pipe process is useful for purposes other than receiving stderr. */ if (NILP (key) && PIPECONN_P (process)) return Qt; return Fplist_get (contact, key); } DEFUN ("process-plist", Fprocess_plist, Sprocess_plist, 1, 1, 0, doc: /* Return the plist of PROCESS. */) (register Lisp_Object process) { CHECK_PROCESS (process); return XPROCESS (process)->plist; } DEFUN ("set-process-plist", Fset_process_plist, Sset_process_plist, 2, 2, 0, doc: /* Replace the plist of PROCESS with PLIST. Return PLIST. */) (Lisp_Object process, Lisp_Object plist) { CHECK_PROCESS (process); CHECK_LIST (plist); pset_plist (XPROCESS (process), plist); return plist; } #if 0 /* Turned off because we don't currently record this info in the process. Perhaps add it. */ DEFUN ("process-connection", Fprocess_connection, Sprocess_connection, 1, 1, 0, doc: /* Return the connection type of PROCESS. The value is nil for a pipe, t or `pty' for a pty, or `stream' for a socket connection. */) (Lisp_Object process) { return XPROCESS (process)->type; } #endif DEFUN ("process-type", Fprocess_type, Sprocess_type, 1, 1, 0, doc: /* Return the connection type of PROCESS. The value is either the symbol `real', `network', `serial', or `pipe'. PROCESS may be a process, a buffer, the name of a process or buffer, or nil, indicating the current buffer's process. */) (Lisp_Object process) { Lisp_Object proc; proc = get_process (process); return XPROCESS (proc)->type; } DEFUN ("format-network-address", Fformat_network_address, Sformat_network_address, 1, 2, 0, doc: /* Convert network ADDRESS from internal format to a string. A 4 or 5 element vector represents an IPv4 address (with port number). An 8 or 9 element vector represents an IPv6 address (with port number). If optional second argument OMIT-PORT is non-nil, don't include a port number in the string, even when present in ADDRESS. Return nil if format of ADDRESS is invalid. */) (Lisp_Object address, Lisp_Object omit_port) { if (NILP (address)) return Qnil; if (STRINGP (address)) /* AF_LOCAL */ return address; if (VECTORP (address)) /* AF_INET or AF_INET6 */ { register struct Lisp_Vector *p = XVECTOR (address); ptrdiff_t size = p->header.size; Lisp_Object args[10]; int nargs, i; char const *format; if (size == 4 || (size == 5 && !NILP (omit_port))) { format = "%d.%d.%d.%d"; nargs = 4; } else if (size == 5) { format = "%d.%d.%d.%d:%d"; nargs = 5; } else if (size == 8 || (size == 9 && !NILP (omit_port))) { format = "%x:%x:%x:%x:%x:%x:%x:%x"; nargs = 8; } else if (size == 9) { format = "[%x:%x:%x:%x:%x:%x:%x:%x]:%d"; nargs = 9; } else return Qnil; AUTO_STRING (format_obj, format); args[0] = format_obj; for (i = 0; i < nargs; i++) { if (! RANGED_INTEGERP (0, p->contents[i], 65535)) return Qnil; if (nargs <= 5 /* IPv4 */ && i < 4 /* host, not port */ && XINT (p->contents[i]) > 255) return Qnil; args[i + 1] = p->contents[i]; } return Fformat (nargs + 1, args); } if (CONSP (address)) { AUTO_STRING (format, ""); return CALLN (Fformat, format, Fcar (address)); } return Qnil; } DEFUN ("process-list", Fprocess_list, Sprocess_list, 0, 0, 0, doc: /* Return a list of all processes that are Emacs sub-processes. */) (void) { return Fmapcar (Qcdr, Vprocess_alist); } /* Starting asynchronous inferior processes. */ DEFUN ("make-process", Fmake_process, Smake_process, 0, MANY, 0, doc: /* Start a program in a subprocess. Return the process object for it. This is similar to `start-process', but arguments are specified as keyword/argument pairs. The following arguments are defined: :name NAME -- NAME is name for process. It is modified if necessary to make it unique. :buffer BUFFER -- BUFFER is the buffer (or buffer-name) to associate with the process. Process output goes at end of that buffer, unless you specify a filter function to handle the output. BUFFER may be also nil, meaning that this process is not associated with any buffer. :command COMMAND -- COMMAND is a list starting with the program file name, followed by strings to give to the program as arguments. :coding CODING -- If CODING is a symbol, it specifies the coding system used for both reading and writing for this process. If CODING is a cons (DECODING . ENCODING), DECODING is used for reading, and ENCODING is used for writing. :noquery BOOL -- When exiting Emacs, query the user if BOOL is nil and the process is running. If BOOL is not given, query before exiting. :stop BOOL -- Start process in the `stopped' state if BOOL non-nil. In the stopped state, a process does not accept incoming data, but you can send outgoing data. The stopped state is cleared by `continue-process' and set by `stop-process'. :connection-type TYPE -- TYPE is control type of device used to communicate with subprocesses. Values are `pipe' to use a pipe, `pty' to use a pty, or nil to use the default specified through `process-connection-type'. :filter FILTER -- Install FILTER as the process filter. :sentinel SENTINEL -- Install SENTINEL as the process sentinel. :stderr STDERR -- STDERR is either a buffer or a pipe process attached to the standard error of subprocess. Specifying this implies `:connection-type' is set to `pipe'. usage: (make-process &rest ARGS) */) (ptrdiff_t nargs, Lisp_Object *args) { Lisp_Object buffer, name, command, program, proc, contact, current_dir, tem; Lisp_Object xstderr, stderrproc; ptrdiff_t count = SPECPDL_INDEX (); if (nargs == 0) return Qnil; /* Save arguments for process-contact and clone-process. */ contact = Flist (nargs, args); buffer = Fplist_get (contact, QCbuffer); if (!NILP (buffer)) buffer = Fget_buffer_create (buffer); /* Make sure that the child will be able to chdir to the current buffer's current directory, or its unhandled equivalent. We can't just have the child check for an error when it does the chdir, since it's in a vfork. */ current_dir = encode_current_directory (); name = Fplist_get (contact, QCname); CHECK_STRING (name); command = Fplist_get (contact, QCcommand); if (CONSP (command)) program = XCAR (command); else program = Qnil; if (!NILP (program)) CHECK_STRING (program); bool query_on_exit = NILP (Fplist_get (contact, QCnoquery)); stderrproc = Qnil; xstderr = Fplist_get (contact, QCstderr); if (PROCESSP (xstderr)) { if (!PIPECONN_P (xstderr)) error ("Process is not a pipe process"); stderrproc = xstderr; } else if (!NILP (xstderr)) { CHECK_STRING (program); stderrproc = CALLN (Fmake_pipe_process, QCname, concat2 (name, build_string (" stderr")), QCbuffer, Fget_buffer_create (xstderr), QCnoquery, query_on_exit ? Qnil : Qt); } proc = make_process (name); record_unwind_protect (start_process_unwind, proc); pset_childp (XPROCESS (proc), Qt); eassert (NILP (XPROCESS (proc)->plist)); pset_type (XPROCESS (proc), Qreal); pset_buffer (XPROCESS (proc), buffer); pset_sentinel (XPROCESS (proc), Fplist_get (contact, QCsentinel)); pset_filter (XPROCESS (proc), Fplist_get (contact, QCfilter)); pset_command (XPROCESS (proc), Fcopy_sequence (command)); if (!query_on_exit) XPROCESS (proc)->kill_without_query = 1; if (tem = Fplist_get (contact, QCstop), !NILP (tem)) pset_command (XPROCESS (proc), Qt); tem = Fplist_get (contact, QCconnection_type); if (EQ (tem, Qpty)) XPROCESS (proc)->pty_flag = true; else if (EQ (tem, Qpipe)) XPROCESS (proc)->pty_flag = false; else if (NILP (tem)) XPROCESS (proc)->pty_flag = !NILP (Vprocess_connection_type); else report_file_error ("Unknown connection type", tem); if (!NILP (stderrproc)) { pset_stderrproc (XPROCESS (proc), stderrproc); XPROCESS (proc)->pty_flag = false; } #ifdef HAVE_GNUTLS /* AKA GNUTLS_INITSTAGE(proc). */ verify (GNUTLS_STAGE_EMPTY == 0); eassert (XPROCESS (proc)->gnutls_initstage == GNUTLS_STAGE_EMPTY); eassert (NILP (XPROCESS (proc)->gnutls_cred_type)); #endif XPROCESS (proc)->adaptive_read_buffering = (NILP (Vprocess_adaptive_read_buffering) ? 0 : EQ (Vprocess_adaptive_read_buffering, Qt) ? 1 : 2); /* Make the process marker point into the process buffer (if any). */ if (BUFFERP (buffer)) set_marker_both (XPROCESS (proc)->mark, buffer, BUF_ZV (XBUFFER (buffer)), BUF_ZV_BYTE (XBUFFER (buffer))); USE_SAFE_ALLOCA; { /* Decide coding systems for communicating with the process. Here we don't setup the structure coding_system nor pay attention to unibyte mode. They are done in create_process. */ /* Qt denotes we have not yet called Ffind_operation_coding_system. */ Lisp_Object coding_systems = Qt; Lisp_Object val, *args2; tem = Fplist_get (contact, QCcoding); if (!NILP (tem)) { val = tem; if (CONSP (val)) val = XCAR (val); } else val = Vcoding_system_for_read; if (NILP (val)) { ptrdiff_t nargs2 = 3 + XINT (Flength (command)); Lisp_Object tem2; SAFE_ALLOCA_LISP (args2, nargs2); ptrdiff_t i = 0; args2[i++] = Qstart_process; args2[i++] = name; args2[i++] = buffer; for (tem2 = command; CONSP (tem2); tem2 = XCDR (tem2)) args2[i++] = XCAR (tem2); if (!NILP (program)) coding_systems = Ffind_operation_coding_system (nargs2, args2); if (CONSP (coding_systems)) val = XCAR (coding_systems); else if (CONSP (Vdefault_process_coding_system)) val = XCAR (Vdefault_process_coding_system); } pset_decode_coding_system (XPROCESS (proc), val); if (!NILP (tem)) { val = tem; if (CONSP (val)) val = XCDR (val); } else val = Vcoding_system_for_write; if (NILP (val)) { if (EQ (coding_systems, Qt)) { ptrdiff_t nargs2 = 3 + XINT (Flength (command)); Lisp_Object tem2; SAFE_ALLOCA_LISP (args2, nargs2); ptrdiff_t i = 0; args2[i++] = Qstart_process; args2[i++] = name; args2[i++] = buffer; for (tem2 = command; CONSP (tem2); tem2 = XCDR (tem2)) args2[i++] = XCAR (tem2); if (!NILP (program)) coding_systems = Ffind_operation_coding_system (nargs2, args2); } if (CONSP (coding_systems)) val = XCDR (coding_systems); else if (CONSP (Vdefault_process_coding_system)) val = XCDR (Vdefault_process_coding_system); } pset_encode_coding_system (XPROCESS (proc), val); /* Note: At this moment, the above coding system may leave text-conversion or eol-conversion unspecified. They will be decided after we read output from the process and decode it by some coding system, or just before we actually send a text to the process. */ } pset_decoding_buf (XPROCESS (proc), empty_unibyte_string); eassert (XPROCESS (proc)->decoding_carryover == 0); pset_encoding_buf (XPROCESS (proc), empty_unibyte_string); XPROCESS (proc)->inherit_coding_system_flag = !(NILP (buffer) || !inherit_process_coding_system); if (!NILP (program)) { Lisp_Object program_args = XCDR (command); /* If program file name is not absolute, search our path for it. Put the name we will really use in TEM. */ if (!IS_DIRECTORY_SEP (SREF (program, 0)) && !(SCHARS (program) > 1 && IS_DEVICE_SEP (SREF (program, 1)))) { tem = Qnil; openp (Vexec_path, program, Vexec_suffixes, &tem, make_number (X_OK), false); if (NILP (tem)) report_file_error ("Searching for program", program); tem = Fexpand_file_name (tem, Qnil); } else { if (!NILP (Ffile_directory_p (program))) error ("Specified program for new process is a directory"); tem = program; } /* Remove "/:" from TEM. */ tem = remove_slash_colon (tem); Lisp_Object arg_encoding = Qnil; /* Encode the file name and put it in NEW_ARGV. That's where the child will use it to execute the program. */ tem = list1 (ENCODE_FILE (tem)); ptrdiff_t new_argc = 1; /* Here we encode arguments by the coding system used for sending data to the process. We don't support using different coding systems for encoding arguments and for encoding data sent to the process. */ for (Lisp_Object tem2 = program_args; CONSP (tem2); tem2 = XCDR (tem2)) { Lisp_Object arg = XCAR (tem2); CHECK_STRING (arg); if (STRING_MULTIBYTE (arg)) { if (NILP (arg_encoding)) arg_encoding = (complement_process_encoding_system (XPROCESS (proc)->encode_coding_system)); arg = code_convert_string_norecord (arg, arg_encoding, 1); } tem = Fcons (arg, tem); new_argc++; } /* Now that everything is encoded we can collect the strings into NEW_ARGV. */ char **new_argv; SAFE_NALLOCA (new_argv, 1, new_argc + 1); new_argv[new_argc] = 0; for (ptrdiff_t i = new_argc - 1; i >= 0; i--) { new_argv[i] = SSDATA (XCAR (tem)); tem = XCDR (tem); } create_process (proc, new_argv, current_dir); } else create_pty (proc); SAFE_FREE (); return unbind_to (count, proc); } /* If PROC doesn't have its pid set, then an error was signaled and the process wasn't started successfully, so remove it. */ static void start_process_unwind (Lisp_Object proc) { if (XPROCESS (proc)->pid <= 0 && XPROCESS (proc)->pid != -2) remove_process (proc); } /* If *FD_ADDR is nonnegative, close it, and mark it as closed. */ static void close_process_fd (int *fd_addr) { int fd = *fd_addr; if (0 <= fd) { *fd_addr = -1; emacs_close (fd); } } /* Indexes of file descriptors in open_fds. */ enum { /* The pipe from Emacs to its subprocess. */ SUBPROCESS_STDIN, WRITE_TO_SUBPROCESS, /* The main pipe from the subprocess to Emacs. */ READ_FROM_SUBPROCESS, SUBPROCESS_STDOUT, /* The pipe from the subprocess to Emacs that is closed when the subprocess execs. */ READ_FROM_EXEC_MONITOR, EXEC_MONITOR_OUTPUT }; verify (PROCESS_OPEN_FDS == EXEC_MONITOR_OUTPUT + 1); static void create_process (Lisp_Object process, char **new_argv, Lisp_Object current_dir) { struct Lisp_Process *p = XPROCESS (process); int inchannel, outchannel; pid_t pid; int vfork_errno; int forkin, forkout, forkerr = -1; bool pty_flag = 0; char pty_name[PTY_NAME_SIZE]; Lisp_Object lisp_pty_name = Qnil; sigset_t oldset; inchannel = outchannel = -1; if (p->pty_flag) outchannel = inchannel = allocate_pty (pty_name); if (inchannel >= 0) { p->open_fd[READ_FROM_SUBPROCESS] = inchannel; #if ! defined (USG) || defined (USG_SUBTTY_WORKS) /* On most USG systems it does not work to open the pty's tty here, then close it and reopen it in the child. */ /* Don't let this terminal become our controlling terminal (in case we don't have one). */ forkout = forkin = emacs_open (pty_name, O_RDWR | O_NOCTTY, 0); if (forkin < 0) report_file_error ("Opening pty", Qnil); p->open_fd[SUBPROCESS_STDIN] = forkin; #else forkin = forkout = -1; #endif /* not USG, or USG_SUBTTY_WORKS */ pty_flag = 1; lisp_pty_name = build_string (pty_name); } else { if (emacs_pipe (p->open_fd + SUBPROCESS_STDIN) != 0 || emacs_pipe (p->open_fd + READ_FROM_SUBPROCESS) != 0) report_file_error ("Creating pipe", Qnil); forkin = p->open_fd[SUBPROCESS_STDIN]; outchannel = p->open_fd[WRITE_TO_SUBPROCESS]; inchannel = p->open_fd[READ_FROM_SUBPROCESS]; forkout = p->open_fd[SUBPROCESS_STDOUT]; if (!NILP (p->stderrproc)) { struct Lisp_Process *pp = XPROCESS (p->stderrproc); forkerr = pp->open_fd[SUBPROCESS_STDOUT]; /* Close unnecessary file descriptors. */ close_process_fd (&pp->open_fd[WRITE_TO_SUBPROCESS]); close_process_fd (&pp->open_fd[SUBPROCESS_STDIN]); } } #ifndef WINDOWSNT if (emacs_pipe (p->open_fd + READ_FROM_EXEC_MONITOR) != 0) report_file_error ("Creating pipe", Qnil); #endif fcntl (inchannel, F_SETFL, O_NONBLOCK); fcntl (outchannel, F_SETFL, O_NONBLOCK); /* Record this as an active process, with its channels. */ chan_process[inchannel] = process; p->infd = inchannel; p->outfd = outchannel; /* Previously we recorded the tty descriptor used in the subprocess. It was only used for getting the foreground tty process, so now we just reopen the device (see emacs_get_tty_pgrp) as this is more portable (see USG_SUBTTY_WORKS above). */ p->pty_flag = pty_flag; pset_status (p, Qrun); if (!EQ (p->command, Qt)) add_process_read_fd (inchannel); /* This may signal an error. */ setup_process_coding_systems (process); block_input (); block_child_signal (&oldset); #ifndef WINDOWSNT /* vfork, and prevent local vars from being clobbered by the vfork. */ Lisp_Object volatile current_dir_volatile = current_dir; Lisp_Object volatile lisp_pty_name_volatile = lisp_pty_name; char **volatile new_argv_volatile = new_argv; int volatile forkin_volatile = forkin; int volatile forkout_volatile = forkout; int volatile forkerr_volatile = forkerr; struct Lisp_Process *p_volatile = p; #ifdef DARWIN_OS /* Darwin doesn't let us run setsid after a vfork, so use fork when necessary. Also, reset SIGCHLD handling after a vfork, as apparently macOS can mistakenly deliver SIGCHLD to the child. */ if (pty_flag) pid = fork (); else { pid = vfork (); if (pid == 0) signal (SIGCHLD, SIG_DFL); } #else pid = vfork (); #endif current_dir = current_dir_volatile; lisp_pty_name = lisp_pty_name_volatile; new_argv = new_argv_volatile; forkin = forkin_volatile; forkout = forkout_volatile; forkerr = forkerr_volatile; p = p_volatile; pty_flag = p->pty_flag; if (pid == 0) #endif /* not WINDOWSNT */ { /* Make the pty be the controlling terminal of the process. */ #ifdef HAVE_PTYS /* First, disconnect its current controlling terminal. Do this even if !PTY_FLAG; see Bug#30762. */ setsid (); /* Make the pty's terminal the controlling terminal. */ if (pty_flag && forkin >= 0) { #ifdef TIOCSCTTY /* We ignore the return value because faith@cs.unc.edu says that is necessary on Linux. */ ioctl (forkin, TIOCSCTTY, 0); #endif } #if defined (LDISC1) if (pty_flag && forkin >= 0) { struct termios t; tcgetattr (forkin, &t); t.c_lflag = LDISC1; if (tcsetattr (forkin, TCSANOW, &t) < 0) emacs_perror ("create_process/tcsetattr LDISC1"); } #else #if defined (NTTYDISC) && defined (TIOCSETD) if (pty_flag && forkin >= 0) { /* Use new line discipline. */ int ldisc = NTTYDISC; ioctl (forkin, TIOCSETD, &ldisc); } #endif #endif #ifdef TIOCNOTTY /* In 4.3BSD, the TIOCSPGRP bug has been fixed, and now you can do TIOCSPGRP only to the process's controlling tty. */ if (pty_flag) { /* I wonder: would just ioctl (0, TIOCNOTTY, 0) work here? I can't test it since I don't have 4.3. */ int j = emacs_open (DEV_TTY, O_RDWR, 0); if (j >= 0) { ioctl (j, TIOCNOTTY, 0); emacs_close (j); } } #endif /* TIOCNOTTY */ #if !defined (DONT_REOPEN_PTY) /*** There is a suggestion that this ought to be a conditional on TIOCSPGRP, or !defined TIOCSCTTY. Trying the latter gave the wrong results on Debian GNU/Linux 1.1; that system does seem to need this code, even though both TIOCSCTTY is defined. */ /* Now close the pty (if we had it open) and reopen it. This makes the pty the controlling terminal of the subprocess. */ if (pty_flag) { /* I wonder if emacs_close (emacs_open (SSDATA (lisp_pty_name), ...)) would work? */ if (forkin >= 0) emacs_close (forkin); forkout = forkin = emacs_open (SSDATA (lisp_pty_name), O_RDWR, 0); if (forkin < 0) { emacs_perror (SSDATA (lisp_pty_name)); _exit (EXIT_CANCELED); } } #endif /* not DONT_REOPEN_PTY */ #ifdef SETUP_SLAVE_PTY if (pty_flag) { SETUP_SLAVE_PTY; } #endif /* SETUP_SLAVE_PTY */ #endif /* HAVE_PTYS */ signal (SIGINT, SIG_DFL); signal (SIGQUIT, SIG_DFL); #ifdef SIGPROF signal (SIGPROF, SIG_DFL); #endif /* Emacs ignores SIGPIPE, but the child should not. */ signal (SIGPIPE, SIG_DFL); /* Stop blocking SIGCHLD in the child. */ unblock_child_signal (&oldset); if (pty_flag) child_setup_tty (forkout); if (forkerr < 0) forkerr = forkout; #ifdef WINDOWSNT pid = child_setup (forkin, forkout, forkerr, new_argv, 1, current_dir); #else /* not WINDOWSNT */ child_setup (forkin, forkout, forkerr, new_argv, 1, current_dir); #endif /* not WINDOWSNT */ } /* Back in the parent process. */ vfork_errno = errno; p->pid = pid; if (pid >= 0) p->alive = 1; /* Stop blocking in the parent. */ unblock_child_signal (&oldset); unblock_input (); if (pid < 0) report_file_errno ("Doing vfork", Qnil, vfork_errno); else { /* vfork succeeded. */ /* Close the pipe ends that the child uses, or the child's pty. */ close_process_fd (&p->open_fd[SUBPROCESS_STDIN]); close_process_fd (&p->open_fd[SUBPROCESS_STDOUT]); #ifdef WINDOWSNT register_child (pid, inchannel); #endif /* WINDOWSNT */ pset_tty_name (p, lisp_pty_name); #ifndef WINDOWSNT /* Wait for child_setup to complete in case that vfork is actually defined as fork. The descriptor XPROCESS (proc)->open_fd[EXEC_MONITOR_OUTPUT] of a pipe is closed at the child side either by close-on-exec on successful execve or the _exit call in child_setup. */ { char dummy; close_process_fd (&p->open_fd[EXEC_MONITOR_OUTPUT]); emacs_read (p->open_fd[READ_FROM_EXEC_MONITOR], &dummy, 1); close_process_fd (&p->open_fd[READ_FROM_EXEC_MONITOR]); } #endif if (!NILP (p->stderrproc)) { struct Lisp_Process *pp = XPROCESS (p->stderrproc); close_process_fd (&pp->open_fd[SUBPROCESS_STDOUT]); } } } static void create_pty (Lisp_Object process) { struct Lisp_Process *p = XPROCESS (process); char pty_name[PTY_NAME_SIZE]; int pty_fd = !p->pty_flag ? -1 : allocate_pty (pty_name); if (pty_fd >= 0) { p->open_fd[SUBPROCESS_STDIN] = pty_fd; #if ! defined (USG) || defined (USG_SUBTTY_WORKS) /* On most USG systems it does not work to open the pty's tty here, then close it and reopen it in the child. */ /* Don't let this terminal become our controlling terminal (in case we don't have one). */ int forkout = emacs_open (pty_name, O_RDWR | O_NOCTTY, 0); if (forkout < 0) report_file_error ("Opening pty", Qnil); p->open_fd[WRITE_TO_SUBPROCESS] = forkout; #if defined (DONT_REOPEN_PTY) /* In the case that vfork is defined as fork, the parent process (Emacs) may send some data before the child process completes tty options setup. So we setup tty before forking. */ child_setup_tty (forkout); #endif /* DONT_REOPEN_PTY */ #endif /* not USG, or USG_SUBTTY_WORKS */ fcntl (pty_fd, F_SETFL, O_NONBLOCK); /* Record this as an active process, with its channels. As a result, child_setup will close Emacs's side of the pipes. */ chan_process[pty_fd] = process; p->infd = pty_fd; p->outfd = pty_fd; /* Previously we recorded the tty descriptor used in the subprocess. It was only used for getting the foreground tty process, so now we just reopen the device (see emacs_get_tty_pgrp) as this is more portable (see USG_SUBTTY_WORKS above). */ p->pty_flag = 1; pset_status (p, Qrun); setup_process_coding_systems (process); add_process_read_fd (pty_fd); pset_tty_name (p, build_string (pty_name)); } p->pid = -2; } DEFUN ("make-pipe-process", Fmake_pipe_process, Smake_pipe_process, 0, MANY, 0, doc: /* Create and return a bidirectional pipe process. In Emacs, pipes are represented by process objects, so input and output work as for subprocesses, and `delete-process' closes a pipe. However, a pipe process has no process id, it cannot be signaled, and the status codes are different from normal processes. Arguments are specified as keyword/argument pairs. The following arguments are defined: :name NAME -- NAME is the name of the process. It is modified if necessary to make it unique. :buffer BUFFER -- BUFFER is the buffer (or buffer-name) to associate with the process. Process output goes at the end of that buffer, unless you specify a filter function to handle the output. If BUFFER is not given, the value of NAME is used. :coding CODING -- If CODING is a symbol, it specifies the coding system used for both reading and writing for this process. If CODING is a cons (DECODING . ENCODING), DECODING is used for reading, and ENCODING is used for writing. :noquery BOOL -- When exiting Emacs, query the user if BOOL is nil and the process is running. If BOOL is not given, query before exiting. :stop BOOL -- Start process in the `stopped' state if BOOL non-nil. In the stopped state, a pipe process does not accept incoming data, but you can send outgoing data. The stopped state is cleared by `continue-process' and set by `stop-process'. :filter FILTER -- Install FILTER as the process filter. :sentinel SENTINEL -- Install SENTINEL as the process sentinel. usage: (make-pipe-process &rest ARGS) */) (ptrdiff_t nargs, Lisp_Object *args) { Lisp_Object proc, contact; struct Lisp_Process *p; Lisp_Object name, buffer; Lisp_Object tem; ptrdiff_t specpdl_count; int inchannel, outchannel; if (nargs == 0) return Qnil; contact = Flist (nargs, args); name = Fplist_get (contact, QCname); CHECK_STRING (name); proc = make_process (name); specpdl_count = SPECPDL_INDEX (); record_unwind_protect (remove_process, proc); p = XPROCESS (proc); if (emacs_pipe (p->open_fd + SUBPROCESS_STDIN) != 0 || emacs_pipe (p->open_fd + READ_FROM_SUBPROCESS) != 0) report_file_error ("Creating pipe", Qnil); outchannel = p->open_fd[WRITE_TO_SUBPROCESS]; inchannel = p->open_fd[READ_FROM_SUBPROCESS]; fcntl (inchannel, F_SETFL, O_NONBLOCK); fcntl (outchannel, F_SETFL, O_NONBLOCK); #ifdef WINDOWSNT register_aux_fd (inchannel); #endif /* Record this as an active process, with its channels. */ chan_process[inchannel] = proc; p->infd = inchannel; p->outfd = outchannel; if (inchannel > max_desc) max_desc = inchannel; buffer = Fplist_get (contact, QCbuffer); if (NILP (buffer)) buffer = name; buffer = Fget_buffer_create (buffer); pset_buffer (p, buffer); pset_childp (p, contact); pset_plist (p, Fcopy_sequence (Fplist_get (contact, QCplist))); pset_type (p, Qpipe); pset_sentinel (p, Fplist_get (contact, QCsentinel)); pset_filter (p, Fplist_get (contact, QCfilter)); eassert (NILP (p->log)); if (tem = Fplist_get (contact, QCnoquery), !NILP (tem)) p->kill_without_query = 1; if (tem = Fplist_get (contact, QCstop), !NILP (tem)) pset_command (p, Qt); eassert (! p->pty_flag); if (!EQ (p->command, Qt)) add_process_read_fd (inchannel); p->adaptive_read_buffering = (NILP (Vprocess_adaptive_read_buffering) ? 