/* Functions for image support on window system. Copyright (C) 1989-2024 Free Software Foundation, Inc. This file is part of GNU Emacs. GNU Emacs is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. GNU Emacs is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU Emacs. If not, see . */ #include #include #include #include #include #include /* Include this before including to work around bugs with older libpng; see Bug#17429. */ #if defined HAVE_PNG # include #endif #include #include #include #include #include #include #include "lisp.h" #include "frame.h" #include "process.h" #include "window.h" #include "buffer.h" #include "dispextern.h" #include "blockinput.h" #include "sysstdio.h" #include "systime.h" #include #include "coding.h" #include "termhooks.h" #include "font.h" #include "pdumper.h" #ifdef HAVE_SYS_STAT_H #include #endif /* HAVE_SYS_STAT_H */ #ifdef HAVE_SYS_TYPES_H #include #endif /* HAVE_SYS_TYPES_H */ #ifdef HAVE_WINDOW_SYSTEM #include TERM_HEADER #endif /* HAVE_WINDOW_SYSTEM */ #ifdef HAVE_X_WINDOWS typedef struct x_bitmap_record Bitmap_Record; #ifndef USE_CAIRO #define GET_PIXEL(ximg, x, y) XGetPixel (ximg, x, y) #define PUT_PIXEL XPutPixel #define NO_PIXMAP None #define PIX_MASK_RETAIN 0 #define PIX_MASK_DRAW 1 #endif /* !USE_CAIRO */ #endif /* HAVE_X_WINDOWS */ #if defined(USE_CAIRO) || defined(HAVE_NS) #define RGB_TO_ULONG(r, g, b) (((r) << 16) | ((g) << 8) | (b)) #ifndef HAVE_NS #define ARGB_TO_ULONG(a, r, g, b) (((a) << 24) | ((r) << 16) | ((g) << 8) | (b)) #endif #define RED_FROM_ULONG(color) (((color) >> 16) & 0xff) #define GREEN_FROM_ULONG(color) (((color) >> 8) & 0xff) #define BLUE_FROM_ULONG(color) ((color) & 0xff) #define RED16_FROM_ULONG(color) (RED_FROM_ULONG (color) * 0x101) #define GREEN16_FROM_ULONG(color) (GREEN_FROM_ULONG (color) * 0x101) #define BLUE16_FROM_ULONG(color) (BLUE_FROM_ULONG (color) * 0x101) #endif #ifdef USE_CAIRO #define GET_PIXEL image_pix_context_get_pixel #define PUT_PIXEL image_pix_container_put_pixel #define NO_PIXMAP 0 #define PIX_MASK_RETAIN 0 #define PIX_MASK_DRAW 255 static unsigned long image_alloc_image_color (struct frame *, struct image *, Lisp_Object, unsigned long); #endif /* USE_CAIRO */ #if defined HAVE_PGTK && defined HAVE_IMAGEMAGICK /* In pgtk, we don't want to create scaled image. If we create scaled * image on scale=2.0 environment, the created image is half size and * Gdk scales it back, and the result is blurry. To avoid this, we * hold original size image as far as we can, and let Gdk to scale it * when it is shown. */ # define DONT_CREATE_TRANSFORMED_IMAGEMAGICK_IMAGE #endif #ifdef HAVE_NTGUI /* We need (or want) w32.h only when we're _not_ compiling for Cygwin. */ #ifdef WINDOWSNT # include "w32common.h" # include "w32.h" #endif typedef struct w32_bitmap_record Bitmap_Record; #define GET_PIXEL(ximg, x, y) GetPixel (ximg, x, y) #define PUT_PIXEL XPutPixel #define NO_PIXMAP 0 #define PIX_MASK_RETAIN 0 #define PIX_MASK_DRAW 1 #define XBM_BIT_SHUFFLE(b) (~(b)) #else #define XBM_BIT_SHUFFLE(b) (b) #endif /* HAVE_NTGUI */ #ifdef HAVE_NS typedef struct ns_bitmap_record Bitmap_Record; #define GET_PIXEL(ximg, x, y) XGetPixel (ximg, x, y) #define PUT_PIXEL XPutPixel #define NO_PIXMAP 0 #define PIX_MASK_RETAIN 0 #define PIX_MASK_DRAW 1 #endif /* HAVE_NS */ #ifdef HAVE_PGTK typedef struct pgtk_bitmap_record Bitmap_Record; #endif /* HAVE_PGTK */ #if (defined HAVE_X_WINDOWS \ && ! (defined HAVE_NTGUI || defined USE_CAIRO || defined HAVE_NS)) /* W32_TODO : Color tables on W32. */ # define COLOR_TABLE_SUPPORT 1 #endif #ifdef HAVE_HAIKU #include "haiku_support.h" typedef struct haiku_bitmap_record Bitmap_Record; #define GET_PIXEL(ximg, x, y) haiku_get_pixel (ximg, x, y) #define PUT_PIXEL haiku_put_pixel #define NO_PIXMAP 0 #define PIX_MASK_RETAIN 0 #define PIX_MASK_DRAW 1 #define RGB_TO_ULONG(r, g, b) (((r) << 16) | ((g) << 8) | (b)) #define RED_FROM_ULONG(color) (((color) >> 16) & 0xff) #define GREEN_FROM_ULONG(color) (((color) >> 8) & 0xff) #define BLUE_FROM_ULONG(color) ((color) & 0xff) #define RED16_FROM_ULONG(color) (RED_FROM_ULONG (color) * 0x101) #define GREEN16_FROM_ULONG(color) (GREEN_FROM_ULONG (color) * 0x101) #define BLUE16_FROM_ULONG(color) (BLUE_FROM_ULONG (color) * 0x101) #endif #ifdef HAVE_ANDROID #include "androidterm.h" typedef struct android_bitmap_record Bitmap_Record; typedef struct android_image XImage; typedef android_pixmap Pixmap; #define GET_PIXEL(ximg, x, y) android_get_pixel (ximg, x, y) #define PUT_PIXEL(ximg, x, y, pixel) android_put_pixel (ximg, x, y, pixel) #define NO_PIXMAP 0 #define PIX_MASK_RETAIN 0 #define PIX_MASK_DRAW 1 #define RGB_TO_ULONG(r, g, b) (((r) << 16) | ((g) << 8) | (b)) #define RED_FROM_ULONG(color) (((color) >> 16) & 0xff) #define GREEN_FROM_ULONG(color) (((color) >> 8) & 0xff) #define BLUE_FROM_ULONG(color) ((color) & 0xff) #define RED16_FROM_ULONG(color) (RED_FROM_ULONG (color) * 0x101) #define GREEN16_FROM_ULONG(color) (GREEN_FROM_ULONG (color) * 0x101) #define BLUE16_FROM_ULONG(color) (BLUE_FROM_ULONG (color) * 0x101) /* DPYINFO->n_planes is unsuitable for this file, because it accepts values that may not be supported for pixmap creation. */ #define n_planes n_image_planes #endif static void image_disable_image (struct frame *, struct image *); static void image_edge_detection (struct frame *, struct image *, Lisp_Object, Lisp_Object); static void init_color_table (void); static unsigned long lookup_rgb_color (struct frame *f, int r, int g, int b); #ifdef COLOR_TABLE_SUPPORT static void free_color_table (void); static unsigned long *colors_in_color_table (int *n); #endif #ifdef HAVE_NTGUI static HBITMAP w32_create_pixmap_from_bitmap_data (int, int, char *); #endif #if defined (HAVE_WEBP) || defined (HAVE_GIF) static void anim_prune_animation_cache (Lisp_Object); #endif #ifdef USE_CAIRO static Emacs_Pix_Container image_create_pix_container (unsigned int width, unsigned int height, unsigned int depth) { Emacs_Pix_Container pimg; pimg = xmalloc (sizeof (*pimg)); pimg->width = width; pimg->height = height; pimg->bits_per_pixel = depth == 1 ? 8 : 32; pimg->bytes_per_line = cairo_format_stride_for_width ((depth == 1 ? CAIRO_FORMAT_A8 : CAIRO_FORMAT_RGB24), width); pimg->data = xmalloc (pimg->bytes_per_line * height); return pimg; } static void image_pix_container_put_pixel (Emacs_Pix_Container image, int x, int y, unsigned long pixel) { if (image->bits_per_pixel == 32) ((uint32_t *)(image->data + y * image->bytes_per_line))[x] = pixel; else ((uint8_t *)(image->data + y * image->bytes_per_line))[x] = pixel; } static unsigned long image_pix_context_get_pixel (Emacs_Pix_Context image, int x, int y) { if (image->bits_per_pixel == 32) return ((uint32_t *)(image->data + y * image->bytes_per_line))[x]; else return ((uint8_t *)(image->data + y * image->bytes_per_line))[x]; } static Emacs_Pix_Container image_pix_container_create_from_bitmap_data (struct frame *f, char *data, unsigned int width, unsigned int height, unsigned long fg, unsigned long bg) { Emacs_Pix_Container pimg = image_create_pix_container (width, height, 0); int bytes_per_line = (width + (CHAR_BIT - 1)) / CHAR_BIT; for (int y = 0; y < height; y++) { for (int x = 0; x < width; x++) PUT_PIXEL (pimg, x, y, (data[x / CHAR_BIT] >> (x % CHAR_BIT)) & 1 ? fg : bg); data += bytes_per_line; } return pimg; } static cairo_surface_t * cr_create_surface_from_pix_containers (Emacs_Pix_Container pimg, Emacs_Pix_Container mask) { cairo_surface_t *surface; if (mask) { int x, y; for (y = 0; y < pimg->height; y++) for (x = 0; x < pimg->width; x++) { unsigned long color, alpha; int r, g, b; color = GET_PIXEL (pimg, x, y); alpha = GET_PIXEL (mask, x, y); r = (RED_FROM_ULONG (color) * alpha + 0x7f) / 0xff; g = (GREEN_FROM_ULONG (color) * alpha + 0x7f) / 0xff; b = (BLUE_FROM_ULONG (color) * alpha + 0x7f) / 0xff; PUT_PIXEL (pimg, x, y, ARGB_TO_ULONG (alpha, r, g, b)); } xfree (mask->data); mask->data = NULL; } surface = cairo_image_surface_create_for_data ((unsigned char *) pimg->data, (mask ? CAIRO_FORMAT_ARGB32 : CAIRO_FORMAT_RGB24), pimg->width, pimg->height, pimg->bytes_per_line); static const cairo_user_data_key_t key; cairo_surface_set_user_data (surface, &key, pimg->data, xfree); pimg->data = NULL; return surface; } static void cr_put_image_to_cr_data (struct image *img) { cairo_pattern_t *pattern = NULL; cairo_surface_t *surface = cr_create_surface_from_pix_containers (img->pixmap, img->mask); if (surface) { pattern = cairo_pattern_create_for_surface (surface); if (img->cr_data) { cairo_matrix_t matrix; cairo_pattern_get_matrix (img->cr_data, &matrix); cairo_pattern_set_matrix (pattern, &matrix); cairo_pattern_set_filter (pattern, cairo_pattern_get_filter (img->cr_data)); cairo_pattern_destroy (img->cr_data); } cairo_surface_destroy (surface); } img->cr_data = pattern; } #endif /* USE_CAIRO */ #ifdef HAVE_NS /* Use with images created by ns_image_for_XPM. */ static unsigned long XGetPixel (Emacs_Pix_Container image, int x, int y) { return ns_get_pixel (image, x, y); } /* Use with images created by ns_image_for_XPM; alpha set to 1; pixel is assumed to be in RGB form. */ static void XPutPixel (Emacs_Pix_Container image, int x, int y, unsigned long pixel) { ns_put_pixel (image, x, y, pixel); } #endif /* HAVE_NS */ /* Code to deal with bitmaps. Bitmaps are referenced by their bitmap id, which is just an int that this section returns. Bitmaps are reference counted so they can be shared among frames. Bitmap indices are guaranteed to be > 0, so a negative number can be used to indicate no bitmap. If you use image_create_bitmap_from_data, then you must keep track of the bitmaps yourself. That is, creating a bitmap from the same data more than once will not be caught. */ /* Functions to access the contents of a bitmap, given an id. */ #ifdef HAVE_X_WINDOWS static int x_bitmap_height (struct frame *f, ptrdiff_t id) { return FRAME_DISPLAY_INFO (f)->bitmaps[id - 1].height; } static int x_bitmap_width (struct frame *f, ptrdiff_t id) { return FRAME_DISPLAY_INFO (f)->bitmaps[id - 1].width; } #ifdef USE_CAIRO cairo_pattern_t * x_bitmap_stipple (struct frame *f, Pixmap pixmap) { Display_Info *dpyinfo = FRAME_DISPLAY_INFO (f); for (ptrdiff_t i = 0; i < dpyinfo->bitmaps_last; i++) { struct x_bitmap_record *bm = dpyinfo->bitmaps + i; if (bm->refcount && bm->pixmap == pixmap && bm->depth == 1) { if (bm->stipple == NULL) { cairo_surface_t *surface = cairo_xlib_surface_create_for_bitmap (FRAME_X_DISPLAY (f), pixmap, FRAME_X_SCREEN (f), bm->width, bm->height); cairo_pattern_t *pattern = cairo_pattern_create_for_surface (surface); cairo_surface_destroy (surface); cairo_pattern_set_extend (pattern, CAIRO_EXTEND_REPEAT); bm->stipple = pattern; } return bm->stipple; } } return NULL; } #endif /* USE_CAIRO */ #endif #if defined (HAVE_X_WINDOWS) || defined (HAVE_NTGUI) || defined (HAVE_ANDROID) ptrdiff_t image_bitmap_pixmap (struct frame *f, ptrdiff_t id) { /* HAVE_NTGUI needs the explicit cast here. */ return (ptrdiff_t) FRAME_DISPLAY_INFO (f)->bitmaps[id - 1].pixmap; } #endif #ifdef HAVE_X_WINDOWS int x_bitmap_mask (struct frame *f, ptrdiff_t id) { return FRAME_DISPLAY_INFO (f)->bitmaps[id - 1].mask; } #endif /* Allocate a new bitmap record. Returns index of new record. */ static ptrdiff_t image_allocate_bitmap_record (struct frame *f) { Display_Info *dpyinfo = FRAME_DISPLAY_INFO (f); ptrdiff_t i; if (dpyinfo->bitmaps_last < dpyinfo->bitmaps_size) return ++dpyinfo->bitmaps_last; for (i = 0; i < dpyinfo->bitmaps_size; ++i) if (dpyinfo->bitmaps[i].refcount == 0) return i + 1; dpyinfo->bitmaps = xpalloc (dpyinfo->bitmaps, &dpyinfo->bitmaps_size, 10, -1, sizeof *dpyinfo->bitmaps); return ++dpyinfo->bitmaps_last; } /* Add one reference to the reference count of the bitmap with id ID. */ void image_reference_bitmap (struct frame *f, ptrdiff_t id) { ++FRAME_DISPLAY_INFO (f)->bitmaps[id - 1].refcount; } #ifdef HAVE_PGTK /* Create a Cairo pattern from the bitmap BITS, which should be WIDTH and HEIGHT in size. BITS's fill order is LSB first, meaning that the value of the left most pixel within a byte is its least significant bit. */ static cairo_pattern_t * image_bitmap_to_cr_pattern (char *bits, int width, int height) { cairo_surface_t *surface; unsigned char *data; int stride; cairo_pattern_t *pattern; #ifdef WORDS_BIGENDIAN int x; static const unsigned char table[] = { 0x00, 0x80, 0x40, 0xc0, 0x20, 0xa0, 0x60, 0xe0, 0x10, 0x90, 0x50, 0xd0, 0x30, 0xb0, 0x70, 0xf0, 0x08, 0x88, 0x48, 0xc8, 0x28, 0xa8, 0x68, 0xe8, 0x18, 0x98, 0x58, 0xd8, 0x38, 0xb8, 0x78, 0xf8, 0x04, 0x84, 0x44, 0xc4, 0x24, 0xa4, 0x64, 0xe4, 0x14, 0x94, 0x54, 0xd4, 0x34, 0xb4, 0x74, 0xf4, 0x0c, 0x8c, 0x4c, 0xcc, 0x2c, 0xac, 0x6c, 0xec, 0x1c, 0x9c, 0x5c, 0xdc, 0x3c, 0xbc, 0x7c, 0xfc, 0x02, 0x82, 0x42, 0xc2, 0x22, 0xa2, 0x62, 0xe2, 0x12, 0x92, 0x52, 0xd2, 0x32, 0xb2, 0x72, 0xf2, 0x0a, 0x8a, 0x4a, 0xca, 0x2a, 0xaa, 0x6a, 0xea, 0x1a, 0x9a, 0x5a, 0xda, 0x3a, 0xba, 0x7a, 0xfa, 0x06, 0x86, 0x46, 0xc6, 0x26, 0xa6, 0x66, 0xe6, 0x16, 0x96, 0x56, 0xd6, 0x36, 0xb6, 0x76, 0xf6, 0x0e, 0x8e, 0x4e, 0xce, 0x2e, 0xae, 0x6e, 0xee, 0x1e, 0x9e, 0x5e, 0xde, 0x3e, 0xbe, 0x7e, 0xfe, 0x01, 0x81, 0x41, 0xc1, 0x21, 0xa1, 0x61, 0xe1, 0x11, 0x91, 0x51, 0xd1, 0x31, 0xb1, 0x71, 0xf1, 0x09, 0x89, 0x49, 0xc9, 0x29, 0xa9, 0x69, 0xe9, 0x19, 0x99, 0x59, 0xd9, 0x39, 0xb9, 0x79, 0xf9, 0x05, 0x85, 0x45, 0xc5, 0x25, 0xa5, 0x65, 0xe5, 0x15, 0x95, 0x55, 0xd5, 0x35, 0xb5, 0x75, 0xf5, 0x0d, 0x8d, 0x4d, 0xcd, 0x2d, 0xad, 0x6d, 0xed, 0x1d, 0x9d, 0x5d, 0xdd, 0x3d, 0xbd, 0x7d, 0xfd, 0x03, 0x83, 0x43, 0xc3, 0x23, 0xa3, 0x63, 0xe3, 0x13, 0x93, 0x53, 0xd3, 0x33, 0xb3, 0x73, 0xf3, 0x0b, 0x8b, 0x4b, 0xcb, 0x2b, 0xab, 0x6b, 0xeb, 0x1b, 0x9b, 0x5b, 0xdb, 0x3b, 0xbb, 0x7b, 0xfb, 0x07, 0x87, 0x47, 0xc7, 0x27, 0xa7, 0x67, 0xe7, 0x17, 0x97, 0x57, 0xd7, 0x37, 0xb7, 0x77, 0xf7, 0x0f, 0x8f, 0x4f, 0xcf, 0x2f, 0xaf, 0x6f, 0xef, }; #endif /* WORDS_BIGENDIAN */ surface = cairo_image_surface_create (CAIRO_FORMAT_A1, width, height); if (cairo_surface_status (surface) != CAIRO_STATUS_SUCCESS) memory_full (0); cairo_surface_flush (surface); data = cairo_image_surface_get_data (surface); stride = cairo_image_surface_get_stride (surface); #ifdef WORDS_BIGENDIAN /* Big endian systems require that individual bytes be inverted to compensate for the different fill order used by Cairo. */ while (height--) { memcpy (data, bits, (width + 7) / 8); for (x = 0; x < (width + 7) / 8; ++x) data[x] = table[data[x]]; data += stride; bits += (width + 7) / 8; } #else /* !WORDS_BIGENDIAN */ /* Cairo uses LSB first fill order for bitmaps on little-endian systems, so copy each row over. */ while (height--) { memcpy (data, bits, (width + 7) / 8); data += stride; bits += (width + 7) / 8; } #endif /* WORDS_BIGENDIAN */ cairo_surface_mark_dirty (surface); pattern = cairo_pattern_create_for_surface (surface); if (cairo_pattern_status (pattern) != CAIRO_STATUS_SUCCESS) memory_full (0); /* The pattern now holds a reference to the surface. */ cairo_surface_destroy (surface); cairo_pattern_set_extend (pattern, CAIRO_EXTEND_REPEAT); return pattern; } #endif /* HAVE_PGTK */ /* Create a bitmap for frame F from a HEIGHT x WIDTH array of bits at BITS. */ ptrdiff_t image_create_bitmap_from_data (struct frame *f, char *bits, unsigned int width, unsigned int height) { Display_Info *dpyinfo = FRAME_DISPLAY_INFO (f); ptrdiff_t id; #ifdef HAVE_X_WINDOWS Pixmap bitmap; bitmap = XCreateBitmapFromData (FRAME_X_DISPLAY (f), dpyinfo->root_window, bits, width, height); if (! bitmap) return -1; #endif /* HAVE_X_WINDOWS */ #if defined HAVE_ANDROID && !defined ANDROID_STUBIFY android_pixmap bitmap; bitmap = android_create_bitmap_from_data (bits, width, height); if (!bitmap) return -1; #elif defined HAVE_ANDROID ((void) dpyinfo); emacs_abort (); #endif /* HAVE_ANDROID && !defined ANDROID_STUBIFY */ #ifdef HAVE_NTGUI Emacs_Pixmap stipple; Emacs_Pixmap bitmap = CreateBitmap (width, height, dpyinfo->n_planes, dpyinfo->n_cbits, bits); /* Convert X bitmap to W32 bitmap. */ /* Windows mono bitmaps are reversed compared with X. */ USE_SAFE_ALLOCA; { char *invertedBits; int nbytes = (width + CHAR_BIT - 1) / CHAR_BIT * height, i; invertedBits = bits; SAFE_NALLOCA (bits, 1, nbytes); for (i = 0; i < nbytes; i++) bits[i] = XBM_BIT_SHUFFLE (invertedBits[i]); } stipple = w32_create_pixmap_from_bitmap_data (width, height, bits); SAFE_FREE (); if (!bitmap || !stipple) return -1; #endif /* HAVE_NTGUI */ #ifdef HAVE_NS void *bitmap = ns_image_from_XBM (bits, width, height, 0, 0); if (!bitmap) return -1; #endif #ifdef HAVE_PGTK cairo_pattern_t *pattern; pattern = image_bitmap_to_cr_pattern (bits, width, height); #endif /* HAVE_PGTK */ #ifdef HAVE_HAIKU void *bitmap, *stipple; int bytes_per_line, x, y; bitmap = BBitmap_new (width, height, false); if (!bitmap) return -1; bytes_per_line = (width + 7) / 8; stipple = xmalloc (height * bytes_per_line); memcpy (stipple, bits, height * bytes_per_line); for (y = 0; y < height; y++) { for (x = 0; x < width; x++) PUT_PIXEL (bitmap, x, y, ((bits[8] >> (x % 8)) & 1 ? f->foreground_pixel : f->background_pixel)); bits += bytes_per_line; } #endif id = image_allocate_bitmap_record (f); #ifdef HAVE_NS dpyinfo->bitmaps[id - 1].img = bitmap; dpyinfo->bitmaps[id - 1].depth = 1; #endif #ifdef HAVE_PGTK dpyinfo->bitmaps[id - 1].depth = 1; dpyinfo->bitmaps[id - 1].pattern = pattern; #endif #ifdef HAVE_HAIKU dpyinfo->bitmaps[id - 1].img = bitmap; dpyinfo->bitmaps[id - 1].depth = 1; dpyinfo->bitmaps[id - 1].stipple_bits = stipple; dpyinfo->bitmaps[id - 1].stipple_foreground = f->foreground_pixel & 0xffffffff; dpyinfo->bitmaps[id - 1].stipple_background = f->background_pixel & 0xffffffff; #endif dpyinfo->bitmaps[id - 1].file = NULL; dpyinfo->bitmaps[id - 1].height = height; dpyinfo->bitmaps[id - 1].width = width; dpyinfo->bitmaps[id - 1].refcount = 1; #if defined HAVE_X_WINDOWS || defined HAVE_ANDROID #ifndef ANDROID_STUBIFY dpyinfo->bitmaps[id - 1].pixmap = bitmap; #endif /* ANDROID_STUBIFY */ dpyinfo->bitmaps[id - 1].have_mask = false; dpyinfo->bitmaps[id - 1].depth = 1; #ifdef USE_CAIRO dpyinfo->bitmaps[id - 1].stipple = NULL; #endif /* USE_CAIRO */ #endif /* HAVE_X_WINDOWS || HAVE_ANDROID */ #ifdef HAVE_NTGUI dpyinfo->bitmaps[id - 1].pixmap = bitmap; dpyinfo->bitmaps[id - 1].stipple = stipple; dpyinfo->bitmaps[id - 1].hinst = NULL; dpyinfo->bitmaps[id - 1].depth = 1; #endif /* HAVE_NTGUI */ return id; } #if defined HAVE_ANDROID && !defined ANDROID_STUBIFY #include "android.h" /* This abstraction allows directly loading images from assets without copying them to a file descriptor first. */ typedef struct android_fd_or_asset image_fd; #else /* !defined HAVE_ANDROID || defined ANDROID_STUBIFY */ typedef int image_fd; #endif /* defined HAVE_ANDROID && !defined ANDROID_STUBIFY */ #if defined HAVE_HAIKU || defined HAVE_NS || defined HAVE_PGTK \ || defined HAVE_ANDROID || defined HAVE_NTGUI static char *slurp_file (image_fd, ptrdiff_t *); static Lisp_Object image_find_image_fd (Lisp_Object, image_fd *); static bool xbm_read_bitmap_data (struct frame *, char *, char *, int *, int *, char **, bool); #endif /* Create bitmap from file FILE for frame F. */ ptrdiff_t image_create_bitmap_from_file (struct frame *f, Lisp_Object file) { Display_Info *dpyinfo = FRAME_DISPLAY_INFO (f); #ifdef HAVE_NTGUI ptrdiff_t id, size; int width, height, rc; image_fd fd; char *contents, *data; Emacs_Pixmap bitmap; if (!STRINGP (image_find_image_fd (file, &fd))) return -1; contents = slurp_file (fd, &size); if (!contents) return -1; rc = xbm_read_bitmap_data (f, contents, contents + size, &width, &height, &data, 0); if (!rc) { xfree (contents); return -1; } { /* Windows mono bitmaps are reversed compared with X. */ int nbytes, i; nbytes = (width + CHAR_BIT - 1) / CHAR_BIT * height; for (i = 0; i < nbytes; i++) data[i] = XBM_BIT_SHUFFLE (data[i]); } id = image_allocate_bitmap_record (f); bitmap = w32_create_pixmap_from_bitmap_data (width, height, data); dpyinfo->bitmaps[id - 1].height = width; dpyinfo->bitmaps[id - 1].width = height; dpyinfo->bitmaps[id - 1].stipple = bitmap; dpyinfo->bitmaps[id - 1].file = xlispstrdup (file); xfree (contents); xfree (data); return id; #endif #ifdef HAVE_NS ptrdiff_t id, size; int fd, width, height, rc; char *contents, *data; void *bitmap; if (!STRINGP (image_find_image_fd (file, &fd))) return -1; contents = slurp_file (fd, &size); if (!contents) return -1; rc = xbm_read_bitmap_data (f, contents, contents + size, &width, &height, &data, 0); if (!rc) { xfree (contents); return -1; } bitmap = ns_image_from_XBM (data, width, height, 0, 0); if (!bitmap) { xfree (contents); xfree (data); return -1; } id = image_allocate_bitmap_record (f); dpyinfo->bitmaps[id - 1].img = bitmap; dpyinfo->bitmaps[id - 1].refcount = 1; dpyinfo->bitmaps[id - 1].file = xlispstrdup (file); dpyinfo->bitmaps[id - 1].depth = 1; dpyinfo->bitmaps[id - 1].height = ns_image_width (bitmap); dpyinfo->bitmaps[id - 1].width = ns_image_height (bitmap); xfree (contents); xfree (data); return id; #endif #ifdef HAVE_PGTK ptrdiff_t id, size; int fd, width, height, rc; char *contents, *data; if (!STRINGP (image_find_image_fd (file, &fd))) return -1; contents = slurp_file (fd, &size); if (!contents) return -1; rc = xbm_read_bitmap_data (f, contents, contents + size, &width, &height, &data, 0); if (!rc) { xfree (contents); return -1; } id = image_allocate_bitmap_record (f); dpyinfo->bitmaps[id - 1].refcount = 1; dpyinfo->bitmaps[id - 1].file = xlispstrdup (file); dpyinfo->bitmaps[id - 1].height = width; dpyinfo->bitmaps[id - 1].width = height; dpyinfo->bitmaps[id - 1].pattern = image_bitmap_to_cr_pattern (data, width, height); xfree (contents); xfree (data); return id; #endif #ifdef HAVE_X_WINDOWS unsigned int width, height; Pixmap bitmap; int xhot, yhot, result; ptrdiff_t id; Lisp_Object found; char *filename; /* Look for an existing bitmap with the same name. */ for (id = 0; id < dpyinfo->bitmaps_last; ++id) { if (dpyinfo->bitmaps[id].refcount && dpyinfo->bitmaps[id].file && !strcmp (dpyinfo->bitmaps[id].file, SSDATA (file))) { ++dpyinfo->bitmaps[id].refcount; return id + 1; } } /* Search bitmap-file-path for the file, if appropriate. */ if (openp (Vx_bitmap_file_path, file, Qnil, &found, make_fixnum (R_OK), false, false, NULL) < 0) return -1; filename = SSDATA (found); result = XReadBitmapFile (FRAME_X_DISPLAY (f), dpyinfo->root_window, filename, &width, &height, &bitmap, &xhot, &yhot); if (result != BitmapSuccess) return -1; id = image_allocate_bitmap_record (f); dpyinfo->bitmaps[id - 1].pixmap = bitmap; dpyinfo->bitmaps[id - 1].have_mask = false; dpyinfo->bitmaps[id - 1].refcount = 1; dpyinfo->bitmaps[id - 1].file = xlispstrdup (file); dpyinfo->bitmaps[id - 1].depth = 1; dpyinfo->bitmaps[id - 1].height = height; dpyinfo->bitmaps[id - 1].width = width; #ifdef USE_CAIRO dpyinfo->bitmaps[id - 1].stipple = NULL; #endif /* USE_CAIRO */ return id; #endif /* HAVE_X_WINDOWS */ #ifdef HAVE_HAIKU ptrdiff_t id, size; int fd, width, height, rc, bytes_per_line, x, y; char *contents, *data, *tmp; void *bitmap; Lisp_Object found; /* Look for an existing bitmap with the same name. */ for (id = 0; id < dpyinfo->bitmaps_last; ++id) { if (dpyinfo->bitmaps[id].refcount && dpyinfo->bitmaps[id].file && !strcmp (dpyinfo->bitmaps[id].file, SSDATA (file))) { ++dpyinfo->bitmaps[id].refcount; return id + 1; } } /* Search bitmap-file-path for the file, if appropriate. */ if (openp (Vx_bitmap_file_path, file, Qnil, &found, make_fixnum (R_OK), false, false, NULL) < 0) return -1; if (!STRINGP (image_find_image_fd (file, &fd)) && !STRINGP (image_find_image_fd (found, &fd))) return -1; contents = slurp_file (fd, &size); if (!contents) return -1; rc = xbm_read_bitmap_data (f, contents, contents + size, &width, &height, &data, 0); if (!rc) { xfree (contents); return -1; } bitmap = BBitmap_new (width, height, false); if (!bitmap) { xfree (contents); xfree (data); return -1; } id = image_allocate_bitmap_record (f); dpyinfo->bitmaps[id - 1].img = bitmap; dpyinfo->bitmaps[id - 1].depth = 1; dpyinfo->bitmaps[id - 1].file = xlispstrdup (file); dpyinfo->bitmaps[id - 1].height = height; dpyinfo->bitmaps[id - 1].width = width; dpyinfo->bitmaps[id - 1].refcount = 1; dpyinfo->bitmaps[id - 1].stipple_foreground = f->foreground_pixel & 0xffffffff; dpyinfo->bitmaps[id - 1].stipple_background = f->background_pixel & 0xffffffff; dpyinfo->bitmaps[id - 1].stipple_bits = data; bytes_per_line = (width + 7) / 8; tmp = data; for (y = 0; y < height; y++) { for (x = 0; x < width; x++) PUT_PIXEL (bitmap, x, y, ((tmp[x / 8] >> (x % 8)) & 1 ? f->foreground_pixel : f->background_pixel)); tmp += bytes_per_line; } xfree (contents); return id; #endif #ifdef HAVE_ANDROID #ifdef ANDROID_STUBIFY ((void) dpyinfo); /* This function should never be called when building stubs. */ emacs_abort (); #else ptrdiff_t id, size; int width, height, rc; image_fd fd; char *contents, *data; Lisp_Object found; android_pixmap bitmap; /* Look for an existing bitmap with the same name. */ for (id = 0; id < dpyinfo->bitmaps_last; ++id) { if (dpyinfo->bitmaps[id].refcount && dpyinfo->bitmaps[id].file && !strcmp (dpyinfo->bitmaps[id].file, SSDATA (file))) { ++dpyinfo->bitmaps[id].refcount; return id + 1; } } /* Search bitmap-file-path for the file, if appropriate. If no file extension or directory is specified and no file by this name exists, append the extension ".xbm" and retry. */ if ((openp (Vx_bitmap_file_path, file, Qnil, &found, make_fixnum (R_OK), false, false, NULL) < 0) && (NILP (Fequal (Ffile_name_nondirectory (file), file)) || strrchr (SSDATA (file), '.') || (openp (Vx_bitmap_file_path, CALLN (Fconcat, file, build_string (".xbm")), Qnil, &found, make_fixnum (R_OK), false, false, NULL) < 0))) return -1; if (!STRINGP (image_find_image_fd (file, &fd)) && !STRINGP (image_find_image_fd (found, &fd))) return -1; contents = slurp_file (fd, &size); if (!contents) return -1; rc = xbm_read_bitmap_data (f, contents, contents + size, &width, &height, &data, 0); if (!rc) { xfree (contents); return -1; } xfree (contents); bitmap = android_create_bitmap_from_data (data, width, height); xfree (data); id = image_allocate_bitmap_record (f); dpyinfo->bitmaps[id - 1].pixmap = bitmap; dpyinfo->bitmaps[id - 1].have_mask = false; dpyinfo->bitmaps[id - 1].refcount = 1; dpyinfo->bitmaps[id - 1].file = xlispstrdup (file); dpyinfo->bitmaps[id - 1].depth = 1; dpyinfo->bitmaps[id - 1].height = height; dpyinfo->bitmaps[id - 1].width = width; return id; #endif #endif } /* Free bitmap B. */ static void free_bitmap_record (Display_Info *dpyinfo, Bitmap_Record *bm) { #ifdef HAVE_X_WINDOWS /* Free the pixmap and mask. Only do this if DPYINFO->display is still set, which may not be the case if the connection has already been closed in response to an IO error. */ if (dpyinfo->display) { XFreePixmap (dpyinfo->display, bm->pixmap); if (bm->have_mask) XFreePixmap (dpyinfo->display, bm->mask); } #ifdef USE_CAIRO if (bm->stipple) cairo_pattern_destroy (bm->stipple); #endif /* USE_CAIRO */ #endif /* HAVE_X_WINDOWS */ #if defined HAVE_ANDROID && !defined ANDROID_STUBIFY android_free_pixmap (bm->pixmap); if (bm->have_mask) android_free_pixmap (bm->pixmap); #endif #ifdef HAVE_NTGUI DeleteObject (bm->pixmap); DeleteObject (bm->stipple); #endif /* HAVE_NTGUI */ #ifdef HAVE_NS ns_release_object (bm->img); #endif #ifdef HAVE_PGTK if (bm->pattern != NULL) cairo_pattern_destroy (bm->pattern); #endif #ifdef HAVE_HAIKU BBitmap_free (bm->img); if (bm->stipple_bits) xfree (bm->stipple_bits); #endif if (bm->file) { xfree (bm->file); bm->file = NULL; } } /* Remove reference to bitmap with id number ID. */ void image_destroy_bitmap (struct frame *f, ptrdiff_t id) { Display_Info *dpyinfo = FRAME_DISPLAY_INFO (f); if (id > 0) { Bitmap_Record *bm = &dpyinfo->bitmaps[id - 1]; if (--bm->refcount == 0) { block_input (); free_bitmap_record (dpyinfo, bm); unblock_input (); } } } /* Free all the bitmaps for the display specified by DPYINFO. */ void image_destroy_all_bitmaps (Display_Info *dpyinfo) { ptrdiff_t i; Bitmap_Record *bm = dpyinfo->bitmaps; for (i = 0; i < dpyinfo->bitmaps_last; i++, bm++) if (bm->refcount > 0) free_bitmap_record (dpyinfo, bm); dpyinfo->bitmaps_last = 0; } #ifndef HAVE_XRENDER /* Required for the definition of image_create_x_image_and_pixmap_1 below. */ typedef void Picture; #endif static bool image_create_x_image_and_pixmap_1 (struct frame *, int, int, int, Emacs_Pix_Container *, Emacs_Pixmap *, Picture *); static void image_destroy_x_image (Emacs_Pix_Container); #ifdef HAVE_NTGUI static HDC image_get_x_image_or_dc (struct frame *, struct image *, bool, HGDIOBJ *); static void image_unget_x_image_or_dc (struct image *, bool, HDC, HGDIOBJ); #else static Emacs_Pix_Container image_get_x_image (struct frame *, struct image *, bool); static void image_unget_x_image (struct image *, bool, Emacs_Pix_Container); #define image_get_x_image_or_dc(f, img, mask_p, dummy) \ image_get_x_image (f, img, mask_p) #define image_unget_x_image_or_dc(img, mask_p, ximg, dummy) \ image_unget_x_image (img, mask_p, ximg) #endif #if defined HAVE_X_WINDOWS || defined HAVE_ANDROID #ifndef USE_CAIRO static void image_sync_to_pixmaps (struct frame *, struct image *); #endif /* !USE_CAIRO */ /* We are working on X-specific data structures here even with cairo. So we use X-specific versions of image construction/destruction functions and inline the specific case of four_corners_best. */ static bool x_create_x_image_and_pixmap (struct frame *, int, int, int, XImage **, Pixmap *); static void x_destroy_x_image (XImage *); #if defined HAVE_X_WINDOWS /* Create a mask of a bitmap. Note is this not a perfect mask. It's nicer with some borders in this context */ void x_create_bitmap_mask (struct frame *f, ptrdiff_t id) { Pixmap pixmap, mask; XImage *ximg, *mask_img; unsigned long width, height; bool result; unsigned long bg UNINIT; unsigned long x, y, xp, xm, yp, ym; GC gc; Display_Info *dpyinfo = FRAME_DISPLAY_INFO (f); if (!(id > 0)) return; pixmap = image_bitmap_pixmap (f, id); width = x_bitmap_width (f, id); height = x_bitmap_height (f, id); block_input (); ximg = XGetImage (FRAME_X_DISPLAY (f), pixmap, 0, 0, width, height, ~0, ZPixmap); if (!ximg) { unblock_input (); return; } result = x_create_x_image_and_pixmap (f, width, height, 1, &mask_img, &mask); unblock_input (); if (!result) { XDestroyImage (ximg); return; } unsigned long corner_pixels[4]; corner_pixels[0] = XGetPixel (ximg, 0, 0); corner_pixels[1] = XGetPixel (ximg, width - 1, 0); corner_pixels[2] = XGetPixel (ximg, width - 1, height - 1); corner_pixels[3] = XGetPixel (ximg, 0, height - 1); int i, best_count; for (i = best_count = 0; i < 4; ++i) { int j, n; for (j = n = 0; j < 4; ++j) if (corner_pixels[i] == corner_pixels[j]) ++n; if (n > best_count) bg = corner_pixels[i], best_count = n; } for (y = 0; y < ximg->height; ++y) { for (x = 0; x < ximg->width; ++x) { xp = x != ximg->width - 1 ? x + 1 : 0; xm = x != 0 ? x - 1 : ximg->width - 1; yp = y != ximg->height - 1 ? y + 1 : 0; ym = y != 0 ? y - 1 : ximg->height - 1; if (XGetPixel (ximg, x, y) == bg && XGetPixel (ximg, x, yp) == bg && XGetPixel (ximg, x, ym) == bg && XGetPixel (ximg, xp, y) == bg && XGetPixel (ximg, xp, yp) == bg && XGetPixel (ximg, xp, ym) == bg && XGetPixel (ximg, xm, y) == bg && XGetPixel (ximg, xm, yp) == bg && XGetPixel (ximg, xm, ym) == bg) XPutPixel (mask_img, x, y, 0); else XPutPixel (mask_img, x, y, 1); } } eassert (input_blocked_p ()); gc = XCreateGC (FRAME_X_DISPLAY (f), mask, 0, NULL); XPutImage (FRAME_X_DISPLAY (f), mask, gc, mask_img, 0, 0, 0, 0, width, height); XFreeGC (FRAME_X_DISPLAY (f), gc); dpyinfo->bitmaps[id - 1].have_mask = true; dpyinfo->bitmaps[id - 1].mask = mask; XDestroyImage (ximg); x_destroy_x_image (mask_img); } #endif #endif /* HAVE_X_WINDOWS || defined HAVE_ANDROID*/ /*********************************************************************** Image types ***********************************************************************/ /* Each image format (JPEG, TIFF, ...) supported is described by a structure of the type below. */ struct image_type { /* Index of a symbol uniquely identifying the image type, e.g., 'jpeg'. */ int type; /* Check that SPEC is a valid image specification for the given image type. Value is true if SPEC is valid. */ bool (*valid_p) (Lisp_Object spec); /* Load IMG which is to be used on frame F from information contained in IMG->spec. Value is true if successful. */ bool (*load_img) (struct frame *f, struct image *img); /* Free such resources of image IMG as are used on frame F. */ void (*free_img) (struct frame *f, struct image *img); #ifdef WINDOWSNT /* Initialization function (used for dynamic loading of image libraries on Windows), or NULL if none. */ bool (*init) (void); /* An initializer for the init field. */ #endif #if defined HAVE_RSVG || defined HAVE_PNG || defined HAVE_GIF || \ defined HAVE_TIFF || defined HAVE_JPEG || defined HAVE_XPM || \ defined HAVE_NS || defined HAVE_HAIKU || defined HAVE_PGTK || \ defined HAVE_WEBP || defined HAVE_ANDROID # ifdef WINDOWSNT # define IMAGE_TYPE_INIT(f) f # else # define IMAGE_TYPE_INIT(f) # endif #endif }; /* Forward function prototypes. */ static struct image_type const *lookup_image_type (Lisp_Object); static void image_laplace (struct frame *, struct image *); static void image_emboss (struct frame *, struct image *); static void image_build_heuristic_mask (struct frame *, struct image *, Lisp_Object); static void add_image_type (Lisp_Object type) { Vimage_types = Fcons (type, Vimage_types); } /* Value is true if OBJECT is a valid Lisp image specification. A valid image specification is a list whose car is the symbol `image', and whose rest is a property list. The property list must contain a value for key `:type'. That value must be the name of a supported image type. The rest of the property list depends on the image type. */ bool valid_image_p (Lisp_Object object) { if (IMAGEP (object)) { Lisp_Object tail = XCDR (object); FOR_EACH_TAIL_SAFE (tail) { if (EQ (XCAR (tail), QCtype)) { tail = XCDR (tail); if (CONSP (tail)) { struct image_type const *type = lookup_image_type (XCAR (tail)); if (type) return type->valid_p (object); } break; } tail = XCDR (tail); if (! CONSP (tail)) return false; } } return false; } /* Log error message with format string FORMAT and trailing arguments. Signaling an error, e.g. when an image cannot be loaded, is not a good idea because this would interrupt redisplay, and the error message display would lead to another redisplay. This function therefore simply displays a message. */ static void image_error (const char *format, ...) { va_list ap; va_start (ap, format); vadd_to_log (format, ap); va_end (ap); } static void image_invalid_data_error (Lisp_Object data) { image_error ("Invalid image data `%s'", data); } static void image_not_found_error (Lisp_Object filename) { image_error ("Cannot find image file `%s'", filename); } static void image_size_error (void) { image_error ("Invalid image size (see `max-image-size')"); } /*********************************************************************** Image specifications ***********************************************************************/ enum image_value_type { IMAGE_DONT_CHECK_VALUE_TYPE, IMAGE_STRING_VALUE, IMAGE_STRING_OR_NIL_VALUE, IMAGE_SYMBOL_VALUE, IMAGE_POSITIVE_INTEGER_VALUE, IMAGE_NON_NEGATIVE_INTEGER_VALUE_OR_PAIR, IMAGE_NON_NEGATIVE_INTEGER_VALUE, IMAGE_ASCENT_VALUE, IMAGE_INTEGER_VALUE, IMAGE_FUNCTION_VALUE, IMAGE_NUMBER_VALUE, IMAGE_BOOL_VALUE }; /* Structure used when parsing image specifications. */ struct image_keyword { /* Name of keyword. */ const char *name; /* The type of value allowed. */ enum image_value_type type; /* True means key must be present. */ bool mandatory_p; /* Used to recognize duplicate keywords in a property list. */ bool count; /* The value that was found. */ Lisp_Object value; }; /* Parse image spec SPEC according to KEYWORDS. A valid image spec has the format (image KEYWORD VALUE ...). One of the keyword/ value pairs must be `:type TYPE'. KEYWORDS is a vector of image_keywords structures of size NKEYWORDS describing other allowed keyword/value pairs. Value is true if SPEC is valid. */ static bool parse_image_spec (Lisp_Object spec, struct image_keyword *keywords, int nkeywords, Lisp_Object type) { int i; Lisp_Object plist; if (!IMAGEP (spec)) return false; plist = XCDR (spec); FOR_EACH_TAIL_SAFE (plist) { Lisp_Object key, value; /* First element of a pair must be a symbol. */ key = XCAR (plist); plist = XCDR (plist); if (!SYMBOLP (key)) return false; /* There must follow a value. */ if (!CONSP (plist)) return false; value = XCAR (plist); /* Find key in KEYWORDS. Error if not found. */ for (i = 0; i < nkeywords; ++i) if (strcmp (keywords[i].name, SSDATA (SYMBOL_NAME (key))) == 0) break; if (i == nkeywords) goto maybe_done; /* Record that we recognized the keyword. If a keyword was found more than once, it's an error. */ keywords[i].value = value; if (keywords[i].count) return false; keywords[i].count = true; /* Check type of value against allowed type. */ switch (keywords[i].type) { case IMAGE_STRING_VALUE: if (!STRINGP (value)) return false; break; case IMAGE_STRING_OR_NIL_VALUE: if (!STRINGP (value) && !NILP (value)) return false; break; case IMAGE_SYMBOL_VALUE: if (!SYMBOLP (value)) return false; break; case IMAGE_POSITIVE_INTEGER_VALUE: if (! RANGED_FIXNUMP (1, value, INT_MAX)) return false; break; case IMAGE_NON_NEGATIVE_INTEGER_VALUE_OR_PAIR: if (RANGED_FIXNUMP (0, value, INT_MAX)) break; if (CONSP (value) && RANGED_FIXNUMP (0, XCAR (value), INT_MAX) && RANGED_FIXNUMP (0, XCDR (value), INT_MAX)) break; return false; case IMAGE_ASCENT_VALUE: if (SYMBOLP (value) && EQ (value, Qcenter)) break; else if (RANGED_FIXNUMP (0, value, 100)) break; return false; case IMAGE_NON_NEGATIVE_INTEGER_VALUE: /* Unlike the other integer-related cases, this one does not verify that VALUE fits in 'int'. This is because callers want EMACS_INT. */ if (!FIXNUMP (value) || XFIXNUM (value) < 0) return false; break; case IMAGE_DONT_CHECK_VALUE_TYPE: break; case IMAGE_FUNCTION_VALUE: value = indirect_function (value); if (FUNCTIONP (value)) break; return false; case IMAGE_NUMBER_VALUE: if (! NUMBERP (value)) return false; break; case IMAGE_INTEGER_VALUE: if (! TYPE_RANGED_FIXNUMP (int, value)) return false; break; case IMAGE_BOOL_VALUE: if (!NILP (value) && !EQ (value, Qt)) return false; break; default: emacs_abort (); break; } if (EQ (key, QCtype) && !(EQ (type, value) || EQ (type, Qnative_image))) return false; maybe_done: if (NILP (XCDR (plist))) { /* Check that all mandatory fields are present. */ for (i = 0; i < nkeywords; ++i) if (keywords[i].mandatory_p && keywords[i].count == 0) return false; return true; } } return false; } /* Return the value of KEY in image specification SPEC. Value is nil if KEY is not present in SPEC. Set *FOUND depending on whether KEY was found in SPEC. */ Lisp_Object image_spec_value (Lisp_Object spec, Lisp_Object key, bool *found) { Lisp_Object tail; eassert (valid_image_p (spec)); tail = XCDR (spec); FOR_EACH_TAIL_SAFE (tail) { if (EQ (XCAR (tail), key)) { if (found) *found = 1; return XCAR (XCDR (tail)); } tail = XCDR (tail); if (! CONSP (tail)) break; } if (found) *found = 0; return Qnil; } DEFUN ("image-size", Fimage_size, Simage_size, 1, 3, 0, doc: /* Return the size of image SPEC as pair (WIDTH . HEIGHT). PIXELS non-nil means return the size in pixels, otherwise return the size in canonical character units. FRAME is the frame on which the image will be displayed. FRAME nil or omitted means use the selected frame. Calling this function will result in the image being stored in the image cache. If this is not desirable, call `image-flush' after calling this function. */) (Lisp_Object spec, Lisp_Object pixels, Lisp_Object frame) { Lisp_Object size; size = Qnil; if (valid_image_p (spec)) { struct frame *f = decode_window_system_frame (frame); ptrdiff_t id = lookup_image (f, spec, -1); struct image *img = IMAGE_FROM_ID (f, id); int width = img->width + 2 * img->hmargin; int height = img->height + 2 * img->vmargin; if (NILP (pixels)) size = Fcons (make_float ((double) width / FRAME_COLUMN_WIDTH (f)), make_float ((double) height / FRAME_LINE_HEIGHT (f))); else size = Fcons (make_fixnum (width), make_fixnum (height)); } else error ("Invalid image specification"); return size; } DEFUN ("image-mask-p", Fimage_mask_p, Simage_mask_p, 1, 2, 0, doc: /* Return t if image SPEC has a mask bitmap. FRAME is the frame on which the image will be displayed. FRAME nil or omitted means use the selected frame. */) (Lisp_Object spec, Lisp_Object frame) { Lisp_Object mask; mask = Qnil; if (valid_image_p (spec)) { struct frame *f = decode_window_system_frame (frame); ptrdiff_t id = lookup_image (f, spec, -1); struct image *img = IMAGE_FROM_ID (f, id); if (img->mask) mask = Qt; } else error ("Invalid image specification"); return mask; } DEFUN ("image-metadata", Fimage_metadata, Simage_metadata, 1, 2, 0, doc: /* Return metadata for image SPEC. FRAME is the frame on which the image will be displayed. FRAME nil or omitted means use the selected frame. */) (Lisp_Object spec, Lisp_Object frame) { Lisp_Object ext; ext = Qnil; if (valid_image_p (spec)) { struct frame *f = decode_window_system_frame (frame); ptrdiff_t id = lookup_image (f, spec, -1); struct image *img = IMAGE_FROM_ID (f, id); ext = img->lisp_data; } return ext; } /*********************************************************************** Image type independent image structures ***********************************************************************/ #define MAX_IMAGE_SIZE 10.0 /* Allocate and return a new image structure for image specification SPEC. SPEC has a hash value of HASH. */ static struct image * make_image (Lisp_Object spec, EMACS_UINT hash) { struct image *img = xzalloc (sizeof *img); Lisp_Object file = image_spec_value (spec, QCfile, NULL); struct stat st; eassert (valid_image_p (spec)); img->dependencies = NILP (file) ? Qnil : list1 (file); img->type = lookup_image_type (image_spec_value (spec, QCtype, NULL)); eassert (img->type != NULL); img->spec = spec; img->lisp_data = Qnil; img->ascent = DEFAULT_IMAGE_ASCENT; img->hash = hash; img->corners[BOT_CORNER] = -1; /* Full image */ /* Retrieve file mtime. */ if (! NILP (file) && (emacs_fstatat (AT_FDCWD, SSDATA (file), &st, 0) == 0)) img->mtime = get_stat_mtime (&st); return img; } /* Free image IMG which was used on frame F, including its resources. */ static void free_image (struct frame *f, struct image *img) { if (img) { struct image_cache *c = FRAME_IMAGE_CACHE (f); /* Remove IMG from the hash table of its cache. */ if (img->prev) img->prev->next = img->next; else c->buckets[img->hash % IMAGE_CACHE_BUCKETS_SIZE] = img->next; if (img->next) img->next->prev = img->prev; c->images[img->id] = NULL; #if !defined USE_CAIRO && defined HAVE_XRENDER /* FRAME_X_DISPLAY (f) could be NULL if this is being called from the display IO error handler.*/ if (FRAME_X_DISPLAY (f)) { if (img->picture) XRenderFreePicture (FRAME_X_DISPLAY (f), img->picture); if (img->mask_picture) XRenderFreePicture (FRAME_X_DISPLAY (f), img->mask_picture); } #endif /* !USE_CAIRO && HAVE_XRENDER */ #ifdef HAVE_X_WINDOWS if (FRAME_X_DISPLAY (f)) #endif /* HAVE_X_WINDOWS */ /* Free resources, then free IMG. */ img->type->free_img (f, img); xfree (img->face_font_family); xfree (img); } } /* Return true if the given widths and heights are valid for display. */ static bool check_image_size (struct frame *f, int width, int height) { int w, h; if (width <= 0 || height <= 0) return 0; if (FIXNUMP (Vmax_image_size)) return (width <= XFIXNUM (Vmax_image_size) && height <= XFIXNUM (Vmax_image_size)); else if (FLOATP (Vmax_image_size)) { if (f != NULL) { w = FRAME_PIXEL_WIDTH (f); h = FRAME_PIXEL_HEIGHT (f); } else w = h = 1024; /* Arbitrary size for unknown frame. */ return (width <= XFLOAT_DATA (Vmax_image_size) * w && height <= XFLOAT_DATA (Vmax_image_size) * h); } else return 1; } /* Prepare image IMG for display on frame F. Must be called before drawing an image. */ void prepare_image_for_display (struct frame *f, struct image *img) { /* We're about to display IMG, so set its timestamp to `now'. */ img->timestamp = current_timespec (); /* If IMG doesn't have a pixmap yet, load it now, using the image type dependent loader function. */ if (img->pixmap == NO_PIXMAP && !img->load_failed_p) img->load_failed_p = ! img->type->load_img (f, img); #ifdef USE_CAIRO if (!img->load_failed_p) { block_input (); if (img->cr_data == NULL || (cairo_pattern_get_type (img->cr_data) != CAIRO_PATTERN_TYPE_SURFACE)) { /* Fill in the background/background_transparent field while we have img->pixmap->data/img->mask->data. */ IMAGE_BACKGROUND (img, f, img->pixmap); IMAGE_BACKGROUND_TRANSPARENT (img, f, img->mask); cr_put_image_to_cr_data (img); if (img->cr_data == NULL) { img->load_failed_p = 1; img->type->free_img (f, img); } } unblock_input (); } #elif defined HAVE_X_WINDOWS || defined HAVE_ANDROID if (!img->load_failed_p) { block_input (); image_sync_to_pixmaps (f, img); unblock_input (); } #endif } /* Value is the number of pixels for the ascent of image IMG when drawn in face FACE. */ int image_ascent (struct image *img, struct face *face, struct glyph_slice *slice) { int height; int ascent; if (slice->height == img->height) height = img->height + img->vmargin; else if (slice->y == 0) height = slice->height + img->vmargin; else height = slice->height; if (img->ascent == CENTERED_IMAGE_ASCENT) { if (face->font) { #ifdef HAVE_NTGUI /* W32 specific version. Why?. ++kfs */ ascent = height / 2 - (FONT_DESCENT (face->font) - FONT_BASE (face->font)) / 2; #else /* This expression is arranged so that if the image can't be exactly centered, it will be moved slightly up. This is because a typical font is `top-heavy' (due to the presence uppercase letters), so the image placement should err towards being top-heavy too. It also just generally looks better. */ ascent = (height + FONT_BASE (face->font) - FONT_DESCENT (face->font) + 1) / 2; #endif /* HAVE_NTGUI */ } else ascent = height / 2; } else ascent = height * (img->ascent / 100.0); return ascent; } /* Image background colors. */ /* Find the "best" corner color of a bitmap. On W32, PIMG is assumed to a device context with the bitmap selected. */ static RGB_PIXEL_COLOR four_corners_best (Emacs_Pix_Context pimg, int *corners, unsigned long width, unsigned long height) { RGB_PIXEL_COLOR corner_pixels[4]; RGB_PIXEL_COLOR best UNINIT; int i, best_count; if (corners && corners[BOT_CORNER] >= 0) { /* Get the colors at the corner_pixels of pimg. */ corner_pixels[0] = GET_PIXEL (pimg, corners[LEFT_CORNER], corners[TOP_CORNER]); corner_pixels[1] = GET_PIXEL (pimg, corners[RIGHT_CORNER] - 1, corners[TOP_CORNER]); corner_pixels[2] = GET_PIXEL (pimg, corners[RIGHT_CORNER] - 1, corners[BOT_CORNER] - 1); corner_pixels[3] = GET_PIXEL (pimg, corners[LEFT_CORNER], corners[BOT_CORNER] - 