/* System thread definitions Copyright (C) 2012-2018 Free Software Foundation, Inc. This file is part of GNU Emacs. GNU Emacs is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. GNU Emacs is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU Emacs. If not, see . */ #include #include #include "lisp.h" #ifdef HAVE_NS #include "nsterm.h" #endif #ifndef THREADS_ENABLED void sys_mutex_init (sys_mutex_t *m) { *m = 0; } void sys_mutex_lock (sys_mutex_t *m) { } void sys_mutex_unlock (sys_mutex_t *m) { } void sys_cond_init (sys_cond_t *c) { *c = 0; } void sys_cond_wait (sys_cond_t *c, sys_mutex_t *m) { } void sys_cond_signal (sys_cond_t *c) { } void sys_cond_broadcast (sys_cond_t *c) { } void sys_cond_destroy (sys_cond_t *c) { } sys_thread_t sys_thread_self (void) { return 0; } bool sys_thread_equal (sys_thread_t t, sys_thread_t u) { return t == u; } int sys_thread_create (sys_thread_t *t, const char *name, thread_creation_function *func, void *datum) { return 0; } void sys_thread_yield (void) { } #elif defined (HAVE_PTHREAD) #include #ifdef HAVE_SYS_PRCTL_H #include #endif void sys_mutex_init (sys_mutex_t *mutex) { pthread_mutex_init (mutex, NULL); } void sys_mutex_lock (sys_mutex_t *mutex) { pthread_mutex_lock (mutex); } void sys_mutex_unlock (sys_mutex_t *mutex) { pthread_mutex_unlock (mutex); } void sys_cond_init (sys_cond_t *cond) { pthread_cond_init (cond, NULL); } void sys_cond_wait (sys_cond_t *cond, sys_mutex_t *mutex) { pthread_cond_wait (cond, mutex); } void sys_cond_signal (sys_cond_t *cond) { pthread_cond_signal (cond); } void sys_cond_broadcast (sys_cond_t *cond) { pthread_cond_broadcast (cond); #ifdef HAVE_NS /* Send an app defined event to break out of the NS run loop. It seems that if ns_select is running the NS run loop, this broadcast has no effect until the loop is done, breaking a couple of tests in thread-tests.el. */ ns_run_loop_break (); #endif } void sys_cond_destroy (sys_cond_t *cond) { pthread_cond_destroy (cond); } sys_thread_t sys_thread_self (void) { return pthread_self (); } bool sys_thread_equal (sys_thread_t t, sys_thread_t u) { return pthread_equal (t, u); } int sys_thread_create (sys_thread_t *thread_ptr, const char *name, thread_creation_function *func, void *arg) { pthread_attr_t attr; int result = 0; if (pthread_attr_init (&attr)) return 0; /* Avoid crash on macOS with deeply nested GC (Bug#30364). */ size_t stack_size; size_t required_stack_size = sizeof (void *) * 1024 * 1024; if (pthread_attr_getstacksize (&attr, &stack_size) == 0 && stack_size < required_stack_size) pthread_attr_setstacksize (&attr, required_stack_size); if (!pthread_attr_setdetachstate (&attr, PTHREAD_CREATE_DETACHED)) { result = pthread_create (thread_ptr, &attr, func, arg) == 0; #if defined (HAVE_SYS_PRCTL_H) && defined (HAVE_PRCTL) && defined (PR_SET_NAME) if (result && name != NULL) prctl (PR_SET_NAME, name); #endif } pthread_attr_destroy (&attr); return result; } void sys_thread_yield (void) { sched_yield (); } #elif defined (WINDOWSNT) #include /* Cannot include because of the local header by the same name, sigh. */ uintptr_t _beginthread (void (__cdecl *)(void *), unsigned, void *); /* Mutexes are implemented as critical sections, because they are faster than Windows mutex objects (implemented in userspace), and satisfy the requirements, since we only need to synchronize within a single process. */ void sys_mutex_init (sys_mutex_t *mutex) { InitializeCriticalSection ((LPCRITICAL_SECTION)mutex); } void sys_mutex_lock (sys_mutex_t *mutex) { /* FIXME: What happens if the owning thread exits without releasing the mutex? According to MSDN, the result is undefined behavior. */ EnterCriticalSection ((LPCRITICAL_SECTION)mutex); } void sys_mutex_unlock (sys_mutex_t *mutex) { LeaveCriticalSection ((LPCRITICAL_SECTION)mutex); } void sys_cond_init (sys_cond_t *cond) { cond->initialized = false; cond->wait_count = 0; /* Auto-reset event for signal. */ cond->events[CONDV_SIGNAL] = CreateEvent (NULL, FALSE, FALSE, NULL); /* Manual-reset event for broadcast. */ cond->events[CONDV_BROADCAST] = CreateEvent (NULL, TRUE, FALSE, NULL); if (!cond->events[CONDV_SIGNAL] || !cond->events[CONDV_BROADCAST]) return; InitializeCriticalSection ((LPCRITICAL_SECTION)&cond->wait_count_lock); cond->initialized = true; } void sys_cond_wait (sys_cond_t *cond, sys_mutex_t *mutex) { DWORD wait_result; bool last_thread_waiting; if (!cond->initialized) return; /* Increment the wait count avoiding