0 : EQ (Vprocess_adaptive_read_buffering, Qt) ? 1 : 2); /* Make the process marker point into the process buffer (if any). */ if (BUFFERP (buffer)) set_marker_both (p->mark, buffer, BUF_ZV (XBUFFER (buffer)), BUF_ZV_BYTE (XBUFFER (buffer))); { /* Setup coding systems for communicating with the network stream. */ /* Qt denotes we have not yet called Ffind_operation_coding_system. */ Lisp_Object coding_systems = Qt; Lisp_Object val; tem = Fplist_get (contact, QCcoding); val = Qnil; if (!NILP (tem)) { val = tem; if (CONSP (val)) val = XCAR (val); } else if (!NILP (Vcoding_system_for_read)) val = Vcoding_system_for_read; else if ((!NILP (buffer) && NILP (BVAR (XBUFFER (buffer), enable_multibyte_characters))) || (NILP (buffer) && NILP (BVAR (&buffer_defaults, enable_multibyte_characters)))) /* We dare not decode end-of-line format by setting VAL to Qraw_text, because the existing Emacs Lisp libraries assume that they receive bare code including a sequence of CR LF. */ val = Qnil; else { if (CONSP (coding_systems)) val = XCAR (coding_systems); else if (CONSP (Vdefault_process_coding_system)) val = XCAR (Vdefault_process_coding_system); else val = Qnil; } pset_decode_coding_system (p, val); if (!NILP (tem)) { val = tem; if (CONSP (val)) val = XCDR (val); } else if (!NILP (Vcoding_system_for_write)) val = Vcoding_system_for_write; else if (NILP (BVAR (current_buffer, enable_multibyte_characters))) val = Qnil; else { if (CONSP (coding_systems)) val = XCDR (coding_systems); else if (CONSP (Vdefault_process_coding_system)) val = XCDR (Vdefault_process_coding_system); else val = Qnil; } pset_encode_coding_system (p, val); } /* This may signal an error. */ setup_process_coding_systems (proc); specpdl_ptr = specpdl + specpdl_count; return proc; } /* Convert an internal struct sockaddr to a lisp object (vector or string). The address family of sa is not included in the result. */ Lisp_Object conv_sockaddr_to_lisp (struct sockaddr *sa, ptrdiff_t len) { Lisp_Object address; ptrdiff_t i; unsigned char *cp; struct Lisp_Vector *p; /* Workaround for a bug in getsockname on BSD: Names bound to sockets in the UNIX domain are inaccessible; getsockname returns a zero length name. */ if (len < offsetof (struct sockaddr, sa_family) + sizeof (sa->sa_family)) return empty_unibyte_string; switch (sa->sa_family) { case AF_INET: { DECLARE_POINTER_ALIAS (sin, struct sockaddr_in, sa); len = sizeof (sin->sin_addr) + 1; address = Fmake_vector (make_number (len), Qnil); p = XVECTOR (address); p->contents[--len] = make_number (ntohs (sin->sin_port)); cp = (unsigned char *) &sin->sin_addr; break; } #ifdef AF_INET6 case AF_INET6: { DECLARE_POINTER_ALIAS (sin6, struct sockaddr_in6, sa); DECLARE_POINTER_ALIAS (ip6, uint16_t, &sin6->sin6_addr); len = sizeof (sin6->sin6_addr) / 2 + 1; address = Fmake_vector (make_number (len), Qnil); p = XVECTOR (address); p->contents[--len] = make_number (ntohs (sin6->sin6_port)); for (i = 0; i < len; i++) p->contents[i] = make_number (ntohs (ip6[i])); return address; } #endif #ifdef HAVE_LOCAL_SOCKETS case AF_LOCAL: { DECLARE_POINTER_ALIAS (sockun, struct sockaddr_un, sa); ptrdiff_t name_length = len - offsetof (struct sockaddr_un, sun_path); /* If the first byte is NUL, the name is a Linux abstract socket name, and the name can contain embedded NULs. If it's not, we have a NUL-terminated string. Be careful not to walk past the end of the object looking for the name terminator, however. */ if (name_length > 0 && sockun->sun_path[0] != '\0') { const char *terminator = memchr (sockun->sun_path, '\0', name_length); if (terminator) name_length = terminator - (const char *) sockun->sun_path; } return make_unibyte_string (sockun->sun_path, name_length); } #endif default: len -= offsetof (struct sockaddr, sa_family) + sizeof (sa->sa_family); address = Fcons (make_number (sa->sa_family), Fmake_vector (make_number (len), Qnil)); p = XVECTOR (XCDR (address)); cp = (unsigned char *) &sa->sa_family + sizeof (sa->sa_family); break; } i = 0; while (i < len) p->contents[i++] = make_number (*cp++); return address; } /* Convert an internal struct addrinfo to a Lisp object. */ static Lisp_Object conv_addrinfo_to_lisp (struct addrinfo *res) { Lisp_Object protocol = make_number (res->ai_protocol); eassert (XINT (protocol) == res->ai_protocol); return Fcons (protocol, conv_sockaddr_to_lisp (res->ai_addr, res->ai_addrlen)); } /* Get family and required size for sockaddr structure to hold ADDRESS. */ static ptrdiff_t get_lisp_to_sockaddr_size (Lisp_Object address, int *familyp) { struct Lisp_Vector *p; if (VECTORP (address)) { p = XVECTOR (address); if (p->header.size == 5) { *familyp = AF_INET; return sizeof (struct sockaddr_in); } #ifdef AF_INET6 else if (p->header.size == 9) { *familyp = AF_INET6; return sizeof (struct sockaddr_in6); } #endif } #ifdef HAVE_LOCAL_SOCKETS else if (STRINGP (address)) { *familyp = AF_LOCAL; return sizeof (struct sockaddr_un); } #endif else if (CONSP (address) && TYPE_RANGED_INTEGERP (int, XCAR (address)) && VECTORP (XCDR (address))) { struct sockaddr *sa; p = XVECTOR (XCDR (address)); if (MAX_ALLOCA - sizeof sa->sa_family < p->header.size) return 0; *familyp = XINT (XCAR (address)); return p->header.size + sizeof (sa->sa_family); } return 0; } /* Convert an address object (vector or string) to an internal sockaddr. The address format has been basically validated by get_lisp_to_sockaddr_size, but this does not mean FAMILY is valid; it could have come from user data. So if FAMILY is not valid, we return after zeroing *SA. */ static void conv_lisp_to_sockaddr (int family, Lisp_Object address, struct sockaddr *sa, int len) { register struct Lisp_Vector *p; register unsigned char *cp = NULL; register int i; EMACS_INT hostport; memset (sa, 0, len); if (VECTORP (address)) { p = XVECTOR (address); if (family == AF_INET) { DECLARE_POINTER_ALIAS (sin, struct sockaddr_in, sa); len = sizeof (sin->sin_addr) + 1; hostport = XINT (p->contents[--len]); sin->sin_port = htons (hostport); cp = (unsigned char *)&sin->sin_addr; sa->sa_family = family; } #ifdef AF_INET6 else if (family == AF_INET6) { DECLARE_POINTER_ALIAS (sin6, struct sockaddr_in6, sa); DECLARE_POINTER_ALIAS (ip6, uint16_t, &sin6->sin6_addr); len = sizeof (sin6->sin6_addr) / 2 + 1; hostport = XINT (p->contents[--len]); sin6->sin6_port = htons (hostport); for (i = 0; i < len; i++) if (INTEGERP (p->contents[i])) { int j = XFASTINT (p->contents[i]) & 0xffff; ip6[i] = ntohs (j); } sa->sa_family = family; return; } #endif else return; } else if (STRINGP (address)) { #ifdef HAVE_LOCAL_SOCKETS if (family == AF_LOCAL) { DECLARE_POINTER_ALIAS (sockun, struct sockaddr_un, sa); cp = SDATA (address); for (i = 0; i < sizeof (sockun->sun_path) && *cp; i++) sockun->sun_path[i] = *cp++; sa->sa_family = family; } #endif return; } else { p = XVECTOR (XCDR (address)); cp = (unsigned char *)sa + sizeof (sa->sa_family); } for (i = 0; i < len; i++) if (INTEGERP (p->contents[i])) *cp++ = XFASTINT (p->contents[i]) & 0xff; } #ifdef DATAGRAM_SOCKETS DEFUN ("process-datagram-address", Fprocess_datagram_address, Sprocess_datagram_address, 1, 1, 0, doc: /* Get the current datagram address associated with PROCESS. If PROCESS is a non-blocking network process that hasn't been fully set up yet, this function will block until socket setup has completed. */) (Lisp_Object process) { int channel; CHECK_PROCESS (process); if (NETCONN_P (process)) wait_for_socket_fds (process, "process-datagram-address"); if (!DATAGRAM_CONN_P (process)) return Qnil; channel = XPROCESS (process)->infd; return conv_sockaddr_to_lisp (datagram_address[channel].sa, datagram_address[channel].len); } DEFUN ("set-process-datagram-address", Fset_process_datagram_address, Sset_process_datagram_address, 2, 2, 0, doc: /* Set the datagram address for PROCESS to ADDRESS. Return nil upon error setting address, ADDRESS otherwise. If PROCESS is a non-blocking network process that hasn't been fully set up yet, this function will block until socket setup has completed. */) (Lisp_Object process, Lisp_Object address) { int channel; int family; ptrdiff_t len; CHECK_PROCESS (process); if (NETCONN_P (process)) wait_for_socket_fds (process, "set-process-datagram-address"); if (!DATAGRAM_CONN_P (process)) return Qnil; channel = XPROCESS (process)->infd; len = get_lisp_to_sockaddr_size (address, &family); if (len == 0 || datagram_address[channel].len != len) return Qnil; conv_lisp_to_sockaddr (family, address, datagram_address[channel].sa, len); return address; } #endif static const struct socket_options { /* The name of this option. Should be lowercase version of option name without SO_ prefix. */ const char *name; /* Option level SOL_... */ int optlevel; /* Option number SO_... */ int optnum; enum { SOPT_UNKNOWN, SOPT_BOOL, SOPT_INT, SOPT_IFNAME, SOPT_LINGER } opttype; enum { OPIX_NONE = 0, OPIX_MISC = 1, OPIX_REUSEADDR = 2 } optbit; } socket_options[] = { #ifdef SO_BINDTODEVICE { ":bindtodevice", SOL_SOCKET, SO_BINDTODEVICE, SOPT_IFNAME, OPIX_MISC }, #endif #ifdef SO_BROADCAST { ":broadcast", SOL_SOCKET, SO_BROADCAST, SOPT_BOOL, OPIX_MISC }, #endif #ifdef SO_DONTROUTE { ":dontroute", SOL_SOCKET, SO_DONTROUTE, SOPT_BOOL, OPIX_MISC }, #endif #ifdef SO_KEEPALIVE { ":keepalive", SOL_SOCKET, SO_KEEPALIVE, SOPT_BOOL, OPIX_MISC }, #endif #ifdef SO_LINGER { ":linger", SOL_SOCKET, SO_LINGER, SOPT_LINGER, OPIX_MISC }, #endif #ifdef SO_OOBINLINE { ":oobinline", SOL_SOCKET, SO_OOBINLINE, SOPT_BOOL, OPIX_MISC }, #endif #ifdef SO_PRIORITY { ":priority", SOL_SOCKET, SO_PRIORITY, SOPT_INT, OPIX_MISC }, #endif #ifdef SO_REUSEADDR { ":reuseaddr", SOL_SOCKET, SO_REUSEADDR, SOPT_BOOL, OPIX_REUSEADDR }, #endif { 0, 0, 0, SOPT_UNKNOWN, OPIX_NONE } }; /* Set option OPT to value VAL on socket S. Return (1<name; sopt++) if (strcmp (name, sopt->name) == 0) break; switch (sopt->opttype) { case SOPT_BOOL: { int optval; optval = NILP (val) ? 0 : 1; ret = setsockopt (s, sopt->optlevel, sopt->optnum, &optval, sizeof (optval)); break; } case SOPT_INT: { int optval; if (TYPE_RANGED_INTEGERP (int, val)) optval = XINT (val); else error ("Bad option value for %s", name); ret = setsockopt (s, sopt->optlevel, sopt->optnum, &optval, sizeof (optval)); break; } #ifdef SO_BINDTODEVICE case SOPT_IFNAME: { char devname[IFNAMSIZ + 1]; /* This is broken, at least in the Linux 2.4 kernel. To unbind, the arg must be a zero integer, not the empty string. This should work on all systems. KFS. 2003-09-23. */ memset (devname, 0, sizeof devname); if (STRINGP (val)) { char *arg = SSDATA (val); int len = min (strlen (arg), IFNAMSIZ); memcpy (devname, arg, len); } else if (!NILP (val)) error ("Bad option value for %s", name); ret = setsockopt (s, sopt->optlevel, sopt->optnum, devname, IFNAMSIZ); break; } #endif #ifdef SO_LINGER case SOPT_LINGER: { struct linger linger; linger.l_onoff = 1; linger.l_linger = 0; if (TYPE_RANGED_INTEGERP (int, val)) linger.l_linger = XINT (val); else linger.l_onoff = NILP (val) ? 0 : 1; ret = setsockopt (s, sopt->optlevel, sopt->optnum, &linger, sizeof (linger)); break; } #endif default: return 0; } if (ret < 0) { int setsockopt_errno = errno; report_file_errno ("Cannot set network option", list2 (opt, val), setsockopt_errno); } return (1 << sopt->optbit); } DEFUN ("set-network-process-option", Fset_network_process_option, Sset_network_process_option, 3, 4, 0, doc: /* For network process PROCESS set option OPTION to value VALUE. See `make-network-process' for a list of options and values. If optional fourth arg NO-ERROR is non-nil, don't signal an error if OPTION is not a supported option, return nil instead; otherwise return t. If PROCESS is a non-blocking network process that hasn't been fully set up yet, this function will block until socket setup has completed. */) (Lisp_Object process, Lisp_Object option, Lisp_Object value, Lisp_Object no_error) { int s; struct Lisp_Process *p; CHECK_PROCESS (process); p = XPROCESS (process); if (!NETCONN1_P (p)) error ("Process is not a network process"); wait_for_socket_fds (process, "set-network-process-option"); s = p->infd; if (s < 0) error ("Process is not running"); if (set_socket_option (s, option, value)) { pset_childp (p, Fplist_put (p->childp, option, value)); return Qt; } if (NILP (no_error)) error ("Unknown or unsupported option"); return Qnil; } DEFUN ("serial-process-configure", Fserial_process_configure, Sserial_process_configure, 0, MANY, 0, doc: /* Configure speed, bytesize, etc. of a serial process. Arguments are specified as keyword/argument pairs. Attributes that are not given are re-initialized from the process's current configuration (available via the function `process-contact') or set to reasonable default values. The following arguments are defined: :process PROCESS :name NAME :buffer BUFFER :port PORT -- Any of these arguments can be given to identify the process that is to be configured. If none of these arguments is given, the current buffer's process is used. :speed SPEED -- SPEED is the speed of the serial port in bits per second, also called baud rate. Any value can be given for SPEED, but most serial ports work only at a few defined values between 1200 and 115200, with 9600 being the most common value. If SPEED is nil, the serial port is not configured any further, i.e., all other arguments are ignored. This may be useful for special serial ports such as Bluetooth-to-serial converters which can only be configured through AT commands. A value of nil for SPEED can be used only when passed through `make-serial-process' or `serial-term'. :bytesize BYTESIZE -- BYTESIZE is the number of bits per byte, which can be 7 or 8. If BYTESIZE is not given or nil, a value of 8 is used. :parity PARITY -- PARITY can be nil (don't use parity), the symbol `odd' (use odd parity), or the symbol `even' (use even parity). If PARITY is not given, no parity is used. :stopbits STOPBITS -- STOPBITS is the number of stopbits used to terminate a byte transmission. STOPBITS can be 1 or 2. If STOPBITS is not given or nil, 1 stopbit is used. :flowcontrol FLOWCONTROL -- FLOWCONTROL determines the type of flowcontrol to be used, which is either nil (don't use flowcontrol), the symbol `hw' (use RTS/CTS hardware flowcontrol), or the symbol `sw' \(use XON/XOFF software flowcontrol). If FLOWCONTROL is not given, no flowcontrol is used. `serial-process-configure' is called by `make-serial-process' for the initial configuration of the serial port. Examples: \(serial-process-configure :process "/dev/ttyS0" :speed 1200) \(serial-process-configure :buffer "COM1" :stopbits 1 :parity \\='odd :flowcontrol \\='hw) \(serial-process-configure :port "\\\\.\\COM13" :bytesize 7) usage: (serial-process-configure &rest ARGS) */) (ptrdiff_t nargs, Lisp_Object *args) { struct Lisp_Process *p; Lisp_Object contact = Qnil; Lisp_Object proc = Qnil; contact = Flist (nargs, args); proc = Fplist_get (contact, QCprocess); if (NILP (proc)) proc = Fplist_get (contact, QCname); if (NILP (proc)) proc = Fplist_get (contact, QCbuffer); if (NILP (proc)) proc = Fplist_get (contact, QCport); proc = get_process (proc); p = XPROCESS (proc); if (!EQ (p->type, Qserial)) error ("Not a serial process"); if (NILP (Fplist_get (p->childp, QCspeed))) return Qnil; serial_configure (p, contact); return Qnil; } DEFUN ("make-serial-process", Fmake_serial_process, Smake_serial_process, 0, MANY, 0, doc: /* Create and return a serial port process. In Emacs, serial port connections are represented by process objects, so input and output work as for subprocesses, and `delete-process' closes a serial port connection. However, a serial process has no process id, it cannot be signaled, and the status codes are different from normal processes. `make-serial-process' creates a process and a buffer, on which you probably want to use `process-send-string'. Try \\[serial-term] for an interactive terminal. See below for examples. Arguments are specified as keyword/argument pairs. The following arguments are defined: :port PORT -- (mandatory) PORT is the path or name of the serial port. For example, this could be "/dev/ttyS0" on Unix. On Windows, this could be "COM1", or "\\\\.\\COM10" for ports higher than COM9 (double the backslashes in strings). :speed SPEED -- (mandatory) is handled by `serial-process-configure', which this function calls. :name NAME -- NAME is the name of the process. If NAME is not given, the value of PORT is used. :buffer BUFFER -- BUFFER is the buffer (or buffer-name) to associate with the process. Process output goes at the end of that buffer, unless you specify a filter function to handle the output. If BUFFER is not given, the value of NAME is used. :coding CODING -- If CODING is a symbol, it specifies the coding system used for both reading and writing for this process. If CODING is a cons (DECODING . ENCODING), DECODING is used for reading, and ENCODING is used for writing. :noquery BOOL -- When exiting Emacs, query the user if BOOL is nil and the process is running. If BOOL is not given, query before exiting. :stop BOOL -- Start process in the `stopped' state if BOOL is non-nil. In the stopped state, a serial process does not accept incoming data, but you can send outgoing data. The stopped state is cleared by `continue-process' and set by `stop-process'. :filter FILTER -- Install FILTER as the process filter. :sentinel SENTINEL -- Install SENTINEL as the process sentinel. :plist PLIST -- Install PLIST as the initial plist of the process. :bytesize :parity :stopbits :flowcontrol -- This function calls `serial-process-configure' to handle these arguments. The original argument list, possibly modified by later configuration, is available via the function `process-contact'. Examples: \(make-serial-process :port "/dev/ttyS0" :speed 9600) \(make-serial-process :port "COM1" :speed 115200 :stopbits 2) \(make-serial-process :port "\\\\.\\COM13" :speed 1200 :bytesize 7 :parity \\='odd) \(make-serial-process :port "/dev/tty.BlueConsole-SPP-1" :speed nil) usage: (make-serial-process &rest ARGS) */) (ptrdiff_t nargs, Lisp_Object *args) { int fd = -1; Lisp_Object proc, contact, port; struct Lisp_Process *p; Lisp_Object name, buffer; Lisp_Object tem, val; ptrdiff_t specpdl_count; if (nargs == 0) return Qnil; contact = Flist (nargs, args); port = Fplist_get (contact, QCport); if (NILP (port)) error ("No port specified"); CHECK_STRING (port); if (NILP (Fplist_member (contact, QCspeed))) error (":speed not specified"); if (!NILP (Fplist_get (contact, QCspeed))) CHECK_NUMBER (Fplist_get (contact, QCspeed)); name = Fplist_get (contact, QCname); if (NILP (name)) name = port; CHECK_STRING (name); proc = make_process (name); specpdl_count = SPECPDL_INDEX (); record_unwind_protect (remove_process, proc); p = XPROCESS (proc); fd = serial_open (port); p->open_fd[SUBPROCESS_STDIN] = fd; p->infd = fd; p->outfd = fd; if (fd > max_desc) max_desc = fd; chan_process[fd] = proc; buffer = Fplist_get (contact, QCbuffer); if (NILP (buffer)) buffer = name; buffer = Fget_buffer_create (buffer); pset_buffer (p, buffer); pset_childp (p, contact); pset_plist (p, Fcopy_sequence (Fplist_get (contact, QCplist))); pset_type (p, Qserial); pset_sentinel (p, Fplist_get (contact, QCsentinel)); pset_filter (p, Fplist_get (contact, QCfilter)); eassert (NILP (p->log)); if (tem = Fplist_get (contact, QCnoquery), !NILP (tem)) p->kill_without_query = 1; if (tem = Fplist_get (contact, QCstop), !NILP (tem)) pset_command (p, Qt); eassert (! p->pty_flag); if (!EQ (p->command, Qt)) add_process_read_fd (fd); if (BUFFERP (buffer)) { set_marker_both (p->mark, buffer, BUF_ZV (XBUFFER (buffer)), BUF_ZV_BYTE (XBUFFER (buffer))); } tem = Fplist_member (contact, QCcoding); if (!NILP (tem) && (!CONSP (tem) || !CONSP (XCDR (tem)))) tem = Qnil; val = Qnil; if (!NILP (tem)) { val = XCAR (XCDR (tem)); if (CONSP (val)) val = XCAR (val); } else if (!NILP (Vcoding_system_for_read)) val = Vcoding_system_for_read; else if ((!NILP (buffer) && NILP (BVAR (XBUFFER (buffer), enable_multibyte_characters))) || (NILP (buffer) && NILP (BVAR (&buffer_defaults, enable_multibyte_characters)))) val = Qnil; pset_decode_coding_system (p, val); val = Qnil; if (!NILP (tem)) { val = XCAR (XCDR (tem)); if (CONSP (val)) val = XCDR (val); } else if (!NILP (Vcoding_system_for_write)) val = Vcoding_system_for_write; else if ((!NILP (buffer) && NILP (BVAR (XBUFFER (buffer), enable_multibyte_characters))) || (NILP (buffer) && NILP (BVAR (&buffer_defaults, enable_multibyte_characters)))) val = Qnil; pset_encode_coding_system (p, val); setup_process_coding_systems (proc); pset_decoding_buf (p, empty_unibyte_string); eassert (p->decoding_carryover == 0); pset_encoding_buf (p, empty_unibyte_string); p->inherit_coding_system_flag = !