1); } else { /* Get the colors at the corner_pixels of pimg. */ corner_pixels[0] = GET_PIXEL (pimg, 0, 0); corner_pixels[1] = GET_PIXEL (pimg, width - 1, 0); corner_pixels[2] = GET_PIXEL (pimg, width - 1, height - 1); corner_pixels[3] = GET_PIXEL (pimg, 0, height - 1); } /* Choose the most frequently found color as background. */ for (i = best_count = 0; i < 4; ++i) { int j, n; for (j = n = 0; j < 4; ++j) if (corner_pixels[i] == corner_pixels[j]) ++n; if (n > best_count) best = corner_pixels[i], best_count = n; } return best; } /* Return the `background' field of IMG. If IMG doesn't have one yet, it is guessed heuristically. If non-zero, XIMG is an existing Emacs_Pix_Context object (device context with the image selected on W32) to use for the heuristic. */ RGB_PIXEL_COLOR image_background (struct image *img, struct frame *f, Emacs_Pix_Context pimg) { if (! img->background_valid) /* IMG doesn't have a background yet, try to guess a reasonable value. */ { bool free_pimg = !pimg; #ifdef HAVE_NTGUI HGDIOBJ prev; #endif /* HAVE_NTGUI */ if (free_pimg) pimg = image_get_x_image_or_dc (f, img, 0, &prev); RGB_PIXEL_COLOR bg = four_corners_best (pimg, img->corners, img->width, img->height); #ifdef USE_CAIRO { char color_name[30]; sprintf (color_name, "#%04x%04x%04x", (unsigned int) RED16_FROM_ULONG (bg), (unsigned int) GREEN16_FROM_ULONG (bg), (unsigned int) BLUE16_FROM_ULONG (bg)); bg = image_alloc_image_color (f, img, build_string (color_name), 0); } #endif img->background = bg; if (free_pimg) image_unget_x_image_or_dc (img, 0, pimg, prev); img->background_valid = 1; } return img->background; } /* Return the `background_transparent' field of IMG. If IMG doesn't have one yet, it is guessed heuristically. If non-zero, MASK is an existing Emacs_Pix_Context (XImage* on X) object to use for the heuristic. */ int image_background_transparent (struct image *img, struct frame *f, Emacs_Pix_Context mask) { if (! img->background_transparent_valid) /* IMG doesn't have a background yet, try to guess a reasonable value. */ { if (img->mask) { bool free_mask = !mask; #ifdef HAVE_NTGUI HGDIOBJ prev; #endif /* HAVE_NTGUI */ if (free_mask) mask = image_get_x_image_or_dc (f, img, 1, &prev); img->background_transparent = (four_corners_best (mask, img->corners, img->width, img->height) == PIX_MASK_RETAIN); if (free_mask) image_unget_x_image_or_dc (img, 1, mask, prev); } else img->background_transparent = 0; img->background_transparent_valid = 1; } return img->background_transparent; } /*********************************************************************** Helper functions for X image types ***********************************************************************/ /* Clear X resources of image IMG on frame F according to FLAGS. FLAGS is bitwise-or of the following masks: CLEAR_IMAGE_PIXMAP free the pixmap if any. CLEAR_IMAGE_MASK means clear the mask pixmap if any. CLEAR_IMAGE_COLORS means free colors allocated for the image, if any. */ #define CLEAR_IMAGE_PIXMAP (1 << 0) #define CLEAR_IMAGE_MASK (1 << 1) #define CLEAR_IMAGE_COLORS (1 << 2) static void image_clear_image_1 (struct frame *f, struct image *img, int flags) { if (flags & CLEAR_IMAGE_PIXMAP) { if (img->pixmap) { FRAME_TERMINAL (f)->free_pixmap (f, img->pixmap); img->pixmap = NO_PIXMAP; /* NOTE (HAVE_NS): background color is NOT an indexed color! */ img->background_valid = 0; } #if (defined HAVE_X_WINDOWS || defined HAVE_ANDROID) && !defined USE_CAIRO if (img->ximg) { image_destroy_x_image (img->ximg); img->ximg = NULL; img->background_valid = 0; } #endif } if (flags & CLEAR_IMAGE_MASK) { if (img->mask) { FRAME_TERMINAL (f)->free_pixmap (f, img->mask); img->mask = NO_PIXMAP; img->background_transparent_valid = 0; } #if (defined HAVE_X_WINDOWS || defined HAVE_ANDROID) && !defined USE_CAIRO if (img->mask_img) { image_destroy_x_image (img->mask_img); img->mask_img = NULL; img->background_transparent_valid = 0; } #endif } if ((flags & CLEAR_IMAGE_COLORS) && img->ncolors) { /* W32_TODO: color table support. */ #if defined HAVE_X_WINDOWS && !defined USE_CAIRO x_free_colors (f, img->colors, img->ncolors); #endif /* HAVE_X_WINDOWS && !USE_CAIRO */ xfree (img->colors); img->colors = NULL; img->ncolors = 0; } #ifdef USE_CAIRO if (img->cr_data) { cairo_pattern_destroy (img->cr_data); img->cr_data = NULL; } #endif /* USE_CAIRO */ } /* Free X resources of image IMG which is used on frame F. */ static void image_clear_image (struct frame *f, struct image *img) { block_input (); image_clear_image_1 (f, img, (CLEAR_IMAGE_PIXMAP | CLEAR_IMAGE_MASK | CLEAR_IMAGE_COLORS)); unblock_input (); } /* Allocate color COLOR_NAME for image IMG on frame F. If color cannot be allocated, use DFLT. Add a newly allocated color to IMG->colors, so that it can be freed again. Value is the pixel color. */ static unsigned long image_alloc_image_color (struct frame *f, struct image *img, Lisp_Object color_name, unsigned long dflt) { Emacs_Color color; unsigned long result; eassert (STRINGP (color_name)); if (FRAME_TERMINAL (f)->defined_color_hook (f, SSDATA (color_name), &color, true, false) && img->ncolors < min (min (PTRDIFF_MAX, SIZE_MAX) / sizeof *img->colors, INT_MAX)) { /* This isn't called frequently so we get away with simply reallocating the color vector to the needed size, here. */ ptrdiff_t ncolors = img->ncolors + 1; img->colors = xrealloc (img->colors, ncolors * sizeof *img->colors); img->colors[ncolors - 1] = color.pixel; img->ncolors = ncolors; result = color.pixel; } else result = dflt; return result; } /*********************************************************************** Image Cache ***********************************************************************/ static void cache_image (struct frame *f, struct image *img); /* Return a new, initialized image cache that is allocated from the heap. Call free_image_cache to free an image cache. */ struct image_cache * make_image_cache (void) { struct image_cache *c = xmalloc (sizeof *c); c->size = 50; c->used = c->refcount = 0; c->images = xmalloc (c->size * sizeof *c->images); c->buckets = xzalloc (IMAGE_CACHE_BUCKETS_SIZE * sizeof *c->buckets); /* This value should never be encountered. */ c->scaling_col_width = -1; return c; } /* Find an image matching SPEC in the cache, and return it. If no image is found, return NULL. */ static struct image * search_image_cache (struct frame *f, Lisp_Object spec, EMACS_UINT hash, unsigned long foreground, unsigned long background, int font_size, char *font_family, bool ignore_colors) { struct image *img; struct image_cache *c = FRAME_IMAGE_CACHE (f); int i = hash % IMAGE_CACHE_BUCKETS_SIZE; if (!c) return NULL; /* If the image spec does not specify a background color, the cached image must have the same background color as the current frame. The foreground color must also match, for the sake of monochrome images. In fact, we could ignore the foreground color matching condition for color images, or if the image spec specifies :foreground; similarly we could ignore the background color matching condition for formats that don't use transparency (such as jpeg), or if the image spec specifies :background. However, the extra memory usage is probably negligible in practice, so we don't bother. */ for (img = c->buckets[i]; img; img = img->next) if (img->hash == hash && !NILP (Fequal (img->spec, spec)) && (ignore_colors || (img->face_foreground == foreground && img->face_background == background && img->face_font_size == font_size && (font_family &&!strcmp (font_family, img->face_font_family))))) break; return img; } /* Filter out image elements that don't affect display, but will disrupt finding the image in the cache. This should perhaps be user-configurable, but for now it's hard-coded (but new elements can be added at will). */ static Lisp_Object filter_image_spec (Lisp_Object spec) { Lisp_Object out = Qnil; /* Skip past the `image' element. */ if (CONSP (spec)) spec = XCDR (spec); while (CONSP (spec)) { Lisp_Object key = XCAR (spec); spec = XCDR (spec); if (CONSP (spec)) { Lisp_Object value = XCAR (spec); spec = XCDR (spec); /* Some animation-related data doesn't affect display, but breaks the image cache. Filter those out. */ if (!(EQ (key, QCanimate_buffer) || EQ (key, QCanimate_tardiness) || EQ (key, QCanimate_position) || EQ (key, QCanimate_multi_frame_data))) { out = Fcons (value, out); out = Fcons (key, out); } } } return out; } /* Search frame F for an image with spec SPEC, and free it. */ static void uncache_image (struct frame *f, Lisp_Object spec) { struct image *img; EMACS_UINT hash = sxhash (filter_image_spec (spec)); /* Because the background colors are based on the current face, we can have multiple copies of an image with the same spec. We want to remove them all to ensure the user doesn't see an old version of the image when the face changes. */ while ((img = search_image_cache (f, spec, hash, 0, 0, 0, NULL, true))) { free_image (f, img); /* As display glyphs may still be referring to the image ID, we must garbage the frame (Bug#6426). */ SET_FRAME_GARBAGED (f); } } /* Free image cache of frame F. Be aware that X frames share images caches. */ void free_image_cache (struct frame *f) { struct image_cache *c = FRAME_IMAGE_CACHE (f); ptrdiff_t i; /* This function assumes the caller already verified that the frame's image cache is non-NULL. */ eassert (c); /* Cache should not be referenced by any frame when freed. */ eassert (c->refcount == 0); for (i = 0; i < c->used; ++i) free_image (f, c->images[i]); xfree (c->images); xfree (c->buckets); xfree (c); } /* Clear image cache of frame F. FILTER=t means free all images. FILTER=nil means clear only images that haven't been displayed for some time. Else, only free the images which have FILTER in their `dependencies'. Should be called from time to time to reduce the number of loaded images. If image-cache-eviction-delay is non-nil, this frees images in the cache which weren't displayed for at least that many seconds. */ void clear_image_cache (struct frame *f, Lisp_Object filter) { struct image_cache *c = FRAME_IMAGE_CACHE (f); if (c && !f->inhibit_clear_image_cache) { ptrdiff_t i, nfreed = 0; /* Block input so that we won't be interrupted by a SIGIO while being in an inconsistent state. */ block_input (); if (!NILP (filter)) { /* Filter image cache. */ for (i = 0; i < c->used; ++i) { struct image *img = c->images[i]; if (img && (EQ (Qt, filter) || !NILP (Fmember (filter, img->dependencies)))) { free_image (f, img); ++nfreed; } } } else if (FIXNUMP (Vimage_cache_eviction_delay)) { /* Free cache based on timestamp. */ struct timespec old, t; double delay; ptrdiff_t nimages = 0; for (i = 0; i < c->used; ++i) if (c->images[i]) nimages++; /* If the number of cached images has grown unusually large, decrease the cache eviction delay (Bug#6230). */ delay = XFIXNUM (Vimage_cache_eviction_delay); if (nimages > 40) delay = 1600 * delay / nimages / nimages; delay = max (delay, 1); t = current_timespec (); old = timespec_sub (t, dtotimespec (delay)); for (i = 0; i < c->used; ++i) { struct image *img = c->images[i]; if (img && timespec_cmp (img->timestamp, old) < 0) { free_image (f, img); ++nfreed; } } } /* We may be clearing the image cache because, for example, Emacs was iconified for a longer period of time. In that case, current matrices may still contain references to images freed above. So, clear these matrices. */ if (nfreed) { Lisp_Object tail, frame; FOR_EACH_FRAME (tail, frame) { struct frame *fr = XFRAME (frame); if (FRAME_IMAGE_CACHE (fr) == c) clear_current_matrices (fr); } windows_or_buffers_changed = 19; } unblock_input (); } } void clear_image_caches (Lisp_Object filter) { /* FIXME: We want to do * struct terminal *t; * for (t = terminal_list; t; t = t->next_terminal) * clear_image_cache (t, filter); */ Lisp_Object tail, frame; FOR_EACH_FRAME (tail, frame) if (FRAME_WINDOW_P (XFRAME (frame))) clear_image_cache (XFRAME (frame), filter); } DEFUN ("clear-image-cache", Fclear_image_cache, Sclear_image_cache, 0, 2, 0, doc: /* Clear the image cache. FILTER nil or a frame means clear all images in the selected frame. FILTER t means clear the image caches of all frames. Anything else means clear only those images that refer to FILTER, which is then usually a filename. This function also clears the image animation cache. If ANIMATION-CACHE is non-nil, only the image spec `eq' with ANIMATION-CACHE is removed, and other image cache entries are not evicted. */) (Lisp_Object filter, Lisp_Object animation_cache) { if (!NILP (animation_cache)) { CHECK_CONS (animation_cache); #if defined (HAVE_WEBP) || defined (HAVE_GIF) anim_prune_animation_cache (XCDR (animation_cache)); #endif return Qnil; } if (! (NILP (filter) || FRAMEP (filter))) clear_image_caches (filter); else clear_image_cache (decode_window_system_frame (filter), Qt); /* Also clear the animation caches. */ image_prune_animation_caches (true); return Qnil; } static size_t image_size_in_bytes (struct image *img) { size_t size = 0; #if defined USE_CAIRO Emacs_Pixmap pm = img->pixmap; if (pm) size += pm->height * pm->bytes_per_line; Emacs_Pixmap msk = img->mask; if (msk) size += msk->height * msk->bytes_per_line; #elif defined HAVE_X_WINDOWS || defined HAVE_ANDROID /* Use a nominal depth of 24 and a bpp of 32 for pixmap and 1 bpp for mask, to avoid having to query the server. */ if (img->pixmap != NO_PIXMAP) size += img->width * img->height * 4; if (img->mask != NO_PIXMAP) size += img->width * img->height / 8; if (img->ximg && img->ximg->data) size += img->ximg->bytes_per_line * img->ximg->height; if (img->mask_img && img->mask_img->data) size += img->mask_img->bytes_per_line * img->mask_img->height; #elif defined HAVE_NS if (img->pixmap) size += ns_image_size_in_bytes (img->pixmap); if (img->mask) size += ns_image_size_in_bytes (img->mask); #elif defined HAVE_NTGUI if (img->pixmap) size += w32_image_size (img->pixmap); if (img->mask) size += w32_image_size (img->mask); #elif defined HAVE_HAIKU if (img->pixmap) size += BBitmap_bytes_length (img->pixmap); if (img->mask) size += BBitmap_bytes_length (img->mask); #endif return size; } static size_t image_frame_cache_size (struct frame *f) { struct image_cache *c = FRAME_IMAGE_CACHE (f); if (!c) return 0; size_t total = 0; for (ptrdiff_t i = 0; i < c->used; ++i) { struct image *img = c->images[i]; total += img ? image_size_in_bytes (img) : 0; } return total; } DEFUN ("image-flush", Fimage_flush, Simage_flush, 1, 2, 0, doc: /* Flush the image with specification SPEC on frame FRAME. This removes the image from the Emacs image cache. If SPEC specifies an image file, the next redisplay of this image will read from the current contents of that file. FRAME nil or omitted means use the selected frame. FRAME t means refresh the image on all frames. */) (Lisp_Object spec, Lisp_Object frame) { if (!valid_image_p (spec)) error ("Invalid image specification"); if (EQ (frame, Qt)) { Lisp_Object tail; FOR_EACH_FRAME (tail, frame) { struct frame *f = XFRAME (frame); if (FRAME_WINDOW_P (f)) uncache_image (f, spec); } } else uncache_image (decode_window_system_frame (frame), spec); return Qnil; } /* Compute masks and transform image IMG on frame F, as specified by the image's specification, */ static void postprocess_image (struct frame *f, struct image *img) { /* Manipulation of the image's mask. */ if (img->pixmap) { Lisp_Object conversion, spec; Lisp_Object mask; spec = img->spec; /* `:heuristic-mask t' `:mask heuristic' means build a mask heuristically. `:heuristic-mask (R G B)' `:mask (heuristic (R G B))' means build a mask from color (R G B) in the image. `:mask nil' means remove a mask, if any. */ mask = image_spec_value (spec, QCheuristic_mask, NULL); if (!NILP (mask)) image_build_heuristic_mask (f, img, mask); else { bool found_p; mask = image_spec_value (spec, QCmask, &found_p); if (EQ (mask, Qheuristic)) image_build_heuristic_mask (f, img, Qt); else if (CONSP (mask) && EQ (XCAR (mask), Qheuristic)) { if (CONSP (XCDR (mask))) image_build_heuristic_mask (f, img, XCAR (XCDR (mask))); else image_build_heuristic_mask (f, img, XCDR (mask)); } else if (NILP (mask) && found_p && img->mask) image_clear_image_1 (f, img, CLEAR_IMAGE_MASK); } /* Should we apply an image transformation algorithm? */ conversion = image_spec_value (spec, QCconversion, NULL); if (EQ (conversion, Qdisabled)) image_disable_image (f, img); else if (EQ (conversion, Qlaplace)) image_laplace (f, img); else if (EQ (conversion, Qemboss)) image_emboss (f, img); else if (CONSP (conversion) && EQ (XCAR (conversion), Qedge_detection)) { Lisp_Object tem; tem = XCDR (conversion); if (CONSP (tem)) image_edge_detection (f, img, plist_get (tem, QCmatrix), plist_get (tem, QCcolor_adjustment)); } } } #if defined (HAVE_IMAGEMAGICK) || defined (HAVE_NATIVE_TRANSFORMS) /* Scale an image size by returning SIZE / DIVISOR * MULTIPLIER, safely rounded and clipped to int range. */ static int scale_image_size (int size, double divisor, double multiplier) { if (divisor != 0) { double scaled = size * multiplier / divisor; if (scaled < INT_MAX) { /* Use ceil, as rounding can discard fractional SVG pixels. */ return ceil (scaled); } } return INT_MAX; } /* Return a size, in pixels, from the value specified by SYMBOL, which may be an integer or a pair of the form (VALUE . 'em) where VALUE is a float that is multiplied by the font size to get the final dimension. If the value doesn't exist in the image spec, or is invalid, return -1. */ static int image_get_dimension (struct image *img, Lisp_Object symbol) { Lisp_Object value = image_spec_value (img->spec, symbol, NULL); if (FIXNATP (value)) return min (XFIXNAT (value), INT_MAX); if (CONSP (value) && NUMBERP (CAR (value))) { Lisp_Object dim = CDR (value); if (EQ (Qem, dim)) return scale_image_size (img->face_font_size, 1, XFLOATINT (CAR (value))); if (EQ (Qch, dim)) return scale_image_size (img->face_font_height, 1, XFLOATINT (CAR (value))); if (EQ (Qcw, dim)) return scale_image_size (img->face_font_width, 1, XFLOATINT (CAR (value))); } return -1; } /* Compute the desired size of an image with native size WIDTH x HEIGHT, which is to be displayed on F. Use IMG to deduce the size. Store the desired size into *D_WIDTH x *D_HEIGHT. Store -1 x -1 if the native size is OK. */ static void compute_image_size (struct frame *f, double width, double height, struct image *img, int *d_width, int *d_height) { double scale = 1; Lisp_Object value = image_spec_value (img->spec, QCscale, NULL); if (EQ (value, Qdefault)) { Lisp_Object sval = Vimage_scaling_factor; /* Compute the scale from factors specified by the value of Vimage_scaling_factor. */ invalid_value: if (EQ (sval, Qauto)) { /* This is a tag with which callers of `clear_image_cache' can refer to this image and its likenesses. */ img->dependencies = Fcons (Qauto, img->dependencies); scale = (FRAME_COLUMN_WIDTH (f) > 10 ? (FRAME_COLUMN_WIDTH (f) / 10.0f) : 1); } else if (NUMBERP (sval)) scale = XFLOATINT (sval); else { image_error ("Invalid `image-scaling-factor': %s", Vimage_scaling_factor); /* If Vimage_scaling_factor is set to an invalid value, treat it as though it were the default. */ sval = Qauto; goto invalid_value; } } else if (NUMBERP (value)) { double dval = XFLOATINT (value); if (0 <= dval) scale = dval; } /* If width and/or height is set in the display spec assume we want to scale to those values. If either h or w is unspecified, the unspecified should be calculated from the specified to preserve aspect ratio. */ int desired_width = image_get_dimension (img, QCwidth), max_width; if (desired_width < 0) max_width = image_get_dimension (img, QCmax_width); else { desired_width = scale_image_size (desired_width, 1, scale); /* :width overrides :max-width. */ max_width = -1; } int desired_height = image_get_dimension (img, QCheight), max_height; if (desired_height < 0) max_height = image_get_dimension (img, QCmax_height); else { desired_height = scale_image_size (desired_height, 1, scale); /* :height overrides :max-height. */ max_height = -1; } /* If we have both width/height set explicitly, we skip past all the aspect ratio-preserving computations below. */ if (0 <= desired_width && 0 <= desired_height) goto out; if (0 <= desired_width) /* Width known, calculate height. */ desired_height = scale_image_size (desired_width, width, height); else if (0 <= desired_height) /* Height known, calculate width. */ desired_width = scale_image_size (desired_height, height, width); else { desired_width = scale_image_size (width, 1, scale); desired_height = scale_image_size (height, 1, scale); } if (0 <= max_width && max_width < desired_width) { /* The image is wider than :max-width. */ desired_width = max_width; desired_height = scale_image_size (desired_width, width, height); } if (0 <= max_height && max_height < desired_height) { /* The image is higher than :max-height. */ desired_height = max_height; desired_width = scale_image_size (desired_height, height, width); } out: *d_width = desired_width; *d_height = desired_height; } /* image_set_rotation and image_set_transform use affine transformation matrices to perform various transforms on the image. The matrix is a 2D array of doubles. It is laid out like this: m[0][0] = m11 | m[1][0] = m12 | m[2][0] = tx --------------+---------------+------------- m[0][1] = m21 | m[1][1] = m22 | m[2][1] = ty --------------+---------------+------------- m[0][2] = 0 | m[1][2] = 0 | m[2][2] = 1 tx and ty represent translations, m11 and m22 represent scaling transforms and m21 and m12 represent shear transforms. Most graphics toolkits don't require the third row, however it is necessary for multiplication. Transforms are done by creating a matrix for each action we wish to take, then multiplying the transformation matrix by each of those matrices in order (matrix multiplication is not commutative). After we've done that we can use our modified transformation matrix to transform points. We take the x and y coordinates and convert them into a 3x1 matrix and multiply that by the transformation matrix and it gives us a new, transformed, set of coordinates: [m11 m12 tx] [x] [m11*x+m12*y+tx*1] [x'] [m21 m22 ty] X [y] = [m21*x+m22*y+ty*1] = [y'] [ 0 0 1] [1] [ 0*x+0*y+1*1] [ 1] We don't have to worry about the last step as the graphics toolkit will do it for us. The three transforms we are concerned with are translation, scaling and rotation. The translation matrix looks like this: [1 0 tx] [0 1 ty] [0 0 1] Where tx and ty are the amount to translate the origin in the x and y coordinates, respectively. Since we are translating the origin and not the image data itself, it can appear backwards in use, for example to move the image 10 pixels to the right, you would set tx to -10. To scale we use: [x 0 0] [0 y 0] [0 0 1] Where x and y are the amounts to scale in the x and y dimensions. Values smaller than 1 make the image larger, values larger than 1 make it smaller. Negative values flip the image. For example to double the image size set x and y to 0.5. To rotate we use: [ cos(r) sin(r) 0] [-sin(r) cos(r) 0] [ 0 0 1] Where r is the angle of rotation required. Rotation occurs around the origin, not the center of the image. Note that this is normally considered a counter-clockwise rotation, however because our y axis is reversed, (0, 0) at the top left, it works as a clockwise rotation. The full process of rotating an image is to move the origin to the center of the image (width/2, height/2), perform the