race conditions. */ EnterCriticalSection ((LPCRITICAL_SECTION)&cond->wait_count_lock); cond->wait_count++; LeaveCriticalSection ((LPCRITICAL_SECTION)&cond->wait_count_lock); /* Release the mutex and wait for either the signal or the broadcast event. */ LeaveCriticalSection ((LPCRITICAL_SECTION)mutex); wait_result = WaitForMultipleObjects (2, cond->events, FALSE, INFINITE); /* Decrement the wait count and see if we are the last thread waiting on the condition variable. */ EnterCriticalSection ((LPCRITICAL_SECTION)&cond->wait_count_lock); cond->wait_count--; last_thread_waiting = wait_result == WAIT_OBJECT_0 + CONDV_BROADCAST && cond->wait_count == 0; LeaveCriticalSection ((LPCRITICAL_SECTION)&cond->wait_count_lock); /* Broadcast uses a manual-reset event, so when the last thread is released, we must manually reset that event. */ if (last_thread_waiting) ResetEvent (cond->events[CONDV_BROADCAST]); /* Per the API, re-acquire the mutex. */ EnterCriticalSection ((LPCRITICAL_SECTION)mutex); } void sys_cond_signal (sys_cond_t *cond) { bool threads_waiting; if (!cond->initialized) return; EnterCriticalSection ((LPCRITICAL_SECTION)&cond->wait_count_lock); threads_waiting = cond->wait_count > 0; LeaveCriticalSection ((LPCRITICAL_SECTION)&cond->wait_count_lock); if (threads_waiting) SetEvent (cond->events[CONDV_SIGNAL]); } void sys_cond_broadcast (sys_cond_t *cond) { bool threads_waiting; if (!cond->initialized) return; EnterCriticalSection ((LPCRITICAL_SECTION)&cond->wait_count_lock); threads_waiting = cond->wait_count > 0; LeaveCriticalSection ((LPCRITICAL_SECTION)&cond->wait_count_lock); if (threads_waiting) SetEvent (cond->events[CONDV_BROADCAST]); } void sys_cond_destroy (sys_cond_t *cond) { if (cond->events[CONDV_SIGNAL]) CloseHandle (cond->events[CONDV_SIGNAL]); if (cond->events[CONDV_BROADCAST]) CloseHandle (cond->events[CONDV_BROADCAST]); if (!cond->initialized) return; /* FIXME: What if wait_count is non-zero, i.e. there are still threads waiting on this condition variable? */ DeleteCriticalSection ((LPCRITICAL_SECTION)&cond->wait_count_lock); } sys_thread_t sys_thread_self (void) { return (sys_thread_t) GetCurrentThreadId (); } bool sys_thread_equal (sys_thread_t t, sys_thread_t u) { return t == u; } static thread_creation_function *thread_start_address; /* _beginthread wants a void function, while we are passed a function that returns a pointer. So we use a wrapper. See the command in w32term.h about the need for ALIGN_STACK attribute. */ static void ALIGN_STACK w32_beginthread_wrapper (void *arg) { (void)thread_start_address (arg); } int sys_thread_create (sys_thread_t *thread_ptr, const char *name, thread_creation_function *func, void *arg) { /* FIXME: Do threads that run Lisp require some minimum amount of stack? Zero here means each thread will get the same amount as the main program. On GNU/Linux, it seems like the stack is 2MB by default, overridden by RLIMIT_STACK at program start time. Not sure what to do with this. See also the comment in w32proc.c:new_child. */ const unsigned stack_size = 0; uintptr_t thandle; thread_start_address = func; /* We use _beginthread rather than CreateThread because the former arranges for the thread handle to be automatically closed when the thread exits, thus preventing handle leaks and/or the need to track all the threads and close their handles when they exit. Also, MSDN seems to imply that code which uses CRT _must_ call _beginthread, although if that is true, we already violate that rule in many places... */ thandle = _beginthread (w32_beginthread_wrapper, stack_size, arg); if (thandle == (uintptr_t)-1L) return 0; /* Kludge alert! We use the Windows thread ID, an unsigned 32-bit number, as the sys_thread_t type, because that ID is the only unique identifier of a thread on Windows. But _beginthread returns a handle of the thread, and there's no easy way of getting the thread ID given a handle (GetThreadId is available only since Vista, so we cannot use it portably). Fortunately, the value returned by sys_thread_create is not used by its callers; instead, run_thread, which runs in the context of the new thread, calls sys_thread_self and uses its return value; sys_thread_self in this implementation calls GetCurrentThreadId. Therefore, we return some more or less arbitrary value of the thread ID from this function. */ *thread_ptr = thandle & 0xFFFFFFFF; return 1; } void sys_thread_yield (void) { Sleep (0); } #else #error port me #endif