(!NILP (tem) || NILP (buffer) || !inherit_process_coding_system); Fserial_process_configure (nargs, args); specpdl_ptr = specpdl + specpdl_count; return proc; } static void set_network_socket_coding_system (Lisp_Object proc, Lisp_Object host, Lisp_Object service, Lisp_Object name) { Lisp_Object tem; struct Lisp_Process *p = XPROCESS (proc); Lisp_Object contact = p->childp; Lisp_Object coding_systems = Qt; Lisp_Object val; tem = Fplist_member (contact, QCcoding); if (!NILP (tem) && (!CONSP (tem) || !CONSP (XCDR (tem)))) tem = Qnil; /* No error message (too late!). */ /* Setup coding systems for communicating with the network stream. */ /* Qt denotes we have not yet called Ffind_operation_coding_system. */ if (!NILP (tem)) { val = XCAR (XCDR (tem)); if (CONSP (val)) val = XCAR (val); } else if (!NILP (Vcoding_system_for_read)) val = Vcoding_system_for_read; else if ((!NILP (p->buffer) && NILP (BVAR (XBUFFER (p->buffer), enable_multibyte_characters))) || (NILP (p->buffer) && NILP (BVAR (&buffer_defaults, enable_multibyte_characters)))) /* We dare not decode end-of-line format by setting VAL to Qraw_text, because the existing Emacs Lisp libraries assume that they receive bare code including a sequence of CR LF. */ val = Qnil; else { if (NILP (host) || NILP (service)) coding_systems = Qnil; else coding_systems = CALLN (Ffind_operation_coding_system, Qopen_network_stream, name, p->buffer, host, service); if (CONSP (coding_systems)) val = XCAR (coding_systems); else if (CONSP (Vdefault_process_coding_system)) val = XCAR (Vdefault_process_coding_system); else val = Qnil; } pset_decode_coding_system (p, val); if (!NILP (tem)) { val = XCAR (XCDR (tem)); if (CONSP (val)) val = XCDR (val); } else if (!NILP (Vcoding_system_for_write)) val = Vcoding_system_for_write; else if (NILP (BVAR (current_buffer, enable_multibyte_characters))) val = Qnil; else { if (EQ (coding_systems, Qt)) { if (NILP (host) || NILP (service)) coding_systems = Qnil; else coding_systems = CALLN (Ffind_operation_coding_system, Qopen_network_stream, name, p->buffer, host, service); } if (CONSP (coding_systems)) val = XCDR (coding_systems); else if (CONSP (Vdefault_process_coding_system)) val = XCDR (Vdefault_process_coding_system); else val = Qnil; } pset_encode_coding_system (p, val); pset_decoding_buf (p, empty_unibyte_string); p->decoding_carryover = 0; pset_encoding_buf (p, empty_unibyte_string); p->inherit_coding_system_flag = !(!NILP (tem) || NILP (p->buffer) || !inherit_process_coding_system); } #ifdef HAVE_GNUTLS static void finish_after_tls_connection (Lisp_Object proc) { struct Lisp_Process *p = XPROCESS (proc); Lisp_Object contact = p->childp; Lisp_Object result = Qt; if (!NILP (Ffboundp (Qnsm_verify_connection))) result = call3 (Qnsm_verify_connection, proc, Fplist_get (contact, QChost), Fplist_get (contact, QCservice)); if (NILP (result)) { pset_status (p, list2 (Qfailed, build_string ("The Network Security Manager stopped the connections"))); deactivate_process (proc); } else if (p->outfd < 0) { /* The counterparty may have closed the connection (especially if the NSM prompt above take a long time), so recheck the file descriptor here. */ pset_status (p, Qfailed); deactivate_process (proc); } else if ((fd_callback_info[p->outfd].flags & NON_BLOCKING_CONNECT_FD) == 0) { /* If we cleared the connection wait mask before we did the TLS setup, then we have to say that the process is finally "open" here. */ pset_status (p, Qrun); /* Execute the sentinel here. If we had relied on status_notify to do it later, it will read input from the process before calling the sentinel. */ exec_sentinel (proc, build_string ("open\n")); } } #endif static void connect_network_socket (Lisp_Object proc, Lisp_Object addrinfos, Lisp_Object use_external_socket_p) { ptrdiff_t count = SPECPDL_INDEX (); int s = -1, outch, inch; int xerrno = 0; int family; struct sockaddr *sa = NULL; int ret; ptrdiff_t addrlen; struct Lisp_Process *p = XPROCESS (proc); Lisp_Object contact = p->childp; int optbits = 0; int socket_to_use = -1; if (!NILP (use_external_socket_p)) { socket_to_use = external_sock_fd; /* Ensure we don't consume the external socket twice. */ external_sock_fd = -1; } /* Do this in case we never enter the while-loop below. */ s = -1; while (!NILP (addrinfos)) { Lisp_Object addrinfo = XCAR (addrinfos); addrinfos = XCDR (addrinfos); int protocol = XINT (XCAR (addrinfo)); Lisp_Object ip_address = XCDR (addrinfo); #ifdef WINDOWSNT retry_connect: #endif addrlen = get_lisp_to_sockaddr_size (ip_address, &family); if (sa) free (sa); sa = xmalloc (addrlen); conv_lisp_to_sockaddr (family, ip_address, sa, addrlen); s = socket_to_use; if (s < 0) { int socktype = p->socktype | SOCK_CLOEXEC; if (p->is_non_blocking_client) socktype |= SOCK_NONBLOCK; s = socket (family, socktype, protocol); if (s < 0) { xerrno = errno; continue; } } if (p->is_non_blocking_client && ! (SOCK_NONBLOCK && socket_to_use < 0)) { ret = fcntl (s, F_SETFL, O_NONBLOCK); if (ret < 0) { xerrno = errno; emacs_close (s); s = -1; if (0 <= socket_to_use) break; continue; } } #ifdef DATAGRAM_SOCKETS if (!p->is_server && p->socktype == SOCK_DGRAM) break; #endif /* DATAGRAM_SOCKETS */ /* Make us close S if quit. */ record_unwind_protect_int (close_file_unwind, s); /* Parse network options in the arg list. We simply ignore anything which isn't a known option (including other keywords). An error is signaled if setting a known option fails. */ { Lisp_Object params = contact, key, val; while (!NILP (params)) { key = XCAR (params); params = XCDR (params); val = XCAR (params); params = XCDR (params); optbits |= set_socket_option (s, key, val); } } if (p->is_server) { /* Configure as a server socket. */ /* SO_REUSEADDR = 1 is default for server sockets; must specify explicit :reuseaddr key to override this. */ #ifdef HAVE_LOCAL_SOCKETS if (family != AF_LOCAL) #endif if (!(optbits & (1 << OPIX_REUSEADDR))) { int optval = 1; if (setsockopt (s, SOL_SOCKET, SO_REUSEADDR, &optval, sizeof optval)) report_file_error ("Cannot set reuse option on server socket", Qnil); } /* If passed a socket descriptor, it should be already bound. */ if (socket_to_use < 0 && bind (s, sa, addrlen) != 0) report_file_error ("Cannot bind server socket", Qnil); #ifdef HAVE_GETSOCKNAME if (p->port == 0 #ifdef HAVE_LOCAL_SOCKETS && family != AF_LOCAL #endif ) { struct sockaddr_in sa1; socklen_t len1 = sizeof (sa1); #ifdef AF_INET6 /* The code below assumes the port is at the same offset and of the same width in both IPv4 and IPv6 structures, but the standards don't guarantee that, so verify it here. */ struct sockaddr_in6 sa6; verify ((offsetof (struct sockaddr_in, sin_port) == offsetof (struct sockaddr_in6, sin6_port)) && sizeof (sa1.sin_port) == sizeof (sa6.sin6_port)); #endif DECLARE_POINTER_ALIAS (psa1, struct sockaddr, &sa1); if (getsockname (s, psa1, &len1) == 0) { Lisp_Object service = make_number (ntohs (sa1.sin_port)); contact = Fplist_put (contact, QCservice, service); /* Save the port number so that we can stash it in the process object later. */ DECLARE_POINTER_ALIAS (psa, struct sockaddr_in, sa); psa->sin_port = sa1.sin_port; } } #endif if (p->socktype != SOCK_DGRAM && listen (s, p->backlog)) report_file_error ("Cannot listen on server socket", Qnil); break; } maybe_quit (); ret = connect (s, sa, addrlen); xerrno = errno; if (ret == 0 || xerrno == EISCONN) { /* The unwind-protect will be discarded afterwards. */ break; } if (p->is_non_blocking_client && xerrno == EINPROGRESS) break; #ifndef WINDOWSNT if (xerrno == EINTR) { /* Unlike most other syscalls connect() cannot be called again. (That would return EALREADY.) The proper way to wait for completion is pselect(). */ int sc; socklen_t len; fd_set fdset; retry_select: FD_ZERO (&fdset); FD_SET (s, &fdset); maybe_quit (); sc = pselect (s + 1, NULL, &fdset, NULL, NULL, NULL); if (sc == -1) { if (errno == EINTR) goto retry_select; else report_file_error ("Failed select", Qnil); } eassert (sc > 0); len = sizeof xerrno; eassert (FD_ISSET (s, &fdset)); if (getsockopt (s, SOL_SOCKET, SO_ERROR, &xerrno, &len) < 0) report_file_error ("Failed getsockopt", Qnil); if (xerrno == 0) break; if (NILP (addrinfos)) report_file_errno ("Failed connect", Qnil, xerrno); } #endif /* !WINDOWSNT */ /* Discard the unwind protect closing S. */ specpdl_ptr = specpdl + count; emacs_close (s); s = -1; if (0 <= socket_to_use) break; #ifdef WINDOWSNT if (xerrno == EINTR) goto retry_connect; #endif } if (s >= 0) { #ifdef DATAGRAM_SOCKETS if (p->socktype == SOCK_DGRAM) { if (datagram_address[s].sa) emacs_abort (); datagram_address[s].sa = xmalloc (addrlen); datagram_address[s].len = addrlen; if (p->is_server) { Lisp_Object remote; memset (datagram_address[s].sa, 0, addrlen); if (remote = Fplist_get (contact, QCremote), !NILP (remote)) { int rfamily; ptrdiff_t rlen = get_lisp_to_sockaddr_size (remote, &rfamily); if (rlen != 0 && rfamily == family && rlen == addrlen) conv_lisp_to_sockaddr (rfamily, remote, datagram_address[s].sa, rlen); } } else memcpy (datagram_address[s].sa, sa, addrlen); } #endif contact = Fplist_put (contact, p->is_server? QClocal: QCremote, conv_sockaddr_to_lisp (sa, addrlen)); #ifdef HAVE_GETSOCKNAME if (!p->is_server) { struct sockaddr_storage sa1; socklen_t len1 = sizeof (sa1); DECLARE_POINTER_ALIAS (psa1, struct sockaddr, &sa1); if (getsockname (s, psa1, &len1) == 0) contact = Fplist_put (contact, QClocal, conv_sockaddr_to_lisp (psa1, len1)); } #endif } if (s < 0) { /* If non-blocking got this far - and failed - assume non-blocking is not supported after all. This is probably a wrong assumption, but the normal blocking calls to open-network-stream handles this error better. */ if (p->is_non_blocking_client) return; report_file_errno ((p->is_server ? "make server process failed" : "make client process failed"), contact, xerrno); } inch = s; outch = s; chan_process[inch] = proc; fcntl (inch, F_SETFL, O_NONBLOCK); p = XPROCESS (proc); p->open_fd[SUBPROCESS_STDIN] = inch; p->infd = inch; p->outfd = outch; /* Discard the unwind protect for closing S, if any. */ specpdl_ptr = specpdl + count; if (p->is_server && p->socktype != SOCK_DGRAM) pset_status (p, Qlisten); /* Make the process marker point into the process buffer (if any). */ if (BUFFERP (p->buffer)) set_marker_both (p->mark, p->buffer, BUF_ZV (XBUFFER (p->buffer)), BUF_ZV_BYTE (XBUFFER (p->buffer))); if (p->is_non_blocking_client) { /* We may get here if connect did succeed immediately. However, in that case, we still need to signal this like a non-blocking connection. */ if (! (connecting_status (p->status) && EQ (XCDR (p->status), addrinfos))) pset_status (p, Fcons (Qconnect, addrinfos)); if ((fd_callback_info[inch].flags & NON_BLOCKING_CONNECT_FD) == 0) add_non_blocking_write_fd (inch); } else /* A server may have a client filter setting of Qt, but it must still listen for incoming connects unless it is stopped. */ if ((!EQ (p->filter, Qt) && !EQ (p->command, Qt)) || (EQ (p->status, Qlisten) && NILP (p->command))) add_process_read_fd (inch); if (inch > max_desc) max_desc = inch; /* Set up the masks based on the process filter. */ set_process_filter_masks (p); setup_process_coding_systems (proc); #ifdef HAVE_GNUTLS /* Continue the asynchronous connection. */ if (!NILP (p->gnutls_boot_parameters)) { Lisp_Object boot, params = p->gnutls_boot_parameters; boot = Fgnutls_boot (proc, XCAR (params), XCDR (params)); p->gnutls_boot_parameters = Qnil; if (p->gnutls_initstage == GNUTLS_STAGE_READY) /* Run sentinels, etc. */ finish_after_tls_connection (proc); else if (p->gnutls_initstage != GNUTLS_STAGE_HANDSHAKE_TRIED) { deactivate_process (proc); if (NILP (boot)) pset_status (p, list2 (Qfailed, build_string ("TLS negotiation failed"))); else pset_status (p, list2 (Qfailed, boot)); } } #endif } /* Create a network stream/datagram client/server process. Treated exactly like a normal process when reading and writing. Primary differences are in status display and process deletion. A network connection has no PID; you cannot signal it. All you can do is stop/continue it and deactivate/close it via delete-process. */ DEFUN ("make-network-process", Fmake_network_process, Smake_network_process, 0, MANY, 0, doc: /* Create and return a network server or client process. In Emacs, network connections are represented by process objects, so input and output work as for subprocesses and `delete-process' closes a network connection. However, a network process has no process id, it cannot be signaled, and the status codes are different from normal processes. Arguments are specified as keyword/argument pairs. The following arguments are defined: :name NAME -- NAME is name for process. It is modified if necessary to make it unique. :buffer BUFFER -- BUFFER is the buffer (or buffer-name) to associate with the process. Process output goes at end of that buffer, unless you specify a filter function to handle the output. BUFFER may be also nil, meaning that this process is not associated with any buffer. :host HOST -- HOST is name of the host to connect to, or its IP address. The symbol `local' specifies the local host. If specified for a server process, it must be a valid name or address for the local host, and only clients connecting to that address will be accepted. :service SERVICE -- SERVICE is name of the service desired, or an integer specifying a port number to connect to. If SERVICE is t, a random port number is selected for the server. A port number can be specified as an integer string, e.g., "80", as well as an integer. :type TYPE -- TYPE is the type of connection. The default (nil) is a stream type connection, `datagram' creates a datagram type connection, `seqpacket' creates a reliable datagram connection. :family FAMILY -- FAMILY is the address (and protocol) family for the service specified by HOST and SERVICE. The default (nil) is to use whatever address family (IPv4 or IPv6) that is defined for the host and port number specified by HOST and SERVICE. Other address families supported are: local -- for a local (i.e. UNIX) address specified by SERVICE. ipv4 -- use IPv4 address family only. ipv6 -- use IPv6 address family only. :local ADDRESS -- ADDRESS is the local address used for the connection. This parameter is ignored when opening a client process. When specified for a server process, the FAMILY, HOST and SERVICE args are ignored. :remote ADDRESS -- ADDRESS is the remote partner's address for the connection. This parameter is ignored when opening a stream server process. For a datagram server process, it specifies the initial setting of the remote datagram address. When specified for a client process, the FAMILY, HOST, and SERVICE args are ignored. The format of ADDRESS depends on the address family: - An IPv4 address is represented as a vector of integers [A B C D P] corresponding to numeric IP address A.B.C.D and port number P. - A local address is represented as a string with the address in the local address space. - An "unsupported family" address is represented by a cons (F . AV) where F is the family number and AV is a vector containing the socket address data with one element per address data byte. Do not rely on this format in portable code, as it may depend on implementation defined constants, data sizes, and data structure alignment. :coding CODING -- If CODING is a symbol, it specifies the coding system used for both reading and writing for this process. If CODING is a cons (DECODING . ENCODING), DECODING is used for reading, and ENCODING is used for writing. :nowait BOOL -- If NOWAIT is non-nil for a stream type client process, return without waiting for the connection to complete; instead, the sentinel function will be called with second arg matching "open" (if successful) or "failed" when the connect completes. Default is to use a blocking connect (i.e. wait) for stream type connections. :noquery BOOL -- Query the user unless BOOL is non-nil, and process is running when Emacs is exited. :stop BOOL -- Start process in the `stopped' state if BOOL non-nil. In the stopped state, a server process does not accept new connections, and a client process does not handle incoming traffic. The stopped state is cleared by `continue-process' and set by `stop-process'. :filter FILTER -- Install FILTER as the process filter. :filter-multibyte BOOL -- If BOOL is non-nil, strings given to the process filter are multibyte, otherwise they are unibyte. If this keyword is not specified, the strings are multibyte. :sentinel SENTINEL -- Install SENTINEL as the process sentinel. :log LOG -- Install LOG as the server process log function. This function is called when the server accepts a network connection from a client. The arguments are SERVER, CLIENT, and MESSAGE, where SERVER is the server process, CLIENT is the new process for the connection, and MESSAGE is a string. :plist PLIST -- Install PLIST as the new process's initial plist. :tls-parameters LIST -- is a list that should be supplied if you're opening a TLS connection. The first element is the TLS type (either `gnutls-x509pki' or `gnutls-anon'), and the remaining elements should be a keyword list accepted by gnutls-boot (as returned by `gnutls-boot-parameters'). :server QLEN -- if QLEN is non-nil, create a server process for the specified FAMILY, SERVICE, and connection type (stream or datagram). If QLEN is an integer, it is used as the max. length of the server's pending connection queue (also known as the backlog); the default queue length is 5. Default is to create a client process. The following network options can be specified for this connection: :broadcast BOOL -- Allow send and receive of datagram broadcasts. :dontroute BOOL -- Only send to directly connected hosts. :keepalive BOOL -- Send keep-alive messages on network stream. :linger BOOL or TIMEOUT -- Send queued messages before closing. :oobinline BOOL -- Place out-of-band data in receive data stream. :priority INT -- Set protocol defined priority for sent packets. :reuseaddr BOOL -- Allow reusing a recently used local address (this is allowed by default for a server process). :bindtodevice NAME -- bind to interface NAME. Using this may require special privileges on some systems. :use-external-socket BOOL -- Use any pre-allocated sockets that have been passed to Emacs. If Emacs wasn't passed a socket, this option is silently ignored. Consult the relevant system programmer's manual pages for more information on using these options. A server process will listen for and accept connections from clients. When a client connection is accepted, a new network process is created for the connection with the following parameters: - The client's process name is constructed by concatenating the server process's NAME and a client identification string. - If the FILTER argument is non-nil, the client process will not get a separate process buffer; otherwise, the client's process buffer is a newly created buffer named after the server process's BUFFER name or process NAME concatenated with the client identification string. - The connection type and the process filter and sentinel parameters are inherited from the server process's TYPE, FILTER and SENTINEL. - The client process's contact info is set according to the client's addressing information (typically an IP address and a port number). - The client process's plist is initialized from the server's plist. Notice that the FILTER and SENTINEL args are never used directly by the server process. Also, the BUFFER argument is not used directly by the server process, but via the optional :log function, accepted (and failed) connections may be logged in the server process's buffer. The original argument list, modified with the actual connection information, is available via the `process-contact' function. usage: (make-network-process &rest ARGS) */) (ptrdiff_t nargs, Lisp_Object *args) { Lisp_Object proc; Lisp_Object contact; struct Lisp_Process *p; const char *portstring UNINIT; char portbuf[INT_BUFSIZE_BOUND (EMACS_INT)]; #ifdef HAVE_LOCAL_SOCKETS struct sockaddr_un address_un; #endif EMACS_INT port = 0; Lisp_Object tem; Lisp_Object name, buffer, host, service, address; Lisp_Object filter, sentinel, use_external_socket_p; Lisp_Object addrinfos = Qnil; int socktype; int family = -1; enum { any_protocol = 0 }; #ifdef HAVE_GETADDRINFO_A struct gaicb *dns_request = NULL; #endif ptrdiff_t count = SPECPDL_INDEX (); if (nargs == 0) return Qnil; /* Save arguments for process-contact and clone-process. */ contact = Flist (nargs, args); #ifdef WINDOWSNT /* Ensure socket support is loaded if available. */ init_winsock (TRUE); #endif /* :type TYPE (nil: stream, datagram */ tem = Fplist_get (contact, QCtype); if (NILP (tem)) socktype = SOCK_STREAM; #ifdef DATAGRAM_SOCKETS else if (EQ (tem, Qdatagram)) socktype = SOCK_DGRAM; #endif #ifdef HAVE_SEQPACKET else if (EQ (tem, Qseqpacket)) socktype = SOCK_SEQPACKET; #endif else error ("Unsupported connection type"); name = Fplist_get (contact, QCname); buffer = Fplist_get (contact, QCbuffer); filter = Fplist_get (contact, QCfilter); sentinel = Fplist_get (contact, QCsentinel); use_external_socket_p = Fplist_get (contact, QCuse_external_socket); CHECK_STRING (name); /* :local ADDRESS or :remote ADDRESS */ tem = Fplist_get (contact, QCserver); if (NILP (tem)) address = Fplist_get (contact, QCremote); else address = Fplist_get (contact, QClocal); if (!NILP (address)) { host = service = Qnil; if (!get_lisp_to_sockaddr_size (address, &family)) error ("Malformed :address"); addrinfos = list1 (Fcons (make_number (any_protocol), address)); goto open_socket; } /* :family FAMILY -- nil (for Inet), local, or integer. */ tem = Fplist_get (contact, QCfamily); if (NILP (tem)) { #ifdef AF_INET6 family = AF_UNSPEC; #else family = AF_INET; #endif } #ifdef HAVE_LOCAL_SOCKETS else if (EQ (tem, Qlocal)) family = AF_LOCAL; #endif #ifdef AF_INET6 else if (EQ (tem, Qipv6)) family = AF_INET6; #endif else if (EQ (tem, Qipv4)) family = AF_INET; else if (TYPE_RANGED_INTEGERP (int, tem)) family = XINT (tem); else error ("Unknown address family"); /* :service SERVICE -- string, integer (port number), or t (random port). */ service = Fplist_get (contact, QCservice); /* :host HOST -- hostname, ip address, or 'local for localhost. */ host = Fplist_get (contact, QChost); if (NILP (host)) { /* The "connection" function gets it bind info from the address we're given, so use this dummy address if nothing is specified. */ #ifdef HAVE_LOCAL_SOCKETS if (family != AF_LOCAL) #endif host = build_string ("127.0.0.1"); } else { if (EQ (host, Qlocal)) /* Depending on setup, "localhost" may map to different IPv4 and/or IPv6 addresses, so it's better to be explicit (Bug#6781). */ host = build_string ("127.0.0.1"); CHECK_STRING (host); } #ifdef HAVE_LOCAL_SOCKETS if (family == AF_LOCAL) { if (!NILP (host)) { message (":family local ignores the :host property"); contact = Fplist_put (contact, QChost, Qnil); host = Qnil; } CHECK_STRING (service); if (sizeof address_un.sun_path <= SBYTES (service)) error ("Service name too long"); addrinfos = list1 (Fcons (make_number (any_protocol), service)); goto open_socket; } #endif /* Slow down polling to every ten seconds. Some kernels have a bug which causes retrying connect to fail after a connect. Polling can interfere with gethostbyname too. */ #ifdef POLL_FOR_INPUT if (socktype != SOCK_DGRAM) { record_unwind_protect_void (run_all_atimers); bind_polling_period (10); } #endif if (!NILP (host)) { ptrdiff_t portstringlen ATTRIBUTE_UNUSED; /* SERVICE can either be a string or int. Convert to a C string for later use by getaddrinfo. */ if (EQ (service, Qt)) { portstring = "0"; portstringlen = 1; } else if (INTEGERP (service)) { portstring = portbuf; portstringlen = sprintf (portbuf, "%"pI"d", XINT (service)); } else { CHECK_STRING (service); portstring = SSDATA (service); portstringlen = SBYTES (service); } #ifdef HAVE_GETADDRINFO_A if (!NILP (Fplist_get (contact, QCnowait))) { ptrdiff_t hostlen = SBYTES (host); struct req { struct gaicb gaicb; struct addrinfo hints; char str[FLEXIBLE_ARRAY_MEMBER]; } *req = xmalloc (FLEXSIZEOF (struct req, str, hostlen + 1 + portstringlen + 1)); dns_request = &req->gaicb; dns_request->ar_name = req->str; dns_request->ar_service = req->str + hostlen + 1; dns_request->ar_request = &req->hints; dns_request->ar_result = NULL; memset (&req->hints, 0, sizeof req->hints); req->hints.ai_family = family; req->hints.ai_socktype = socktype; strcpy (req->str, SSDATA (host)); strcpy (req->str + hostlen + 1, portstring); int ret = getaddrinfo_a (GAI_NOWAIT, &dns_request, 1, NULL); if (ret) error ("%s/%s getaddrinfo_a error %d", SSDATA (host), portstring, ret); goto open_socket; } #endif /* HAVE_GETADDRINFO_A */ } /* If we have a host, use getaddrinfo to resolve both host and service. Otherwise, use getservbyname to lookup the service. */ if (!NILP (host)) { struct addrinfo *res, *lres; int ret; maybe_quit (); struct addrinfo hints; memset (&hints, 0, sizeof hints); hints.ai_family = family; hints.ai_socktype = socktype; ret = getaddrinfo (SSDATA (host), portstring, &hints, &res); if (ret) #ifdef HAVE_GAI_STRERROR { synchronize_system_messages_locale (); char const *str = gai_strerror (ret); if (! NILP (Vlocale_coding_system)) str = SSDATA (code_convert_string_norecord (build_string (str), Vlocale_coding_system, 0)); error ("%s/%s %s", SSDATA (host), portstring, str); } #else error ("%s/%s getaddrinfo error %d", SSDATA (host), portstring, ret); #endif for (lres = res; lres; lres = lres->ai_next) addrinfos = Fcons (conv_addrinfo_to_lisp (lres), addrinfos); addrinfos = Fnreverse (addrinfos); freeaddrinfo (res); goto open_socket; } /* No hostname has been specified (e.g., a local server process). */ if (EQ (service, Qt)) port = 0; else if (INTEGERP (service)) port = XINT (service); else { CHECK_STRING (service); port = -1; if (SBYTES (service) != 0) { /* Allow the service to be a string containing the port number, because that's allowed if you have getaddrbyname. */ char *service_end; long int lport = strtol (SSDATA (service), &service_end, 10); if (service_end == SSDATA (service) + SBYTES (service)) port = lport; else { struct servent *svc_info = getservbyname (SSDATA (service), socktype == SOCK_DGRAM ? "udp" : "tcp"); if (svc_info) port = ntohs (svc_info->s_port); } } } if (! (0 <= port && port < 1 << 16)) { AUTO_STRING (unknown_service, "Unknown service: %s"); xsignal1 (Qerror, CALLN (Fformat, unknown_service, service)); } open_socket: if (!NILP (buffer)) buffer = Fget_buffer_create (buffer); /* Unwind bind_polling_period. */ unbind_to (count, Qnil); proc = make_process (name); record_unwind_protect (remove_process, proc); p = XPROCESS (proc); pset_childp (p, contact); pset_plist (p, Fcopy_sequence (Fplist_get (contact, QCplist))); pset_type (p, Qnetwork); pset_buffer (p, buffer); pset_sentinel (p, sentinel); pset_filter (p, filter); pset_log (p, Fplist_get (contact, QClog)); if (tem = Fplist_get (contact, QCnoquery), !NILP (tem)) p->kill_without_query = 1; if ((tem = Fplist_get (contact, QCstop), !NILP (tem))) pset_command (p, Qt); eassert (p->pid == 0); p->backlog = 5; eassert (! p->is_non_blocking_client); eassert (! p->is_server); p->port = port; p->socktype = socktype; #ifdef HAVE_GETADDRINFO_A eassert (! p->dns_request); #endif #ifdef HAVE_GNUTLS tem = Fplist_get (contact, QCtls_parameters); CHECK_LIST (tem); p->gnutls_boot_parameters = tem; #endif set_network_socket_coding_system (proc, host, service, name); /* :server BOOL */ tem = Fplist_get (contact, QCserver); if (!NILP (tem)) { /* Don't support network sockets when non-blocking mode is not available, since a blocked Emacs is not useful. */ p->is_server = true; if (TYPE_RANGED_INTEGERP (int, tem)) p->backlog = XINT (tem); } /* :nowait BOOL */ if (!p->is_server && socktype != SOCK_DGRAM && !NILP (Fplist_get (contact, QCnowait))) p->is_non_blocking_client = true; bool postpone_connection = false; #ifdef HAVE_GETADDRINFO_A /* With async address resolution, the list of addresses is empty, so postpone connecting to the server. */ if (!p->is_server && NILP (addrinfos)) { p->dns_request = dns_request; p->status = list1 (Qconnect); postpone_connection = true; } #endif if (! postpone_connection) connect_network_socket (proc, addrinfos, use_external_socket_p); specpdl_ptr = specpdl + count; return proc; } #ifdef HAVE_NET_IF_H #ifdef SIOCGIFCONF static Lisp_Object network_interface_list (void) { struct ifconf ifconf; struct ifreq *ifreq; void *buf = NULL; ptrdiff_t buf_size = 512; int s; Lisp_Object res; ptrdiff_t count; s = socket (AF_INET, SOCK_STREAM | SOCK_CLOEXEC, 0); if (s < 0) return Qnil; count = SPECPDL_INDEX (); record_unwind_protect_int (close_file_unwind, s); do { buf = xpalloc (buf, &buf_size, 1, INT_MAX, 1); ifconf.ifc_buf = buf; ifconf.ifc_len = buf_size; if (ioctl (s, SIOCGIFCONF, &ifconf)) { emacs_close (s); xfree (buf); return Qnil; } } while (ifconf.ifc_len == buf_size); res = unbind_to (count, Qnil); ifreq = ifconf.ifc_req; while ((char *) ifreq < (char *) ifconf.ifc_req + ifconf.ifc_len) { struct ifreq *ifq = ifreq; #ifdef HAVE_STRUCT_IFREQ_IFR_ADDR_SA_LEN #define SIZEOF_IFREQ(sif) \ ((sif)->ifr_addr.sa_len < sizeof (struct sockaddr) \ ? sizeof (*(sif)) : sizeof ((sif)->ifr_name) + (sif)->ifr_addr.sa_len) int len = SIZEOF_IFREQ (ifq); #else int len = sizeof (*ifreq); #endif char namebuf[sizeof (ifq->ifr_name) + 1]; ifreq = (struct ifreq *) ((char *) ifreq + len); if (ifq->ifr_addr.sa_family != AF_INET) continue; memcpy (namebuf, ifq->ifr_name, sizeof (ifq->ifr_name)); namebuf[sizeof (ifq->ifr_name)] = 0; res = Fcons (Fcons (build_string (namebuf), conv_sockaddr_to_lisp (&ifq->ifr_addr, sizeof (struct sockaddr))), res); } xfree (buf); return res; } #endif /* SIOCGIFCONF */ #if defined (SIOCGIFADDR) || defined (SIOCGIFHWADDR) || defined (SIOCGIFFLAGS) struct ifflag_def { int flag_bit; const char *flag_sym; }; static const struct ifflag_def ifflag_table[] = { #ifdef IFF_UP { IFF_UP, "up" }, #endif #ifdef IFF_BROADCAST { IFF_BROADCAST, "broadcast" }, #endif #ifdef IFF_DEBUG { IFF_DEBUG, "debug" }, #endif #ifdef IFF_LOOPBACK { IFF_LOOPBACK, "loopback" }, #endif #ifdef IFF_POINTOPOINT { IFF_POINTOPOINT, "pointopoint" }, #endif #ifdef IFF_RUNNING { IFF_RUNNING, "running" }, #endif #ifdef IFF_NOARP { IFF_NOARP, "noarp" }, #endif #ifdef IFF_PROMISC { IFF_PROMISC, "promisc" }, #endif #ifdef IFF_NOTRAILERS #ifdef NS_IMPL_COCOA /* Really means smart, notrailers is obsolete. */ { IFF_NOTRAILERS, "smart" }, #else { IFF_NOTRAILERS, "notrailers" }, #endif #endif #ifdef IFF_ALLMULTI { IFF_ALLMULTI, "allmulti" }, #endif #ifdef IFF_MASTER { IFF_MASTER, "master" }, #endif #ifdef IFF_SLAVE { IFF_SLAVE, "slave" }, #endif #ifdef IFF_MULTICAST { IFF_MULTICAST, "multicast" }, #endif #ifdef IFF_PORTSEL { IFF_PORTSEL, "portsel" }, #endif #ifdef IFF_AUTOMEDIA { IFF_AUTOMEDIA, "automedia" }, #endif #ifdef IFF_DYNAMIC { IFF_DYNAMIC, "dynamic" }, #endif #ifdef IFF_OACTIVE { IFF_OACTIVE, "oactive" }, /* OpenBSD: transmission in progress. */ #endif #ifdef IFF_SIMPLEX { IFF_SIMPLEX, "simplex" }, /* OpenBSD: can't hear own transmissions. */ #endif #ifdef IFF_LINK0 { IFF_LINK0, "link0" }, /* OpenBSD: per link layer defined bit. */ #endif #ifdef IFF_LINK1 { IFF_LINK1, "link1" }, /* OpenBSD: per link layer defined bit. */ #endif #ifdef IFF_LINK2 { IFF_LINK2, "link2" }, /* OpenBSD: per link layer defined bit. */ #endif { 0, 0 } }; static Lisp_Object network_interface_info (Lisp_Object ifname) { struct ifreq rq; Lisp_Object res = Qnil; Lisp_Object elt; int s; bool any = 0; ptrdiff_t count; #if (! (defined SIOCGIFHWADDR && defined HAVE_STRUCT_IFREQ_IFR_HWADDR) \ && defined HAVE_GETIFADDRS && defined LLADDR) struct ifaddrs *ifap; #endif CHECK_STRING (ifname); if (sizeof rq.ifr_name <= SBYTES (ifname)) error ("interface name too long"); lispstpcpy (rq.ifr_name, ifname); s = socket (AF_INET, SOCK_STREAM | SOCK_CLOEXEC, 0); if (s < 0) return Qnil; count = SPECPDL_INDEX (); record_unwind_protect_int (close_file_unwind, s); elt = Qnil; #if defined (SIOCGIFFLAGS) && defined (HAVE_STRUCT_IFREQ_IFR_FLAGS) if (ioctl (s, SIOCGIFFLAGS, &rq) == 0) { int flags = rq.ifr_flags; const struct ifflag_def *fp; int fnum; /* If flags is smaller than int (i.e. short) it may have the high bit set due to IFF_MULTICAST. In that case, sign extending it into an int is wrong. */ if (flags < 0 && sizeof (rq.ifr_flags) < sizeof (flags)) flags = (unsigned short) rq.ifr_flags; any = 1; for (fp = ifflag_table; flags != 0 && fp->flag_sym; fp++) { if (flags & fp->flag_bit) { elt = Fcons (intern (fp->flag_sym), elt); flags -= fp->flag_bit; } } for (fnum = 0; flags && fnum < 32; flags >>= 1, fnum++) { if (flags & 1) { elt = Fcons (make_number (fnum), elt); } } } #endif res = Fcons (elt, res); elt = Qnil; #if defined (SIOCGIFHWADDR) && defined (HAVE_STRUCT_IFREQ_IFR_HWADDR) if (ioctl (s, SIOCGIFHWADDR, &rq) == 0) { Lisp_Object hwaddr = Fmake_vector (make_number (6), Qnil); register struct Lisp_Vector *p = XVECTOR (hwaddr); int n; any = 1; for (n = 0; n < 6; n++) p->contents[n] = make_number (((unsigned char *) &rq.ifr_hwaddr.sa_data[0]) [n]); elt = Fcons (make_number (rq.ifr_hwaddr.sa_family), hwaddr); } #elif defined (HAVE_GETIFADDRS) && defined (LLADDR) if (getifaddrs (&ifap) != -1) { Lisp_Object hwaddr = Fmake_vector (make_number (6), Qnil); register struct Lisp_Vector *p = XVECTOR (hwaddr); struct ifaddrs *it; for (it = ifap; it != NULL; it = it->ifa_next) { DECLARE_POINTER_ALIAS (sdl, struct sockaddr_dl, it->ifa_addr); unsigned char linkaddr[6]; int n; if (it->ifa_addr->sa_family != AF_LINK || strcmp (it->ifa_name, SSDATA (ifname)) != 0 || sdl->sdl_alen != 6) continue; memcpy (linkaddr, LLADDR (sdl), sdl->sdl_alen); for (n = 0; n < 6; n++) p->contents[n] = make_number (linkaddr[n]); elt = Fcons (make_number (it->ifa_addr->sa_family), hwaddr); break; } } #ifdef HAVE_FREEIFADDRS freeifaddrs (ifap); #endif #endif /* HAVE_GETIFADDRS && LLADDR */ res = Fcons (elt, res); elt = Qnil; #if defined (SIOCGIFNETMASK) && (defined (HAVE_STRUCT_IFREQ_IFR_NETMASK) || defined (HAVE_STRUCT_IFREQ_IFR_ADDR)) if (ioctl (s, SIOCGIFNETMASK, &rq) == 0) { any = 1; #ifdef HAVE_STRUCT_IFREQ_IFR_NETMASK elt = conv_sockaddr_to_lisp (&rq.ifr_netmask, sizeof (rq.ifr_netmask)); #else elt = conv_sockaddr_to_lisp (&rq.ifr_addr, sizeof (rq.ifr_addr)); #endif } #endif res = Fcons (elt, res); elt = Qnil; #if defined (SIOCGIFBRDADDR) && defined (HAVE_STRUCT_IFREQ_IFR_BROADADDR) if (ioctl (s, SIOCGIFBRDADDR, &rq) == 0) { any = 1; elt = conv_sockaddr_to_lisp (&rq.ifr_broadaddr, sizeof (rq.ifr_broadaddr)); } #endif res = Fcons (elt, res); elt = Qnil; #if defined (SIOCGIFADDR) && defined (HAVE_STRUCT_IFREQ_IFR_ADDR) if (ioctl (s, SIOCGIFADDR, &rq) == 0) { any = 1; elt = conv_sockaddr_to_lisp (&rq.ifr_addr, sizeof (rq.ifr_addr)); } #endif res = Fcons (elt, res); return unbind_to (count, any ? res : Qnil); } #endif /* !SIOCGIFADDR && !SIOCGIFHWADDR && !SIOCGIFFLAGS */ #endif /* defined (HAVE_NET_IF_H) */ DEFUN ("network-interface-list", Fnetwork_interface_list, Snetwork_interface_list, 0, 0, 0, doc: /* Return an alist of all network interfaces and their network address. Each element is a cons, the car of which is a string containing the interface name, and the cdr is the network address in internal format; see the description of ADDRESS in `make-network-process'. If the information is not available, return nil. */) (void) { #if (defined HAVE_NET_IF_H && defined SIOCGIFCONF) || defined WINDOWSNT return network_interface_list (); #else return Qnil; #endif } DEFUN ("network-interface-info", Fnetwork_interface_info, Snetwork_interface_info, 1, 1, 0, doc: /* Return information about network interface named IFNAME. The return value is a list (ADDR BCAST NETMASK HWADDR FLAGS), where ADDR is the layer 3 address, BCAST is the layer 3 broadcast address, NETMASK is the layer 3 network mask, HWADDR is the layer 2 address, and FLAGS is the current flags of the interface. Data that is unavailable is returned as nil. */) (Lisp_Object ifname) { #if ((defined HAVE_NET_IF_H \ && (defined SIOCGIFADDR || defined SIOCGIFHWADDR \ || defined SIOCGIFFLAGS)) \ || defined WINDOWSNT) return network_interface_info (ifname); #else return Qnil; #endif } /* Turn off input and output for process PROC. */ static void deactivate_process (Lisp_Object proc) { int inchannel; struct Lisp_Process *p = XPROCESS (proc); int i; #ifdef HAVE_GNUTLS /* Delete GnuTLS structures in PROC, if any. */ emacs_gnutls_deinit (proc); #endif /* HAVE_GNUTLS */ if (p->read_output_delay > 0) { if (--process_output_delay_count < 0) process_output_delay_count = 0; p->read_output_delay = 0; p->read_output_skip = 0; } /* Beware SIGCHLD hereabouts. */ for (i = 0; i < PROCESS_OPEN_FDS; i++) close_process_fd (&p->open_fd[i]); inchannel = p->infd; if (inchannel >= 0) { p->infd = -1; p->outfd = -1; #ifdef DATAGRAM_SOCKETS if (DATAGRAM_CHAN_P (inchannel)) { xfree (datagram_address[inchannel].sa); datagram_address[inchannel].sa = 0; datagram_address[inchannel].len = 0; } #endif chan_process[inchannel] = Qnil; delete_read_fd (inchannel); if ((fd_callback_info[inchannel].flags & NON_BLOCKING_CONNECT_FD) != 0) delete_write_fd (inchannel); if (inchannel == max_desc) recompute_max_desc (); } } DEFUN ("accept-process-output", Faccept_process_output, Saccept_process_output, 0, 4, 0, doc: /* Allow any pending output from subprocesses to be read by Emacs. It is given to their filter functions. Optional argument PROCESS means do not return until output has been received from PROCESS. Optional second argument SECONDS and third argument MILLISEC specify a timeout; return after that much time even if there is no subprocess output. If SECONDS is a floating point number, it specifies a fractional number of seconds to wait. The MILLISEC argument is obsolete and should be avoided. If optional fourth argument JUST-THIS-ONE is non-nil, accept output from PROCESS only, suspending reading output from other processes. If JUST-THIS-ONE is an integer, don't run any timers either. Return non-nil if we received any output from PROCESS (or, if PROCESS is nil, from any process) before the timeout expired. */) (Lisp_Object process, Lisp_Object seconds, Lisp_Object millisec, Lisp_Object just_this_one) { intmax_t secs; int nsecs; if (! NILP (process)) { CHECK_PROCESS (process); struct Lisp_Process *proc = XPROCESS (process); /* Can't wait for a process that is dedicated to a different thread. */ if (!EQ (proc->thread, Qnil) && !EQ (proc->thread, Fcurrent_thread ())) { Lisp_Object proc_thread_name = XTHREAD (proc->thread)->name; if (STRINGP (proc_thread_name)) error ("Attempt to accept output from process %s locked to thread %s", SDATA (proc->name), SDATA (proc_thread_name)); else error ("Attempt to accept output from process %s locked to thread %p", SDATA (proc->name), XTHREAD (proc->thread)); } } else just_this_one = Qnil; if (!NILP (millisec)) { /* Obsolete calling convention using integers rather than floats. */ CHECK_NUMBER (millisec); if (NILP (seconds)) seconds = make_float (XINT (millisec) / 1000.0); else { CHECK_NUMBER (seconds); seconds = make_float (XINT (millisec) / 1000.0 + XINT (seconds)); } } secs = 0; nsecs = -1; if (!NILP (seconds)) { if (INTEGERP (seconds)) { if (XINT (seconds) > 0) { secs = XINT (seconds); nsecs = 0; } } else if (FLOATP (seconds)) { if (XFLOAT_DATA (seconds) > 0) { struct timespec t = dtotimespec (XFLOAT_DATA (seconds)); secs = min (t.tv_sec, WAIT_READING_MAX); nsecs = t.tv_nsec; } } else wrong_type_argument (Qnumberp, seconds); } else if (! NILP (process)) nsecs = 0; return ((wait_reading_process_output (secs, nsecs, 0, 0, Qnil, !NILP (process) ? XPROCESS (process) : NULL, (NILP (just_this_one) ? 0 : !INTEGERP (just_this_one) ? 1 : -1)) <= 0) ? Qnil : Qt); } /* Accept a connection for server process SERVER on CHANNEL. */ static EMACS_INT connect_counter = 0; static void server_accept_connection (Lisp_Object server, int channel) { Lisp_Object buffer; Lisp_Object contact, host, service; struct Lisp_Process *ps = XPROCESS (server); struct Lisp_Process *p; int s; union u_sockaddr saddr; socklen_t len = sizeof saddr; ptrdiff_t count; s = accept4 (channel, &saddr.sa, &len, SOCK_CLOEXEC); if (s < 0) { int code = errno; if (!would_block (code) && !NILP (ps->log)) call3 (ps->log, server, Qnil, concat3 (build_string ("accept failed with code"), Fnumber_to_string (make_number (code)), build_string ("\n"))); return; } count = SPECPDL_INDEX (); record_unwind_protect_int (close_file_unwind, s); connect_counter++; /* Setup a new process to handle the connection. */ /* Generate a unique identification of the caller, and build contact information for this process. */ host = Qt; service = Qnil; Lisp_Object args[11]; int nargs = 0; AUTO_STRING (procname_format_in, "%s <%d.%d.%d.%d:%d>"); AUTO_STRING (procname_format_in6, "%s <[%x:%x:%x:%x:%x:%x:%x:%x]:%d>"); AUTO_STRING (procname_format_default, "%s <%d>"); switch (saddr.sa.sa_family) { case AF_INET: { args[nargs++] = procname_format_in; nargs++; unsigned char *ip = (unsigned char *)&saddr.in.sin_addr.s_addr; service = make_number (ntohs (saddr.in.sin_port)); for (int i = 0; i < 4; i++) args[nargs++] = make_number (ip[i]); args[nargs++] = service; } break; #ifdef AF_INET6 case AF_INET6: { args[nargs++] = procname_format_in6; nargs++; DECLARE_POINTER_ALIAS (ip6, uint16_t, &saddr.in6.sin6_addr); service = make_number (ntohs (saddr.in.sin_port)); for (int i = 0; i < 8; i++) args[nargs++] = make_number (ip6[i]); args[nargs++] = service; } break; #endif default: args[nargs++] = procname_format_default; nargs++; args[nargs++] = make_number (connect_counter); break; } /* Create a new buffer name for this process if it doesn't have a filter. The new buffer name is based on the buffer name or process name of the server process concatenated with the caller identification. */ if (!(EQ (ps->filter, Qinternal_default_process_filter) || EQ (ps->filter, Qt))) buffer = Qnil; else { buffer = ps->buffer; if (!NILP (buffer)) buffer = Fbuffer_name (buffer); else buffer = ps->name; if (!NILP (buffer)) { args[1] = buffer; buffer = Fget_buffer_create (Fformat (nargs, args)); } } /* Generate a unique name for the new server process. Combine the server process name with the caller identification. */ args[1] = ps->name; Lisp_Object name = Fformat (nargs, args); Lisp_Object proc = make_process (name); chan_process[s] = proc; fcntl (s, F_SETFL, O_NONBLOCK); p = XPROCESS (proc); /* Build new contact information for this setup. */ contact = Fcopy_sequence (ps->childp); contact = Fplist_put (contact, QCserver, Qnil); contact = Fplist_put (contact, QChost, host); if (!NILP (service)) contact = Fplist_put (contact, QCservice, service); contact = Fplist_put (contact, QCremote, conv_sockaddr_to_lisp (&saddr.sa, len)); #ifdef HAVE_GETSOCKNAME len = sizeof saddr; if (getsockname (s, &saddr.sa, &len) == 0) contact = Fplist_put (contact, QClocal, conv_sockaddr_to_lisp (&saddr.sa, len)); #endif pset_childp (p, contact); pset_plist (p, Fcopy_sequence (ps->plist)); pset_type (p, Qnetwork); pset_buffer (p, buffer); pset_sentinel (p, ps->sentinel); pset_filter (p, ps->filter); eassert (NILP (p->command)); eassert (p->pid == 0); /* Discard the unwind protect for closing S. */ specpdl_ptr = specpdl + count; p->open_fd[SUBPROCESS_STDIN] = s; p->infd = s; p->outfd = s; pset_status (p, Qrun); /* Client processes for accepted connections are not stopped initially. */ if (!EQ (p->filter, Qt)) add_process_read_fd (s); if (s > max_desc) max_desc = s; /* Setup coding system for new process based on server process. This seems to be the proper thing to do, as the coding system of the new process should reflect the settings at the time the server socket was opened; not the current settings. */ pset_decode_coding_system (p, ps->decode_coding_system); pset_encode_coding_system (p, ps->encode_coding_system); setup_process_coding_systems (proc); pset_decoding_buf (p, empty_unibyte_string); eassert (p->decoding_carryover == 0); pset_encoding_buf (p, empty_unibyte_string); p->inherit_coding_system_flag = (NILP (buffer) ? 0 : ps->inherit_coding_system_flag); AUTO_STRING (dash, "-"); AUTO_STRING (nl, "\n"); Lisp_Object host_string = STRINGP (host) ? host : dash; if (!NILP (ps->log)) { AUTO_STRING (accept_from, "accept from "); call3 (ps->log, server, proc, concat3 (accept_from, host_string, nl)); } AUTO_STRING (open_from, "open from "); exec_sentinel (proc, concat3 (open_from, host_string, nl)); } #ifdef HAVE_GETADDRINFO_A static Lisp_Object check_for_dns (Lisp_Object proc) { struct Lisp_Process *p = XPROCESS (proc); Lisp_Object addrinfos = Qnil; /* Sanity check. */ if (! p->dns_request) return Qnil; int ret = gai_error (p->dns_request); if (ret == EAI_INPROGRESS) return Qt; /* We got a response. */ if (ret == 0) { struct addrinfo *res; for (res = p->dns_request->ar_result; res; res = res->ai_next) addrinfos = Fcons (conv_addrinfo_to_lisp (res), addrinfos); addrinfos = Fnreverse (addrinfos); } /* The DNS lookup failed. */ else if (connecting_status (p->status)) { deactivate_process (proc); pset_status (p, (list2 (Qfailed, concat3 (build_string ("Name lookup of "), build_string (p->dns_request->ar_name), build_string (" failed"))))); } free_dns_request (proc); /* This process should not already be connected (or killed). */ if (! connecting_status (p->status)) return Qnil; return addrinfos; } #endif /* HAVE_GETADDRINFO_A */ static void wait_for_socket_fds (Lisp_Object process, char const *name) { while (XPROCESS (process)->infd < 0 && connecting_status (XPROCESS (process)->status)) { add_to_log ("Waiting for socket from %s...", build_string (name)); wait_reading_process_output (0, 20 * 1000 * 1000, 0, 0, Qnil, NULL, 0); } } static void wait_while_connecting (Lisp_Object process) { while (connecting_status (XPROCESS (process)->status)) { add_to_log ("Waiting for connection..."); wait_reading_process_output (0, 20 * 1000 * 1000, 0, 0, Qnil, NULL, 0); } } static void wait_for_tls_negotiation (Lisp_Object process) { #ifdef HAVE_GNUTLS while (XPROCESS (process)->gnutls_p && XPROCESS (process)->gnutls_initstage != GNUTLS_STAGE_READY) { add_to_log ("Waiting for TLS..."); wait_reading_process_output (0, 20 * 1000 * 1000, 0, 0, Qnil, NULL, 0); } #endif } static void wait_reading_process_output_unwind (int data) { clear_waiting_thread_info (); waiting_for_user_input_p = data; } /* This is here so breakpoints can be put on it. */ static void wait_reading_process_output_1 (void) { } /* Read and dispose of subprocess output while waiting for timeout to elapse and/or keyboard input to be available. TIME_LIMIT is: timeout in seconds If negative, gobble data immediately available but don't wait for any. NSECS is: an additional duration to wait, measured in nanoseconds If TIME_LIMIT is zero, then: If NSECS == 0, there is no limit. If NSECS > 0, the timeout consists of NSECS only. If NSECS < 0, gobble data immediately, as if TIME_LIMIT were negative. READ_KBD is: 0 to ignore keyboard input, or 1 to return when input is available, or -1 meaning caller will actually read the input, so don't throw to the quit handler DO_DISPLAY means redisplay should be done to show subprocess output that arrives. If WAIT_FOR_CELL is a cons cell, wait until its car is non-nil (and gobble terminal input into the buffer if any arrives). If WAIT_PROC is specified, wait until something arrives from that process. If JUST_WAIT_PROC is nonzero, handle only output from WAIT_PROC (suspending output from other processes). A negative value means don't run any timers either. Return positive if we received input from WAIT_PROC (or from any process if WAIT_PROC is null), zero if we attempted to receive input but got none, and negative if we didn't even try. */ int wait_reading_process_output (intmax_t time_limit, int nsecs, int read_kbd, bool do_display, Lisp_Object wait_for_cell, struct Lisp_Process *wait_proc, int just_wait_proc) { int channel, nfds; fd_set Available; fd_set Writeok; bool check_write; int check_delay; bool no_avail; int xerrno; Lisp_Object proc; struct timespec timeout, end_time, timer_delay; struct timespec got_output_end_time = invalid_timespec (); enum { MINIMUM = -1, TIMEOUT, INFINITY } wait; int got_some_output = -1; uintmax_t prev_wait_proc_nbytes_read = wait_proc ? wait_proc->nbytes_read : 0; #if defined HAVE_GETADDRINFO_A || defined HAVE_GNUTLS bool retry_for_async; #endif ptrdiff_t count = SPECPDL_INDEX (); /* Close to the current time if known, an invalid timespec otherwise. */ struct timespec now = invalid_timespec (); eassert (wait_proc == NULL || EQ (wait_proc->thread, Qnil) || XTHREAD (wait_proc->thread) == current_thread); FD_ZERO (&Available); FD_ZERO (&Writeok); if (time_limit == 0 && nsecs == 0 && wait_proc && !NILP (Vinhibit_quit) && !