rotation, and finally move the origin back to the top left of the image, which may now be a different corner. Note that different GUI backends (X, Cairo, w32, NS, Haiku, Android) want the transform matrix defined as transform from the original image to the transformed image, while others want the matrix to describe the transform of the space, which boils down to inverting the matrix. It's possible to pre-calculate the matrix multiplications and just generate one transform matrix that will do everything we need in a single step, but the maths for each element is much more complex and performing the steps separately makes for more readable code. */ typedef double matrix3x3[3][3]; static void matrix3x3_mult (matrix3x3 a, matrix3x3 b, matrix3x3 result) { for (int i = 0; i < 3; i++) for (int j = 0; j < 3; j++) { double sum = 0; for (int k = 0; k < 3; k++) sum += a[i][k] * b[k][j]; result[i][j] = sum; } } static void compute_image_rotation (struct image *img, double *rotation) { bool foundp = false; Lisp_Object value = image_spec_value (img->spec, QCrotation, &foundp); if (!foundp) return; if (! NUMBERP (value)) { image_error ("Invalid image `:rotation' parameter"); return; } Lisp_Object reduced_angle = Fmod (value, make_fixnum (360)); if (FLOATP (reduced_angle)) *rotation = XFLOAT_DATA (reduced_angle); else *rotation = XFIXNUM (reduced_angle); } #ifdef HAVE_ANDROID static void matrix_identity (matrix3x3 matrix) { memset (matrix, 0, sizeof (matrix3x3)); matrix[0][0] = 1.0; matrix[1][1] = 1.0; matrix[2][2] = 1.0; } /* Translate the matrix TRANSFORM to X, Y, and then perform clockwise rotation by the given angle THETA in radians and translate back. As the transform is being performed in a coordinate system where Y grows downwards, the given angle describes a clockwise rotation. */ static void matrix_rotate (matrix3x3 transform, double theta, double x, double y) { matrix3x3 temp, copy; /* 1. Translate the matrix so X and Y are in the center. */ matrix_identity (temp); memcpy (copy, transform, sizeof copy); temp[0][2] = x; temp[1][2] = y; matrix3x3_mult (copy, temp, transform); matrix_identity (temp); memcpy (copy, transform, sizeof copy); /* 2. Rotate the matrix counter-clockwise, assuming a coordinate system where Y grows downwards. */ temp[0][0] = cos (theta); temp[0][1] = -sin (theta); temp[1][0] = sinf (theta); temp[1][1] = cosf (theta); matrix3x3_mult (copy, temp, transform); matrix_identity (temp); memcpy (copy, transform, sizeof copy); /* 3. Translate back. */ temp[0][2] = -x; temp[1][2] = -y; matrix3x3_mult (copy, temp, transform); } /* Scale the matrix TRANSFORM by -1, and then apply a TX of width, in effect flipping the image horizontally. */ static void matrix_mirror_horizontal (matrix3x3 transform, double width) { matrix3x3 temp, copy; matrix_identity (temp); memcpy (copy, transform, sizeof copy); temp[0][0] = -1.0f; temp[0][2] = width; matrix3x3_mult (copy, temp, transform); } static void matrix_translate (matrix3x3 transform, float tx, float ty) { matrix3x3 temp, copy; matrix_identity (temp); memcpy (copy, transform, sizeof copy); /* Set the tx and ty. */ temp[0][2] = tx; temp[1][2] = ty; /* Multiply it with the transform. */ matrix3x3_mult (copy, temp, transform); } #endif static void image_set_transform (struct frame *f, struct image *img) { bool flip; #if defined HAVE_HAIKU matrix3x3 identity = { { 1, 0, 0 }, { 0, 1, 0 }, { 0, 0, 1 }, }; img->original_width = img->width; img->original_height = img->height; img->use_bilinear_filtering = false; memcpy (&img->transform, identity, sizeof identity); #endif #if defined HAVE_ANDROID matrix3x3 identity = { { 1, 0, 0 }, { 0, 1, 0 }, { 0, 0, 1 }, }; #endif # if (defined HAVE_IMAGEMAGICK \ && !defined DONT_CREATE_TRANSFORMED_IMAGEMAGICK_IMAGE) /* ImageMagick images already have the correct transform. */ if (EQ (image_spec_value (img->spec, QCtype, NULL), Qimagemagick)) return; # endif # if !defined USE_CAIRO && defined HAVE_XRENDER if (!img->picture) return; /* Store the original dimensions as we'll overwrite them later. */ img->original_width = img->width; img->original_height = img->height; # endif /* Determine size. */ int width, height; #ifdef HAVE_RSVG /* SVGs are pre-scaled to the correct size. */ if (EQ (image_spec_value (img->spec, QCtype, NULL), Qsvg)) { width = img->width / FRAME_SCALE_FACTOR (f); height = img->height / FRAME_SCALE_FACTOR (f); } else #endif compute_image_size (f, img->width, img->height, img, &width, &height); /* Determine rotation. */ double rotation = 0.0; compute_image_rotation (img, &rotation); /* Determine flipping. */ flip = !NILP (image_spec_value (img->spec, QCflip, NULL)); # if defined USE_CAIRO || defined HAVE_XRENDER || defined HAVE_NS || defined HAVE_HAIKU \ || defined HAVE_ANDROID || defined HAVE_NTGUI /* We want scale up operations to use a nearest neighbor filter to show real pixels instead of munging them, but scale down operations to use a blended filter, to avoid aliasing and the like. */ bool smoothing; Lisp_Object s = image_spec_value (img->spec, QCtransform_smoothing, NULL); if (NILP (s)) smoothing = (width < img->width) || (height < img->height); else smoothing = !NILP (s); # endif #ifdef HAVE_HAIKU img->use_bilinear_filtering = smoothing; #endif #ifdef HAVE_NTGUI img->smoothing = smoothing; #endif /* Perform scale transformation. */ matrix3x3 matrix = { # if defined USE_CAIRO || defined HAVE_XRENDER || defined HAVE_ANDROID [0][0] = (!IEEE_FLOATING_POINT && width == 0 ? DBL_MAX : img->width / (double) width), [1][1] = (!IEEE_FLOATING_POINT && height == 0 ? DBL_MAX : img->height / (double) height), # elif defined HAVE_NTGUI || defined HAVE_NS || defined HAVE_HAIKU [0][0] = (!IEEE_FLOATING_POINT && img->width == 0 ? DBL_MAX : width / (double) img->width), [1][1] = (!IEEE_FLOATING_POINT && img->height == 0 ? DBL_MAX : height / (double) img->height), # else [0][0] = 1, [1][1] = 1, # endif [2][2] = 1 }; img->width = width; img->height = height; /* Perform rotation transformation. */ int rotate_flag = -1; /* Haiku needs this, since the transformation is done on the basis of the view, and not the image. */ #if defined HAVE_HAIKU int extra_tx, extra_ty; extra_tx = 0; extra_ty = 0; #endif if (rotation == 0 && !flip) rotate_flag = 0; else { #ifndef HAVE_ANDROID # if (defined USE_CAIRO || defined HAVE_XRENDER \ || defined HAVE_NTGUI || defined HAVE_NS \ || defined HAVE_HAIKU) int cos_r, sin_r; if (rotation == 0) { /* FLIP is always true here. As this will rotate by 0 degrees, it has no visible effect. Applying only translation matrix to the image would be sufficient for horizontal flipping, but writing special handling for this case would increase code complexity somewhat. */ cos_r = 1; sin_r = 0; rotate_flag = 1; #ifdef HAVE_HAIKU extra_tx = width; extra_ty = 0; #endif } else if (rotation == 90) { width = img->height; height = img->width; cos_r = 0; sin_r = 1; rotate_flag = 1; #if defined HAVE_HAIKU if (!flip) extra_ty = height; extra_tx = 0; #endif } else if (rotation == 180) { cos_r = -1; sin_r = 0; rotate_flag = 1; #ifdef HAVE_HAIKU if (!flip) extra_tx = width; extra_ty = height; #endif } else if (rotation == 270) { width = img->height; height = img->width; cos_r = 0; sin_r = -1; rotate_flag = 1; #ifdef HAVE_HAIKU extra_tx = width; if (flip) extra_ty = height; #endif } if (0 < rotate_flag) { # if defined USE_CAIRO || defined HAVE_XRENDER || defined HAVE_ANDROID /* 1. Translate so (0, 0) is in the center of the image. */ matrix3x3 t = { [0][0] = 1, [1][1] = 1, [2][0] = img->width*.5, [2][1] = img->height*.5, [2][2] = 1 }; matrix3x3 u; matrix3x3_mult (t, matrix, u); /* 2. Rotate. */ matrix3x3 rot = { [0][0] = cos_r, [0][1] = -sin_r, [1][0] = sin_r, [1][1] = cos_r, [2][2] = 1 }; matrix3x3 v; matrix3x3_mult (rot, u, v); /* 3. Translate back. Flip horizontally if requested. */ t[2][0] = width * -.5; t[2][1] = height * -.5; if (flip) { t[0][0] = -t[0][0]; t[2][0] = -t[2][0]; } matrix3x3_mult (t, v, matrix); # else /* 1. Translate so (0, 0) is in the center of the image. */ matrix3x3 t = { [0][0] = 1, [1][1] = 1, [2][0] = img->width*-.5, [2][1] = img->height*-.5, [2][2] = 1 }; matrix3x3 u; matrix3x3_mult (matrix, t, u); /* 2. Rotate. */ matrix3x3 rot = { [0][0] = cos_r, [0][1] = sin_r, [1][0] = -sin_r, [1][1] = cos_r, [2][2] = 1 }; matrix3x3 v; matrix3x3_mult (u, rot, v); /* 3. Translate back. Flip horizontally if requested. */ t[2][0] = width * .5; t[2][1] = height * .5; if (flip) t[0][0] = -t[0][0]; matrix3x3_mult (v, t, matrix); # endif img->width = width; img->height = height; } # endif #else /* Calculate the inverse transform from the destination to the source. The matrix is currently identity with scale applied. This code makes more sense to me than what lies above. But I'm not touching what works. */ if (rotation != 0 && rotation != 90 && rotation != 180 && rotation != 270) { rotate_flag = 0; goto bail; } rotate_flag = 1; switch ((int) rotation + (flip ? 1 : 0)) { case 0: break; case 90: /* Rotate the image 90 degrees clockwise. IOW, rotate the destination by 90 degrees counterclockwise, which is 270 degrees clockwise. */ matrix_rotate (matrix, M_PI * 1.5, 0, 0); matrix_translate (matrix, -height, 0); break; case 180: /* Apply clockwise 180 degree rotation around the center. */ matrix_rotate (matrix, M_PI, width / 2.0, height / 2.0); break; case 270: /* Apply 270 degree counterclockwise rotation to the destination, which is 90 degrees clockwise. */ matrix_rotate (matrix, M_PI * 0.5, 0, 0); matrix_translate (matrix, 0, -width); break; case 1: /* Flipped. Apply horizontal flip. */ matrix_mirror_horizontal (matrix, width); break; case 91: /* Apply a flip but otherwise treat this the same as 90. */ matrix_rotate (matrix, M_PI * 1.5, 0, 0); matrix_translate (matrix, -height, 0); matrix_mirror_horizontal (matrix, height); break; case 181: /* Flipped 180 degrees. Apply a flip and treat this the same as 180. */ matrix_rotate (matrix, M_PI, width / 2.0, height / 2.0); matrix_mirror_horizontal (matrix, width); break; case 271: /* Flipped 270 degrees. Apply a flip and treat this the same as 270. */ matrix_rotate (matrix, M_PI * 0.5, 0, 0); matrix_translate (matrix, 0, -width); matrix_mirror_horizontal (matrix, height); break; } /* Now set img->width and img->height. Flip them if the rotation being applied requires so. */ if (rotation != 270 && rotation != 90) { img->width = width; img->height = height; } else { img->height = width; img->width = height; } bail: ; #endif } if (rotate_flag < 0) image_error ("No native support for rotation by %g degrees", make_float (rotation)); # if defined (HAVE_NS) /* Under NS the transform is applied to the drawing surface at drawing time, so store it for later. */ ns_image_set_transform (img->pixmap, matrix); ns_image_set_smoothing (img->pixmap, smoothing); # elif defined USE_CAIRO cairo_matrix_t cr_matrix = {matrix[0][0], matrix[0][1], matrix[1][0], matrix[1][1], matrix[2][0], matrix[2][1]}; cairo_pattern_t *pattern = cairo_pattern_create_rgb (0, 0, 0); cairo_pattern_set_matrix (pattern, &cr_matrix); cairo_pattern_set_filter (pattern, smoothing ? CAIRO_FILTER_BEST : CAIRO_FILTER_NEAREST); /* Dummy solid color pattern just to record pattern matrix. */ img->cr_data = pattern; # elif defined (HAVE_XRENDER) if (img->picture) { XTransform tmat = {{{XDoubleToFixed (matrix[0][0]), XDoubleToFixed (matrix[1][0]), XDoubleToFixed (matrix[2][0])}, {XDoubleToFixed (matrix[0][1]), XDoubleToFixed (matrix[1][1]), XDoubleToFixed (matrix[2][1])}, {XDoubleToFixed (matrix[0][2]), XDoubleToFixed (matrix[1][2]), XDoubleToFixed (matrix[2][2])}}}; XRenderSetPictureFilter (FRAME_X_DISPLAY (f), img->picture, smoothing ? FilterBest : FilterNearest, 0, 0); XRenderSetPictureTransform (FRAME_X_DISPLAY (f), img->picture, &tmat); if (img->mask_picture) { XRenderSetPictureFilter (FRAME_X_DISPLAY (f), img->mask_picture, smoothing ? FilterBest : FilterNearest, 0, 0); XRenderSetPictureTransform (FRAME_X_DISPLAY (f), img->mask_picture, &tmat); } } # elif defined HAVE_NTGUI /* Store the transform matrix for application at draw time. */ img->xform.eM11 = matrix[0][0]; img->xform.eM12 = matrix[0][1]; img->xform.eM21 = matrix[1][0]; img->xform.eM22 = matrix[1][1]; img->xform.eDx = matrix[2][0]; img->xform.eDy = matrix[2][1]; # elif defined HAVE_HAIKU /* Store the transform in the struct image for later. */ memcpy (&img->transform, &matrix, sizeof matrix); /* Also add the extra translations. */ if (rotate_flag) { img->transform[0][2] = extra_tx; img->transform[1][2] = extra_ty; } # elif defined HAVE_ANDROID /* Create a new image of the right size, then turn it into a pixmap and set that as img->pixmap. Destroy img->mask for now (this is not right.) */ struct android_image *transformed_image, *image; struct android_transform transform; /* If there is no transform, simply return. */ if (!memcmp (&matrix, &identity, sizeof matrix)) return; /* First, get the source image. */ image = image_get_x_image (f, img, false); /* Make the transformed image. */ transformed_image = android_create_image (image->depth, ANDROID_Z_PIXMAP, NULL, img->width, img->height); /* Allocate memory for that image. */ transformed_image->data = xmalloc (transformed_image->bytes_per_line * transformed_image->height); /* Do the transform. */ transform.m1 = matrix[0][0]; transform.m2 = matrix[0][1]; transform.m3 = matrix[0][2]; transform.m4 = matrix[1][0]; transform.m5 = matrix[1][1]; transform.m6 = matrix[1][2]; if (image->depth == 24 && smoothing) android_project_image_bilinear (image, transformed_image, &transform); else android_project_image_nearest (image, transformed_image, &transform); image_unget_x_image (img, false, image); /* Now replace the image. */ if (img->ximg) image_destroy_x_image (img->ximg); img->ximg = transformed_image; #ifndef ANDROID_STUBIFY /* Then replace the pixmap. */ android_free_pixmap (img->pixmap); /* In case android_create_pixmap signals. */ img->pixmap = ANDROID_NONE; img->pixmap = android_create_pixmap (img->width, img->height, transformed_image->depth); android_put_image (img->pixmap, transformed_image); #else emacs_abort (); #endif /* Now, transform the mask. The mask should be depth 1, and is always transformed using a nearest neighbor filter. */ if (img->mask_img || img->mask) { image = image_get_x_image (f, img, true); transformed_image = android_create_image (1, ANDROID_Z_PIXMAP, NULL, img->width, img->height); transformed_image->data = xmalloc (transformed_image->bytes_per_line * transformed_image->height); android_project_image_nearest (image, transformed_image, &transform); image_unget_x_image (img, true, image); /* Now replace the image. */ if (img->mask_img) image_destroy_x_image (img->mask_img); img->mask_img = transformed_image; #ifndef ANDROID_STUBIFY if (img->mask) android_free_pixmap (img->mask); img->mask = ANDROID_NONE; img->mask = android_create_pixmap (img->width, img->height, 1); android_put_image (img->mask, transformed_image); #endif } /* Done! */ #endif } #endif /* HAVE_IMAGEMAGICK || HAVE_NATIVE_TRANSFORMS */ /* Return the id of image with Lisp specification SPEC on frame F. SPEC must be a valid Lisp image specification (see valid_image_p). */ ptrdiff_t lookup_image (struct frame *f, Lisp_Object spec, int face_id) { struct image *img; EMACS_UINT hash; if (FRAME_FACE_CACHE (f) == NULL) init_frame_faces (f); if (FRAME_FACE_CACHE (f)->used == 0) recompute_basic_faces (f); if (face_id < 0 || face_id >= FRAME_FACE_CACHE (f)->used) face_id = DEFAULT_FACE_ID; struct face *face = FACE_FROM_ID (f, face_id); unsigned long foreground = face->foreground; unsigned long background = face->background; int font_size = face->font->pixel_size; char *font_family = SSDATA (face->lface[LFACE_FAMILY_INDEX]); /* F must be a window-system frame, and SPEC must be a valid image specification. */ eassert (FRAME_WINDOW_P (f)); eassert (valid_image_p (spec)); /* Look up SPEC in the hash table of the image cache. */ hash = sxhash (filter_image_spec (spec)); img = search_image_cache (f, spec, hash, foreground, background, font_size, font_family, false); if (img && img->load_failed_p) { free_image (f, img); img = NULL; } /* If the on-disk image file has changed, this is also a cache miss. */ if (img) { Lisp_Object file; bool found; file = image_spec_value (spec, QCfile, &found); if (found && STRINGP (file)) { struct stat st; if (emacs_fstatat (AT_FDCWD, SSDATA (file), &st, 0) != 0 || timespec_cmp (get_stat_mtime (&st), img->mtime) != 0) { free_image (f, img); img = NULL; } } } /* If not found, create a new image and cache it. */ if (img == NULL) { block_input (); img = make_image (spec, hash); cache_image (f, img); img->face_foreground = foreground; img->face_background = background; img->face_font_size = font_size; img->face_font_height = face->font->height; img->face_font_width = face->font->average_width; size_t len = strlen (font_family) + 1; img->face_font_family = xmalloc (len); memcpy (img->face_font_family, font_family, len); img->load_failed_p = ! img->type->load_img (f, img); /* If we can't load the image, and we don't have a width and height, use some arbitrary width and height so that we can draw a rectangle for it. */ if (img->load_failed_p) { Lisp_Object value; value = image_spec_value (spec, QCwidth, NULL); img->width = (FIXNUMP (value) ? XFIXNAT (value) : DEFAULT_IMAGE_WIDTH); value = image_spec_value (spec, QCheight, NULL); img->height = (FIXNUMP (value) ? XFIXNAT (value) : DEFAULT_IMAGE_HEIGHT); } else { /* Handle image type independent image attributes `:ascent ASCENT', `:margin MARGIN', `:relief RELIEF', `:background COLOR'. */ Lisp_Object ascent, margin, relief, bg; int relief_bound; ascent = image_spec_value (spec, QCascent, NULL); if (FIXNUMP (ascent)) img->ascent = XFIXNUM (ascent); else if (EQ (ascent, Qcenter)) img->ascent = CENTERED_IMAGE_ASCENT; margin = image_spec_value (spec, QCmargin, NULL); if (FIXNUMP (margin)) img->vmargin = img->hmargin = XFIXNUM (margin); else if (CONSP (margin)) { img->hmargin = XFIXNUM (XCAR (margin)); img->vmargin = XFIXNUM (XCDR (margin)); } relief = image_spec_value (spec, QCrelief, NULL); relief_bound = INT_MAX - max (img->hmargin, img->vmargin); if (RANGED_FIXNUMP (- relief_bound, relief, relief_bound)) { img->relief = XFIXNUM (relief); img->hmargin += eabs (img->relief); img->vmargin += eabs (img->relief); } if (! img->background_valid) { bg = image_spec_value (img->spec, QCbackground, NULL); if (!NILP (bg)) { img->background = image_alloc_image_color (f, img, bg, background); img->background_valid = 1; } } /* Do image transformations and compute masks, unless we don't have the image yet. */ if (!EQ (builtin_lisp_symbol (img->type->type), Qpostscript)) postprocess_image (f, img); /* postprocess_image above may modify the image or the mask, relying on the image's real width and height, so image_set_transform must be called after it. */ #ifdef HAVE_NATIVE_TRANSFORMS image_set_transform (f, img); #endif } unblock_input (); } /* IMG is now being used, so set its timestamp to the current time. */ img->timestamp = current_timespec (); /* Value is the image id. */ return img->id; } /* Cache image IMG in the image cache of frame F. */ static void cache_image (struct frame *f, struct image *img) { struct image_cache *c = FRAME_IMAGE_CACHE (f); ptrdiff_t i; if (!c) { c = FRAME_IMAGE_CACHE (f) = share_image_cache (f); c->refcount++; } /* Find a free slot in c->images. */ for (i = 0; i < c->used; ++i) if (c->images[i] == NULL) break; /* If no free slot found, maybe enlarge c->images. */ if (i == c->used && c->used == c->size) c->images = xpalloc (c->images, &c->size, 1, -1, sizeof *c->images); /* Add IMG to c->images, and assign IMG an id. */ c->images[i] = img; img->id = i; if (i == c->used) ++c->used; /* Add IMG to the cache's hash table. */ i = img->hash % IMAGE_CACHE_BUCKETS_SIZE; img->next = c->buckets[i]; if (img->next) img->next->prev = img; img->prev = NULL; c->buckets[i] = img; } #if defined (HAVE_WEBP) || defined (HAVE_GIF) /* To speed animations up, we keep a cache (based on EQ-ness of the image spec/object) where we put the animator iterator. */ struct anim_cache { Lisp_Object spec; /* For webp, this will be an iterator, and for libgif, a gif handle. */ void *handle; /* If we need to maintain temporary data of some sort. */ void *temp; /* A function to call to free the handle. */ void (*destructor) (void *); int index, width, height, frames; /* This is used to be able to say something about the cache size. We don't actually know how much memory the different libraries actually use here (since these cache structures are opaque), so this is mostly just the size of the original image file. */ int byte_size; struct timespec update_time; struct anim_cache *next; }; static struct anim_cache *anim_cache = NULL; static struct anim_cache * anim_create_cache (Lisp_Object spec) { struct anim_cache *cache = xmalloc (sizeof (struct anim_cache)); cache->handle = NULL; cache->temp = NULL; cache->index = -1; cache->next = NULL; cache->spec = spec; cache->byte_size = 0; return cache; } /* Discard cached images that haven't been used for a minute. If CLEAR is t, remove all animation cache entries. If CLEAR is anything other than nil or t, only remove the entries that have a spec `eq' to CLEAR. */ static void anim_prune_animation_cache (Lisp_Object clear) { struct anim_cache **pcache = &anim_cache; struct timespec old = timespec_sub (current_timespec (), make_timespec (60, 0)); while (*pcache) { struct anim_cache *cache = *pcache; if (EQ (clear, Qt) || (NILP (clear) && timespec_cmp (old, cache->update_time) > 0) || EQ (clear, cache->spec)) { if (cache->handle) cache->destructor (cache); if (cache->temp) xfree (cache->temp); *pcache = cache->next; xfree (cache); } else pcache = &cache->next; } } static struct anim_cache * anim_get_animation_cache (Lisp_Object spec) { struct anim_cache *cache; struct anim_cache **pcache = &anim_cache; anim_prune_animation_cache (Qnil); while (1) { cache = *pcache; if (! cache) { *pcache = cache = anim_create_cache (spec); break; } if (EQ (spec, cache->spec)) break; pcache = &cache->next; } cache->update_time = current_timespec (); return cache; } #endif /* HAVE_WEBP || HAVE_GIF */ /* Call FN on every image in the image cache of frame F. Used to mark Lisp Objects in the image cache. */ /* Mark Lisp objects in image IMG. */ static void mark_image (struct image *img) { mark_object (img->spec); mark_object (img->dependencies); if (!NILP (img->lisp_data)) mark_object (img->lisp_data); } void mark_image_cache (struct image_cache *c) { if (c) { ptrdiff_t i; for (i = 0; i < c->used; ++i) if (c->images[i]) mark_image (c->images[i]); } #if defined HAVE_WEBP || defined HAVE_GIF for (struct anim_cache *cache = anim_cache; cache; cache = cache->next) mark_object (cache->spec); #endif } /*********************************************************************** X / NS / W32 support code Most of this code is shared with Android to make it easier to maintain. ***********************************************************************/ #if defined HAVE_X_WINDOWS || defined HAVE_ANDROID static bool x_check_image_size (XImage *ximg, int width, int height) { /* Respect Xlib's limits: it cannot deal with images that have more than INT_MAX (and/or UINT_MAX) bytes. And respect Emacs's limits of PTRDIFF_MAX (and/or SIZE_MAX) bytes for any object. */ enum { XLIB_BYTES_MAX = min (INT_MAX, UINT_MAX), X_IMAGE_BYTES_MAX = min (XLIB_BYTES_MAX, min (PTRDIFF_MAX, SIZE_MAX)) }; int bitmap_pad, depth, bytes_per_line; if (ximg) { #ifndef HAVE_ANDROID bitmap_pad = ximg->bitmap_pad; #else bitmap_pad = (ximg->depth == 1 ? 