(CONSP (wait_proc->status) && EQ (XCAR (wait_proc->status), Qexit))) message1 ("Blocking call to accept-process-output with quit inhibited!!"); record_unwind_protect_int (wait_reading_process_output_unwind, waiting_for_user_input_p); waiting_for_user_input_p = read_kbd; if (TYPE_MAXIMUM (time_t) < time_limit) time_limit = TYPE_MAXIMUM (time_t); if (time_limit < 0 || nsecs < 0) wait = MINIMUM; else if (time_limit > 0 || nsecs > 0) { wait = TIMEOUT; now = current_timespec (); end_time = timespec_add (now, make_timespec (time_limit, nsecs)); } else wait = INFINITY; while (1) { bool process_skipped = false; /* If calling from keyboard input, do not quit since we want to return C-g as an input character. Otherwise, do pending quit if requested. */ if (read_kbd >= 0) maybe_quit (); else if (pending_signals) process_pending_signals (); /* Exit now if the cell we're waiting for became non-nil. */ if (! NILP (wait_for_cell) && ! NILP (XCAR (wait_for_cell))) break; #if defined HAVE_GETADDRINFO_A || defined HAVE_GNUTLS { Lisp_Object process_list_head, aproc; struct Lisp_Process *p; retry_for_async = false; FOR_EACH_PROCESS(process_list_head, aproc) { p = XPROCESS (aproc); if (! wait_proc || p == wait_proc) { #ifdef HAVE_GETADDRINFO_A /* Check for pending DNS requests. */ if (p->dns_request) { Lisp_Object addrinfos = check_for_dns (aproc); if (!NILP (addrinfos) && !EQ (addrinfos, Qt)) connect_network_socket (aproc, addrinfos, Qnil); else retry_for_async = true; } #endif #ifdef HAVE_GNUTLS /* Continue TLS negotiation. */ if (p->gnutls_initstage == GNUTLS_STAGE_HANDSHAKE_TRIED && p->is_non_blocking_client) { gnutls_try_handshake (p); p->gnutls_handshakes_tried++; if (p->gnutls_initstage == GNUTLS_STAGE_READY) { gnutls_verify_boot (aproc, Qnil); finish_after_tls_connection (aproc); } else { retry_for_async = true; if (p->gnutls_handshakes_tried > GNUTLS_EMACS_HANDSHAKES_LIMIT) { deactivate_process (aproc); pset_status (p, list2 (Qfailed, build_string ("TLS negotiation failed"))); } } } #endif } } } #endif /* GETADDRINFO_A or GNUTLS */ /* Compute time from now till when time limit is up. */ /* Exit if already run out. */ if (wait == TIMEOUT) { if (!timespec_valid_p (now)) now = current_timespec (); if (timespec_cmp (end_time, now) <= 0) break; timeout = timespec_sub (end_time, now); } else timeout = make_timespec (wait < TIMEOUT ? 0 : 100000, 0); /* Normally we run timers here. But not if wait_for_cell; in those cases, the wait is supposed to be short, and those callers cannot handle running arbitrary Lisp code here. */ if (NILP (wait_for_cell) && just_wait_proc >= 0) { do { unsigned old_timers_run = timers_run; struct buffer *old_buffer = current_buffer; Lisp_Object old_window = selected_window; timer_delay = timer_check (); /* If a timer has run, this might have changed buffers an alike. Make read_key_sequence aware of that. */ if (timers_run != old_timers_run && (old_buffer != current_buffer || !EQ (old_window, selected_window)) && waiting_for_user_input_p == -1) record_asynch_buffer_change (); if (timers_run != old_timers_run && do_display) /* We must retry, since a timer may have requeued itself and that could alter the time_delay. */ redisplay_preserve_echo_area (9); else break; } while (!detect_input_pending ()); /* If there is unread keyboard input, also return. */ if (read_kbd != 0 && requeued_events_pending_p ()) break; /* This is so a breakpoint can be put here. */ if (!timespec_valid_p (timer_delay)) wait_reading_process_output_1 (); } /* Cause C-g and alarm signals to take immediate action, and cause input available signals to zero out timeout. It is important that we do this before checking for process activity. If we get a SIGCHLD after the explicit checks for process activity, timeout is the only way we will know. */ if (read_kbd < 0) set_waiting_for_input (&timeout); /* If status of something has changed, and no input is available, notify the user of the change right away. After this explicit check, we'll let the SIGCHLD handler zap timeout to get our attention. */ if (update_tick != process_tick) { fd_set Atemp; fd_set Ctemp; if (kbd_on_hold_p ()) FD_ZERO (&Atemp); else compute_input_wait_mask (&Atemp); compute_write_mask (&Ctemp); timeout = make_timespec (0, 0); if ((thread_select (pselect, max_desc + 1, &Atemp, (num_pending_connects > 0 ? &Ctemp : NULL), NULL, &timeout, NULL) <= 0)) { /* It's okay for us to do this and then continue with the loop, since timeout has already been zeroed out. */ clear_waiting_for_input (); got_some_output = status_notify (NULL, wait_proc); if (do_display) redisplay_preserve_echo_area (13); } } /* Don't wait for output from a non-running process. Just read whatever data has already been received. */ if (wait_proc && wait_proc->raw_status_new) update_status (wait_proc); if (wait_proc && ! EQ (wait_proc->status, Qrun) && ! connecting_status (wait_proc->status)) { bool read_some_bytes = false; clear_waiting_for_input (); /* If data can be read from the process, do so until exhausted. */ if (wait_proc->infd >= 0) { XSETPROCESS (proc, wait_proc); while (true) { int nread = read_process_output (proc, wait_proc->infd); if (nread < 0) { if (errno == EIO || would_block (errno)) break; } else { if (got_some_output < nread) got_some_output = nread; if (nread == 0) break; read_some_bytes = true; } } } if (read_some_bytes && do_display) redisplay_preserve_echo_area (10); break; } /* Wait till there is something to do. */ if (wait_proc && just_wait_proc) { if (wait_proc->infd < 0) /* Terminated. */ break; FD_SET (wait_proc->infd, &Available); check_delay = 0; check_write = 0; } else if (!NILP (wait_for_cell)) { compute_non_process_wait_mask (&Available); check_delay = 0; check_write = 0; } else { if (! read_kbd) compute_non_keyboard_wait_mask (&Available); else compute_input_wait_mask (&Available); compute_write_mask (&Writeok); check_delay = wait_proc ? 0 : process_output_delay_count; check_write = true; } /* If frame size has changed or the window is newly mapped, redisplay now, before we start to wait. There is a race condition here; if a SIGIO arrives between now and the select and indicates that a frame is trashed, the select may block displaying a trashed screen. */ if (frame_garbaged && do_display) { clear_waiting_for_input (); redisplay_preserve_echo_area (11); if (read_kbd < 0) set_waiting_for_input (&timeout); } /* Skip the `select' call if input is available and we're waiting for keyboard input or a cell change (which can be triggered by processing X events). In the latter case, set nfds to 1 to avoid breaking the loop. */ no_avail = 0; if ((read_kbd || !NILP (wait_for_cell)) && detect_input_pending ()) { nfds = read_kbd ? 0 : 1; no_avail = 1; FD_ZERO (&Available); } else { /* Set the timeout for adaptive read buffering if any process has non-zero read_output_skip and non-zero read_output_delay, and we are not reading output for a specific process. It is not executed if Vprocess_adaptive_read_buffering is nil. */ if (process_output_skip && check_delay > 0) { int adaptive_nsecs = timeout.tv_nsec; if (timeout.tv_sec > 0 || adaptive_nsecs > READ_OUTPUT_DELAY_MAX) adaptive_nsecs = READ_OUTPUT_DELAY_MAX; for (channel = 0; check_delay > 0 && channel <= max_desc; channel++) { proc = chan_process[channel]; if (NILP (proc)) continue; /* Find minimum non-zero read_output_delay among the processes with non-zero read_output_skip. */ if (XPROCESS (proc)->read_output_delay > 0) { check_delay--; if (!XPROCESS (proc)->read_output_skip) continue; FD_CLR (channel, &Available); process_skipped = true; XPROCESS (proc)->read_output_skip = 0; if (XPROCESS (proc)->read_output_delay < adaptive_nsecs) adaptive_nsecs = XPROCESS (proc)->read_output_delay; } } timeout = make_timespec (0, adaptive_nsecs); process_output_skip = 0; } /* If we've got some output and haven't limited our timeout with adaptive read buffering, limit it. */ if (got_some_output > 0 && !process_skipped && (timeout.tv_sec || timeout.tv_nsec > READ_OUTPUT_DELAY_INCREMENT)) timeout = make_timespec (0, READ_OUTPUT_DELAY_INCREMENT); if (NILP (wait_for_cell) && just_wait_proc >= 0 && timespec_valid_p (timer_delay) && timespec_cmp (timer_delay, timeout) < 0) { if (!timespec_valid_p (now)) now = current_timespec (); struct timespec timeout_abs = timespec_add (now, timeout); if (!timespec_valid_p (got_output_end_time) || timespec_cmp (timeout_abs, got_output_end_time) < 0) got_output_end_time = timeout_abs; timeout = timer_delay; } else got_output_end_time = invalid_timespec (); /* NOW can become inaccurate if time can pass during pselect. */ if (timeout.tv_sec > 0 || timeout.tv_nsec > 0) now = invalid_timespec (); #if defined HAVE_GETADDRINFO_A || defined HAVE_GNUTLS if (retry_for_async && (timeout.tv_sec > 0 || timeout.tv_nsec > ASYNC_RETRY_NSEC)) { timeout.tv_sec = 0; timeout.tv_nsec = ASYNC_RETRY_NSEC; } #endif /* Non-macOS HAVE_GLIB builds call thread_select in xgselect.c. */ #if defined HAVE_GLIB && !defined HAVE_NS nfds = xg_select (max_desc + 1, &Available, (check_write ? &Writeok : 0), NULL, &timeout, NULL); #elif defined HAVE_NS /* And NS builds call thread_select in ns_select. */ nfds = ns_select (max_desc + 1, &Available, (check_write ? &Writeok : 0), NULL, &timeout, NULL); #else /* !HAVE_GLIB */ nfds = thread_select (pselect, max_desc + 1, &Available, (check_write ? &Writeok : 0), NULL, &timeout, NULL); #endif /* !HAVE_GLIB */ #ifdef HAVE_GNUTLS /* GnuTLS buffers data internally. In lowat mode it leaves some data in the TCP buffers so that select works, but with custom pull/push functions we need to check if some data is available in the buffers manually. */ if (nfds == 0) { fd_set tls_available; int set = 0; FD_ZERO (&tls_available); if (! wait_proc) { /* We're not waiting on a specific process, so loop through all the channels and check for data. This is a workaround needed for some versions of the gnutls library -- 2.12.14 has been confirmed to need it. See http://comments.gmane.org/gmane.emacs.devel/145074 */ for (channel = 0; channel < FD_SETSIZE; ++channel) if (! NILP (chan_process[channel])) { struct Lisp_Process *p = XPROCESS (chan_process[channel]); if (p && p->gnutls_p && p->gnutls_state && ((emacs_gnutls_record_check_pending (p->gnutls_state)) > 0)) { nfds++; eassert (p->infd == channel); FD_SET (p->infd, &tls_available); set++; } } } else { /* Check this specific channel. */ if (wait_proc->gnutls_p /* Check for valid process. */ && wait_proc->gnutls_state /* Do we have pending data? */ && ((emacs_gnutls_record_check_pending (wait_proc->gnutls_state)) > 0)) { nfds = 1; eassert (0 <= wait_proc->infd); /* Set to Available. */ FD_SET (wait_proc->infd, &tls_available); set++; } } if (set) Available = tls_available; } #endif } xerrno = errno; /* Make C-g and alarm signals set flags again. */ clear_waiting_for_input (); /* If we woke up due to SIGWINCH, actually change size now. */ do_pending_window_change (0); if (nfds == 0) { /* Exit the main loop if we've passed the requested timeout, or have read some bytes from our wait_proc (either directly in this call or indirectly through timers / process filters), or aren't skipping processes and got some output and haven't lowered our timeout due to timers or SIGIO and have waited a long amount of time due to repeated timers. */ struct timespec huge_timespec = make_timespec (TYPE_MAXIMUM (time_t), 2 * TIMESPEC_RESOLUTION); struct timespec cmp_time = huge_timespec; if (wait < TIMEOUT || (wait_proc && wait_proc->nbytes_read != prev_wait_proc_nbytes_read)) break; if (wait == TIMEOUT) cmp_time = end_time; if (!process_skipped && got_some_output > 0 && (timeout.tv_sec > 0 || timeout.tv_nsec > 0)) { if (!timespec_valid_p (got_output_end_time)) break; if (timespec_cmp (got_output_end_time, cmp_time) < 0) cmp_time = got_output_end_time; } if (timespec_cmp (cmp_time, huge_timespec) < 0) { now = current_timespec (); if (timespec_cmp (cmp_time, now) <= 0) break; } } if (nfds < 0) { if (xerrno == EINTR) no_avail = 1; else if (xerrno == EBADF) emacs_abort (); else report_file_errno ("Failed select", Qnil, xerrno); } /* Check for keyboard input. */ /* If there is any, return immediately to give it higher priority than subprocesses. */ if (read_kbd != 0) { unsigned old_timers_run = timers_run; struct buffer *old_buffer = current_buffer; Lisp_Object old_window = selected_window; bool leave = false; if (detect_input_pending_run_timers (do_display)) { swallow_events (do_display); if (detect_input_pending_run_timers (do_display)) leave = true; } /* If a timer has run, this might have changed buffers an alike. Make read_key_sequence aware of that. */ if (timers_run != old_timers_run && waiting_for_user_input_p == -1 && (old_buffer != current_buffer || !EQ (old_window, selected_window))) record_asynch_buffer_change (); if (leave) break; } /* If there is unread keyboard input, also return. */ if (read_kbd != 0 && requeued_events_pending_p ()) break; /* If we are not checking for keyboard input now, do process events (but don't run any timers). This is so that X events will be processed. Otherwise they may have to wait until polling takes place. That would causes delays in pasting selections, for example. (We used to do this only if wait_for_cell.) */ if (read_kbd == 0 && detect_input_pending ()) { swallow_events (do_display); #if 0 /* Exiting when read_kbd doesn't request that seems wrong, though. */ if (detect_input_pending ()) break; #endif } /* Exit now if the cell we're waiting for became non-nil. */ if (! NILP (wait_for_cell) && ! NILP (XCAR (wait_for_cell))) break; #ifdef USABLE_SIGIO /* If we think we have keyboard input waiting, but didn't get SIGIO, go read it. This can happen with X on BSD after logging out. In that case, there really is no input and no SIGIO, but select says there is input. */ if (read_kbd && interrupt_input && keyboard_bit_set (&Available) && ! noninteractive) handle_input_available_signal (SIGIO); #endif /* If checking input just got us a size-change event from X, obey it now if we should. */ if (read_kbd || ! NILP (wait_for_cell)) do_pending_window_change (0); /* Check for data from a process. */ if (no_avail || nfds == 0) continue; for (channel = 0; channel <= max_desc; ++channel) { struct fd_callback_data *d = &fd_callback_info[channel]; if (d->func && ((d->flags & FOR_READ && FD_ISSET (channel, &Available)) || ((d->flags & FOR_WRITE) && FD_ISSET (channel, &Writeok)))) d->func (channel, d->data); } for (channel = 0; channel <= max_desc; channel++) { if (FD_ISSET (channel, &Available) && ((fd_callback_info[channel].flags & (KEYBOARD_FD | PROCESS_FD)) == PROCESS_FD)) { int nread; /* If waiting for this channel, arrange to return as soon as no more input to be processed. No more waiting. */ proc = chan_process[channel]; if (NILP (proc)) continue; /* If this is a server stream socket, accept connection. */ if (EQ (XPROCESS (proc)->status, Qlisten)) { server_accept_connection (proc, channel); continue; } /* Read data from the process, starting with our buffered-ahead character if we have one. */ nread = read_process_output (proc, channel); if ((!wait_proc || wait_proc == XPROCESS (proc)) && got_some_output < nread) got_some_output = nread; if (nread > 0) { /* Vacuum up any leftovers without waiting. */ if (wait_proc == XPROCESS (proc)) wait = MINIMUM; /* Since read_process_output can run a filter, which can call accept-process-output, don't try to read from any other processes before doing the select again. */ FD_ZERO (&Available); if (do_display) redisplay_preserve_echo_area (12); } else if (nread == -1 && would_block (errno)) ; #ifdef HAVE_PTYS /* On some OSs with ptys, when the process on one end of a pty exits, the other end gets an error reading with errno = EIO instead of getting an EOF (0 bytes read). Therefore, if we get an error reading and errno = EIO, just continue, because the child process has exited and should clean itself up soon (e.g. when we get a SIGCHLD). */ else if (nread == -1 && errno == EIO) { struct Lisp_Process *p = XPROCESS (proc); /* Clear the descriptor now, so we only raise the signal once. */ delete_read_fd (channel); if (p->pid == -2) { /* If the EIO occurs on a pty, the SIGCHLD handler's waitpid call will not find the process object to delete. Do it here. */ p->tick = ++process_tick; pset_status (p, Qfailed); } } #endif /* HAVE_PTYS */ /* If we can detect process termination, don't consider the process gone just because its pipe is closed. */ else if (nread == 0 && !NETCONN_P (proc) && !SERIALCONN_P (proc) && !PIPECONN_P (proc)) ; else if (nread == 0 && PIPECONN_P (proc)) { /* Preserve status of processes already terminated. */ XPROCESS (proc)->tick = ++process_tick; deactivate_process (proc); if (EQ (XPROCESS (proc)->status, Qrun)) pset_status (XPROCESS (proc), list2 (Qexit, make_number (0))); } else { /* Preserve status of processes already terminated. */ XPROCESS (proc)->tick = ++process_tick; deactivate_process (proc); if (XPROCESS (proc)->raw_status_new) update_status (XPROCESS (proc)); if (EQ (XPROCESS (proc)->status, Qrun)) pset_status (XPROCESS (proc), list2 (Qexit, make_number (256))); } } if (FD_ISSET (channel, &Writeok) && (fd_callback_info[channel].flags & NON_BLOCKING_CONNECT_FD) != 0) { struct Lisp_Process *p; delete_write_fd (channel); proc = chan_process[channel]; if (NILP (proc)) continue; p = XPROCESS (proc); #ifndef WINDOWSNT { socklen_t xlen = sizeof (xerrno); if (getsockopt (channel, SOL_SOCKET, SO_ERROR, &xerrno, &xlen)) xerrno = errno; } #else /* On MS-Windows, getsockopt clears the error for the entire process, which may not be the right thing; see w32.c. Use getpeername instead. */ { struct sockaddr pname; socklen_t pnamelen = sizeof (pname); /* If connection failed, getpeername will fail. */ xerrno = 0; if (getpeername (channel, &pname, &pnamelen) < 0) { /* Obtain connect failure code through error slippage. */ char dummy; xerrno = errno; if (errno == ENOTCONN && read (channel, &dummy, 1) < 0) xerrno = errno; } } #endif if (xerrno) { Lisp_Object addrinfos = connecting_status (p->status) ? XCDR (p->status) : Qnil; if (!NILP (addrinfos)) XSETCDR (p->status, XCDR (addrinfos)); else { p->tick = ++process_tick; pset_status (p, list2 (Qfailed, make_number (xerrno))); } deactivate_process (proc); if (!NILP (addrinfos)) connect_network_socket (proc, addrinfos, Qnil); } else { #ifdef HAVE_GNUTLS /* If we have an incompletely set up TLS connection, then defer the sentinel signaling until later. */ if (NILP (p->gnutls_boot_parameters) && !p->gnutls_p) #endif { pset_status (p, Qrun); /* Execute the sentinel here. If we had relied on status_notify to do it later, it will read input from the process before calling the sentinel. */ exec_sentinel (proc, build_string ("open\n")); } if (0 <= p->infd && !EQ (p->filter, Qt) && !EQ (p->command, Qt)) add_process_read_fd (p->infd); } } } /* End for each file descriptor. */ } /* End while exit conditions not met. */ unbind_to (count, Qnil); /* If calling from keyboard input, do not quit since we want to return C-g as an input character. Otherwise, do pending quit if requested. */ if (read_kbd >= 0) { /* Prevent input_pending from remaining set if we quit. */ clear_input_pending (); maybe_quit (); } /* Timers and/or process filters that we have run could have themselves called `accept-process-output' (and by that indirectly this function), thus possibly reading some (or all) output of wait_proc without us noticing it. This could potentially lead to an endless wait (dealt with earlier in the function) and/or a wrong return value (dealt with here). */ if (wait_proc && wait_proc->nbytes_read != prev_wait_proc_nbytes_read) got_some_output = min (INT_MAX, (wait_proc->nbytes_read - prev_wait_proc_nbytes_read)); return got_some_output; } /* Given a list (FUNCTION ARGS...), apply FUNCTION to the ARGS. */ static Lisp_Object read_process_output_call (Lisp_Object fun_and_args) { return apply1 (XCAR (fun_and_args), XCDR (fun_and_args)); } static Lisp_Object read_process_output_error_handler (Lisp_Object error_val) { cmd_error_internal (error_val, "error in process filter: "); Vinhibit_quit = Qt; update_echo_area (); Fsleep_for (make_number (2), Qnil); return Qt; } static void read_and_dispose_of_process_output (struct Lisp_Process *p, char *chars, ssize_t nbytes, struct coding_system *coding); /* Read pending output from the process channel, starting with our buffered-ahead character if we have one. Yield number of decoded characters read. This function reads at most 4096 characters. If you want to read all available subprocess output, you must call it repeatedly until it returns zero. The characters read are decoded according to PROC's coding-system for decoding. */ static int read_process_output (Lisp_Object proc, int channel) { ssize_t nbytes; struct Lisp_Process *p = XPROCESS (proc); struct coding_system *coding = proc_decode_coding_system[channel]; int carryover = p->decoding_carryover; enum { readmax = 4096 }; ptrdiff_t count = SPECPDL_INDEX (); Lisp_Object odeactivate; char chars[sizeof coding->carryover + readmax]; if (carryover) /* See the comment above. */ memcpy (chars, SDATA (p->decoding_buf), carryover); #ifdef DATAGRAM_SOCKETS /* We have a working select, so proc_buffered_char is always -1. */ if (DATAGRAM_CHAN_P (channel)) { socklen_t len = datagram_address[channel].len; nbytes = recvfrom (channel, chars + carryover, readmax, 0, datagram_address[channel].sa, &len); } else #endif { bool buffered = proc_buffered_char[channel] >= 0; if (buffered) { chars[carryover] = proc_buffered_char[channel]; proc_buffered_char[channel] = -1; } #ifdef HAVE_GNUTLS if (p->gnutls_p && p->gnutls_state) nbytes = emacs_gnutls_read (p, chars + carryover + buffered, readmax - buffered); else #endif nbytes = emacs_read (channel, chars + carryover + buffered, readmax - buffered); if (nbytes > 0 && p->adaptive_read_buffering) { int delay = p->read_output_delay; if (nbytes < 256) { if (delay < READ_OUTPUT_DELAY_MAX_MAX) { if (delay == 0) process_output_delay_count++; delay += READ_OUTPUT_DELAY_INCREMENT * 2; } } else if (delay > 0 && nbytes == readmax - buffered) { delay -= READ_OUTPUT_DELAY_INCREMENT; if (delay == 0) process_output_delay_count--; } p->read_output_delay = delay; if (delay) { p->read_output_skip = 1; process_output_skip = 1; } } nbytes += buffered; nbytes += buffered && nbytes <= 0; } p->decoding_carryover = 0; /* At this point, NBYTES holds number of bytes just received (including the one in proc_buffered_char[channel]). */ if (nbytes <= 0) { if (nbytes < 0 || coding->mode & CODING_MODE_LAST_BLOCK) return nbytes; coding->mode |= CODING_MODE_LAST_BLOCK; } /* Ignore carryover, it's been added by a previous iteration already. */ p->nbytes_read += nbytes; /* Now set NBYTES how many bytes we must decode. */ nbytes += carryover; odeactivate = Vdeactivate_mark; /* There's no good reason to let process filters change the current buffer, and many callers of accept-process-output, sit-for, and friends don't expect current-buffer to be changed from under them. */ record_unwind_current_buffer (); read_and_dispose_of_process_output (p, chars, nbytes, coding); /* Handling the process output should not deactivate the mark. */ Vdeactivate_mark = odeactivate; unbind_to (count, Qnil); return nbytes; } static void read_and_dispose_of_process_output (struct Lisp_Process *p, char *chars, ssize_t nbytes, struct coding_system *coding) { Lisp_Object outstream = p->filter; Lisp_Object text; bool outer_running_asynch_code = running_asynch_code; int waiting = waiting_for_user_input_p; #if 0 Lisp_Object obuffer, okeymap; XSETBUFFER (obuffer, current_buffer); okeymap = BVAR (current_buffer, keymap); #endif /* We inhibit quit here instead of just catching it so that hitting ^G when a filter happens to be running won't screw it up. */ specbind (Qinhibit_quit, Qt); specbind (Qlast_nonmenu_event, Qt); /* In case we get recursively called, and we already saved the match data nonrecursively, save the same match data in safely recursive fashion. */ if (outer_running_asynch_code) { Lisp_Object tem; /* Don't clobber the CURRENT match data, either! */ tem = Fmatch_data (Qnil, Qnil, Qnil); restore_search_regs (); record_unwind_save_match_data (); Fset_match_data (tem, Qt); } /* For speed, if a search happens within this code, save the match data in a special nonrecursive fashion. */ running_asynch_code = 1; decode_coding_c_string (coding, (unsigned char *) chars, nbytes, Qt); text = coding->dst_object; Vlast_coding_system_used = CODING_ID_NAME (coding->id); /* A new coding system might be found. */ if (!EQ (p->decode_coding_system, Vlast_coding_system_used)) { pset_decode_coding_system (p, Vlast_coding_system_used); /* Don't call setup_coding_system for proc_decode_coding_system[channel] here. It is done in detect_coding called via decode_coding above. */ /* If a coding system for encoding is not yet decided, we set it as the same as coding-system for decoding. But, before doing that we must check if proc_encode_coding_system[p->outfd] surely points to a valid memory because p->outfd will be changed once EOF is sent to the process. */ if (NILP (p->encode_coding_system) && p->outfd >= 0 && proc_encode_coding_system[p->outfd]) { pset_encode_coding_system (p, coding_inherit_eol_type (Vlast_coding_system_used, Qnil)); setup_coding_system (p->encode_coding_system, proc_encode_coding_system[p->outfd]); } } if (coding->carryover_bytes > 0) { if (SCHARS (p->decoding_buf) < coding->carryover_bytes) pset_decoding_buf (p, make_uninit_string (coding->carryover_bytes)); memcpy (SDATA (p->decoding_buf), coding->carryover, coding->carryover_bytes); p->decoding_carryover = coding->carryover_bytes; } if (SBYTES (text) > 0) /* FIXME: It's wrong to wrap or not based on debug-on-error, and sometimes it's simply wrong to wrap (e.g. when called from accept-process-output). */ internal_condition_case_1 (read_process_output_call, list3 (outstream, make_lisp_proc (p), text), !NILP (Vdebug_on_error) ? Qnil : Qerror, read_process_output_error_handler); /* If we saved the match data nonrecursively, restore it now. */ restore_search_regs (); running_asynch_code = outer_running_asynch_code; /* Restore waiting_for_user_input_p as it was when we were called, in case the filter clobbered it. */ waiting_for_user_input_p = waiting; #if 0 /* Call record_asynch_buffer_change unconditionally, because we might have changed minor modes or other things that affect key bindings. */ if (! EQ (Fcurrent_buffer (), obuffer) || ! EQ (current_buffer->keymap, okeymap)) #endif /* But do it only if the caller is actually going to read events. Otherwise there's no need to make him wake up, and it could cause trouble (for example it would make sit_for return). */ if (waiting_for_user_input_p == -1) record_asynch_buffer_change (); } DEFUN ("internal-default-process-filter", Finternal_default_process_filter, Sinternal_default_process_filter, 2, 2, 0, doc: /* Function used as default process filter. This inserts the process's output into its buffer, if there is one. Otherwise it discards the output. */) (Lisp_Object proc, Lisp_Object text) { struct Lisp_Process *p; ptrdiff_t opoint; CHECK_PROCESS (proc); p = XPROCESS (proc); CHECK_STRING (text); if (!NILP (p->buffer) && BUFFER_LIVE_P (XBUFFER (p->buffer))) { Lisp_Object old_read_only; ptrdiff_t old_begv, old_zv; ptrdiff_t old_begv_byte, old_zv_byte; ptrdiff_t before, before_byte; ptrdiff_t opoint_byte; struct buffer *b; Fset_buffer (p->buffer); opoint = PT; opoint_byte = PT_BYTE; old_read_only = BVAR (current_buffer, read_only); old_begv = BEGV; old_zv = ZV; old_begv_byte = BEGV_BYTE; old_zv_byte = ZV_BYTE; bset_read_only (current_buffer, Qnil); /* Insert new output into buffer at the current end-of-output marker, thus preserving logical ordering of input and output. */ if (XMARKER (p->mark)->buffer) set_point_from_marker (p->mark); else SET_PT_BOTH (ZV, ZV_BYTE); before = PT; before_byte = PT_BYTE; /* If the output marker is outside of the visible region, save the restriction and widen. */ if (! (BEGV <= PT && PT <= ZV)) Fwiden (); /* Adjust the multibyteness of TEXT to that of the buffer. */ if (NILP (BVAR (current_buffer, enable_multibyte_characters)) != ! STRING_MULTIBYTE (text)) text = (STRING_MULTIBYTE (text) ? Fstring_as_unibyte (text) : Fstring_to_multibyte (text)); /* Insert before markers in case we are inserting where the buffer's mark is, and the user's next command is Meta-y. */ insert_from_string_before_markers (text, 0, 0, SCHARS (text), SBYTES (text), 0); /* Make sure the process marker's position is valid when the process buffer is changed in the signal_after_change above. W3 is known to do that. */ if (BUFFERP (p->buffer) && (b = XBUFFER (p->buffer), b != current_buffer)) set_marker_both (p->mark, p->buffer, BUF_PT (b), BUF_PT_BYTE (b)); else set_marker_both (p->mark, p->buffer, PT, PT_BYTE); update_mode_lines = 23; /* Make sure opoint and the old restrictions float ahead of any new text just as point would. */ if (opoint >= before) { opoint += PT - before; opoint_byte += PT_BYTE - before_byte; } if (old_begv > before) { old_begv += PT - before; old_begv_byte += PT_BYTE - before_byte; } if (old_zv >= before) { old_zv += PT - before; old_zv_byte += PT_BYTE - before_byte; } /* If the restriction isn't what it should be, set it. */ if (old_begv != BEGV || old_zv != ZV) Fnarrow_to_region (make_number (old_begv), make_number (old_zv)); bset_read_only (current_buffer, old_read_only); SET_PT_BOTH (opoint, opoint_byte); } return Qnil; } /* Sending data to subprocess. */ /* In send_process, when a write fails temporarily, wait_reading_process_output is called. It may execute user code, e.g. timers, that attempts to write new data to the same process. We must ensure that data is sent in the right order, and not interspersed half-completed with other writes (Bug#10815). This is handled by the write_queue element of struct process. It is a list with each entry having the form (string . (offset . length)) where STRING is a lisp string, OFFSET is the offset into the string's byte sequence from which we should begin to send, and LENGTH is the number of bytes left to send. */ /* Create a new entry in write_queue. INPUT_OBJ should be a buffer, string Qt, or Qnil. BUF is a pointer to the string sequence of the input_obj or a C string in case of Qt or Qnil. */ static void write_queue_push (struct Lisp_Process *p, Lisp_Object input_obj, const char *buf, ptrdiff_t len, bool front) { ptrdiff_t offset; Lisp_Object entry, obj; if (STRINGP (input_obj)) { offset = buf - SSDATA (input_obj); obj = input_obj; } else { offset = 0; obj = make_unibyte_string (buf, len); } entry = Fcons (obj, Fcons (make_number (offset), make_number (len))); if (front) pset_write_queue (p, Fcons (entry, p->write_queue)); else pset_write_queue (p, nconc2 (p->write_queue, list1 (entry))); } /* Remove the first element in the write_queue of process P, put its contents in OBJ, BUF and LEN, and return true. If the write_queue is empty, return false. */ static bool write_queue_pop (struct Lisp_Process *p, Lisp_Object *obj, const char **buf, ptrdiff_t *len) { Lisp_Object entry, offset_length; ptrdiff_t offset; if (NILP (p->write_queue)) return 0; entry = XCAR (p->write_queue); pset_write_queue (p, XCDR (p->write_queue)); *obj = XCAR (entry); offset_length = XCDR (entry); *len = XINT (XCDR (offset_length)); offset = XINT (XCAR (offset_length)); *buf = SSDATA (*obj) + offset; return 1; } /* Send some data to process PROC. BUF is the beginning of the data; LEN is the number of characters. OBJECT is the Lisp object that the data comes from. If OBJECT is nil or t, it means that the data comes from C string. If OBJECT is not nil, the data is encoded by PROC's coding-system for encoding before it is sent. This function can evaluate Lisp code and can garbage collect. */ static void send_process (Lisp_Object proc, const char *buf, ptrdiff_t len, Lisp_Object object) { struct Lisp_Process *p = XPROCESS (proc); ssize_t rv; struct coding_system *coding; if (NETCONN_P (proc)) { wait_while_connecting (proc); wait_for_tls_negotiation (proc); } if (p->raw_status_new) update_status (p); if (! EQ (p->status, Qrun)) error ("Process %s not running", SDATA (p->name)); if (p->outfd < 0) error ("Output file descriptor of %s is closed", SDATA (p->name)); coding = proc_encode_coding_system[p->outfd]; Vlast_coding_system_used = CODING_ID_NAME (coding->id); if ((STRINGP (object) && STRING_MULTIBYTE (object)) || (BUFFERP (object) && !NILP (BVAR (XBUFFER (object), enable_multibyte_characters))) || EQ (object, Qt)) { pset_encode_coding_system (p, complement_process_encoding_system (p->encode_coding_system)); if (!EQ (Vlast_coding_system_used, p->encode_coding_system)) { /* The coding system for encoding was changed to raw-text because we sent a unibyte text previously. Now we are sending a multibyte text, thus we must encode it by the original coding system specified for the current process. Another reason we come here is that the coding system was just complemented and a new one was returned by complement_process_encoding_system. */ setup_coding_system (p->encode_coding_system, coding); Vlast_coding_system_used = p->encode_coding_system; } coding->src_multibyte = 1; } else { coding->src_multibyte = 0; /* For sending a unibyte text, character code conversion should not take place but EOL conversion should. So, setup raw-text or one of the subsidiary if we have not yet done it. */ if (CODING_REQUIRE_ENCODING (coding)) { if (CODING_REQUIRE_FLUSHING (coding)) { /* But, before changing the coding, we must flush out data. */ coding->mode |= CODING_MODE_LAST_BLOCK; send_process (proc, "", 0, Qt); coding->mode &= CODING_MODE_LAST_BLOCK; } setup_coding_system (raw_text_coding_system (Vlast_coding_system_used), coding); coding->src_multibyte = 0; } } coding->dst_multibyte = 0; if (CODING_REQUIRE_ENCODING (coding)) { coding->dst_object = Qt; if (BUFFERP (object)) { ptrdiff_t from_byte, from, to; ptrdiff_t save_pt, save_pt_byte; struct buffer *cur = current_buffer; set_buffer_internal (XBUFFER (object)); save_pt = PT, save_pt_byte = PT_BYTE; from_byte = PTR_BYTE_POS ((unsigned char *) buf); from = BYTE_TO_CHAR (from_byte); to = BYTE_TO_CHAR (from_byte + len); TEMP_SET_PT_BOTH (from, from_byte); encode_coding_object (coding, object, from, from_byte, to, from_byte + len, Qt); TEMP_SET_PT_BOTH (save_pt, save_pt_byte); set_buffer_internal (cur); } else if (STRINGP (object)) { encode_coding_object (coding, object, 0, 0, SCHARS (object), SBYTES (object), Qt); } else { coding->dst_object = make_unibyte_string (buf, len); coding->produced = len; } len = coding->produced; object = coding->dst_object; buf = SSDATA (object); } /* If there is already data in the write_queue, put the new data in the back of queue. Otherwise, ignore it. */ if (!NILP (p->write_queue)) write_queue_push (p, object, buf, len, 0); do /* while !NILP (p->write_queue) */ { ptrdiff_t cur_len = -1; const char *cur_buf; Lisp_Object cur_object; /* If write_queue is empty, ignore it. */ if (!write_queue_pop (p, &cur_object, &cur_buf, &cur_len)) { cur_len = len; cur_buf = buf; cur_object = object; } while (cur_len > 0) { /* Send this batch, using one or more write calls. */ ptrdiff_t written = 0; int outfd = p->outfd; #ifdef DATAGRAM_SOCKETS if (DATAGRAM_CHAN_P (outfd)) { rv = sendto (outfd, cur_buf, cur_len, 0, datagram_address[outfd].sa, datagram_address[outfd].len); if (rv >= 0) written = rv; else if (errno == EMSGSIZE) report_file_error ("Sending datagram", proc); } else #endif { #ifdef HAVE_GNUTLS if (p->gnutls_p && p->gnutls_state) written = emacs_gnutls_write (p, cur_buf, cur_len); else #endif written = emacs_write_sig (outfd, cur_buf, cur_len); rv = (written ? 0 : -1); if (p->read_output_delay > 0 && p->adaptive_read_buffering == 1) { p->read_output_delay = 0; process_output_delay_count--; p->read_output_skip = 0; } } if (rv < 0) { if (would_block (errno)) /* Buffer is full. Wait, accepting input; that may allow the program to finish doing output and read more. */ { #ifdef BROKEN_PTY_READ_AFTER_EAGAIN /* A gross hack to work around a bug in FreeBSD. In the following sequence, read(2) returns bogus data: write(2) 1022 bytes write(2) 954 bytes, get EAGAIN read(2) 1024 bytes in process_read_output read(2) 11 bytes in process_read_output That is, read(2) returns more bytes than have ever been written successfully. The 1033 bytes read are the 1022 bytes written successfully after processing (for example with CRs added if the terminal is set up that way which it is here). The same bytes will be seen again in a later read(2), without the CRs. */ if (errno == EAGAIN) { int flags = FWRITE; ioctl (p->outfd, TIOCFLUSH, &flags); } #endif /* BROKEN_PTY_READ_AFTER_EAGAIN */ /* Put what we should have written in wait_queue. */ write_queue_push (p, cur_object, cur_buf, cur_len, 1); wait_reading_process_output (0, 20 * 1000 * 1000, 0, 0, Qnil, NULL, 0); /* Reread queue, to see what is left. */ break; } else if (errno == EPIPE) { p->raw_status_new = 0; pset_status (p, list2 (Qexit, make_number (256))); p->tick = ++process_tick; deactivate_process (proc); error ("process %s no longer connected to pipe; closed it", SDATA (p->name)); } else /* This is a real error. */ report_file_error ("Writing to process", proc); } cur_buf += written; cur_len -= written; } } while (!NILP (p->write_queue)); } DEFUN ("process-send-region", Fprocess_send_region, Sprocess_send_region, 3, 3, 0, doc: /* Send current contents of region as input to PROCESS. PROCESS may be a process, a buffer, the name of a process or buffer, or nil, indicating the current buffer's process. Called from program, takes three arguments, PROCESS, START and END. If the region is more than 500 characters long, it is sent in several bunches. This may happen even for shorter regions. Output from processes can arrive in between bunches. If PROCESS is a non-blocking network process that hasn't been fully set up yet, this function will block until socket setup has completed. */) (Lisp_Object process, Lisp_Object start, Lisp_Object end) { Lisp_Object proc = get_process (process); ptrdiff_t start_byte, end_byte; validate_region (&start, &end); start_byte = CHAR_TO_BYTE (XINT (start)); end_byte = CHAR_TO_BYTE (XINT (end)); if (XINT (start) < GPT && XINT (end) > GPT) move_gap_both (XINT (start), start_byte); if (NETCONN_P (proc)) wait_while_connecting (proc); send_process (proc, (char *) BYTE_POS_ADDR (start_byte), end_byte - start_byte, Fcurrent_buffer ()); return Qnil; } DEFUN ("process-send-string", Fprocess_send_string, Sprocess_send_string, 2, 2, 0, doc: /* Send PROCESS the contents of STRING as input. PROCESS may be a process, a buffer, the name of a process or buffer, or nil, indicating the current buffer's process. If STRING is more than 500 characters long, it is sent in several bunches. This may happen even for shorter strings. Output from processes can arrive in between bunches. If PROCESS is a non-blocking network process that hasn't been fully set up yet, this function will block until socket setup has completed. */) (Lisp_Object process, Lisp_Object string) { CHECK_STRING (string); Lisp_Object proc = get_process (process); send_process (proc, SSDATA (string), SBYTES (string), string); return Qnil; } /* Return the foreground process group for the tty/pty that the process P uses. */ static pid_t emacs_get_tty_pgrp (struct Lisp_Process *p) { pid_t gid = -1; #ifdef TIOCGPGRP if (ioctl (p->infd, TIOCGPGRP, &gid) == -1 && ! NILP (p->tty_name)) { int fd; /* Some OS:es (Solaris 8/9) does not allow TIOCGPGRP from the master side. Try the slave side. */ fd = emacs_open (SSDATA (p->tty_name), O_RDONLY, 0); if (fd != -1) { ioctl (fd, TIOCGPGRP, &gid); emacs_close (fd); } } #endif /* defined (TIOCGPGRP ) */ return gid; } DEFUN ("process-running-child-p", Fprocess_running_child_p, Sprocess_running_child_p, 0, 1, 0, doc: /* Return non-nil if PROCESS has given the terminal to a child. If the operating system does not make it possible to find out, return t. If we can find out, return the numeric ID of the foreground process group. */) (Lisp_Object process) { /* Initialize in case ioctl doesn't exist or gives an error, in a way that will cause returning t. */ Lisp_Object proc = get_process (process); struct Lisp_Process *p = XPROCESS (proc); if (!EQ (p->type, Qreal)) error ("Process %s is not a subprocess", SDATA (p->name)); if (p->infd < 0) error ("Process %s is not active", SDATA (p->name)); pid_t gid = emacs_get_tty_pgrp (p); if (gid == p->pid) return Qnil; if (gid != -1) return make_number (gid); return Qt; } /* Send a signal number SIGNO to PROCESS. If CURRENT_GROUP is t, that means send to the process group that currently owns the terminal being used to communicate with PROCESS. This is used for various commands in shell mode. If CURRENT_GROUP is lambda, that means send to the process group that currently owns the terminal, but only if it is NOT the shell itself. If NOMSG is false, insert signal-announcements into process's buffers right away. If we can, we try to signal PROCESS by sending control characters down the pty. This allows us to signal inferiors who have changed their uid, for which kill would return an EPERM error. */ static void process_send_signal (Lisp_Object process, int signo, Lisp_Object current_group, bool nomsg) { Lisp_Object proc; struct Lisp_Process *p; pid_t gid; bool no_pgrp = 0; proc = get_process (process); p = XPROCESS (proc); if (!EQ (p->type, Qreal)) error ("Process %s is not a subprocess", SDATA (p->name)); if (p->infd < 0) error ("Process %s is not active", SDATA (p->name)); if (!p->pty_flag) current_group = Qnil; /* If we are using pgrps, get a pgrp number and make it negative. */ if (NILP (current_group)) /* Send the signal to the shell's process group. */ gid = p->pid; else { #ifdef SIGNALS_VIA_CHARACTERS /* If possible, send signals to the entire pgrp by sending an input character to it. */ struct termios t; cc_t *sig_char = NULL; tcgetattr (p->infd, &t); switch (signo) { case SIGINT: sig_char = &t.c_cc[VINTR]; break; case SIGQUIT: sig_char = &t.c_cc[VQUIT]; break; case SIGTSTP: #ifdef VSWTCH sig_char = &t.c_cc[VSWTCH]; #else sig_char = &t.c_cc[VSUSP]; #endif break; } if (sig_char && *sig_char != CDISABLE) { send_process (proc, (char *) sig_char, 1, Qnil); return; } /* If we can't send the signal with a character, fall through and send it another way. */ /* The code above may fall through if it can't handle the signal. */ #endif /* defined (SIGNALS_VIA_CHARACTERS) */ #ifdef TIOCGPGRP /* Get the current pgrp using the tty itself, if we have that. Otherwise, use the pty to get the pgrp. On pfa systems, saka@pfu.fujitsu.co.JP writes: "TIOCGPGRP symbol defined in sys/ioctl.h at E50. But, TIOCGPGRP does not work on E50 ;-P works fine on E60" His patch indicates that if TIOCGPGRP returns an error, then we should just assume that p->pid is also the process group id. */ gid = emacs_get_tty_pgrp (p); if (gid == -1) /* If we can't get the information, assume the shell owns the tty. */ gid = p->pid; /* It is not clear whether anything really can set GID to -1. Perhaps on some system one of those ioctls can or could do so. Or perhaps this is vestigial. */ if (gid == -1) no_pgrp = 1; #else /* ! defined (TIOCGPGRP) */ /* Can't select pgrps on this system, so we know that the child itself heads the pgrp. */ gid = p->pid; #endif /* ! defined (TIOCGPGRP) */ /* If current_group is lambda, and the shell owns the terminal, don't send any signal. */ if (EQ (current_group, Qlambda) && gid == p->pid) return; } #ifdef SIGCONT if (signo == SIGCONT) { p->raw_status_new = 0; pset_status (p, Qrun); p->tick = ++process_tick; if (!nomsg) { status_notify (NULL, NULL); redisplay_preserve_echo_area (13); } } #endif #ifdef TIOCSIGSEND /* Work around a HP-UX 7.0 bug that mishandles signals to subjobs. We don't know whether the bug is fixed in later HP-UX versions. */ if (! NILP (current_group) && ioctl (p->infd, TIOCSIGSEND, signo) != -1) return; #endif /* If we don't have process groups, send the signal to the immediate subprocess. That isn't really right, but it's better than any obvious alternative. */ pid_t pid = no_pgrp ? gid : - gid; /* Do not kill an already-reaped process, as that could kill an innocent bystander that happens to have the same process ID. */ sigset_t oldset; block_child_signal (&oldset); if (p->alive) kill (pid, signo); unblock_child_signal (&oldset); } DEFUN ("internal-default-interrupt-process", Finternal_default_interrupt_process, Sinternal_default_interrupt_process, 0, 2, 0, doc: /* Default function to interrupt process PROCESS. It shall be the last element in list `interrupt-process-functions'. See function `interrupt-process' for more details on usage. */) (Lisp_Object process, Lisp_Object current_group) { process_send_signal (process, SIGINT, current_group, 0); return process; } DEFUN ("interrupt-process", Finterrupt_process, Sinterrupt_process, 0, 2, 0, doc: /* Interrupt process PROCESS. PROCESS may be a process, a buffer, or the name of a process or buffer. No arg or nil means current buffer's process. Second arg CURRENT-GROUP non-nil means send signal to the current process-group of the process's controlling terminal rather than to the process's own process group. If the process is a shell, this means interrupt current subjob rather than the shell. If CURRENT-GROUP is `lambda', and if the shell owns the terminal, don't send the signal. This function calls the functions of `interrupt-process-functions' in the order of the list, until one of them returns non-`nil'. */) (Lisp_Object process, Lisp_Object current_group) { return CALLN (Frun_hook_with_args_until_success, Qinterrupt_process_functions, process, current_group); } DEFUN ("kill-process", Fkill_process, Skill_process, 0, 2, 0, doc: /* Kill process PROCESS. May be process or name of one. See function `interrupt-process' for more details on usage. */) (Lisp_Object process, Lisp_Object current_group) { process_send_signal (process, SIGKILL, current_group, 0); return process; } DEFUN ("quit-process", Fquit_process, Squit_process, 0, 2, 0, doc: /* Send QUIT signal to process PROCESS. May be process or name of one. See function `interrupt-process' for more details on usage. */) (Lisp_Object process, Lisp_Object current_group) { process_send_signal (process, SIGQUIT, current_group, 0); return process; } DEFUN ("stop-process", Fstop_process, Sstop_process, 0, 2, 0, doc: /* Stop process PROCESS. May be process or name of one. See function `interrupt-process' for more details on usage. If PROCESS is a network or serial or pipe connection, inhibit handling of incoming traffic. */) (Lisp_Object process, Lisp_Object current_group) { if (PROCESSP (process) && (NETCONN_P (process) || SERIALCONN_P (process) || PIPECONN_P (process))) { struct Lisp_Process *p; p = XPROCESS (process); if (NILP (p->command) && p->infd >= 0) delete_read_fd (p->infd); pset_command (p, Qt); return process; } #ifndef SIGTSTP error ("No SIGTSTP support"); #else process_send_signal (process, SIGTSTP, current_group, 0); #endif return process; } DEFUN ("continue-process", Fcontinue_process, Scontinue_process, 0, 2, 0, doc: /* Continue process PROCESS. May be process or name of one. See function `interrupt-process' for more details on usage. If PROCESS is a network or serial process, resume handling of incoming traffic. */) (Lisp_Object process, Lisp_Object current_group) { if (PROCESSP (process) && (NETCONN_P (process) || SERIALCONN_P (process) || PIPECONN_P (process))) { struct Lisp_Process *p; p = XPROCESS (process); if (EQ (p->command, Qt) && p->infd >= 0 && (!EQ (p->filter, Qt) || EQ (p->status, Qlisten))) { add_process_read_fd (p->infd); #ifdef WINDOWSNT if (fd_info[ p->infd ].flags & FILE_SERIAL) PurgeComm (fd_info[ p->infd ].hnd, PURGE_RXABORT | PURGE_RXCLEAR); #else /* not WINDOWSNT */ tcflush (p->infd, TCIFLUSH); #endif /* not WINDOWSNT */ } pset_command (p, Qnil); return process; } #ifdef SIGCONT process_send_signal (process, SIGCONT, current_group, 0); #else error ("No SIGCONT support"); #endif return process; } /* Return the integer value of the signal whose abbreviation is ABBR, or a negative number if there is no such signal. */ static int abbr_to_signal (char const *name) { int i, signo; char sigbuf[20]; /* Large enough for all valid signal abbreviations. */ if (!strncmp (name, "SIG", 3) || !strncmp (name, "sig", 3)) name += 3; for (i = 0; i < sizeof sigbuf; i++) { sigbuf[i] = c_toupper (name[i]); if (! sigbuf[i]) return str2sig (sigbuf, &signo) == 0 ? signo : -1; } return -1; } DEFUN ("signal-process", Fsignal_process, Ssignal_process, 2, 2, "sProcess (name or number): \nnSignal code: ", doc: /* Send PROCESS the signal with code SIGCODE. PROCESS may also be a number specifying the process id of the process to signal; in this case, the process need not be a child of this Emacs. SIGCODE may be an integer, or a symbol whose name is a signal name. */) (Lisp_Object process, Lisp_Object sigcode) { pid_t pid; int signo; if (STRINGP (process)) { Lisp_Object tem = Fget_process (process); if (NILP (tem)) tem = string_to_number (SSDATA (process), 10, S2N_OVERFLOW_TO_FLOAT); process = tem; } else if (!NUMBERP (process)) process = get_process (process); if (NILP (process)) return process; if (NUMBERP (process)) CONS_TO_INTEGER (process, pid_t, pid); else { CHECK_PROCESS (process); pid = XPROCESS (process)->pid; if (pid <= 0) error ("Cannot signal process %s", SDATA (XPROCESS (process)->name)); } if (INTEGERP (sigcode)) { CHECK_TYPE_RANGED_INTEGER (int, sigcode); signo = XINT (sigcode); } else { char *name; CHECK_SYMBOL (sigcode); name = SSDATA (SYMBOL_NAME (sigcode)); signo = abbr_to_signal (name); if (signo < 0) error ("Undefined signal name %s", name); } return make_number (kill (pid, signo)); } DEFUN ("process-send-eof", Fprocess_send_eof, Sprocess_send_eof, 0, 1, 0, doc: /* Make PROCESS see end-of-file in its input. EOF comes after any text already sent to it. PROCESS may be a process, a buffer, the name of a process or buffer, or nil, indicating the current buffer's process. If PROCESS is a network connection, or is a process communicating through a pipe (as opposed to a pty), then you cannot send any more text to PROCESS after you call this function. If PROCESS is a serial process, wait until all output written to the process has been transmitted to the serial port. */) (Lisp_Object process) { Lisp_Object proc; struct coding_system *coding = NULL; int outfd; proc = get_process (process); if (NETCONN_P (proc)) wait_while_connecting (proc); if (DATAGRAM_CONN_P (proc)) return process; outfd = XPROCESS (proc)->outfd; if (outfd >= 0) coding = proc_encode_coding_system[outfd]; /* Make sure the process is really alive. */ if (XPROCESS (proc)->raw_status_new) update_status (XPROCESS (proc)); if (! EQ (XPROCESS (proc)->status, Qrun)) error ("Process %s not running", SDATA (XPROCESS (proc)->name)); if (coding && CODING_REQUIRE_FLUSHING (coding)) { coding->mode |= CODING_MODE_LAST_BLOCK; send_process (proc, "", 0, Qnil); } if (XPROCESS (proc)->pty_flag) send_process (proc, "\004", 1, Qnil); else if (EQ (XPROCESS (proc)->type, Qserial)) { #ifndef WINDOWSNT if (tcdrain (XPROCESS (proc)->outfd) != 0) report_file_error ("Failed tcdrain", Qnil); #endif /* not WINDOWSNT */ /* Do nothing on Windows because writes are blocking. */ } else { struct Lisp_Process *p = XPROCESS (proc); int old_outfd = p->outfd; int new_outfd; #ifdef HAVE_SHUTDOWN /* If this is a network connection, or socketpair is used for communication with the subprocess, call shutdown to cause EOF. (In some old system, shutdown to socketpair doesn't work. Then we just can't win.) */ if (0 <= old_outfd && (EQ (p->type, Qnetwork) || p->infd == old_outfd)) shutdown (old_outfd, 1); #endif close_process_fd (&p->open_fd[WRITE_TO_SUBPROCESS]); new_outfd = emacs_open (NULL_DEVICE, O_WRONLY, 0); if (new_outfd < 0) report_file_error ("Opening null device", Qnil); p->open_fd[WRITE_TO_SUBPROCESS] = new_outfd; p->outfd = new_outfd; if (!proc_encode_coding_system[new_outfd]) proc_encode_coding_system[new_outfd] = xmalloc (sizeof (struct coding_system)); if (old_outfd >= 0) { *proc_encode_coding_system[new_outfd] = *proc_encode_coding_system[old_outfd]; memset (proc_encode_coding_system[old_outfd], 0, sizeof (struct coding_system)); } else setup_coding_system (p->encode_coding_system, proc_encode_coding_system[new_outfd]); } return process; } /* The main Emacs thread records child processes in three places: - Vprocess_alist, for asynchronous subprocesses, which are child processes visible to Lisp. - deleted_pid_list, for child processes invisible to Lisp, typically because of delete-process. These are recorded so that the processes can be reaped when they exit, so that the operating system's process table is not cluttered by zombies. - the local variable PID in Fcall_process, call_process_cleanup and call_process_kill, for synchronous subprocesses. record_unwind_protect is used to make sure this process is not forgotten: if the user interrupts call-process and the child process refuses to exit immediately even with two C-g's, call_process_kill adds PID's contents to deleted_pid_list before returning. The main Emacs thread invokes waitpid only on child processes that it creates and that have not been reaped. This avoid races on platforms such as GTK, where other threads create their own subprocesses which the main thread should not reap. For example, if the main thread attempted to reap an already-reaped child, it might inadvertently reap a GTK-created process that happened to have the same process ID. */ /* LIB_CHILD_HANDLER is a SIGCHLD handler that Emacs calls while doing its own SIGCHLD handling. On POSIXish systems, glib needs this to keep track of its own children. GNUstep is similar. */ static void dummy_handler (int sig) {} static signal_handler_t volatile lib_child_handler; /* Handle a SIGCHLD signal by looking for known child processes of Emacs whose status have changed. For each one found, record its new status. All we do is change the status; we do not run sentinels or print notifications. That is saved for the next time keyboard input is done, in order to avoid timing errors. ** WARNING: this can be called during garbage collection. Therefore, it must not be fooled by the presence of mark bits in Lisp objects. ** USG WARNING: Although it is not obvious from the documentation in signal(2), on a USG system the SIGCLD handler MUST NOT call signal() before executing at least one wait(), otherwise the handler will be called again, resulting in an infinite loop. The relevant portion of the documentation reads "SIGCLD signals will be queued and the signal-catching function will be continually reentered until the queue is empty". Invoking signal() causes the kernel to reexamine the SIGCLD queue. Fred Fish, UniSoft Systems Inc. ** Malloc WARNING: This should never call malloc either directly or indirectly; if it does, that is a bug. */ static void handle_child_signal (int sig) { Lisp_Object tail, proc; /* Find the process that signaled us, and record its status. */ /* The process can have been deleted by Fdelete_process, or have been started asynchronously by Fcall_process. */ for (tail = deleted_pid_list; CONSP (tail); tail = XCDR (tail)) { bool all_pids_are_fixnums = (MOST_NEGATIVE_FIXNUM <= TYPE_MINIMUM (pid_t) && TYPE_MAXIMUM (pid_t) <= MOST_POSITIVE_FIXNUM); Lisp_Object head = XCAR (tail); Lisp_Object xpid; if (! CONSP (head)) continue; xpid = XCAR (head); if (all_pids_are_fixnums ? INTEGERP (xpid) : NUMBERP (xpid)) { pid_t deleted_pid; if (INTEGERP (xpid)) deleted_pid = XINT (xpid); else deleted_pid = XFLOAT_DATA (xpid); if (child_status_changed (deleted_pid, 0, 0)) { if (STRINGP (XCDR (head))) unlink (SSDATA (XCDR (head))); XSETCAR (tail, Qnil); } } } /* Otherwise, if it is asynchronous, it is in Vprocess_alist. */ FOR_EACH_PROCESS (tail, proc) { struct Lisp_Process *p = XPROCESS (proc); int status; if (p->alive && child_status_changed (p->pid, &status, WUNTRACED | WCONTINUED)) { /* Change the status of the process that was found. */ p->tick = ++process_tick; p->raw_status = status; p->raw_status_new = 1; /* If process has terminated, stop waiting for its output. */ if (WIFSIGNALED (status) || WIFEXITED (status)) { bool clear_desc_flag = 0; p->alive = 0; if (p->infd >= 0) clear_desc_flag = 1; /* clear_desc_flag avoids a compiler bug in Microsoft C. */ if (clear_desc_flag) delete_read_fd (p->infd); } } } lib_child_handler (sig); #ifdef NS_IMPL_GNUSTEP /* NSTask in GNUstep sets its child handler each time it is called. So we must re-set ours. */ catch_child_signal (); #endif } static void deliver_child_signal (int sig) { deliver_process_signal (sig, handle_child_signal); } static Lisp_Object exec_sentinel_error_handler (Lisp_Object error_val) { /* Make sure error_val is a cons cell, as all the rest of error handling expects that, and will barf otherwise. */ if (!CONSP (error_val)) error_val = Fcons (Qerror, error_val); cmd_error_internal (error_val, "error in process sentinel: "); Vinhibit_quit = Qt; update_echo_area (); Fsleep_for (make_number (2), Qnil); return Qt; } static void exec_sentinel (Lisp_Object proc, Lisp_Object reason) { Lisp_Object sentinel, odeactivate; struct Lisp_Process *p = XPROCESS (proc); ptrdiff_t count = SPECPDL_INDEX (); bool outer_running_asynch_code = running_asynch_code; int waiting = waiting_for_user_input_p; if (inhibit_sentinels) return; odeactivate = Vdeactivate_mark; #if 0 Lisp_Object obuffer, okeymap; XSETBUFFER (obuffer, current_buffer); okeymap = BVAR (current_buffer, keymap); #endif /* There's no good reason to let sentinels change the current buffer, and many callers of accept-process-output, sit-for, and friends don't expect current-buffer to be changed from under them. */ record_unwind_current_buffer (); sentinel = p->sentinel; /* Inhibit quit so that random quits don't screw up a running filter. */ specbind (Qinhibit_quit, Qt); specbind (Qlast_nonmenu_event, Qt); /* Why? --Stef */ /* In case we get recursively called, and we already saved the match data nonrecursively, save the same match data in safely recursive fashion. */ if (outer_running_asynch_code) { Lisp_Object tem; tem = Fmatch_data (Qnil, Qnil, Qnil); restore_search_regs (); record_unwind_save_match_data (); Fset_match_data (tem, Qt); } /* For speed, if a search happens within this code, save the match data in a special nonrecursive fashion. */ running_asynch_code = 1; internal_condition_case_1 (read_process_output_call, list3 (sentinel, proc, reason), !NILP (Vdebug_on_error) ? Qnil : Qerror, exec_sentinel_error_handler); /* If we saved the match data nonrecursively, restore it now. */ restore_search_regs (); running_asynch_code = outer_running_asynch_code; Vdeactivate_mark = odeactivate; /* Restore waiting_for_user_input_p as it was when we were called, in case the filter clobbered it. */ waiting_for_user_input_p = waiting; #if 0 if (! EQ (Fcurrent_buffer (), obuffer) || ! EQ (current_buffer->keymap, okeymap)) #endif /* But do it only if the caller is actually going to read events. Otherwise there's no need to make him wake up, and it could cause trouble (for example it would make sit_for return). */ if (waiting_for_user_input_p == -1) record_asynch_buffer_change (); unbind_to (count, Qnil); } /* Report all recent events of a change in process status (either run the sentinel or output a message). This is usually done while Emacs is waiting for keyboard input but can be done at other times. Return positive if any input was received from WAIT_PROC (or from any process if WAIT_PROC is null), zero if input was attempted but none received, and negative if we didn't even try. */ static int status_notify (struct Lisp_Process *deleting_process, struct Lisp_Process *wait_proc) { Lisp_Object proc; Lisp_Object tail, msg; int got_some_output = -1; tail = Qnil; msg = Qnil; /* Set this now, so that if new processes are created by sentinels that we run, we get called again to handle their status changes. */ update_tick = process_tick; FOR_EACH_PROCESS (tail, proc) { Lisp_Object symbol; register struct Lisp_Process *p = XPROCESS (proc); if (p->tick != p->update_tick) { p->update_tick = p->tick; /* If process is still active, read any output that remains. */ while (! EQ (p->filter, Qt) && ! connecting_status (p->status) && ! EQ (p->status, Qlisten) /* Network or serial process not stopped: */ && ! EQ (p->command, Qt) && p->infd >= 0 && p != deleting_process) { int nread = read_process_output (proc, p->infd); if ((!wait_proc || wait_proc == XPROCESS (proc)) && got_some_output < nread) got_some_output = nread; if (nread <= 0) break; } /* Get the text to use for the message. */ if (p->raw_status_new) update_status (p); msg = status_message (p); /* If process is terminated, deactivate it or delete it. */ symbol = p->status; if (CONSP (p->status)) symbol = XCAR (p->status); if (EQ (symbol, Qsignal) || EQ (symbol, Qexit) || EQ (symbol, Qclosed)) { if (delete_exited_processes) remove_process (proc); else deactivate_process (proc); } /* The actions above may have further incremented p->tick. So set p->update_tick again so that an error in the sentinel will not cause this code to be run again. */ p->update_tick = p->tick; /* Now output the message suitably. */ exec_sentinel (proc, msg); if (BUFFERP (p->buffer)) /* In case it uses %s in mode-line-format. */ bset_update_mode_line (XBUFFER (p->buffer)); } } /* end for */ return got_some_output; } DEFUN ("internal-default-process-sentinel", Finternal_default_process_sentinel, Sinternal_default_process_sentinel, 2, 2, 0, doc: /* Function used as default sentinel for processes. This inserts a status message into the process's buffer, if there is one. */) (Lisp_Object proc, Lisp_Object msg) { Lisp_Object buffer, symbol; struct Lisp_Process *p; CHECK_PROCESS (proc); p = XPROCESS (proc); buffer = p->buffer; symbol = p->status; if (CONSP (symbol)) symbol = XCAR (symbol); if (!EQ (symbol, Qrun) && !NILP (buffer)) { Lisp_Object tem; struct buffer *old = current_buffer; ptrdiff_t opoint, opoint_byte; ptrdiff_t before, before_byte; /* Avoid error if buffer is deleted (probably that's why the process is dead, too). */ if (!BUFFER_LIVE_P (XBUFFER (buffer))) return Qnil; Fset_buffer (buffer); if (NILP (BVAR (current_buffer, enable_multibyte_characters))) msg = (code_convert_string_norecord (msg, Vlocale_coding_system, 1)); opoint = PT; opoint_byte = PT_BYTE; /* Insert new output into buffer at the current end-of-output marker, thus preserving logical ordering of input and output. */ if (XMARKER (p->mark)->buffer) Fgoto_char (p->mark); else SET_PT_BOTH (ZV, ZV_BYTE); before = PT; before_byte = PT_BYTE; tem = BVAR (current_buffer, read_only); bset_read_only (current_buffer, Qnil); insert_string ("\nProcess "); { /* FIXME: temporary kludge. */ Lisp_Object tem2 = p->name; Finsert (1, &tem2); } insert_string (" "); Finsert (1, &msg); bset_read_only (current_buffer, tem); set_marker_both (p->mark, p->buffer, PT, PT_BYTE); if (opoint >= before) SET_PT_BOTH (opoint + (PT - before), opoint_byte + (PT_BYTE - before_byte)); else SET_PT_BOTH (opoint, opoint_byte); set_buffer_internal (old); } return Qnil; } DEFUN ("set-process-coding-system", Fset_process_coding_system, Sset_process_coding_system, 1, 3, 0, doc: /* Set coding systems of PROCESS to DECODING and ENCODING. DECODING will be used to decode subprocess output and ENCODING to encode subprocess input. */) (Lisp_Object process, Lisp_Object decoding, Lisp_Object encoding) { CHECK_PROCESS (process); struct Lisp_Process *p = XPROCESS (process); Fcheck_coding_system (decoding); Fcheck_coding_system (encoding); encoding = coding_inherit_eol_type (encoding, Qnil); pset_decode_coding_system (p, decoding); pset_encode_coding_system (p, encoding); /* If the sockets haven't been set up yet, the final setup part of this will be called asynchronously. */ if (p->infd < 0 || p->outfd < 0) return Qnil; setup_process_coding_systems (process); return Qnil; } DEFUN ("process-coding-system", Fprocess_coding_system, Sprocess_coding_system, 1, 1, 0, doc: /* Return a cons of coding systems for decoding and encoding of PROCESS. */) (register Lisp_Object process) { CHECK_PROCESS (process); return Fcons (XPROCESS (process)->decode_coding_system, XPROCESS (process)->encode_coding_system); } DEFUN ("set-process-filter-multibyte", Fset_process_filter_multibyte, Sset_process_filter_multibyte, 2, 2, 0, doc: /* Set multibyteness of the strings given to PROCESS's filter. If FLAG is non-nil, the filter is given multibyte strings. If FLAG is nil, the filter is given unibyte strings. In this case, all character code conversion except for end-of-line conversion is suppressed. */) (Lisp_Object process, Lisp_Object flag) { CHECK_PROCESS (process); struct Lisp_Process *p = XPROCESS (process); if (NILP (flag)) pset_decode_coding_system (p, raw_text_coding_system (p->decode_coding_system)); /* If the sockets haven't been set up yet, the final setup part of this will be called asynchronously. */ if (p->infd < 0 || p->outfd < 0) return Qnil; setup_process_coding_systems (process); return Qnil; } DEFUN ("process-filter-multibyte-p", Fprocess_filter_multibyte_p, Sprocess_filter_multibyte_p, 1, 1, 0, doc: /* Return t if a multibyte string is given to PROCESS's filter.*/) (Lisp_Object process) { CHECK_PROCESS (process); struct Lisp_Process *p = XPROCESS (process); if (p->infd < 0) return Qnil; struct coding_system *coding = proc_decode_coding_system[p->infd]; return (CODING_FOR_UNIBYTE (coding) ? Qnil : Qt); } # ifdef HAVE_GPM void add_gpm_wait_descriptor (int desc) { add_keyboard_wait_descriptor (desc); } void delete_gpm_wait_descriptor (int desc) { delete_keyboard_wait_descriptor (desc); } # endif # ifdef USABLE_SIGIO /* Return true if *MASK has a bit set that corresponds to one of the keyboard input descriptors. */ static bool keyboard_bit_set (fd_set *mask) { int fd; for (fd = 0; fd <= max_desc; fd++) if (FD_ISSET (fd, mask) && ((fd_callback_info[fd].flags & (FOR_READ | KEYBOARD_FD)) == (FOR_READ | KEYBOARD_FD))) return 1; return 0; } # endif #else /* not subprocesses */ /* This is referenced in thread.c:run_thread (which is never actually called, since threads are not enabled for this configuration. */ void update_processes_for_thread_death (Lisp_Object dying_thread) { } /* Defined in msdos.c. */ extern int sys_select (int, fd_set *, fd_set *, fd_set *, struct timespec *, void *); /* Implementation of wait_reading_process_output, assuming that there are no subprocesses. Used only by the MS-DOS build. Wait for timeout to elapse and/or keyboard input to be available. TIME_LIMIT is: timeout in seconds If negative, gobble data immediately available but don't wait for any. NSECS is: an additional duration to wait, measured in nanoseconds If TIME_LIMIT is zero, then: If NSECS == 0, there is no limit. If NSECS > 0, the timeout consists of NSECS only. If NSECS < 0, gobble data immediately, as if TIME_LIMIT were negative. READ_KBD is: 0 to ignore keyboard input, or 1 to return when input is available, or -1 means caller will actually read the input, so don't throw to the quit handler. see full version for other parameters. We know that wait_proc will always be NULL, since `subprocesses' isn't defined. DO_DISPLAY means redisplay should be done to show subprocess output that arrives. Return -1 signifying we got no output and did not try. */ int wait_reading_process_output (intmax_t time_limit, int nsecs, int read_kbd, bool do_display, Lisp_Object wait_for_cell, struct Lisp_Process *wait_proc, int just_wait_proc) { register int nfds; struct timespec end_time, timeout; enum { MINIMUM = -1, TIMEOUT, INFINITY } wait; if (TYPE_MAXIMUM (time_t) < time_limit) time_limit = TYPE_MAXIMUM (time_t); if (time_limit < 0 || nsecs < 0) wait = MINIMUM; else if (time_limit > 0 || nsecs > 0) { wait = TIMEOUT; end_time = timespec_add (current_timespec (), make_timespec (time_limit, nsecs)); } else wait = INFINITY; /* Turn off periodic alarms (in case they are in use) and then turn off any other atimers, because the select emulator uses alarms. */ stop_polling (); turn_on_atimers (0); while (1) { bool timeout_reduced_for_timers = false; fd_set waitchannels; int xerrno; /* If calling from keyboard input, do not quit since we want to return C-g as an input character. Otherwise, do pending quit if requested. */ if (read_kbd >= 0) maybe_quit (); /* Exit now if the cell we're waiting for became non-nil. */ if (! NILP (wait_for_cell) && ! NILP (XCAR (wait_for_cell))) break; /* Compute time from now till when time limit is up. */ /* Exit if already run out. */ if (wait == TIMEOUT) { struct timespec now = current_timespec (); if (timespec_cmp (end_time, now) <= 0) break; timeout = timespec_sub (end_time, now); } else timeout = make_timespec (wait < TIMEOUT ? 