8 : 32); #endif depth = ximg->depth; bytes_per_line = ximg->bytes_per_line; } else { bitmap_pad = 8; depth = 1; bytes_per_line = (width >> 3) + ((width & 7) != 0); } return (width <= (INT_MAX - (bitmap_pad - 1)) / depth && height <= X_IMAGE_BYTES_MAX / bytes_per_line); } static bool x_create_x_image_and_pixmap (struct frame *f, int width, int height, int depth, XImage **ximg, Pixmap *pixmap) { #ifndef HAVE_ANDROID Display *display = FRAME_X_DISPLAY (f); Drawable drawable = FRAME_X_DRAWABLE (f); #endif eassert (input_blocked_p ()); if (depth <= 0) depth = FRAME_DISPLAY_INFO (f)->n_planes; #ifndef HAVE_ANDROID *ximg = XCreateImage (display, FRAME_X_VISUAL (f), depth, ZPixmap, 0, NULL, width, height, depth > 16 ? 32 : depth > 8 ? 16 : 8, 0); #else *ximg = android_create_image (depth, ANDROID_Z_PIXMAP, NULL, width, height); #endif if (*ximg == NULL) { image_error ("Unable to allocate X image"); return 0; } if (! x_check_image_size (*ximg, width, height)) { x_destroy_x_image (*ximg); *ximg = NULL; image_error ("Image too large (%dx%d)", make_fixnum (width), make_fixnum (height)); return 0; } /* Allocate image raster. */ (*ximg)->data = xmalloc ((*ximg)->bytes_per_line * height); /* Allocate a pixmap of the same size. */ #ifndef HAVE_ANDROID *pixmap = XCreatePixmap (display, drawable, width, height, depth); #else #ifndef ANDROID_STUBIFY *pixmap = android_create_pixmap (width, height, depth); #else emacs_abort (); #endif #endif if (*pixmap == NO_PIXMAP) { x_destroy_x_image (*ximg); *ximg = NULL; image_error ("Unable to create X pixmap"); return 0; } return 1; } static void x_destroy_x_image (XImage *ximg) { if (ximg->data) { xfree (ximg->data); ximg->data = NULL; } #ifndef HAVE_ANDROID XDestroyImage (ximg); #else android_destroy_image (ximg); #endif } # if !defined USE_CAIRO && defined HAVE_XRENDER /* Create and return an XRender Picture for XRender transforms. */ static Picture x_create_xrender_picture (struct frame *f, Emacs_Pixmap pixmap, int depth) { Picture p; Display *display = FRAME_X_DISPLAY (f); if (FRAME_DISPLAY_INFO (f)->xrender_supported_p) { if (depth <= 0) depth = FRAME_DISPLAY_INFO (f)->n_planes; if (depth == 32 || depth == 24 || depth == 8 || depth == 4 || depth == 1) { /* FIXME: Do we need to handle all possible bit depths? XRenderFindStandardFormat supports PictStandardARGB32, PictStandardRGB24, PictStandardA8, PictStandardA4, PictStandardA1, and PictStandardNUM (what is this?!). XRenderFindFormat may support more, but I don't understand the documentation. */ XRenderPictFormat *format; format = XRenderFindStandardFormat (display, depth == 32 ? PictStandardARGB32 : depth == 24 ? PictStandardRGB24 : depth == 8 ? PictStandardA8 : depth == 4 ? PictStandardA4 : PictStandardA1); /* Set the Picture repeat to "pad". This means when operations look at pixels outside the image area they will use the value of the nearest real pixel instead of using a transparent black pixel. */ XRenderPictureAttributes attr; unsigned long attr_mask = CPRepeat; attr.repeat = RepeatPad; p = XRenderCreatePicture (display, pixmap, format, attr_mask, &attr); } else { image_error ("Specified image bit depth is not supported by XRender"); return 0; } } else { /* XRender not supported on this display. */ return 0; } return p; } # endif /* !defined USE_CAIRO && defined HAVE_XRENDER */ #endif /* HAVE_X_WINDOWS */ /* Return true if XIMG's size WIDTH x HEIGHT doesn't break the windowing system. WIDTH and HEIGHT must both be positive. If XIMG is null, assume it is a bitmap. */ static bool image_check_image_size (Emacs_Pix_Container ximg, int width, int height) { #if (defined HAVE_X_WINDOWS || defined HAVE_ANDROID) && !defined USE_CAIRO return x_check_image_size (ximg, width, height); #else /* FIXME: Implement this check for the HAVE_NS and HAVE_NTGUI cases. For now, assume that every image size is allowed on these systems. */ return 1; #endif } /* Create an Emacs_Pix_Container and a pixmap of size WIDTH x HEIGHT for use on frame F. Set *PIMG and *PIXMAP to the Emacs_Pix_Container and Emacs_Pixmap created. Set (*PIMG)->data to a raster of WIDTH x HEIGHT pixels allocated via xmalloc. Print error messages via image_error if an error occurs. Value is true if successful. On W32, a DEPTH of zero signifies a 24 bit image, otherwise DEPTH should indicate the bit depth of the image. */ static bool image_create_x_image_and_pixmap_1 (struct frame *f, int width, int height, int depth, Emacs_Pix_Container *pimg, Emacs_Pixmap *pixmap, Picture *picture) { #ifdef USE_CAIRO eassert (input_blocked_p ()); /* Allocate a pixmap of the same size. */ *pixmap = image_create_pix_container (width, height, depth); if (*pixmap == NO_PIXMAP) { *pimg = NULL; image_error ("Unable to create X pixmap"); return false; } *pimg = *pixmap; return 1; #elif defined HAVE_X_WINDOWS || defined HAVE_ANDROID if (!x_create_x_image_and_pixmap (f, width, height, depth, pimg, pixmap)) return 0; # ifdef HAVE_XRENDER if (picture) *picture = x_create_xrender_picture (f, *pixmap, depth); # endif return 1; #endif /* HAVE_X_WINDOWS */ #ifdef HAVE_HAIKU if (depth == 0) depth = 24; if (depth != 24 && depth != 1) { *pimg = NULL; image_error ("Invalid image bit depth specified"); return 0; } *pixmap = BBitmap_new (width, height, depth == 1); if (*pixmap == NO_PIXMAP) { *pimg = NULL; image_error ("Unable to create pixmap"); return false; } *pimg = *pixmap; return 1; #endif #ifdef HAVE_NTGUI BITMAPINFOHEADER *header; HDC hdc; int scanline_width_bits; int remainder; int palette_colors = 0; if (depth == 0) depth = 24; if (depth != 1 && depth != 4 && depth != 8 && depth != 16 && depth != 24 && depth != 32) { image_error ("Invalid image bit depth specified"); return 0; } scanline_width_bits = width * depth; remainder = scanline_width_bits % 32; if (remainder) scanline_width_bits += 32 - remainder; /* Bitmaps with a depth less than 16 need a palette. */ /* BITMAPINFO structure already contains the first RGBQUAD. */ if (depth < 16) palette_colors = 1 << (depth - 1); *pimg = xmalloc (sizeof (XImage) + palette_colors * sizeof (RGBQUAD)); header = &(*pimg)->info.bmiHeader; memset (&(*pimg)->info, 0, sizeof (BITMAPINFO)); header->biSize = sizeof (*header); header->biWidth = width; header->biHeight = -height; /* negative indicates a top-down bitmap. */ header->biPlanes = 1; header->biBitCount = depth; header->biCompression = BI_RGB; header->biClrUsed = palette_colors; /* TODO: fill in palette. */ if (depth == 1) { (*pimg)->info.bmiColors[0].rgbBlue = 0; (*pimg)->info.bmiColors[0].rgbGreen = 0; (*pimg)->info.bmiColors[0].rgbRed = 0; (*pimg)->info.bmiColors[0].rgbReserved = 0; /* bmiColors is a variable-length array declared by w32api headers as bmiColors[1], which triggers a warning under -Warray-bounds; shut that up. */ # if GNUC_PREREQ (4, 4, 0) # pragma GCC push_options # pragma GCC diagnostic ignored "-Warray-bounds" # endif (*pimg)->info.bmiColors[1].rgbBlue = 255; (*pimg)->info.bmiColors[1].rgbGreen = 255; (*pimg)->info.bmiColors[1].rgbRed = 255; (*pimg)->info.bmiColors[1].rgbReserved = 0; # if GNUC_PREREQ (4, 4, 0) # pragma GCC pop_options # endif } hdc = get_frame_dc (f); /* Create a DIBSection and raster array for the bitmap, and store its handle in *pixmap. */ *pixmap = CreateDIBSection (hdc, &(*pimg)->info, (depth < 16) ? DIB_PAL_COLORS : DIB_RGB_COLORS, /* casting avoids a GCC warning */ (void **) &(*pimg)->data, NULL, 0); /* Realize display palette and garbage all frames. */ release_frame_dc (f, hdc); if (*pixmap == NULL) { DWORD err = GetLastError (); Lisp_Object errcode; /* All system errors are < 10000, so the following is safe. */ XSETINT (errcode, err); image_error ("Unable to create bitmap, error code %d", errcode); image_destroy_x_image (*pimg); *pimg = NULL; return 0; } return 1; #endif /* HAVE_NTGUI */ #ifdef HAVE_NS *pixmap = ns_image_for_XPM (width, height, depth); if (*pixmap == 0) { *pimg = NULL; image_error ("Unable to allocate NSImage for XPM pixmap"); return 0; } *pimg = *pixmap; return 1; #endif } /* Destroy Emacs_Pix_Container PIMG. Free data associated with PIMG. */ static void image_destroy_x_image (Emacs_Pix_Container pimg) { #if (defined HAVE_X_WINDOWS || defined HAVE_ANDROID) && !defined USE_CAIRO x_destroy_x_image (pimg); #else eassert (input_blocked_p ()); if (pimg) { #if defined USE_CAIRO || defined HAVE_HAIKU || defined HAVE_NS /* On these systems, Emacs_Pix_Containers always point to the same data as pixmaps in `struct image', and therefore must never be freed separately. */ #endif /* USE_CAIRO || HAVE_HAIKU || HAVE_NS */ #ifdef HAVE_NTGUI /* Data will be freed by DestroyObject. */ pimg->data = NULL; xfree (pimg); #endif /* HAVE_NTGUI */ } #endif } /* Put Emacs_Pix_Container PIMG into pixmap PIXMAP on frame F. WIDTH and HEIGHT are width and height of both the image and pixmap. */ static void gui_put_x_image (struct frame *f, Emacs_Pix_Container pimg, Emacs_Pixmap pixmap, int width, int height) { #if defined USE_CAIRO || defined HAVE_HAIKU || defined HAVE_NS eassert (pimg == pixmap); #elif defined HAVE_X_WINDOWS GC gc; eassert (input_blocked_p ()); gc = XCreateGC (FRAME_X_DISPLAY (f), pixmap, 0, NULL); XPutImage (FRAME_X_DISPLAY (f), pixmap, gc, pimg, 0, 0, 0, 0, pimg->width, pimg->height); XFreeGC (FRAME_X_DISPLAY (f), gc); #elif defined HAVE_ANDROID android_put_image (pixmap, pimg); #endif /* HAVE_ANDROID */ } /* Thin wrapper for image_create_x_image_and_pixmap_1, so that it matches with image_put_x_image. */ static bool image_create_x_image_and_pixmap (struct frame *f, struct image *img, int width, int height, int depth, Emacs_Pix_Container *ximg, bool mask_p) { eassert ((!mask_p ? img->pixmap : img->mask) == NO_PIXMAP); Picture *picture = NULL; #if !defined USE_CAIRO && defined HAVE_XRENDER picture = !mask_p ? &img->picture : &img->mask_picture; #endif return image_create_x_image_and_pixmap_1 (f, width, height, depth, ximg, !mask_p ? &img->pixmap : &img->mask, picture); } /* Put pixel image PIMG into image IMG on frame F, as a mask if and only if MASK_P. On X, this simply records PIMG on a member of IMG, so it can be put into the pixmap afterwards via image_sync_to_pixmaps. On the other platforms, it puts PIMG into the pixmap, then frees the pixel image and its buffer. */ static void image_put_x_image (struct frame *f, struct image *img, Emacs_Pix_Container ximg, bool mask_p) { #if (defined HAVE_X_WINDOWS || defined HAVE_ANDROID) && !defined USE_CAIRO if (!mask_p) { eassert (img->ximg == NULL); img->ximg = ximg; } else { eassert (img->mask_img == NULL); img->mask_img = ximg; } #else gui_put_x_image (f, ximg, !mask_p ? img->pixmap : img->mask, img->width, img->height); image_destroy_x_image (ximg); #endif } #if (defined HAVE_X_WINDOWS || defined HAVE_ANDROID) && !defined USE_CAIRO /* Put the X images recorded in IMG on frame F into pixmaps, then free the X images and their buffers. */ static void image_sync_to_pixmaps (struct frame *f, struct image *img) { if (img->ximg) { gui_put_x_image (f, img->ximg, img->pixmap, img->width, img->height); image_destroy_x_image (img->ximg); img->ximg = NULL; } if (img->mask_img) { gui_put_x_image (f, img->mask_img, img->mask, img->width, img->height); image_destroy_x_image (img->mask_img); img->mask_img = NULL; } } #endif #ifdef HAVE_NTGUI /* Create a memory device context for IMG on frame F. It stores the currently selected GDI object into *PREV for future restoration by image_unget_x_image_or_dc. */ static HDC image_get_x_image_or_dc (struct frame *f, struct image *img, bool mask_p, HGDIOBJ *prev) { HDC frame_dc = get_frame_dc (f); HDC ximg = CreateCompatibleDC (frame_dc); release_frame_dc (f, frame_dc); *prev = SelectObject (ximg, !mask_p ? img->pixmap : img->mask); return ximg; } static void image_unget_x_image_or_dc (struct image *img, bool mask_p, HDC ximg, HGDIOBJ prev) { SelectObject (ximg, prev); DeleteDC (ximg); } #else /* !HAVE_NTGUI */ /* Get the X image for IMG on frame F. The resulting X image data should be treated as read-only at least on X. */ static Emacs_Pix_Container image_get_x_image (struct frame *f, struct image *img, bool mask_p) { #if defined USE_CAIRO || defined (HAVE_HAIKU) return !mask_p ? img->pixmap : img->mask; #elif defined HAVE_X_WINDOWS || defined HAVE_ANDROID XImage *ximg_in_img = !mask_p ? img->ximg : img->mask_img; if (ximg_in_img) return ximg_in_img; #ifdef HAVE_XRENDER else if (img->picture) return XGetImage (FRAME_X_DISPLAY (f), !mask_p ? img->pixmap : img->mask, 0, 0, img->original_width, img->original_height, ~0, ZPixmap); #endif #ifndef HAVE_ANDROID else return XGetImage (FRAME_X_DISPLAY (f), !mask_p ? img->pixmap : img->mask, 0, 0, img->width, img->height, ~0, ZPixmap); #else else return android_get_image (!mask_p ? img->pixmap : img->mask, ANDROID_Z_PIXMAP); #endif #elif defined (HAVE_NS) Emacs_Pix_Container pixmap = !mask_p ? img->pixmap : img->mask; ns_retain_object (pixmap); return pixmap; #endif } static void image_unget_x_image (struct image *img, bool mask_p, Emacs_Pix_Container ximg) { #ifdef USE_CAIRO #elif defined HAVE_X_WINDOWS || defined HAVE_ANDROID XImage *ximg_in_img = !mask_p ? img->ximg : img->mask_img; if (ximg_in_img) eassert (ximg == ximg_in_img); #ifdef HAVE_ANDROID else android_destroy_image (ximg); #else else XDestroyImage (ximg); #endif #elif defined (HAVE_NS) ns_release_object (ximg); #endif } #endif /* !HAVE_NTGUI */ /*********************************************************************** File Handling ***********************************************************************/ /* Find image file FILE. Look in data-directory/images, then x-bitmap-file-path. Value is the full name of the file found, or nil if not found. If PFD is nonnull store into *PFD a readable file descriptor for the file, opened in binary mode. If PFD is null, do not open the file. */ static Lisp_Object image_find_image_fd (Lisp_Object file, image_fd *pfd) { Lisp_Object file_found, search_path; int fd; void *platform; /* TODO I think this should use something like image-load-path instead. Unfortunately, that can contain non-string elements. */ search_path = Fcons (Fexpand_file_name (build_string ("images"), Vdata_directory), Vx_bitmap_file_path); /* Try to find FILE in data-directory/images, then x-bitmap-file-path. */ platform = NULL; fd = openp (search_path, file, Qnil, &file_found, pfd ? Qt : make_fixnum (R_OK), false, false, pfd ? &platform : NULL); if (fd == -2) { /* The file exists locally, but has a file name handler. (This happens, e.g., under Auto Image File Mode.) 'openp' didn't open the file, so we should, because the caller expects that. */ Lisp_Object encoded_name = ENCODE_FILE (file_found); fd = emacs_open (SSDATA (encoded_name), O_RDONLY, 0); } /* FD is -3 if PLATFORM is set to a valid asset file descriptor on Android. */ else if (fd < 0 && fd != -3) return Qnil; #if !defined HAVE_ANDROID || defined ANDROID_STUBIFY if (pfd) *pfd = fd; #else /* Construct an asset file descriptor. */ if (pfd) { pfd->fd = fd; pfd->asset = platform; } #endif return file_found; } /* Find image file FILE. Look in data-directory/images, then x-bitmap-file-path. Value is the full name of the file found, or nil if not found. */ Lisp_Object image_find_image_file (Lisp_Object file) { return image_find_image_fd (file, 0); } #if defined HAVE_ANDROID && !defined ANDROID_STUBIFY static void close_android_fd (void *ptr) { android_close_asset (*(struct android_fd_or_asset *) ptr); } #endif /* Read FILE into memory. Value is a pointer to a buffer allocated with xmalloc holding FILE's contents. Value is null if an error occurred. FD is a file descriptor open for reading FILE. Set *SIZE to the size of the file. */ static char * slurp_file (image_fd fd, ptrdiff_t *size) { #if !defined HAVE_ANDROID || defined ANDROID_STUBIFY FILE *fp = emacs_fdopen (fd, "rb"); char *buf = NULL; struct stat st; if (fp) { specpdl_ref count = SPECPDL_INDEX (); record_unwind_protect_ptr (fclose_unwind, fp); if (sys_fstat (fileno (fp), &st) == 0 && 0 <= st.st_size && st.st_size < min (PTRDIFF_MAX, SIZE_MAX)) { /* Report an error if we read past the purported EOF. This can happen if the file grows as we read it. */ ptrdiff_t buflen = st.st_size; buf = xmalloc (buflen + 1); if (fread (buf, 1, buflen + 1, fp) == buflen) *size = buflen; else { xfree (buf); buf = NULL; } } unbind_to (count, Qnil); } #else char *buf; struct stat st; specpdl_ref count; if (!android_asset_fstat (fd, &st) && (0 <= st.st_size && st.st_size < min (PTRDIFF_MAX, SIZE_MAX))) { count = SPECPDL_INDEX (); record_unwind_protect_ptr (close_android_fd, &fd); buf = xmalloc (st.st_size + 1); /* Read one byte past the end of the file. That allows detecting if the file grows as it is being read. */ if (android_asset_read (fd, buf, st.st_size + 1) == st.st_size) *size = st.st_size; else { xfree (buf); buf = NULL; } unbind_to (count, Qnil); } else { buf = NULL; android_close_asset (fd); } #endif return buf; } /* Like slurp_file above, but with added error handling. Value is null if an error occurred. Set SIZE to the size of the file. IMAGE_TYPE describes the image type (e.g. "PNG"). */ static char * slurp_image (Lisp_Object filename, ptrdiff_t *size, const char *image_type) { image_fd fd; Lisp_Object file = image_find_image_fd (filename, &fd); if (!STRINGP (file)) { image_not_found_error (filename); return NULL; } char *result = slurp_file (fd, size); if (result == NULL) image_error ("Error loading %s image `%s'", build_unibyte_string (image_type), file); return result; } /*********************************************************************** XBM images ***********************************************************************/ static bool xbm_file_p (Lisp_Object); /* Indices of image specification fields in xbm_format, below. */ enum xbm_keyword_index { XBM_TYPE, XBM_FILE, XBM_WIDTH, XBM_HEIGHT, XBM_STRIDE, XBM_DATA, XBM_FOREGROUND, XBM_BACKGROUND, XBM_ASCENT, XBM_MARGIN, XBM_RELIEF, XBM_ALGORITHM, XBM_HEURISTIC_MASK, XBM_MASK, XBM_DATA_WIDTH, XBM_DATA_HEIGHT, XBM_LAST }; /* Vector of image_keyword structures describing the format of valid XBM image specifications. */ static const struct image_keyword xbm_format[XBM_LAST] = { {":type", IMAGE_SYMBOL_VALUE, 1}, {":file", IMAGE_STRING_VALUE, 0}, {":width", IMAGE_POSITIVE_INTEGER_VALUE, 0}, {":height", IMAGE_POSITIVE_INTEGER_VALUE, 0}, {":stride", IMAGE_POSITIVE_INTEGER_VALUE, 0}, {":data", IMAGE_DONT_CHECK_VALUE_TYPE, 0}, {":foreground", IMAGE_STRING_OR_NIL_VALUE, 0}, {":background", IMAGE_STRING_OR_NIL_VALUE, 0}, {":ascent", IMAGE_ASCENT_VALUE, 0}, {":margin", IMAGE_NON_NEGATIVE_INTEGER_VALUE_OR_PAIR, 0}, {":relief", IMAGE_INTEGER_VALUE, 0}, {":conversion", IMAGE_DONT_CHECK_VALUE_TYPE, 0}, {":heuristic-mask", IMAGE_DONT_CHECK_VALUE_TYPE, 0}, {":mask", IMAGE_DONT_CHECK_VALUE_TYPE, 0}, {":data-width", IMAGE_POSITIVE_INTEGER_VALUE, 0}, {":data-height", IMAGE_POSITIVE_INTEGER_VALUE, 0} }; /* Tokens returned from xbm_scan. */ enum xbm_token { XBM_TK_IDENT = 256, XBM_TK_NUMBER, XBM_TK_OVERFLOW }; /* Return true if OBJECT is a valid XBM-type image specification. A valid specification is a list starting with the symbol `image' The rest of the list is a property list which must contain an entry `:type xbm'. If the specification specifies a file to load, it must contain an entry `:file FILENAME' where FILENAME is a string. If the specification is for a bitmap loaded from memory it must contain `:data-width WIDTH', `:data-height HEIGHT', and `:data DATA', where WIDTH and HEIGHT are integers > 0. DATA may be: 1. a string large enough to hold the bitmap data, i.e. it must have a size >= (WIDTH + 7) / 8 * HEIGHT 2. a bool-vector of size >= WIDTH * HEIGHT 3. a vector of strings or bool-vectors, one for each line of the bitmap. 4. a string containing an in-memory XBM file. Both the file and data forms may contain the additional entries `:background COLOR' and `:foreground COLOR'. If not present, foreground and background of the frame on which the image is displayed is used. */ static bool xbm_image_p (Lisp_Object object) { struct image_keyword kw[XBM_LAST]; memcpy (kw, xbm_format, sizeof kw); if (!parse_image_spec (object, kw, XBM_LAST, Qxbm)) return 0; eassert (EQ (kw[XBM_TYPE].value, Qxbm)); if (kw[XBM_FILE].count) { if (kw[XBM_DATA].count) return 0; } else if (kw[XBM_DATA].count && xbm_file_p (kw[XBM_DATA].value)) { /* In-memory XBM file. */ if (kw[XBM_FILE].count) return 0; } else { Lisp_Object data; int width, height, stride; /* Entries for `:width', `:height' and `:data' must be present. */ if (!kw[XBM_DATA_WIDTH].count || !kw[XBM_DATA_HEIGHT].count || !kw[XBM_DATA].count) return 0; data = kw[XBM_DATA].value; width = XFIXNAT (kw[XBM_DATA_WIDTH].value); height = XFIXNAT (kw[XBM_DATA_HEIGHT].value); if (!kw[XBM_STRIDE].count) stride = width; else stride = XFIXNAT (kw[XBM_STRIDE].value); /* Check type of data, and width and height against contents of data. */ if (VECTORP (data)) { EMACS_INT i; /* Number of elements of the vector must be >= height. */ if (ASIZE (data) < height) return 0; /* Each string or bool-vector in data must be large enough for one line of the image. */ for (i = 0; i < height; ++i) { Lisp_Object elt = AREF (data, i); if (STRINGP (elt)) { if (SCHARS (elt) < stride / CHAR_BIT) return 0; } else if (BOOL_VECTOR_P (elt)) { if (bool_vector_size (elt) < width) return 0; } else return 0; } } else if (STRINGP (data)) { if (SCHARS (data) < stride / CHAR_BIT * height) return 0; } else if (BOOL_VECTOR_P (data)) { if (height > 1 && stride != (width + CHAR_BIT - 1) / CHAR_BIT * CHAR_BIT) return 0; if (bool_vector_size (data) / height < stride) return 0; } else return 0; } return 1; } /* Scan a bitmap file. FP is the stream to read from. Value is either an enumerator from enum xbm_token, or a character for a single-character token, or 0 at end of file. If scanning an identifier, store the lexeme of the identifier in SVAL. If scanning a number, store its value in *IVAL. */ static int xbm_scan (char **s, char *end, char *sval, int *ival) { unsigned char c UNINIT; char *sval_end = sval + BUFSIZ; loop: /* Skip white space. */ while (*s < end && (c = *(*s)++, c_isspace (c))) ; if (*s >= end) c = 0; else if (c_isdigit (c)) { int value = 0, digit; bool overflow = false; if (c == '0' && *s < end) { c = *(*s)++; if (c == 'x' || c == 'X') { while (*s < end) { c = *(*s)++; digit = char_hexdigit (c); if (digit < 0) break; overflow |= ckd_mul (&value, value, 16); value += digit; } } else if ('0' <= c && c <= '7') { value = c - '0'; while (*s < end && (c = *(*s)++, '0' <= c && c <= '7')) { overflow |= ckd_mul (&value, value, 8); value += c - '0'; } } } else { value = c - '0'; while (*s < end && (c = *(*s)++, c_isdigit (c))) { overflow |= ckd_mul (&value, value, 10); overflow |= ckd_add (&value, value, c - '0'); } } if (*s < end) *s = *s - 1; *ival = value; return overflow ? XBM_TK_OVERFLOW : XBM_TK_NUMBER; } /* Character literal. XBM images typically contain hex escape sequences and not actual characters, so we only try to handle that here. */ else if (c == '\'') { int value = 0, digit; bool overflow = false; if (*s == end) return 0; c = *(*s)++; if (c != '\\' || *s == end) return 0; c = *(*s)++; if (c == 'x') { while (*s < end) { c = *(*s)++; if (c == '\'') { *ival = value; return overflow ? XBM_TK_OVERFLOW : XBM_TK_NUMBER; } digit = char_hexdigit (c); if (digit < 0) return 0; overflow |= ckd_mul (&value, value, 16); value += digit; } } return 0; } else if (c_isalpha (c) || c == '_') { *sval++ = c; while (*s < end && sval < sval_end && (c = *(*s)++, (c_isalnum (c) || c == '_'))) *sval++ = c; *sval = 0; if (*s < end) *s = *s - 1; return XBM_TK_IDENT; } else if (c == '/' && **s == '*') { /* C-style comment. */ ++*s; while (**s && (**s != '*' || *(*s + 1) != '/')) ++*s; if (**s) { *s += 2; goto loop; } } return c; } #ifdef HAVE_NTGUI /* Create a Windows bitmap from X bitmap data. */ static HBITMAP w32_create_pixmap_from_bitmap_data (int width, int height, char *data) { static unsigned char swap_nibble[16] = { 0x0, 0x8, 0x4, 0xc, /* 0000 1000 0100 1100 */ 0x2, 0xa, 0x6, 0xe, /* 0010 1010 0110 1110 */ 0x1, 0x9, 0x5, 0xd, /* 0001 1001 0101 1101 */ 0x3, 0xb, 0x7, 0xf }; /* 0011 1011 0111 1111 */ int i, j, w1, w2; unsigned char *bits, *p; HBITMAP bmp; w1 = (width + 7) / 8; /* nb of 8bits elt in X bitmap */ w2 = ((width + 15) / 16) * 2; /* nb of 16bits elt in W32 bitmap */ bits = alloca (height * w2); memset (bits, 0, height * w2); for (i = 0; i < height; i++) { p = bits + i*w2; for (j = 0; j < w1; j++) { /* Bitswap XBM bytes to match how Windows does things. */ unsigned char c = *data++; *p++ = (unsigned char)((swap_nibble[c & 0xf] << 4) | (swap_nibble[(c>>4) & 0xf])); } } bmp = CreateBitmap (width, height, 1, 1, (char *) bits); return bmp; } static void convert_mono_to_color_image (struct frame *f, struct image *img, COLORREF foreground, COLORREF background) { HDC hdc, old_img_dc, new_img_dc; HGDIOBJ old_prev, new_prev; HBITMAP new_pixmap; hdc = get_frame_dc (f); old_img_dc = CreateCompatibleDC (hdc); new_img_dc = CreateCompatibleDC (hdc); new_pixmap = CreateCompatibleBitmap (hdc, img->width, img->height); release_frame_dc (f, hdc); old_prev = SelectObject (old_img_dc, img->pixmap); new_prev = SelectObject (new_img_dc, new_pixmap); SetTextColor (new_img_dc, foreground); SetBkColor (new_img_dc, background); BitBlt (new_img_dc, 0, 0, img->width, img->height, old_img_dc, 0, 0, SRCCOPY); SelectObject (old_img_dc, old_prev); SelectObject (new_img_dc, new_prev); DeleteDC (old_img_dc); DeleteDC (new_img_dc); DeleteObject (img->pixmap); if (new_pixmap == 0) fputs ("Failed to convert image to color.\n", stderr); else img->pixmap = new_pixmap; } #endif /* HAVE_NTGUI */ static void Create_Pixmap_From_Bitmap_Data (struct frame *f, struct image *img, char *data, RGB_PIXEL_COLOR fg, RGB_PIXEL_COLOR bg, bool non_default_colors) { #ifdef USE_CAIRO Emacs_Color fgbg[] = {{.pixel = fg}, {.pixel = bg}}; FRAME_TERMINAL (f)->query_colors (f, fgbg, ARRAYELTS (fgbg)); fg = lookup_rgb_color (f, fgbg[0].red, fgbg[0].green, fgbg[0].blue); bg = lookup_rgb_color (f, fgbg[1].red, fgbg[1].green, fgbg[1].blue); img->pixmap = image_pix_container_create_from_bitmap_data (f, data, img->width, img->height, fg, bg); #elif defined HAVE_X_WINDOWS img->pixmap = XCreatePixmapFromBitmapData (FRAME_X_DISPLAY (f), FRAME_X_DRAWABLE (f), data, img->width, img->height, fg, bg, FRAME_DISPLAY_INFO (f)->n_planes); # if !defined USE_CAIRO && defined HAVE_XRENDER if (img->pixmap) img->picture = x_create_xrender_picture (f, img->pixmap, 0); # endif #elif defined HAVE_ANDROID #ifndef ANDROID_STUBIFY img->pixmap = android_create_pixmap_from_bitmap_data (data, img->width, img->height, fg, bg, FRAME_DISPLAY_INFO (f)->n_planes); #else emacs_abort (); #endif #elif defined HAVE_NTGUI img->pixmap = w32_create_pixmap_from_bitmap_data (img->width, img->height, data); /* If colors were specified, transfer the bitmap to a color one. */ if (non_default_colors) convert_mono_to_color_image (f, img, fg, bg); #elif defined HAVE_NS img->pixmap = ns_image_from_XBM (data, img->width, img->height, fg, bg); #elif defined HAVE_HAIKU img->pixmap = BBitmap_new (img->width, img->height, 0); if (img->pixmap) { int bytes_per_line = (img->width + 7) / 8; for (int y = 0; y < img->height; y++) { for (int x = 0; x < img->width; x++) PUT_PIXEL (img->pixmap, x, y, (data[x / 8] >> (x % 8)) & 1 ? fg : bg); data += bytes_per_line; } } #endif } /* Replacement for XReadBitmapFileData which isn't available under old X versions. CONTENTS is a pointer to a buffer to parse; END is the buffer's end. Set *WIDTH and *HEIGHT to the width and height of the image. Return in *DATA the bitmap data allocated with xmalloc. Value is true if successful. DATA null means just test if CONTENTS looks like an in-memory XBM file. If INHIBIT_IMAGE_ERROR, inhibit the call to image_error when the image size is invalid (the bitmap remains unread). */ static bool xbm_read_bitmap_data (struct frame *f, char *contents, char *end, int *width, int *height, char **data, bool inhibit_image_error) { char *s = contents; char buffer[BUFSIZ]; bool padding_p = 0; bool v10 = 0; int bytes_per_line, i, nbytes; char *p; int value; int LA1; #define match() \ LA1 = xbm_scan (&s, end, buffer, &value) #define expect(TOKEN) \ do \ { \ if (LA1 != (TOKEN)) \ goto failure; \ match (); \ } \ while (0) #define expect_ident(IDENT) \ if (LA1 == XBM_TK_IDENT && strcmp (buffer, IDENT) == 0) \ match (); \ else \ goto failure *width = *height = -1; if (data) *data = NULL; LA1 = xbm_scan (&s, end, buffer, &value); /* Parse defines for width, height and hot-spots. */ while (LA1 == '#') { match (); expect_ident ("define"); expect (XBM_TK_IDENT); if (LA1 == XBM_TK_NUMBER) { char *q = strrchr (buffer, '_'); q = q ? q + 1 : buffer; if (strcmp (q, "width") == 0) *width = value; else if (strcmp (q, "height") == 0) *height = value; } expect (XBM_TK_NUMBER); } if (!check_image_size (f, *width, *height)) { if (!inhibit_image_error) image_size_error (); goto failure; } else if (data == NULL) goto success; /* Parse bits. Must start with `static'. */ expect_ident ("static"); if (LA1 == XBM_TK_IDENT) { if (strcmp (buffer, "unsigned") == 0) { match (); expect_ident ("char"); } else if (strcmp (buffer, "short") == 0) { match (); v10 = 1; if (*width % 16 && *width % 16 < 9) padding_p = 1; } else if (strcmp (buffer, "char") == 0) match (); else goto failure; } else goto failure; expect (XBM_TK_IDENT); expect ('['); expect (']'); expect ('='); expect ('{'); if (! image_check_image_size (0, *width, *height)) { if (!inhibit_image_error) image_error ("Image too large (%dx%d)", make_fixnum (*width), make_fixnum (*height)); goto failure; } bytes_per_line = (*width + 7) / 8 + padding_p; nbytes = bytes_per_line * *height; p = *data = xmalloc (nbytes); if (v10) { for (i = 0; i < nbytes; i += 2) { int val = value; expect (XBM_TK_NUMBER); *p++ = XBM_BIT_SHUFFLE (val); if (!padding_p || ((i + 2) % bytes_per_line)) *p++ = XBM_BIT_SHUFFLE (value >> 8); if (LA1 == ',' || LA1 == '}') match (); else goto failure; } } else { for (i = 0; i < nbytes; ++i) { int val = value; expect (XBM_TK_NUMBER); *p++ = XBM_BIT_SHUFFLE (val); if (LA1 == ',' || LA1 == '}') match (); else goto failure; } } success: return 1; failure: if (data && *data) { xfree (*data); *data = NULL; } return 0; #undef match #undef expect #undef expect_ident } /* Load XBM image IMG which will be displayed on frame F from buffer CONTENTS. END is the end of the buffer. Value is true if successful. */ static bool xbm_load_image (struct frame *f, struct image *img, char *contents, char *end) { bool rc; char *data; bool success_p = 0; rc = xbm_read_bitmap_data (f, contents, end, &img->width, &img->height, &data, 0); if (rc) { unsigned long foreground = img->face_foreground; unsigned long background = img->face_background; bool non_default_colors = 0; Lisp_Object value; eassert (img->width > 0 && img->height > 0); /* Get foreground and background colors, maybe allocate colors. */ value = image_spec_value (img->spec, QCforeground, NULL); if (!NILP (value)) { foreground = image_alloc_image_color (f, img, value, foreground); non_default_colors = 1; } value = image_spec_value (img->spec, QCbackground, NULL); if (!NILP (value)) { background = image_alloc_image_color (f, img, value, background); img->background = background; img->background_valid = 1; non_default_colors = 1; } if (image_check_image_size (0, img->width, img->height)) Create_Pixmap_From_Bitmap_Data (f, img, data, foreground, background, non_default_colors); else img->pixmap = NO_PIXMAP; xfree (data); if (img->pixmap == NO_PIXMAP) { image_clear_image (f, img); image_error ("Unable to create X pixmap for `%s'", img->spec); } else success_p = 1; } else image_error ("Error loading XBM image `%s'", img->spec); return success_p; } /* Value is true if DATA looks like an in-memory XBM file. */ static bool xbm_file_p (Lisp_Object data) { int w, h; return (STRINGP (data) && xbm_read_bitmap_data (NULL, SSDATA (data), SSDATA (data) + SBYTES (data), &w, &h, NULL, 1)); } /* Fill image IMG which is used on frame F with pixmap data. Value is true if successful. */ static bool xbm_load (struct frame *f, struct image *img) { bool success_p = 0; Lisp_Object file_name; eassert (xbm_image_p (img->spec)); /* If IMG->spec specifies a file name, create a non-file spec from it. */ file_name = image_spec_value (img->spec, QCfile, NULL); if (STRINGP (file_name)) { ptrdiff_t size; char *contents = slurp_image (file_name, &size, "XBM"); if (contents == NULL) return false; success_p = xbm_load_image (f, img, contents, contents + size); xfree (contents); } else { struct image_keyword fmt[XBM_LAST]; Lisp_Object data; unsigned long foreground = img->face_foreground; unsigned long background = img->face_background; bool non_default_colors = 0; char *bits; bool parsed_p; bool in_memory_file_p = 0; /* See if data looks like an in-memory XBM file. */ data = image_spec_value (img->spec, QCdata, NULL); in_memory_file_p = xbm_file_p (data); /* Parse the image specification. */ memcpy (fmt, xbm_format, sizeof fmt); parsed_p = parse_image_spec (img->spec, fmt, XBM_LAST, Qxbm); eassert (parsed_p); /* Get specified width, and height. */ if (!in_memory_file_p) { img->width = XFIXNAT (fmt[XBM_DATA_WIDTH].value); img->height = XFIXNAT (fmt[XBM_DATA_HEIGHT].value); eassert (img->width > 0 && img->height > 0); if (!check_image_size (f, img->width, img->height)) { image_size_error (); return 0; } } /* Get foreground and background colors, maybe allocate colors. */ if (fmt[XBM_FOREGROUND].count && STRINGP (fmt[XBM_FOREGROUND].value)) { foreground = image_alloc_image_color (f, img, fmt[XBM_FOREGROUND].value, foreground); non_default_colors = 1; } if (fmt[XBM_BACKGROUND].count && STRINGP (fmt[XBM_BACKGROUND].value)) { background = image_alloc_image_color (f, img, fmt[XBM_BACKGROUND].value, background); non_default_colors = 1; } if (in_memory_file_p) success_p = xbm_load_image (f, img, SSDATA (data), SSDATA (data) + SBYTES (data)); else { USE_SAFE_ALLOCA; if (VECTORP (data)) { int i; char *p; int nbytes = (img->width + CHAR_BIT - 1) / CHAR_BIT; SAFE_NALLOCA (bits, nbytes, img->height); p = bits; for (i = 0; i < img->height; ++i, p += nbytes) { Lisp_Object line = AREF (data, i); if (STRINGP (line)) memcpy (p, SDATA (line), nbytes); else memcpy (p, bool_vector_data (line), nbytes); } } else if (STRINGP (data)) bits = SSDATA (data); else bits = (char *) bool_vector_data (data); #ifdef HAVE_NTGUI { char *invertedBits; int nbytes, i; /* Windows mono bitmaps are reversed compared with X. */ invertedBits = bits; nbytes = (img->width + CHAR_BIT - 1) / CHAR_BIT * img->height; SAFE_NALLOCA (bits, 1, nbytes); for (i = 0; i < nbytes; i++) bits[i] = XBM_BIT_SHUFFLE (invertedBits[i]); } #endif /* Create the pixmap. */ if (image_check_image_size (0, img->width, img->height)) Create_Pixmap_From_Bitmap_Data (f, img, bits, foreground, background, non_default_colors); else img->pixmap = NO_PIXMAP; if (img->pixmap) success_p = 1; else { image_error ("Unable to create pixmap for XBM image `%s'", img->spec); image_clear_image (f, img); } SAFE_FREE (); } } return success_p; } /*********************************************************************** XPM images ***********************************************************************/ #if defined (HAVE_XPM) || defined (HAVE_NS) || defined (HAVE_PGTK) \ || defined (HAVE_ANDROID) static bool xpm_image_p (Lisp_Object object); static bool xpm_load (struct frame *f, struct image *img); #endif /* HAVE_XPM || HAVE_NS */ #ifdef HAVE_XPM #ifdef HAVE_NTGUI /* Indicate to xpm.h that we don't have Xlib. */ #define FOR_MSW /* simx.h in xpm defines XColor and XImage differently than Emacs. */ /* It also defines Display the same way as Emacs, but gcc 3.3 still barfs. */ #define XColor xpm_XColor #define XImage xpm_XImage #define Display xpm_Display #ifdef CYGWIN #include "noX/xpm.h" #else /* not CYGWIN */ #include "X11/xpm.h" #endif /* not CYGWIN */ #undef FOR_MSW #undef XColor #undef XImage #undef Display #else /* not HAVE_NTGUI */ #include "X11/xpm.h" #endif /* not HAVE_NTGUI */ #endif /* HAVE_XPM */ #if defined HAVE_XPM || defined USE_CAIRO || defined HAVE_NS \ || defined HAVE_HAIKU || defined HAVE_ANDROID /* Indices of image specification fields in xpm_format, below. */ enum xpm_keyword_index { XPM_TYPE, XPM_FILE, XPM_DATA, XPM_ASCENT, XPM_MARGIN, XPM_RELIEF, XPM_ALGORITHM, XPM_HEURISTIC_MASK, XPM_MASK, XPM_COLOR_SYMBOLS, XPM_BACKGROUND, XPM_LAST }; #if defined HAVE_XPM || defined HAVE_NS || defined HAVE_HAIKU \ || defined HAVE_PGTK || defined HAVE_ANDROID /* Vector of image_keyword structures describing the format of valid XPM image specifications. */ static const struct image_keyword xpm_format[XPM_LAST] = { {":type", IMAGE_SYMBOL_VALUE, 1}, {":file", IMAGE_STRING_VALUE, 0}, {":data", IMAGE_STRING_VALUE, 0}, {":ascent", IMAGE_ASCENT_VALUE, 0}, {":margin", IMAGE_NON_NEGATIVE_INTEGER_VALUE_OR_PAIR, 0}, {":relief", IMAGE_INTEGER_VALUE, 0}, {":conversion", IMAGE_DONT_CHECK_VALUE_TYPE, 0}, {":heuristic-mask", IMAGE_DONT_CHECK_VALUE_TYPE, 0}, {":mask", IMAGE_DONT_CHECK_VALUE_TYPE, 0}, {":color-symbols", IMAGE_DONT_CHECK_VALUE_TYPE, 0}, {":background", IMAGE_STRING_OR_NIL_VALUE, 0} }; #endif /* HAVE_XPM || HAVE_NS || HAVE_HAIKU || HAVE_PGTK */ #if defined HAVE_X_WINDOWS && !defined USE_CAIRO /* Define ALLOC_XPM_COLORS if we can use Emacs's own color allocation functions for allocating image colors. Our own functions handle color allocation failures more gracefully than the ones on the XPM lib. */ #if defined XpmAllocColor && defined XpmFreeColors && defined XpmColorClosure #define ALLOC_XPM_COLORS #endif #endif /* HAVE_X_WINDOWS && !USE_CAIRO */ #ifdef ALLOC_XPM_COLORS static struct xpm_cached_color *xpm_cache_color (struct frame *, char *, XColor *, int); /* An entry in a hash table used to cache color definitions of named colors. This cache is necessary to speed up XPM image loading in case we do color allocations ourselves. Without it, we would need a call to XParseColor per pixel in the image. FIXME Now that we're using x_parse_color and its cache, reevaluate the need for this caching layer. */ struct xpm_cached_color { /* Next in collision chain. */ struct xpm_cached_color *next; /* Color definition (RGB and pixel color). */ XColor color; /* Color name. */ char name[FLEXIBLE_ARRAY_MEMBER]; }; /* The hash table used for the color cache, and its bucket vector size (which should be prime). */ #define XPM_COLOR_CACHE_BUCKETS 1009 static struct xpm_cached_color **xpm_color_cache; /* Initialize the color cache. */ static void xpm_init_color_cache (struct frame *f, XpmAttributes *attrs) { size_t nbytes = XPM_COLOR_CACHE_BUCKETS * sizeof *xpm_color_cache; xpm_color_cache = xzalloc (nbytes); init_color_table (); if (attrs->valuemask & XpmColorSymbols) { int i; XColor color; for (i = 0; i < attrs->numsymbols; ++i) if (x_parse_color (f, attrs->colorsymbols[i].value, &color)) { color.pixel = lookup_rgb_color (f, color.red, color.green, color.blue); xpm_cache_color (f, attrs->colorsymbols[i].name, &color, -1); } } } /* Free the color cache. */ static void xpm_free_color_cache (void) { struct xpm_cached_color *p, *next; int i; for (i = 0; i < XPM_COLOR_CACHE_BUCKETS; ++i) for (p = xpm_color_cache[i]; p; p = next) { next = p->next; xfree (p); } xfree (xpm_color_cache); xpm_color_cache = NULL; free_color_table (); } /* Return the bucket index for color named COLOR_NAME in the color cache. */ static int xpm_color_bucket (char *color_name) { EMACS_UINT hash = hash_string (color_name, strlen (color_name)); return hash % XPM_COLOR_CACHE_BUCKETS; } /* On frame F, cache values COLOR for color with name COLOR_NAME. BUCKET, if >= 0, is a precomputed bucket index. Value is the cache entry added. */ static struct xpm_cached_color * xpm_cache_color (struct frame *f, char *color_name, XColor *color, int bucket) { if (bucket < 0) bucket = xpm_color_bucket (color_name); size_t len = strlen (color_name) + 1; size_t nbytes = FLEXSIZEOF (struct xpm_cached_color, name, len); struct xpm_cached_color *p = xmalloc (nbytes); memcpy (p->name, color_name, len); p->color = *color; p->next = xpm_color_cache[bucket]; xpm_color_cache[bucket] = p; return p; } /* Look up color COLOR_NAME for frame F in the color cache. If found, return the cached definition in *COLOR. Otherwise, make a new entry in the cache and allocate the color. Value is false if color allocation failed. */ static bool xpm_lookup_color (struct frame *f, char *color_name, XColor *color) { struct xpm_cached_color *p; int h = xpm_color_bucket (color_name); for (p = xpm_color_cache[h]; p; p = p->next) if (strcmp (p->name, color_name) == 0) break; if (p != NULL) *color = p->color; else if (x_parse_color (f, color_name, color)) { color->pixel = lookup_rgb_color (f, color->red, color->green, color->blue); p = xpm_cache_color (f, color_name, color, h); } /* You get `opaque' at least from ImageMagick converting pbm to xpm with transparency, and it's useful. */ else if (strcmp ("opaque", color_name) == 0) { memset (color, 0, sizeof (XColor)); /* Is this necessary/correct? */ color->pixel = FRAME_FOREGROUND_PIXEL (f); p = xpm_cache_color (f, color_name, color, h); } return p != NULL; } /* Callback for allocating color COLOR_NAME. Called from the XPM lib. CLOSURE is a pointer to the frame on which we allocate the color. Return in *COLOR the allocated color. Value is non-zero if successful. */ static int xpm_alloc_color (Display *dpy, Colormap cmap, char *color_name, XColor *color, void *closure) { return xpm_lookup_color (closure, color_name, color); } /* Callback for freeing NPIXELS colors contained in PIXELS. CLOSURE is a pointer to the frame on which we allocate the color. Value is non-zero if successful. */ static int xpm_free_colors (Display *dpy, Colormap cmap, Pixel *pixels, int npixels, void *closure) { return 1; } #endif /* ALLOC_XPM_COLORS */ #ifdef WINDOWSNT /* XPM library details. */ DEF_DLL_FN (void, XpmFreeAttributes, (XpmAttributes *)); DEF_DLL_FN (int, XpmCreateImageFromBuffer, (Display *, char *, xpm_XImage **, xpm_XImage **, XpmAttributes *)); DEF_DLL_FN (int, XpmReadFileToImage, (Display *, char *, xpm_XImage **, xpm_XImage **, XpmAttributes *)); DEF_DLL_FN (void, XImageFree, (xpm_XImage *)); static bool init_xpm_functions (void) { HMODULE library; if (!(library = w32_delayed_load (Qxpm))) return 0; LOAD_DLL_FN (library, XpmFreeAttributes); LOAD_DLL_FN (library, XpmCreateImageFromBuffer); LOAD_DLL_FN (library, XpmReadFileToImage); LOAD_DLL_FN (library, XImageFree); return 1; } # undef XImageFree # undef XpmCreateImageFromBuffer # undef XpmFreeAttributes # undef XpmReadFileToImage # define XImageFree fn_XImageFree # define XpmCreateImageFromBuffer fn_XpmCreateImageFromBuffer # define XpmFreeAttributes fn_XpmFreeAttributes # define XpmReadFileToImage fn_XpmReadFileToImage #endif /* WINDOWSNT */ #if defined HAVE_XPM || defined HAVE_NS || defined HAVE_HAIKU \ || defined HAVE_PGTK || defined HAVE_ANDROID /* Value is true if COLOR_SYMBOLS is a valid color symbols list for XPM images. Such a list must consist of conses whose car and cdr are strings. */ static bool xpm_valid_color_symbols_p (Lisp_Object color_symbols) { while (CONSP (color_symbols)) { Lisp_Object sym = XCAR (color_symbols); if (!CONSP (sym) || !STRINGP (XCAR (sym)) || !STRINGP (XCDR (sym))) break; color_symbols = XCDR (color_symbols); } return NILP (color_symbols); } /* Value is true if OBJECT is a valid XPM image specification. */ static bool xpm_image_p (Lisp_Object object) { struct image_keyword fmt[XPM_LAST]; memcpy (fmt, xpm_format, sizeof fmt); return (parse_image_spec (object, fmt, XPM_LAST, Qxpm) /* Either `:file' or `:data' must be present. */ && fmt[XPM_FILE].count + fmt[XPM_DATA].count == 1 /* Either no `:color-symbols' or it's a list of conses whose car and cdr are strings. */ && (! fmt[XPM_COLOR_SYMBOLS].count || xpm_valid_color_symbols_p (fmt[XPM_COLOR_SYMBOLS].value))); } #endif /* HAVE_XPM || HAVE_NS || HAVE_HAIKU || HAVE_PGTK || HAVE_ANDROID */ #endif /* HAVE_XPM || USE_CAIRO || HAVE_NS || HAVE_HAIKU || HAVE_ANDROID */ #if defined HAVE_XPM && defined HAVE_X_WINDOWS && !defined USE_GTK ptrdiff_t x_create_bitmap_from_xpm_data (struct frame *f, const char **bits) { Display_Info *dpyinfo = FRAME_DISPLAY_INFO (f); ptrdiff_t id; int rc; XpmAttributes attrs; Pixmap bitmap, mask; memset (&attrs, 0, sizeof attrs); attrs.visual = FRAME_X_VISUAL (f); attrs.colormap = FRAME_X_COLORMAP (f); attrs.valuemask |= XpmVisual; attrs.valuemask |= XpmColormap; #ifdef ALLOC_XPM_COLORS attrs.color_closure = f; attrs.alloc_color = xpm_alloc_color; attrs.free_colors = xpm_free_colors; attrs.valuemask |= XpmAllocColor | XpmFreeColors | XpmColorClosure; xpm_init_color_cache (f, &attrs); #endif rc = XpmCreatePixmapFromData (FRAME_X_DISPLAY (f), FRAME_X_DRAWABLE (f), (char **) bits, &bitmap, &mask, &attrs); if (rc != XpmSuccess) { XpmFreeAttributes (&attrs); return -1; } id = image_allocate_bitmap_record (f); dpyinfo->bitmaps[id - 1].pixmap = bitmap; dpyinfo->bitmaps[id - 1].have_mask = true; dpyinfo->bitmaps[id - 1].mask = mask; dpyinfo->bitmaps[id - 1].file = NULL; dpyinfo->bitmaps[id - 1].height = attrs.height; dpyinfo->bitmaps[id - 1].width = attrs.width; dpyinfo->bitmaps[id - 1].depth = attrs.depth; dpyinfo->bitmaps[id - 1].refcount = 1; #ifdef USE_CAIRO dpyinfo->bitmaps[id - 1].stipple = NULL; #endif /* USE_CAIRO */ #ifdef ALLOC_XPM_COLORS xpm_free_color_cache (); #endif XpmFreeAttributes (&attrs); return id; } #endif /* defined (HAVE_XPM) && defined (HAVE_X_WINDOWS) */ /* Load image IMG which will be displayed on frame F. Value is true if successful. */ #if defined HAVE_XPM && !defined USE_CAIRO static bool xpm_load (struct frame *f, struct image *img) { int rc; XpmAttributes attrs; Lisp_Object specified_file, color_symbols; USE_SAFE_ALLOCA; #ifdef HAVE_NTGUI HDC hdc; xpm_XImage * xpm_image = NULL, * xpm_mask = NULL; #endif /* HAVE_NTGUI */ /* Configure the XPM lib. Use the visual of frame F. Allocate close colors. Return colors allocated. */ memset (&attrs, 0, sizeof attrs); #ifndef HAVE_NTGUI attrs.visual = FRAME_X_VISUAL (f); attrs.colormap = FRAME_X_COLORMAP (f); attrs.depth = FRAME_DISPLAY_INFO (f)->n_planes; attrs.valuemask |= XpmVisual; attrs.valuemask |= XpmColormap; attrs.valuemask |= XpmDepth; #endif /* HAVE_NTGUI */ #ifdef ALLOC_XPM_COLORS /* Allocate colors with our own functions which handle failing color allocation more gracefully. */ attrs.color_closure = f; attrs.alloc_color = xpm_alloc_color; attrs.free_colors = xpm_free_colors; attrs.valuemask |= XpmAllocColor | XpmFreeColors | XpmColorClosure; #else /* not ALLOC_XPM_COLORS */ /* Let the XPM lib allocate colors. */ attrs.valuemask |= XpmReturnAllocPixels; #ifdef XpmAllocCloseColors attrs.alloc_close_colors = 1; attrs.valuemask |= XpmAllocCloseColors; #else /* not XpmAllocCloseColors */ attrs.closeness = 600; attrs.valuemask |= XpmCloseness; #endif /* not XpmAllocCloseColors */ #endif /* ALLOC_XPM_COLORS */ /* If image specification contains symbolic color definitions, add these to `attrs'. */ color_symbols = image_spec_value (img->spec, QCcolor_symbols, NULL); if (CONSP (color_symbols)) { Lisp_Object tail; XpmColorSymbol *xpm_syms; ptrdiff_t i, size; attrs.valuemask |= XpmColorSymbols; /* Count number of symbols. */ attrs.numsymbols = 0; for (tail = color_symbols; CONSP (tail); tail = XCDR (tail)) ++attrs.numsymbols; /* Allocate an XpmColorSymbol array. */ SAFE_NALLOCA (xpm_syms, 1, attrs.numsymbols); size = attrs.numsymbols * sizeof *xpm_syms; memset (xpm_syms, 0, size); attrs.colorsymbols = xpm_syms; /* Fill the color symbol array. */ for (tail = color_symbols, i = 0; CONSP (tail); ++i, tail = XCDR (tail)) { Lisp_Object name; Lisp_Object color; char *empty_string = (char *) ""; if (!CONSP (XCAR (tail))) { xpm_syms[i].name = empty_string; xpm_syms[i].value = empty_string; continue; } name = XCAR (XCAR (tail)); color = XCDR (XCAR (tail)); if (STRINGP (name)) SAFE_ALLOCA_STRING (xpm_syms[i].name, name); else xpm_syms[i].name = empty_string; if (STRINGP (color)) SAFE_ALLOCA_STRING (xpm_syms[i].value, color); else xpm_syms[i].value = empty_string; } } /* Create a pixmap for the image, either from a file, or from a string buffer containing data in the same format as an XPM file. */ #ifdef ALLOC_XPM_COLORS xpm_init_color_cache (f, &attrs); #endif specified_file = image_spec_value (img->spec, QCfile, NULL); #ifdef HAVE_NTGUI { HDC frame_dc = get_frame_dc (f); hdc = CreateCompatibleDC (frame_dc); release_frame_dc (f, frame_dc); } #endif /* HAVE_NTGUI */ if (STRINGP (specified_file)) { Lisp_Object file = image_find_image_file (specified_file); if (!STRINGP (file)) { image_not_found_error (specified_file); #ifdef ALLOC_XPM_COLORS xpm_free_color_cache (); #endif SAFE_FREE (); return false; } file = ENCODE_FILE (file); #ifdef HAVE_NTGUI #ifdef WINDOWSNT /* FILE is encoded in UTF-8, but image libraries on Windows support neither UTF-8 nor UTF-16 encoded file names. So we need to re-encode it in ANSI. */ file = ansi_encode_filename (file); #endif /* XpmReadFileToPixmap is not available in the Windows port of libxpm. But XpmReadFileToImage almost does what we want. */ rc = XpmReadFileToImage (&hdc, SSDATA (file), &xpm_image, &xpm_mask, &attrs); #else rc = XpmReadFileToImage (FRAME_X_DISPLAY (f), SSDATA (file), &img->ximg, &img->mask_img, &attrs); #endif /* HAVE_NTGUI */ } else { Lisp_Object buffer = image_spec_value (img->spec, QCdata, NULL); if (!STRINGP (buffer)) { image_invalid_data_error (buffer); #ifdef ALLOC_XPM_COLORS xpm_free_color_cache (); #endif SAFE_FREE (); return 0; } #ifdef HAVE_NTGUI /* XpmCreatePixmapFromBuffer is not available in the Windows port of libxpm. But XpmCreateImageFromBuffer almost does what we want. */ rc = XpmCreateImageFromBuffer (&hdc, SSDATA (buffer), &xpm_image, &xpm_mask, &attrs); #else rc = XpmCreateImageFromBuffer (FRAME_X_DISPLAY (f), SSDATA (buffer), &img->ximg, &img->mask_img, &attrs); #endif /* HAVE_NTGUI */ } #ifdef HAVE_X_WINDOWS if (rc == XpmSuccess) { img->pixmap = XCreatePixmap (FRAME_X_DISPLAY (f), FRAME_X_DRAWABLE (f), img->ximg->width, img->ximg->height, img->ximg->depth); if (img->pixmap == NO_PIXMAP) { image_clear_image (f, img); rc = XpmNoMemory; } else { # if !defined USE_CAIRO && defined HAVE_XRENDER img->picture = x_create_xrender_picture (f, img->pixmap, img->ximg->depth); # endif if (img->mask_img) { img->mask = XCreatePixmap (FRAME_X_DISPLAY (f), FRAME_X_DRAWABLE (f), img->mask_img->width, img->mask_img->height, img->mask_img->depth); if (img->mask == NO_PIXMAP) { image_clear_image (f, img); rc = XpmNoMemory; } # if !defined USE_CAIRO && defined HAVE_XRENDER else img->mask_picture = x_create_xrender_picture (f, img->mask, img->mask_img->depth); # endif } } } #endif if (rc == XpmSuccess) { #if defined (COLOR_TABLE_SUPPORT) && defined (ALLOC_XPM_COLORS) img->colors = colors_in_color_table (&img->ncolors); #else /* not ALLOC_XPM_COLORS */ int i; #ifdef HAVE_NTGUI /* W32 XPM uses XImage to wrap what W32 Emacs calls a Pixmap, plus some duplicate attributes. */ if (xpm_image && xpm_image->bitmap) { img->pixmap = xpm_image->bitmap; /* XImageFree in libXpm frees XImage struct without destroying the bitmap, which is what we want. */ XImageFree (xpm_image); } if (xpm_mask && xpm_mask->bitmap) { /* The mask appears to be inverted compared with what we expect. TODO: invert our expectations. See other places where we have to invert bits because our idea of masks is backwards. */ HGDIOBJ old_obj; old_obj = SelectObject (hdc, xpm_mask->bitmap); PatBlt (hdc, 0, 0, xpm_mask->width, xpm_mask->height, DSTINVERT); SelectObject (hdc, old_obj); img->mask = xpm_mask->bitmap; XImageFree (xpm_mask); DeleteDC (hdc); } DeleteDC (hdc); #endif /* HAVE_NTGUI */ /* Remember allocated colors. */ img->colors = xnmalloc (attrs.nalloc_pixels, sizeof *img->colors); img->ncolors = attrs.nalloc_pixels; for (i = 0; i < attrs.nalloc_pixels; ++i) { img->colors[i] = attrs.alloc_pixels[i]; #ifdef DEBUG_X_COLORS register_color (img->colors[i]); #endif } #endif /* not ALLOC_XPM_COLORS */ img->width = attrs.width; img->height = attrs.height; eassert (img->width > 0 && img->height > 0); /* The call to XpmFreeAttributes below frees attrs.alloc_pixels. */ XpmFreeAttributes (&attrs); #ifdef HAVE_X_WINDOWS /* Maybe fill in the background field while we have ximg handy. */ IMAGE_BACKGROUND (img, f, img->ximg); if (img->mask_img) /* Fill in the background_transparent field while we have the mask handy. */ image_background_transparent (img, f, img->mask_img); #endif } else { #ifdef HAVE_NTGUI DeleteDC (hdc); #endif /* HAVE_NTGUI */ switch (rc) { case XpmOpenFailed: image_error ("Error opening XPM file (%s)", img->spec); break; case XpmFileInvalid: image_error ("Invalid XPM file (%s)", img->spec); break; case XpmNoMemory: image_error ("Out of memory (%s)", img->spec); break; case XpmColorFailed: image_error ("Color allocation error (%s)", img->spec); break; default: image_error ("Unknown error (%s)", img->spec); break; } } #ifdef ALLOC_XPM_COLORS xpm_free_color_cache (); #endif SAFE_FREE (); return rc == XpmSuccess; } #endif /* HAVE_XPM && !USE_CAIRO */ #if (defined USE_CAIRO && defined HAVE_XPM) \ || (defined HAVE_NS && !defined HAVE_XPM) \ || (defined HAVE_HAIKU && !defined HAVE_XPM) \ || (defined HAVE_PGTK && !defined HAVE_XPM) \ || (defined HAVE_ANDROID && !defined HAVE_XPM) /* XPM support functions for NS, Haiku and Android where libxpm is not available, and for Cairo. Only XPM version 3 (without any extensions) is supported. */ static void xpm_put_color_table_v (Lisp_Object, const char *, int, Lisp_Object); static Lisp_Object xpm_get_color_table_v (Lisp_Object, const char *, int); static void xpm_put_color_table_h (Lisp_Object, const char *, int, Lisp_Object); static Lisp_Object xpm_get_color_table_h (Lisp_Object, const char *, int); /* Tokens returned from xpm_scan. */ enum xpm_token { XPM_TK_IDENT = 256, XPM_TK_STRING, XPM_TK_EOF }; /* Scan an XPM data and return a character (< 256) or a token defined by enum xpm_token above. *S and END are the start (inclusive) and the end (exclusive) addresses of the data, respectively. Advance *S while scanning. If token is either XPM_TK_IDENT or XPM_TK_STRING, *BEG and *LEN are set to the start address and the length of the corresponding token, respectively. */ static int xpm_scan (const char **s, const char *end, const char **beg, ptrdiff_t *len) { unsigned char c; while (*s < end) { /* Skip white-space. */ do c = *(*s)++; while (c_isspace (c) && *s < end); /* gnus-pointer.xpm uses '-' in its identifier. sb-dir-plus.xpm uses '+' in its identifier. */ if (c_isalpha (c) || c == '_' || c == '-' || c == '+') { *beg = *s - 1; while (*s < end && (c = **s, c_isalnum (c) || c == '_' || c == '-' || c == '+')) ++*s; *len = *s - *beg; return XPM_TK_IDENT; } else if (c == '"') { *beg = *s; while (*s < end && **s != '"') ++*s; *len = *s - *beg; if (*s < end) ++*s; return XPM_TK_STRING; } else if (c == '/') { if (*s < end && **s == '*') { /* C-style comment. */ ++*s; do { while (*s < end && *(*s)++ != '*') ; } while (*s < end && **s != '/'); if (*s < end) ++*s; } else return c; } else return c; } return XPM_TK_EOF; } /* Functions for color table lookup in XPM data. A key is a string specifying the color of each pixel in XPM data. A value is either an integer that specifies a pixel color, Qt that specifies transparency, or Qnil for the unspecified color. If the length of the key string is one, a vector is used as a table. Otherwise, a hash table is used. */ static Lisp_Object xpm_make_color_table_v (void (**put_func) (Lisp_Object, const char *, int, Lisp_Object), Lisp_Object (**get_func) (Lisp_Object, const char *, int)) { *put_func = xpm_put_color_table_v; *get_func = xpm_get_color_table_v; return make_nil_vector (256); } static void xpm_put_color_table_v (Lisp_Object color_table, const char *chars_start, int chars_len, Lisp_Object color) { unsigned char uc = *chars_start; ASET (color_table, uc, color); } static Lisp_Object xpm_get_color_table_v (Lisp_Object color_table, const char *chars_start, int chars_len) { unsigned char uc = *chars_start; return AREF (color_table, uc); } static Lisp_Object xpm_make_color_table_h (void (**put_func) (Lisp_Object, const char *, int, Lisp_Object), Lisp_Object (**get_func) (Lisp_Object, const char *, int)) { *put_func = xpm_put_color_table_h; *get_func = xpm_get_color_table_h; return make_hash_table (&hashtest_equal, DEFAULT_HASH_SIZE, Weak_None, false); } static void xpm_put_color_table_h (Lisp_Object color_table, const char *chars_start, int chars_len, Lisp_Object color) { struct Lisp_Hash_Table *table = XHASH_TABLE (color_table); Lisp_Object chars = make_unibyte_string (chars_start, chars_len); hash_hash_t hash_code; hash_lookup_get_hash (table, chars, &hash_code); hash_put (table, chars, color, hash_code); } static Lisp_Object xpm_get_color_table_h (Lisp_Object color_table, const char *chars_start, int chars_len) { struct Lisp_Hash_Table *table = XHASH_TABLE (color_table); ptrdiff_t i = hash_lookup (table, make_unibyte_string (chars_start, chars_len)); return i >= 0 ? HASH_VALUE (table, i) : Qnil; } enum xpm_color_key { XPM_COLOR_KEY_S, XPM_COLOR_KEY_M, XPM_COLOR_KEY_G4, XPM_COLOR_KEY_G, XPM_COLOR_KEY_C }; static const char xpm_color_key_strings[][4] = {"s", "m", "g4", "g", "c"}; static int xpm_str_to_color_key (const char *s) { for (int i = 0; i < ARRAYELTS (xpm_color_key_strings); i++) if (strcmp (xpm_color_key_strings[i], s) == 0) return i; return -1; } static int xpm_str_to_int (char **buf) { char *p; errno = 0; long result = strtol (*buf, &p, 10); if (errno || p == *buf || result < INT_MIN || result > INT_MAX) return -1; /* Error out if we see something like "12x3xyz". */ if (!c_isspace (*p) && *p != '\0') return -1; /* Update position to read next integer. */ *buf = p; return result; } static bool xpm_load_image (struct frame *f, struct image *img, const char *contents, const char *end) { const char *s = contents, *beg, *str; char buffer[BUFSIZ]; int width, height, x, y; int num_colors, chars_per_pixel; ptrdiff_t len; int LA1; void (*put_color_table) (Lisp_Object, const char *, int, Lisp_Object); Lisp_Object (*get_color_table) (Lisp_Object, const char *, int); Lisp_Object frame, color_symbols, color_table; int best_key; #if !defined (HAVE_NS) bool have_mask = false; #endif Emacs_Pix_Container ximg = NULL, mask_img = NULL; #define match() \ LA1 = xpm_scan (&s, end, &beg, &len) #define expect(TOKEN) \ do \ { \ if (LA1 != (TOKEN)) \ goto failure; \ match (); \ } \ while (0) #define expect_ident(IDENT) \ if (LA1 == XPM_TK_IDENT \ && strlen (IDENT) == len && memcmp (IDENT, beg, len) == 0) \ match (); \ else \ goto failure if (!(end - s >= 9 && memcmp (s, "/* XPM */", 9) == 0)) goto failure; s += 9; match (); expect_ident ("static"); expect_ident ("char"); expect ('*'); expect (XPM_TK_IDENT); expect ('['); expect (']'); expect ('='); expect ('{'); expect (XPM_TK_STRING); if (len >= BUFSIZ) goto failure; memcpy (buffer, beg, len); buffer[len] = '\0'; char *next_int = buffer; if ((width = xpm_str_to_int (&next_int)) <= 0) goto failure; if ((height = xpm_str_to_int (&next_int)) <= 0) goto failure; if ((num_colors = xpm_str_to_int (&next_int)) <= 0) goto failure; if ((chars_per_pixel = xpm_str_to_int (&next_int)) <= 0) goto failure; if (!check_image_size (f, width, height)) { image_size_error (); goto failure; } if (!image_create_x_image_and_pixmap (f, img, width, height, 0, &ximg, 0) #ifndef HAVE_NS || !image_create_x_image_and_pixmap (f, img, width, height, 1, &mask_img, 1) #endif ) { image_error ("Image too large"); goto failure; } expect (','); XSETFRAME (frame, f); #ifndef HAVE_ANDROID if (!NILP (Fxw_display_color_p (frame))) best_key = XPM_COLOR_KEY_C; else if (!NILP (Fx_display_grayscale_p (frame))) best_key = (XFIXNAT (Fx_display_planes (frame)) > 2 ? XPM_COLOR_KEY_G : XPM_COLOR_KEY_G4); else best_key = XPM_COLOR_KEY_M; #else /* HAVE_ANDROID */ /* The color-loading loop has not been taught to progressively settle for less optimal color keys if no colors are defined for best_key, and since libXpm is not available on Android, there is no better option than delegating the task of mapping whatever color values are provided to B/W or grayscale to the display driver. */ best_key = XPM_COLOR_KEY_C; #endif /* !HAVE_ANDROID */ color_symbols = image_spec_value (img->spec, QCcolor_symbols, NULL); if (chars_per_pixel == 1) color_table = xpm_make_color_table_v (&put_color_table, &get_color_table); else color_table = xpm_make_color_table_h (&put_color_table, &get_color_table); while (num_colors-- > 0) { char *color, *max_color = NULL; int key, next_key, max_key = 0; Lisp_Object symbol_color = Qnil, color_val; Emacs_Color cdef; expect (XPM_TK_STRING); if (len <= chars_per_pixel || len >= BUFSIZ + chars_per_pixel) goto failure; memcpy (buffer, beg + chars_per_pixel, len - chars_per_pixel); buffer[len - chars_per_pixel] = '\0'; str = strtok (buffer, " \t"); if (str == NULL) goto failure; key = xpm_str_to_color_key (str); if (key < 0) goto failure; do { color = strtok (NULL, " \t"); if (color == NULL) goto failure; while ((str = strtok (NULL, " \t")) != NULL) { next_key = xpm_str_to_color_key (str); if (next_key >= 0) break; color[strlen (color)] = ' '; } if (key == XPM_COLOR_KEY_S) { if (NILP (symbol_color)) symbol_color = build_string (color); } else if (max_key < key && key <= best_key) { max_key = key; max_color = color; } key = next_key; } while (str); color_val = Qnil; if (!NILP (color_symbols) && !NILP (symbol_color)) { Lisp_Object specified_color = Fassoc (symbol_color, color_symbols, Qnil); if (CONSP (specified_color) && STRINGP (XCDR (specified_color))) { if (xstrcasecmp (SSDATA (XCDR (specified_color)), "None") == 0) color_val = Qt; else if (FRAME_TERMINAL (f)->defined_color_hook (f, SSDATA (XCDR (specified_color)), &cdef, false, false)) color_val = make_fixnum (lookup_rgb_color (f, cdef.red, cdef.green, cdef.blue)); } } if (NILP (color_val) && max_color) { if (xstrcasecmp (max_color, "None") == 0) color_val = Qt; else if (FRAME_TERMINAL (f)->defined_color_hook (f, max_color, &cdef, false, false)) color_val = make_fixnum (lookup_rgb_color (f, cdef.red, cdef.green, cdef.blue)); } if (!NILP (color_val)) (*put_color_table) (color_table, beg, chars_per_pixel, color_val); expect (','); } unsigned long frame_fg = FRAME_FOREGROUND_PIXEL (f); #ifdef USE_CAIRO { Emacs_Color color = {.pixel = frame_fg}; FRAME_TERMINAL (f)->query_colors (f, &color, 1); frame_fg = lookup_rgb_color (f, color.red, color.green, color.blue); } #endif for (y = 0; y < height; y++) { expect (XPM_TK_STRING); str = beg; if (len < width * chars_per_pixel) goto failure; for (x = 0; x < width; x++, str += chars_per_pixel) { Lisp_Object color_val = (*get_color_table) (color_table, str, chars_per_pixel); PUT_PIXEL (ximg, x, y, FIXNUMP (color_val) ? XFIXNUM (color_val) : frame_fg); #ifndef HAVE_NS PUT_PIXEL (mask_img, x, y, (!EQ (color_val, Qt) ? PIX_MASK_DRAW : (have_mask = true, PIX_MASK_RETAIN))); #else if (EQ (color_val, Qt)) ns_set_alpha (ximg, x, y, 0); #endif } if (y + 1 < height) expect (','); } img->width = width; img->height = height; /* Maybe fill in the background field while we have ximg handy. */ if (NILP (image_spec_value (img->spec, QCbackground, NULL))) IMAGE_BACKGROUND (img, f, ximg); image_put_x_image (f, img, ximg, 0); #ifndef HAVE_NS if (have_mask) { /* Fill in the background_transparent field while we have the mask handy. */ image_background_transparent (img, f, mask_img); image_put_x_image (f, img, mask_img, 1); } else { image_destroy_x_image (mask_img); image_clear_image_1 (f, img, CLEAR_IMAGE_MASK); } #endif return 1; failure: image_error ("Invalid XPM3 file (%s)", img->spec); if (ximg) { image_destroy_x_image (ximg); if (mask_img) image_destroy_x_image (mask_img); image_clear_image (f, img); } return 0; #undef match #undef expect #undef expect_ident } static bool xpm_load (struct frame *f, struct image *img) { bool success_p = 0; Lisp_Object file_name; /* If IMG->spec specifies a file name, create a non-file spec from it. */ file_name = image_spec_value (img->spec, QCfile, NULL); if (STRINGP (file_name)) { ptrdiff_t size; char *contents = slurp_image (file_name, &size, "XPM"); if (contents == NULL) return false; success_p = xpm_load_image (f, img, contents, contents + size); xfree (contents); } else { Lisp_Object data; data = image_spec_value (img->spec, QCdata, NULL); if (!STRINGP (data)) { image_invalid_data_error (data); return false; } success_p = xpm_load_image (f, img, SSDATA (data), SSDATA (data) + SBYTES (data)); } return success_p; } #endif /* HAVE_NS && !HAVE_XPM */ /*********************************************************************** Color table ***********************************************************************/ #ifdef COLOR_TABLE_SUPPORT /* An entry in the color table mapping an RGB color to a pixel color. */ struct ct_color { int r, g, b; unsigned long pixel; /* Next in color table collision list. */ struct ct_color *next; }; /* The bucket vector size to use. Must be prime. */ #define CT_SIZE 101 /* Value is a hash of the RGB color given by R, G, and B. */ static unsigned ct_hash_rgb (unsigned r, unsigned g, unsigned b) { return (r << 16) ^ (g << 8) ^ b; } /* The color hash table. */ static struct ct_color **ct_table; /* Number of entries in the color table. */ static int ct_colors_allocated; enum { ct_colors_allocated_max = min (INT_MAX, min (PTRDIFF_MAX, SIZE_MAX) / sizeof (unsigned long)) }; /* Initialize the color table. */ static void init_color_table (void) { int size = CT_SIZE * sizeof (*ct_table); ct_table = xzalloc (size); ct_colors_allocated = 0; } /* Free memory associated with the color table. */ static void free_color_table (void) { int i; struct ct_color *p, *next; for (i = 0; i < CT_SIZE; ++i) for (p = ct_table[i]; p; p = next) { next = p->next; xfree (p); } xfree (ct_table); ct_table = NULL; } /* Value is a pixel color for RGB color R, G, B on frame F. If an entry for that color already is in the color table, return the pixel color of that entry. Otherwise, allocate a new color for R, G, B, and make an entry in the color table. */ static unsigned long lookup_rgb_color (struct frame *f, int r, int g, int b) { unsigned hash = ct_hash_rgb (r, g, b); int i = hash % CT_SIZE; struct ct_color *p; Display_Info *dpyinfo; /* Handle TrueColor visuals specially, which improves performance by two orders of magnitude. Freeing colors on TrueColor visuals is a nop, and pixel colors specify RGB values directly. See also the Xlib spec, chapter 3.1. */ dpyinfo = FRAME_DISPLAY_INFO (f); if (dpyinfo->red_bits > 0) { /* Apply gamma-correction like normal color allocation does. */ if (f->gamma) { XColor color; color.red = r, color.green = g, color.blue = b; gamma_correct (f, &color); r = color.red, g = color.green, b = color.blue; } return x_make_truecolor_pixel (dpyinfo, r, g, b); } for (p = ct_table[i]; p; p = p->next) if (p->r == r && p->g == g && p->b == b) break; if (p == NULL) { #ifdef HAVE_X_WINDOWS XColor color; Colormap cmap; bool rc; #else COLORREF color; #endif if (ct_colors_allocated_max <= ct_colors_allocated) return FRAME_FOREGROUND_PIXEL (f); #ifdef HAVE_X_WINDOWS color.red = r; color.green = g; color.blue = b; cmap = FRAME_X_COLORMAP (f); rc = x_alloc_nearest_color (f, cmap, &color); if (rc) { ++ct_colors_allocated; p = xmalloc (sizeof *p); p->r = r; p->g = g; p->b = b; p->pixel = color.pixel; p->next = ct_table[i]; ct_table[i] = p; } else return FRAME_FOREGROUND_PIXEL (f); #else #ifdef HAVE_NTGUI color = PALETTERGB (r, g, b); #else color = RGB_TO_ULONG (r, g, b); #endif /* HAVE_NTGUI */ ++ct_colors_allocated; p = xmalloc (sizeof *p); p->r = r; p->g = g; p->b = b; p->pixel = color; p->next = ct_table[i]; ct_table[i] = p; #endif /* HAVE_X_WINDOWS */ } return p->pixel; } /* Look up pixel color PIXEL which is used on frame F in the color table. If not already present, allocate it. Value is PIXEL. */ static unsigned long lookup_pixel_color (struct frame *f, unsigned long pixel) { int i = pixel % CT_SIZE; struct ct_color *p; for (p = ct_table[i]; p; p = p->next) if (p->pixel == pixel) break; if (p == NULL) { XColor color; Colormap cmap; bool rc; if (ct_colors_allocated >= ct_colors_allocated_max) return FRAME_FOREGROUND_PIXEL (f); #ifdef HAVE_X_WINDOWS cmap = FRAME_X_COLORMAP (f); color.pixel = pixel; x_query_colors (f, &color, 1); rc = x_alloc_nearest_color (f, cmap, &color); #else block_input (); cmap = DefaultColormapOfScreen (FRAME_X_SCREEN (f)); color.pixel = pixel; XQueryColor (NULL, cmap, &color); rc = x_alloc_nearest_color (f, cmap, &color); unblock_input (); #endif /* HAVE_X_WINDOWS */ if (rc) { ++ct_colors_allocated; p = xmalloc (sizeof *p); p->r = color.red; p->g = color.green; p->b = color.blue; p->pixel = pixel; p->next = ct_table[i]; ct_table[i] = p; } else return FRAME_FOREGROUND_PIXEL (f); } return p->pixel; } /* Value is a vector of all pixel colors contained in the color table, allocated via xmalloc. Set *N to the number of colors. */ static unsigned long * colors_in_color_table (int *n) { int i, j; struct ct_color *p; unsigned long *colors; if (ct_colors_allocated == 0) { *n = 0; colors = NULL; } else { colors = xmalloc (ct_colors_allocated * sizeof *colors); *n = ct_colors_allocated; for (i = j = 0; i < CT_SIZE; ++i) for (p = ct_table[i]; p; p = p->next) colors[j++] = p->pixel; } return colors; } #else /* COLOR_TABLE_SUPPORT */ static unsigned long lookup_rgb_color (struct frame *f, int r, int g, int b) { #ifdef HAVE_NTGUI return PALETTERGB (r >> 8, g >> 8, b >> 8); #elif defined USE_CAIRO || defined HAVE_NS || defined HAVE_HAIKU \ || defined HAVE_ANDROID return RGB_TO_ULONG (r >> 8, g >> 8, b >> 8); #else xsignal1 (Qfile_error, build_string ("This Emacs mishandles this image file type")); #endif } static void init_color_table (void) { } #endif /* COLOR_TABLE_SUPPORT */ /*********************************************************************** Algorithms ***********************************************************************/ /* Edge detection matrices for different edge-detection strategies. */ static int emboss_matrix[9] = { /* x - 1 x x + 1 */ 2, -1, 0, /* y - 1 */ -1, 0, 1, /* y */ 0, 1, -2 /* y + 1 */ }; static int