0 : 100000, 0); /* If our caller will not immediately handle keyboard events, run timer events directly. (Callers that will immediately read keyboard events call timer_delay on their own.) */ if (NILP (wait_for_cell)) { struct timespec timer_delay; do { unsigned old_timers_run = timers_run; timer_delay = timer_check (); if (timers_run != old_timers_run && do_display) /* We must retry, since a timer may have requeued itself and that could alter the time delay. */ redisplay_preserve_echo_area (14); else break; } while (!detect_input_pending ()); /* If there is unread keyboard input, also return. */ if (read_kbd != 0 && requeued_events_pending_p ()) break; if (timespec_valid_p (timer_delay)) { if (timespec_cmp (timer_delay, timeout) < 0) { timeout = timer_delay; timeout_reduced_for_timers = true; } } } /* Cause C-g and alarm signals to take immediate action, and cause input available signals to zero out timeout. */ if (read_kbd < 0) set_waiting_for_input (&timeout); /* If a frame has been newly mapped and needs updating, reprocess its display stuff. */ if (frame_garbaged && do_display) { clear_waiting_for_input (); redisplay_preserve_echo_area (15); if (read_kbd < 0) set_waiting_for_input (&timeout); } /* Wait till there is something to do. */ FD_ZERO (&waitchannels); if (read_kbd && detect_input_pending ()) nfds = 0; else { if (read_kbd || !NILP (wait_for_cell)) FD_SET (0, &waitchannels); nfds = pselect (1, &waitchannels, NULL, NULL, &timeout, NULL); } xerrno = errno; /* Make C-g and alarm signals set flags again. */ clear_waiting_for_input (); /* If we woke up due to SIGWINCH, actually change size now. */ do_pending_window_change (0); if (wait < INFINITY && nfds == 0 && ! timeout_reduced_for_timers) /* We waited the full specified time, so return now. */ break; if (nfds == -1) { /* If the system call was interrupted, then go around the loop again. */ if (xerrno == EINTR) FD_ZERO (&waitchannels); else report_file_errno ("Failed select", Qnil, xerrno); } /* Check for keyboard input. */ if (read_kbd && detect_input_pending_run_timers (do_display)) { swallow_events (do_display); if (detect_input_pending_run_timers (do_display)) break; } /* If there is unread keyboard input, also return. */ if (read_kbd && requeued_events_pending_p ()) break; /* If wait_for_cell. check for keyboard input but don't run any timers. ??? (It seems wrong to me to check for keyboard input at all when wait_for_cell, but the code has been this way since July 1994. Try changing this after version 19.31.) */ if (! NILP (wait_for_cell) && detect_input_pending ()) { swallow_events (do_display); if (detect_input_pending ()) break; } /* Exit now if the cell we're waiting for became non-nil. */ if (! NILP (wait_for_cell) && ! NILP (XCAR (wait_for_cell))) break; } start_polling (); return -1; } #endif /* not subprocesses */ /* The following functions are needed even if async subprocesses are not supported. Some of them are no-op stubs in that case. */ #ifdef HAVE_TIMERFD /* Add FD, which is a descriptor returned by timerfd_create, to the set of non-keyboard input descriptors. */ void add_timer_wait_descriptor (int fd) { add_read_fd (fd, timerfd_callback, NULL); fd_callback_info[fd].flags &= ~KEYBOARD_FD; } #endif /* HAVE_TIMERFD */ /* If program file NAME starts with /: for quoting a magic name, remove that, preserving the multibyteness of NAME. */ Lisp_Object remove_slash_colon (Lisp_Object name) { return (SREF (name, 0) == '/' && SREF (name, 1) == ':' ? make_specified_string (SSDATA (name) + 2, SCHARS (name) - 2, SBYTES (name) - 2, STRING_MULTIBYTE (name)) : name); } /* Add DESC to the set of keyboard input descriptors. */ void add_keyboard_wait_descriptor (int desc) { #ifdef subprocesses /* Actually means "not MSDOS". */ eassert (desc >= 0 && desc < FD_SETSIZE); fd_callback_info[desc].flags &= ~PROCESS_FD; fd_callback_info[desc].flags |= (FOR_READ | KEYBOARD_FD); if (desc > max_desc) max_desc = desc; #endif } /* From now on, do not expect DESC to give keyboard input. */ void delete_keyboard_wait_descriptor (int desc) { #ifdef subprocesses eassert (desc >= 0 && desc < FD_SETSIZE); fd_callback_info[desc].flags &= ~(FOR_READ | KEYBOARD_FD | PROCESS_FD); if (desc == max_desc) recompute_max_desc (); #endif } /* Setup coding systems of PROCESS. */ void setup_process_coding_systems (Lisp_Object process) { #ifdef subprocesses struct Lisp_Process *p = XPROCESS (process); int inch = p->infd; int outch = p->outfd; Lisp_Object coding_system; if (inch < 0 || outch < 0) return; if (!proc_decode_coding_system[inch]) proc_decode_coding_system[inch] = xmalloc (sizeof (struct coding_system)); coding_system = p->decode_coding_system; if (EQ (p->filter, Qinternal_default_process_filter) && BUFFERP (p->buffer)) { if (NILP (BVAR (XBUFFER (p->buffer), enable_multibyte_characters))) coding_system = raw_text_coding_system (coding_system); } setup_coding_system (coding_system, proc_decode_coding_system[inch]); if (!proc_encode_coding_system[outch]) proc_encode_coding_system[outch] = xmalloc (sizeof (struct coding_system)); setup_coding_system (p->encode_coding_system, proc_encode_coding_system[outch]); #endif } DEFUN ("get-buffer-process", Fget_buffer_process, Sget_buffer_process, 1, 1, 0, doc: /* Return the (or a) live process associated with BUFFER. BUFFER may be a buffer or the name of one. Return nil if all processes associated with BUFFER have been deleted or killed. */) (register Lisp_Object buffer) { #ifdef subprocesses register Lisp_Object buf, tail, proc; if (NILP (buffer)) return Qnil; buf = Fget_buffer (buffer); if (NILP (buf)) return Qnil; FOR_EACH_PROCESS (tail, proc) if (EQ (XPROCESS (proc)->buffer, buf)) return proc; #endif /* subprocesses */ return Qnil; } DEFUN ("process-inherit-coding-system-flag", Fprocess_inherit_coding_system_flag, Sprocess_inherit_coding_system_flag, 1, 1, 0, doc: /* Return the value of inherit-coding-system flag for PROCESS. If this flag is t, `buffer-file-coding-system' of the buffer associated with PROCESS will inherit the coding system used to decode the process output. */) (register Lisp_Object process) { #ifdef subprocesses CHECK_PROCESS (process); return XPROCESS (process)->inherit_coding_system_flag ? Qt : Qnil; #else /* Ignore the argument and return the value of inherit-process-coding-system. */ return inherit_process_coding_system ? Qt : Qnil; #endif } /* Kill all processes associated with `buffer'. If `buffer' is nil, kill all processes. */ void kill_buffer_processes (Lisp_Object buffer) { #ifdef subprocesses Lisp_Object tail, proc; FOR_EACH_PROCESS (tail, proc) if (NILP (buffer) || EQ (XPROCESS (proc)->buffer, buffer)) { if (NETCONN_P (proc) || SERIALCONN_P (proc) || PIPECONN_P (proc)) Fdelete_process (proc); else if (XPROCESS (proc)->infd >= 0) process_send_signal (proc, SIGHUP, Qnil, 1); } #else /* subprocesses */ /* Since we have no subprocesses, this does nothing. */ #endif /* subprocesses */ } DEFUN ("waiting-for-user-input-p", Fwaiting_for_user_input_p, Swaiting_for_user_input_p, 0, 0, 0, doc: /* Return non-nil if Emacs is waiting for input from the user. This is intended for use by asynchronous process output filters and sentinels. */) (void) { #ifdef subprocesses return (waiting_for_user_input_p ? Qt : Qnil); #else return Qnil; #endif } /* Stop reading input from keyboard sources. */ void hold_keyboard_input (void) { kbd_is_on_hold = 1; } /* Resume reading input from keyboard sources. */ void unhold_keyboard_input (void) { kbd_is_on_hold = 0; } /* Return true if keyboard input is on hold, zero otherwise. */ bool kbd_on_hold_p (void) { return kbd_is_on_hold; } /* Enumeration of and access to system processes a-la ps(1). */ DEFUN ("list-system-processes", Flist_system_processes, Slist_system_processes, 0, 0, 0, doc: /* Return a list of numerical process IDs of all running processes. If this functionality is unsupported, return nil. See `process-attributes' for getting attributes of a process given its ID. */) (void) { return list_system_processes (); } DEFUN ("process-attributes", Fprocess_attributes, Sprocess_attributes, 1, 1, 0, doc: /* Return attributes of the process given by its PID, a number. Value is an alist where each element is a cons cell of the form (KEY . VALUE) If this functionality is unsupported, the value is nil. See `list-system-processes' for getting a list of all process IDs. The KEYs of the attributes that this function may return are listed below, together with the type of the associated VALUE (in parentheses). Not all platforms support all of these attributes; unsupported attributes will not appear in the returned alist. Unless explicitly indicated otherwise, numbers can have either integer or floating point values. euid -- Effective user User ID of the process (number) user -- User name corresponding to euid (string) egid -- Effective user Group ID of the process (number) group -- Group name corresponding to egid (string) comm -- Command name (executable name only) (string) state -- Process state code, such as "S", "R", or "T" (string) ppid -- Parent process ID (number) pgrp -- Process group ID (number) sess -- Session ID, i.e. process ID of session leader (number) ttname -- Controlling tty name (string) tpgid -- ID of foreground process group on the process's tty (number) minflt -- number of minor page faults (number) majflt -- number of major page faults (number) cminflt -- cumulative number of minor page faults (number) cmajflt -- cumulative number of major page faults (number) utime -- user time used by the process, in (current-time) format, which is a list of integers (HIGH LOW USEC PSEC) stime -- system time used by the process (current-time) time -- sum of utime and stime (current-time) cutime -- user time used by the process and its children (current-time) cstime -- system time used by the process and its children (current-time) ctime -- sum of cutime and cstime (current-time) pri -- priority of the process (number) nice -- nice value of the process (number) thcount -- process thread count (number) start -- time the process started (current-time) vsize -- virtual memory size of the process in KB's (number) rss -- resident set size of the process in KB's (number) etime -- elapsed time the process is running, in (HIGH LOW USEC PSEC) format pcpu -- percents of CPU time used by the process (floating-point number) pmem -- percents of total physical memory used by process's resident set (floating-point number) args -- command line which invoked the process (string). */) ( Lisp_Object pid) { return system_process_attributes (pid); } #ifdef subprocesses /* Arrange to catch SIGCHLD if this hasn't already been arranged. Invoke this after init_process_emacs, and after glib and/or GNUstep futz with the SIGCHLD handler, but before Emacs forks any children. This function's caller should block SIGCHLD. */ void catch_child_signal (void) { struct sigaction action, old_action; sigset_t oldset; emacs_sigaction_init (&action, deliver_child_signal); block_child_signal (&oldset); sigaction (SIGCHLD, &action, &old_action); eassert (old_action.sa_handler == SIG_DFL || old_action.sa_handler == SIG_IGN || ! (old_action.sa_flags & SA_SIGINFO)); if (old_action.sa_handler != deliver_child_signal) lib_child_handler = (old_action.sa_handler == SIG_DFL || old_action.sa_handler == SIG_IGN ? dummy_handler : old_action.sa_handler); unblock_child_signal (&oldset); } #endif /* subprocesses */ /* Limit the number of open files to the value it had at startup. */ void restore_nofile_limit (void) { #ifdef HAVE_SETRLIMIT if (FD_SETSIZE < nofile_limit.rlim_cur) setrlimit (RLIMIT_NOFILE, &nofile_limit); #endif } /* This is not called "init_process" because that is the name of a Mach system call, so it would cause problems on Darwin systems. */ void init_process_emacs (int sockfd) { #ifdef subprocesses int i; inhibit_sentinels = 0; #ifndef CANNOT_DUMP if (! noninteractive || initialized) #endif { #if defined HAVE_GLIB && !defined WINDOWSNT /* Tickle glib's child-handling code. Ask glib to wait for Emacs itself; this should always fail, but is enough to initialize glib's private SIGCHLD handler, allowing catch_child_signal to copy it into lib_child_handler. */ g_source_unref (g_child_watch_source_new (getpid ())); #endif catch_child_signal (); } #ifdef HAVE_SETRLIMIT /* Don't allocate more than FD_SETSIZE file descriptors for Emacs itself. */ if (getrlimit (RLIMIT_NOFILE, &nofile_limit) != 0) nofile_limit.rlim_cur = 0; else if (FD_SETSIZE < nofile_limit.rlim_cur) { struct rlimit rlim = nofile_limit; rlim.rlim_cur = FD_SETSIZE; if (setrlimit (RLIMIT_NOFILE, &rlim) != 0) nofile_limit.rlim_cur = 0; } #endif external_sock_fd = sockfd; Lisp_Object sockname = Qnil; # if HAVE_GETSOCKNAME if (0 <= sockfd) { union u_sockaddr sa; socklen_t salen = sizeof sa; if (getsockname (sockfd, &sa.sa, &salen) == 0) sockname = conv_sockaddr_to_lisp (&sa.sa, salen); } # endif Vinternal__daemon_sockname = sockname; max_desc = -1; memset (fd_callback_info, 0, sizeof (fd_callback_info)); num_pending_connects = 0; process_output_delay_count = 0; process_output_skip = 0; /* Don't do this, it caused infinite select loops. The display method should call add_keyboard_wait_descriptor on stdin if it needs that. */ #if 0 FD_SET (0, &input_wait_mask); #endif Vprocess_alist = Qnil; deleted_pid_list = Qnil; for (i = 0; i < FD_SETSIZE; i++) { chan_process[i] = Qnil; proc_buffered_char[i] = -1; } memset (proc_decode_coding_system, 0, sizeof proc_decode_coding_system); memset (proc_encode_coding_system, 0, sizeof proc_encode_coding_system); #ifdef DATAGRAM_SOCKETS memset (datagram_address, 0, sizeof datagram_address); #endif #if defined (DARWIN_OS) /* PTYs are broken on Darwin < 6, but are sometimes useful for interactive processes. As such, we only change the default value. */ if (initialized) { char const *release = (STRINGP (Voperating_system_release) ? SSDATA (Voperating_system_release) : 0); if (!release || !release[0] || (release[0] < '7' && release[1] == '.')) { Vprocess_connection_type = Qnil; } } #endif #endif /* subprocesses */ kbd_is_on_hold = 0; } void syms_of_process (void) { #ifdef subprocesses DEFSYM (Qprocessp, "processp"); DEFSYM (Qrun, "run"); DEFSYM (Qstop, "stop"); DEFSYM (Qsignal, "signal"); /* Qexit is already staticpro'd by syms_of_eval; don't staticpro it here again. */ DEFSYM (Qopen, "open"); DEFSYM (Qclosed, "closed"); DEFSYM (Qconnect, "connect"); DEFSYM (Qfailed, "failed"); DEFSYM (Qlisten, "listen"); DEFSYM (Qlocal, "local"); DEFSYM (Qipv4, "ipv4"); #ifdef AF_INET6 DEFSYM (Qipv6, "ipv6"); #endif DEFSYM (Qdatagram, "datagram"); DEFSYM (Qseqpacket, "seqpacket"); DEFSYM (QCport, ":port"); DEFSYM (QCspeed, ":speed"); DEFSYM (QCprocess, ":process"); DEFSYM (QCbytesize, ":bytesize"); DEFSYM (QCstopbits, ":stopbits"); DEFSYM (QCparity, ":parity"); DEFSYM (Qodd, "odd"); DEFSYM (Qeven, "even"); DEFSYM (QCflowcontrol, ":flowcontrol"); DEFSYM (Qhw, "hw"); DEFSYM (Qsw, "sw"); DEFSYM (QCsummary, ":summary"); DEFSYM (Qreal, "real"); DEFSYM (Qnetwork, "network"); DEFSYM (Qserial, "serial"); DEFSYM (QCbuffer, ":buffer"); DEFSYM (QChost, ":host"); DEFSYM (QCservice, ":service"); DEFSYM (QClocal, ":local"); DEFSYM (QCremote, ":remote"); DEFSYM (QCcoding, ":coding"); DEFSYM (QCserver, ":server"); DEFSYM (QCnowait, ":nowait"); DEFSYM (QCsentinel, ":sentinel"); DEFSYM (QCuse_external_socket, ":use-external-socket"); DEFSYM (QCtls_parameters, ":tls-parameters"); DEFSYM (Qnsm_verify_connection, "nsm-verify-connection"); DEFSYM (QClog, ":log"); DEFSYM (QCnoquery, ":noquery"); DEFSYM (QCstop, ":stop"); DEFSYM (QCplist, ":plist"); DEFSYM (QCcommand, ":command"); DEFSYM (QCconnection_type, ":connection-type"); DEFSYM (QCstderr, ":stderr"); DEFSYM (Qpty, "pty"); DEFSYM (Qpipe, "pipe"); DEFSYM (Qlast_nonmenu_event, "last-nonmenu-event"); staticpro (&Vprocess_alist); staticpro (&deleted_pid_list); #endif /* subprocesses */ DEFSYM (QCname, ":name"); DEFSYM (QCtype, ":type"); DEFSYM (Qeuid, "euid"); DEFSYM (Qegid, "egid"); DEFSYM (Quser, "user"); DEFSYM (Qgroup, "group"); DEFSYM (Qcomm, "comm"); DEFSYM (Qstate, "state"); DEFSYM (Qppid, "ppid"); DEFSYM (Qpgrp, "pgrp"); DEFSYM (Qsess, "sess"); DEFSYM (Qttname, "ttname"); DEFSYM (Qtpgid, "tpgid"); DEFSYM (Qminflt, "minflt"); DEFSYM (Qmajflt, "majflt"); DEFSYM (Qcminflt, "cminflt"); DEFSYM (Qcmajflt, "cmajflt"); DEFSYM (Qutime, "utime"); DEFSYM (Qstime, "stime"); DEFSYM (Qtime, "time"); DEFSYM (Qcutime, "cutime"); DEFSYM (Qcstime, "cstime"); DEFSYM (Qctime, "ctime"); #ifdef subprocesses DEFSYM (Qinternal_default_process_sentinel, "internal-default-process-sentinel"); DEFSYM (Qinternal_default_process_filter, "internal-default-process-filter"); #endif DEFSYM (Qpri, "pri"); DEFSYM (Qnice, "nice"); DEFSYM (Qthcount, "thcount"); DEFSYM (Qstart, "start"); DEFSYM (Qvsize, "vsize"); DEFSYM (Qrss, "rss"); DEFSYM (Qetime, "etime"); DEFSYM (Qpcpu, "pcpu"); DEFSYM (Qpmem, "pmem"); DEFSYM (Qargs, "args"); DEFVAR_BOOL ("delete-exited-processes", delete_exited_processes, doc: /* Non-nil means delete processes immediately when they exit. A value of nil means don't delete them until `list-processes' is run. */); delete_exited_processes = 1; #ifdef subprocesses DEFVAR_LISP ("process-connection-type", Vprocess_connection_type, doc: /* Control type of device used to communicate with subprocesses. Values are nil to use a pipe, or t or `pty' to use a pty. The value has no effect if the system has no ptys or if all ptys are busy: then a pipe is used in any case. The value takes effect when `start-process' is called. */); Vprocess_connection_type = Qt; DEFVAR_LISP ("process-adaptive-read-buffering", Vprocess_adaptive_read_buffering, doc: /* If non-nil, improve receive buffering by delaying after short reads. On some systems, when Emacs reads the output from a subprocess, the output data is read in very small blocks, potentially resulting in very poor performance. This behavior can be remedied to some extent by setting this variable to a non-nil value, as it will automatically delay reading from such processes, to allow them to produce more output before Emacs tries to read it. If the value is t, the delay is reset after each write to the process; any other non-nil value means that the delay is not reset on write. The variable takes effect when `start-process' is called. */); Vprocess_adaptive_read_buffering = Qt; DEFVAR_LISP ("interrupt-process-functions", Vinterrupt_process_functions, doc: /* List of functions to be called for `interrupt-process'. The arguments of the functions are the same as for `interrupt-process'. These functions are called in the order of the list, until one of them returns non-`nil'. */); Vinterrupt_process_functions = list1 (Qinternal_default_interrupt_process); DEFVAR_LISP ("internal--daemon-sockname", Vinternal__daemon_sockname, doc: /* Name of external socket passed to Emacs, or nil if none. */); Vinternal__daemon_sockname = Qnil; DEFSYM (Qinternal_default_interrupt_process, "internal-default-interrupt-process"); DEFSYM (Qinterrupt_process_functions, "interrupt-process-functions"); defsubr (&Sprocessp); defsubr (&Sget_process); defsubr (&Sdelete_process); defsubr (&Sprocess_status); defsubr (&Sprocess_exit_status); defsubr (&Sprocess_id); defsubr (&Sprocess_name); defsubr (&Sprocess_tty_name); defsubr (&Sprocess_command); defsubr (&Sset_process_buffer); defsubr (&Sprocess_buffer); defsubr (&Sprocess_mark); defsubr (&Sset_process_filter); defsubr (&Sprocess_filter); defsubr (&Sset_process_sentinel); defsubr (&Sprocess_sentinel); defsubr (&Sset_process_thread); defsubr (&Sprocess_thread); defsubr (&Sset_process_window_size); defsubr (&Sset_process_inherit_coding_system_flag); defsubr (&Sset_process_query_on_exit_flag); defsubr (&Sprocess_query_on_exit_flag); defsubr (&Sprocess_contact); defsubr (&Sprocess_plist); defsubr (&Sset_process_plist); defsubr (&Sprocess_list); defsubr (&Smake_process); defsubr (&Smake_pipe_process); defsubr (&Sserial_process_configure); defsubr (&Smake_serial_process); defsubr (&Sset_network_process_option); defsubr (&Smake_network_process); defsubr (&Sformat_network_address); defsubr (&Snetwork_interface_list); defsubr (&Snetwork_interface_info); #ifdef DATAGRAM_SOCKETS defsubr (&Sprocess_datagram_address); defsubr (&Sset_process_datagram_address); #endif defsubr (&Saccept_process_output); defsubr (&Sprocess_send_region); defsubr (&Sprocess_send_string); defsubr (&Sinternal_default_interrupt_process); defsubr (&Sinterrupt_process); defsubr (&Skill_process); defsubr (&Squit_process); defsubr (&Sstop_process); defsubr (&Scontinue_process); defsubr (&Sprocess_running_child_p); defsubr (&Sprocess_send_eof); defsubr (&Ssignal_process); defsubr (&Swaiting_for_user_input_p); defsubr (&Sprocess_type); defsubr (&Sinternal_default_process_sentinel); defsubr (&Sinternal_default_process_filter); defsubr (&Sset_process_coding_system); defsubr (&Sprocess_coding_system); defsubr (&Sset_process_filter_multibyte); defsubr (&Sprocess_filter_multibyte_p); { Lisp_Object subfeatures = Qnil; const struct socket_options *sopt; #define ADD_SUBFEATURE(key, val) \ subfeatures = pure_cons (pure_cons (key, pure_cons (val, Qnil)), subfeatures) ADD_SUBFEATURE (QCnowait, Qt); #ifdef DATAGRAM_SOCKETS ADD_SUBFEATURE (QCtype, Qdatagram); #endif #ifdef HAVE_SEQPACKET ADD_SUBFEATURE (QCtype, Qseqpacket); #endif #ifdef HAVE_LOCAL_SOCKETS ADD_SUBFEATURE (QCfamily, Qlocal); #endif ADD_SUBFEATURE (QCfamily, Qipv4); #ifdef AF_INET6 ADD_SUBFEATURE (QCfamily, Qipv6); #endif #ifdef HAVE_GETSOCKNAME ADD_SUBFEATURE (QCservice, Qt); #endif ADD_SUBFEATURE (QCserver, Qt); for (sopt = socket_options; sopt->name; sopt++) subfeatures = pure_cons (intern_c_string (sopt->name), subfeatures); Fprovide (intern_c_string ("make-network-process"), subfeatures); } #endif /* subprocesses */ defsubr (&Sget_buffer_process); defsubr (&Sprocess_inherit_coding_system_flag); defsubr (&Slist_system_processes); defsubr (&Sprocess_attributes); }