laplace_matrix[9] = { /* x - 1 x x + 1 */ 1, 0, 0, /* y - 1 */ 0, 0, 0, /* y */ 0, 0, -1 /* y + 1 */ }; /* Value is the intensity of the color whose red/green/blue values are R, G, and B. */ #define COLOR_INTENSITY(R, G, B) ((2 * (R) + 3 * (G) + (B)) / 6) /* On frame F, return an array of Emacs_Color structures describing image IMG->pixmap. Each Emacs_Color structure has its pixel color set. RGB_P means also fill the red/green/blue members of the Emacs_Color structures. Value is a pointer to the array of Emacs_Color structures, allocated with xmalloc; it must be freed by the caller. */ static Emacs_Color * image_to_emacs_colors (struct frame *f, struct image *img, bool rgb_p) { int x, y; Emacs_Color *colors, *p; Emacs_Pix_Context ximg; ptrdiff_t nbytes; #ifdef HAVE_NTGUI HGDIOBJ prev; #endif /* HAVE_NTGUI */ if (ckd_mul (&nbytes, sizeof *colors, img->width) || ckd_mul (&nbytes, nbytes, img->height) || SIZE_MAX < nbytes) memory_full (SIZE_MAX); colors = xmalloc (nbytes); /* Get the X image or create a memory device context for IMG. */ ximg = image_get_x_image_or_dc (f, img, 0, &prev); /* Fill the `pixel' members of the Emacs_Color array. I wished there were an easy and portable way to circumvent XGetPixel. */ p = colors; for (y = 0; y < img->height; ++y) { #if !defined USE_CAIRO && !defined HAVE_NS && !defined HAVE_HAIKU \ && !defined HAVE_ANDROID Emacs_Color *row = p; for (x = 0; x < img->width; ++x, ++p) p->pixel = GET_PIXEL (ximg, x, y); if (rgb_p) { FRAME_TERMINAL (f)->query_colors (f, row, img->width); } #else /* USE_CAIRO || HAVE_NS || HAVE_HAIKU || HAVE_ANDROID */ for (x = 0; x < img->width; ++x, ++p) { p->pixel = GET_PIXEL (ximg, x, y); if (rgb_p) { p->red = RED16_FROM_ULONG (p->pixel); p->green = GREEN16_FROM_ULONG (p->pixel); p->blue = BLUE16_FROM_ULONG (p->pixel); } } #endif /* USE_CAIRO || HAVE_NS || HAVE_ANDROID */ } image_unget_x_image_or_dc (img, 0, ximg, prev); return colors; } #ifdef HAVE_NTGUI /* Put a pixel of COLOR at position X, Y in XIMG. XIMG must have been created with CreateDIBSection, with the pointer to the bit values stored in ximg->data. */ static void XPutPixel (XImage *ximg, int x, int y, COLORREF color) { int width = ximg->info.bmiHeader.biWidth; unsigned char * pixel; /* True color images. */ if (ximg->info.bmiHeader.biBitCount == 24) { int rowbytes = width * 3; /* Ensure scanlines are aligned on 4 byte boundaries. */ if (rowbytes % 4) rowbytes += 4 - (rowbytes % 4); pixel = ximg->data + y * rowbytes + x * 3; /* Windows bitmaps are in BGR order. */ *pixel = GetBValue (color); *(pixel + 1) = GetGValue (color); *(pixel + 2) = GetRValue (color); } /* Monochrome images. */ else if (ximg->info.bmiHeader.biBitCount == 1) { int rowbytes = width / 8; /* Ensure scanlines are aligned on 4 byte boundaries. */ if (rowbytes % 4) rowbytes += 4 - (rowbytes % 4); pixel = ximg->data + y * rowbytes + x / 8; /* Filter out palette info. */ if (color & 0x00ffffff) *pixel = *pixel | (1 << x % 8); else *pixel = *pixel & ~(1 << x % 8); } else image_error ("XPutPixel: palette image not supported"); } #endif /* HAVE_NTGUI */ /* Create IMG->pixmap from an array COLORS of Emacs_Color structures, whose RGB members are set. F is the frame on which this all happens. COLORS will be freed; an existing IMG->pixmap will be freed, too. */ static void image_from_emacs_colors (struct frame *f, struct image *img, Emacs_Color *colors) { int x, y; Emacs_Pix_Container ximage; Emacs_Color *p; #ifndef HAVE_ANDROID ximage = NULL; #else ximage = 0; #endif init_color_table (); image_clear_image_1 (f, img, CLEAR_IMAGE_PIXMAP | CLEAR_IMAGE_COLORS); image_create_x_image_and_pixmap (f, img, img->width, img->height, 0, &ximage, 0); p = colors; for (y = 0; y < img->height; ++y) for (x = 0; x < img->width; ++x, ++p) { unsigned long pixel; pixel = lookup_rgb_color (f, p->red, p->green, p->blue); PUT_PIXEL (ximage, x, y, pixel); } xfree (colors); image_put_x_image (f, img, ximage, false); #ifdef COLOR_TABLE_SUPPORT img->colors = colors_in_color_table (&img->ncolors); free_color_table (); #endif /* COLOR_TABLE_SUPPORT */ } /* On frame F, perform edge-detection on image IMG. MATRIX is a nine-element array specifying the transformation matrix. See emboss_matrix for an example. COLOR_ADJUST is a color adjustment added to each pixel of the outgoing image. */ static void image_detect_edges (struct frame *f, struct image *img, int *matrix, int color_adjust) { Emacs_Color *colors = image_to_emacs_colors (f, img, 1); Emacs_Color *new, *p; int x, y, i, sum; ptrdiff_t nbytes; for (i = sum = 0; i < 9; ++i) sum += eabs (matrix[i]); #define COLOR(A, X, Y) ((A) + (Y) * img->width + (X)) if (ckd_mul (&nbytes, sizeof *new, img->width) || ckd_mul (&nbytes, nbytes, img->height)) memory_full (SIZE_MAX); new = xmalloc (nbytes); for (y = 0; y < img->height; ++y) { p = COLOR (new, 0, y); p->red = p->green = p->blue = 0xffff/2; p = COLOR (new, img->width - 1, y); p->red = p->green = p->blue = 0xffff/2; } for (x = 1; x < img->width - 1; ++x) { p = COLOR (new, x, 0); p->red = p->green = p->blue = 0xffff/2; p = COLOR (new, x, img->height - 1); p->red = p->green = p->blue = 0xffff/2; } for (y = 1; y < img->height - 1; ++y) { p = COLOR (new, 1, y); for (x = 1; x < img->width - 1; ++x, ++p) { int r, g, b, yy, xx; r = g = b = i = 0; for (yy = y - 1; yy < y + 2; ++yy) for (xx = x - 1; xx < x + 2; ++xx, ++i) if (matrix[i]) { Emacs_Color *t = COLOR (colors, xx, yy); r += matrix[i] * t->red; g += matrix[i] * t->green; b += matrix[i] * t->blue; } r = (r / sum + color_adjust) & 0xffff; g = (g / sum + color_adjust) & 0xffff; b = (b / sum + color_adjust) & 0xffff; p->red = p->green = p->blue = COLOR_INTENSITY (r, g, b); } } xfree (colors); image_from_emacs_colors (f, img, new); #undef COLOR } /* Perform the pre-defined `emboss' edge-detection on image IMG on frame F. */ static void image_emboss (struct frame *f, struct image *img) { image_detect_edges (f, img, emboss_matrix, 0xffff / 2); } /* Transform image IMG which is used on frame F with a Laplace edge-detection algorithm. The result is an image that can be used to draw disabled buttons, for example. */ static void image_laplace (struct frame *f, struct image *img) { image_detect_edges (f, img, laplace_matrix, 45000); } /* Perform edge-detection on image IMG on frame F, with specified transformation matrix MATRIX and color-adjustment COLOR_ADJUST. MATRIX must be either - a list of at least 9 numbers in row-major form - a vector of at least 9 numbers COLOR_ADJUST nil means use a default; otherwise it must be a number. */ static void image_edge_detection (struct frame *f, struct image *img, Lisp_Object matrix, Lisp_Object color_adjust) { int i = 0; int trans[9]; if (CONSP (matrix)) { for (i = 0; i < 9 && CONSP (matrix) && NUMBERP (XCAR (matrix)); ++i, matrix = XCDR (matrix)) trans[i] = XFLOATINT (XCAR (matrix)); } else if (VECTORP (matrix) && ASIZE (matrix) >= 9) { for (i = 0; i < 9 && NUMBERP (AREF (matrix, i)); ++i) trans[i] = XFLOATINT (AREF (matrix, i)); } if (NILP (color_adjust)) color_adjust = make_fixnum (0xffff / 2); if (i == 9 && NUMBERP (color_adjust)) image_detect_edges (f, img, trans, XFLOATINT (color_adjust)); } #if defined HAVE_X_WINDOWS || defined USE_CAIRO || defined HAVE_HAIKU \ || defined HAVE_ANDROID static void image_pixmap_draw_cross (struct frame *f, Emacs_Pixmap pixmap, int x, int y, unsigned int width, unsigned int height, unsigned long color) { #ifdef USE_CAIRO cairo_surface_t *surface = cairo_image_surface_create_for_data ((unsigned char *) pixmap->data, (pixmap->bits_per_pixel == 32 ? CAIRO_FORMAT_RGB24 : CAIRO_FORMAT_A8), pixmap->width, pixmap->height, pixmap->bytes_per_line); cairo_t *cr = cairo_create (surface); cairo_surface_destroy (surface); cairo_set_source_rgb (cr, RED_FROM_ULONG (color) / 255.0, GREEN_FROM_ULONG (color) / 255.0, BLUE_FROM_ULONG (color) / 255.0); cairo_move_to (cr, x + 0.5, y + 0.5); cairo_rel_line_to (cr, width - 1, height - 1); cairo_rel_move_to (cr, 0, - (height - 1)); cairo_rel_line_to (cr, - (width - 1), height - 1); cairo_set_line_width (cr, 1); cairo_stroke (cr); cairo_destroy (cr); #elif HAVE_X_WINDOWS Display *dpy = FRAME_X_DISPLAY (f); GC gc = XCreateGC (dpy, pixmap, 0, NULL); XSetForeground (dpy, gc, color); XDrawLine (dpy, pixmap, gc, x, y, x + width - 1, y + height - 1); XDrawLine (dpy, pixmap, gc, x, y + height - 1, x + width - 1, y); XFreeGC (dpy, gc); #elif HAVE_HAIKU be_draw_cross_on_pixmap (pixmap, x, y, width, height, color); #elif HAVE_ANDROID #ifndef ANDROID_STUBIFY struct android_gc *gc; gc = android_create_gc (0, NULL); android_set_foreground (gc, color); android_draw_line (pixmap, gc, x, y, x + width - 1, y + height - 1); android_draw_line (pixmap, gc, x, y + height - 1, x + width - 1, y); android_free_gc (gc); #else emacs_abort (); #endif #endif } #endif /* HAVE_X_WINDOWS || USE_CAIRO || HAVE_HAIKU */ /* Transform image IMG on frame F so that it looks disabled. */ static void image_disable_image (struct frame *f, struct image *img) { Display_Info *dpyinfo = FRAME_DISPLAY_INFO (f); #ifdef HAVE_NTGUI int n_planes = dpyinfo->n_planes * dpyinfo->n_cbits; #else int n_planes = dpyinfo->n_planes; #endif /* HAVE_NTGUI */ if (n_planes >= 2) { /* Color (or grayscale). Convert to gray, and equalize. Just drawing such images with a stipple can look very odd, so we're using this method instead. */ Emacs_Color *colors = image_to_emacs_colors (f, img, 1); Emacs_Color *p, *end; const int h = 15000; const int l = 30000; for (p = colors, end = colors + img->width * img->height; p < end; ++p) { int i = COLOR_INTENSITY (p->red, p->green, p->blue); int i2 = (0xffff - h - l) * i / 0xffff + l; p->red = p->green = p->blue = i2; } image_from_emacs_colors (f, img, colors); } /* Draw a cross over the disabled image, if we must or if we should. */ if (n_planes < 2 || cross_disabled_images) { #ifndef HAVE_NTGUI #ifndef HAVE_NS /* TODO: NS support, however this not needed for toolbars */ #if !defined USE_CAIRO && !defined HAVE_HAIKU && !defined HAVE_ANDROID #define CrossForeground(f) BLACK_PIX_DEFAULT (f) #define MaskForeground(f) WHITE_PIX_DEFAULT (f) #else /* USE_CAIRO || HAVE_HAIKU */ #define CrossForeground(f) 0 #define MaskForeground(f) PIX_MASK_DRAW #endif /* USE_CAIRO || HAVE_HAIKU */ #if !defined USE_CAIRO && !defined HAVE_HAIKU image_sync_to_pixmaps (f, img); #endif /* !USE_CAIRO && !HAVE_HAIKU */ image_pixmap_draw_cross (f, img->pixmap, 0, 0, img->width, img->height, CrossForeground (f)); if (img->mask) image_pixmap_draw_cross (f, img->mask, 0, 0, img->width, img->height, MaskForeground (f)); #endif /* !HAVE_NS */ #else HDC hdc, bmpdc; HGDIOBJ prev; hdc = get_frame_dc (f); bmpdc = CreateCompatibleDC (hdc); release_frame_dc (f, hdc); prev = SelectObject (bmpdc, img->pixmap); SetTextColor (bmpdc, BLACK_PIX_DEFAULT (f)); MoveToEx (bmpdc, 0, 0, NULL); LineTo (bmpdc, img->width - 1, img->height - 1); MoveToEx (bmpdc, 0, img->height - 1, NULL); LineTo (bmpdc, img->width - 1, 0); if (img->mask) { SelectObject (bmpdc, img->mask); SetTextColor (bmpdc, WHITE_PIX_DEFAULT (f)); MoveToEx (bmpdc, 0, 0, NULL); LineTo (bmpdc, img->width - 1, img->height - 1); MoveToEx (bmpdc, 0, img->height - 1, NULL); LineTo (bmpdc, img->width - 1, 0); } SelectObject (bmpdc, prev); DeleteDC (bmpdc); #endif /* HAVE_NTGUI */ } } /* Build a mask for image IMG which is used on frame F. FILE is the name of an image file, for error messages. HOW determines how to determine the background color of IMG. If it is a list '(R G B)', with R, G, and B being integers >= 0, take that as the color of the background. Otherwise, determine the background color of IMG heuristically. */ static void image_build_heuristic_mask (struct frame *f, struct image *img, Lisp_Object how) { Emacs_Pix_Context ximg; #ifdef HAVE_NTGUI HGDIOBJ prev; char *mask_img; int row_width; #elif !defined HAVE_NS Emacs_Pix_Container mask_img; #endif int x, y; bool use_img_background; unsigned long bg = 0; if (img->mask) image_clear_image_1 (f, img, CLEAR_IMAGE_MASK); #ifndef HAVE_NTGUI #ifndef HAVE_NS /* Create an image and pixmap serving as mask. */ if (! image_create_x_image_and_pixmap (f, img, img->width, img->height, 1, &mask_img, 1)) return; #endif /* !HAVE_NS */ #else /* Create the bit array serving as mask. */ row_width = (img->width + 7) / 8; mask_img = xzalloc (row_width * img->height); #endif /* HAVE_NTGUI */ /* Get the X image or create a memory device context for IMG. */ ximg = image_get_x_image_or_dc (f, img, 0, &prev); /* Determine the background color of ximg. If HOW is `(R G B)' take that as color. Otherwise, use the image's background color. */ use_img_background = 1; if (CONSP (how)) { int rgb[3], i; for (i = 0; i < 3 && CONSP (how) && FIXNATP (XCAR (how)); ++i) { rgb[i] = XFIXNAT (XCAR (how)) & 0xffff; how = XCDR (how); } if (i == 3 && NILP (how)) { #ifndef USE_CAIRO char color_name[30]; sprintf (color_name, "#%04x%04x%04x", rgb[0] + 0u, rgb[1] + 0u, rgb[2] + 0u); bg = ( #ifdef HAVE_NTGUI 0x00ffffff & /* Filter out palette info. */ #endif /* HAVE_NTGUI */ image_alloc_image_color (f, img, build_string (color_name), 0)); #else /* USE_CAIRO */ bg = lookup_rgb_color (f, rgb[0], rgb[1], rgb[2]); #endif /* USE_CAIRO */ use_img_background = 0; } } if (use_img_background) bg = four_corners_best (ximg, img->corners, img->width, img->height); /* Set all bits in mask_img to 1 whose color in ximg is different from the background color bg. */ #ifndef HAVE_NTGUI for (y = 0; y < img->height; ++y) for (x = 0; x < img->width; ++x) #ifndef HAVE_NS PUT_PIXEL (mask_img, x, y, (GET_PIXEL (ximg, x, y) != bg ? PIX_MASK_DRAW : PIX_MASK_RETAIN)); #else if (XGetPixel (ximg, x, y) == bg) ns_set_alpha (ximg, x, y, 0); #endif /* HAVE_NS */ #ifndef HAVE_NS /* Fill in the background_transparent field while we have the mask handy. */ image_background_transparent (img, f, mask_img); /* Put mask_img into the image. */ image_put_x_image (f, img, mask_img, 1); #endif /* !HAVE_NS */ #else for (y = 0; y < img->height; ++y) for (x = 0; x < img->width; ++x) { COLORREF p = GetPixel (ximg, x, y); if (p != bg) mask_img[y * row_width + x / 8] |= 1 << (x % 8); } /* Create the mask image. */ img->mask = w32_create_pixmap_from_bitmap_data (img->width, img->height, mask_img); /* Fill in the background_transparent field while we have the mask handy. */ SelectObject (ximg, img->mask); image_background_transparent (img, f, ximg); /* Was: image_destroy_x_image ((XImagePtr )mask_img); which seems bogus ++kfs */ xfree (mask_img); #endif /* HAVE_NTGUI */ image_unget_x_image_or_dc (img, 0, ximg, prev); } /*********************************************************************** PBM (mono, gray, color) ***********************************************************************/ /* Indices of image specification fields in gs_format, below. */ enum pbm_keyword_index { PBM_TYPE, PBM_FILE, PBM_DATA, PBM_ASCENT, PBM_MARGIN, PBM_RELIEF, PBM_ALGORITHM, PBM_HEURISTIC_MASK, PBM_MASK, PBM_FOREGROUND, PBM_BACKGROUND, PBM_LAST }; /* Vector of image_keyword structures describing the format of valid user-defined image specifications. */ static const struct image_keyword pbm_format[PBM_LAST] = { {":type", IMAGE_SYMBOL_VALUE, 1}, {":file", IMAGE_STRING_VALUE, 0}, {":data", IMAGE_STRING_VALUE, 0}, {":ascent", IMAGE_ASCENT_VALUE, 0}, {":margin", IMAGE_NON_NEGATIVE_INTEGER_VALUE_OR_PAIR, 0}, {":relief", IMAGE_INTEGER_VALUE, 0}, {":conversion", IMAGE_DONT_CHECK_VALUE_TYPE, 0}, {":heuristic-mask", IMAGE_DONT_CHECK_VALUE_TYPE, 0}, {":mask", IMAGE_DONT_CHECK_VALUE_TYPE, 0}, {":foreground", IMAGE_STRING_OR_NIL_VALUE, 0}, {":background", IMAGE_STRING_OR_NIL_VALUE, 0} }; /* Return true if OBJECT is a valid PBM image specification. */ static bool pbm_image_p (Lisp_Object object) { struct image_keyword fmt[PBM_LAST]; memcpy (fmt, pbm_format, sizeof fmt); if (!parse_image_spec (object, fmt, PBM_LAST, Qpbm)) return 0; /* Must specify either :data or :file. */ return fmt[PBM_DATA].count + fmt[PBM_FILE].count == 1; } /* Get next char skipping comments in Netpbm header. Returns -1 at end of input. */ static int pbm_next_char (char **s, char *end) { while (*s < end) { unsigned char c = *(*s)++; if (c != '#') return c; while (*s < end) { c = *(*s)++; if (c == '\n' || c == '\r') break; } } return -1; } /* Scan a decimal number from *S and return it. Advance *S while reading the number. END is the end of the string. Value is -1 at end of input. */ static int pbm_scan_number (char **s, char *end) { int c = 0, val = -1; /* Skip white-space. */ while ((c = pbm_next_char (s, end)) != -1 && c_isspace (c)) ; if (c_isdigit (c)) { /* Read decimal number. */ val = c - '0'; while ((c = pbm_next_char (s, end)) != -1 && c_isdigit (c)) val = 10 * val + c - '0'; } return val; } /* Scan an index from *S and return it. It is a one-byte unsigned index if !TWO_BYTE, and a two-byte big-endian unsigned index if TWO_BYTE. */ static int pbm_scan_index (char **s, bool two_byte) { char *p = *s; unsigned char c0 = *p++; int n = c0; if (two_byte) { unsigned char c1 = *p++; n = (n << 8) + c1; } *s = p; return n; } /* Load PBM image IMG for use on frame F. */ static bool pbm_load (struct frame *f, struct image *img) { bool raw_p; int x, y; int width, height, max_color_idx = 0; Lisp_Object specified_file; enum {PBM_MONO, PBM_GRAY, PBM_COLOR} type; char *contents = NULL; char *end, *p; Emacs_Pix_Container ximg; specified_file = image_spec_value (img->spec, QCfile, NULL); if (STRINGP (specified_file)) { ptrdiff_t size; contents = slurp_image (specified_file, &size, "PBM"); if (contents == NULL) return false; p = contents; end = contents + size; } else { Lisp_Object data; data = image_spec_value (img->spec, QCdata, NULL); if (!STRINGP (data)) { image_invalid_data_error (data); return false; } p = SSDATA (data); end = p + SBYTES (data); } /* Check magic number. */ if (end - p < 2 || *p++ != 'P') { image_error ("Not a PBM image: `%s'", img->spec); error: xfree (contents); img->pixmap = NO_PIXMAP; return 0; } switch (*p++) { case '1': raw_p = 0, type = PBM_MONO; break; case '2': raw_p = 0, type = PBM_GRAY; break; case '3': raw_p = 0, type = PBM_COLOR; break; case '4': raw_p = 1, type = PBM_MONO; break; case '5': raw_p = 1, type = PBM_GRAY; break; case '6': raw_p = 1, type = PBM_COLOR; break; default: image_error ("Not a PBM image: `%s'", img->spec); goto error; } /* Read width, height, maximum color-component. Characters starting with `#' up to the end of a line are ignored. */ width = pbm_scan_number (&p, end); height = pbm_scan_number (&p, end); if (type != PBM_MONO) { max_color_idx = pbm_scan_number (&p, end); if (max_color_idx > 65535 || max_color_idx < 0) { image_error ("Unsupported maximum PBM color value"); goto error; } } if (!check_image_size (f, width, height)) { image_size_error (); goto error; } if (!image_create_x_image_and_pixmap (f, img, width, height, 0, &ximg, 0)) goto error; /* Initialize the color hash table. */ init_color_table (); if (type == PBM_MONO) { unsigned char c = 0; int g; struct image_keyword fmt[PBM_LAST]; unsigned long fg = img->face_foreground; unsigned long bg = img->face_background; /* Parse the image specification. */ memcpy (fmt, pbm_format, sizeof fmt); parse_image_spec (img->spec, fmt, PBM_LAST, Qpbm); /* Get foreground and background colors, maybe allocate colors. */ if (fmt[PBM_FOREGROUND].count && STRINGP (fmt[PBM_FOREGROUND].value)) fg = image_alloc_image_color (f, img, fmt[PBM_FOREGROUND].value, fg); if (fmt[PBM_BACKGROUND].count && STRINGP (fmt[PBM_BACKGROUND].value)) { bg = image_alloc_image_color (f, img, fmt[PBM_BACKGROUND].value, bg); img->background = bg; img->background_valid = 1; } #ifdef USE_CAIRO { Emacs_Color fgbg[] = {{.pixel = fg}, {.pixel = bg}}; FRAME_TERMINAL (f)->query_colors (f, fgbg, ARRAYELTS (fgbg)); fg = lookup_rgb_color (f, fgbg[0].red, fgbg[0].green, fgbg[0].blue); bg = lookup_rgb_color (f, fgbg[1].red, fgbg[1].green, fgbg[1].blue); } #endif for (y = 0; y < height; ++y) for (x = 0; x < width; ++x) { if (raw_p) { if ((x & 7) == 0) { if (p >= end) { image_destroy_x_image (ximg); image_clear_image (f, img); image_error ("Invalid image size in image `%s'", img->spec); goto error; } c = *p++; } g = c & 0x80; c <<= 1; } else { int c = 0; /* Skip white-space and comments. */ while ((c = pbm_next_char (&p, end)) != -1 && c_isspace (c)) ; if (c == '0' || c == '1') g = c - '0'; else g = 0; } PUT_PIXEL (ximg, x, y, g ? fg : bg); } } else { int expected_size = height * width; bool two_byte = 255 < max_color_idx; if (two_byte) expected_size *= 2; if (type == PBM_COLOR) expected_size *= 3; if (raw_p && p + expected_size > end) { image_destroy_x_image (ximg); image_clear_image (f, img); image_error ("Invalid image size in image `%s'", img->spec); goto error; } for (y = 0; y < height; ++y) for (x = 0; x < width; ++x) { int r, g, b; if (type == PBM_GRAY && raw_p) r = g = b = pbm_scan_index (&p, two_byte); else if (type == PBM_GRAY) r = g = b = pbm_scan_number (&p, end); else if (raw_p) { r = pbm_scan_index (&p, two_byte); g = pbm_scan_index (&p, two_byte); b = pbm_scan_index (&p, two_byte); } else { r = pbm_scan_number (&p, end); g = pbm_scan_number (&p, end); b = pbm_scan_number (&p, end); } if (r < 0 || g < 0 || b < 0) { image_destroy_x_image (ximg); image_error ("Invalid pixel value in image `%s'", img->spec); goto error; } /* RGB values are now in the range 0..max_color_idx. Scale this to the range 0..0xffff supported by X. */ r = (double) r * 65535 / max_color_idx; g = (double) g * 65535 / max_color_idx; b = (double) b * 65535 / max_color_idx; PUT_PIXEL (ximg, x, y, lookup_rgb_color (f, r, g, b)); } } #ifdef COLOR_TABLE_SUPPORT /* Store in IMG->colors the colors allocated for the image, and free the color table. */ img->colors = colors_in_color_table (&img->ncolors); free_color_table (); #endif /* COLOR_TABLE_SUPPORT */ img->width = width; img->height = height; /* Maybe fill in the background field while we have ximg handy. */ if (NILP (image_spec_value (img->spec, QCbackground, NULL))) /* Casting avoids a GCC warning. */ IMAGE_BACKGROUND (img, f, (Emacs_Pix_Context)ximg); /* Put ximg into the image. */ image_put_x_image (f, img, ximg, 0); /* X and W32 versions did it here, MAC version above. ++kfs img->width = width; img->height = height; */ xfree (contents); return 1; } /*********************************************************************** NATIVE IMAGE HANDLING ***********************************************************************/ #if HAVE_NATIVE_IMAGE_API static bool image_can_use_native_api (Lisp_Object type) { # ifdef HAVE_NTGUI return w32_can_use_native_image_api (type); # elif defined HAVE_NS return ns_can_use_native_image_api (type); # elif defined HAVE_HAIKU return haiku_can_use_native_image_api (type); # else return false; # endif } /* * These functions are actually defined in the OS-native implementation file. * Currently, for Windows GDI+ interface, w32image.c, and nsimage.m for macOS. */ /* Indices of image specification fields in native format, below. */ enum native_image_keyword_index { NATIVE_IMAGE_TYPE, NATIVE_IMAGE_DATA, NATIVE_IMAGE_FILE, NATIVE_IMAGE_ASCENT, NATIVE_IMAGE_MARGIN, NATIVE_IMAGE_RELIEF, NATIVE_IMAGE_ALGORITHM, NATIVE_IMAGE_HEURISTIC_MASK, NATIVE_IMAGE_MASK, NATIVE_IMAGE_BACKGROUND, NATIVE_IMAGE_INDEX, NATIVE_IMAGE_LAST }; /* Vector of image_keyword structures describing the format of valid user-defined image specifications. */ static const struct image_keyword native_image_format[] = { {":type", IMAGE_SYMBOL_VALUE, 1}, {":data", IMAGE_STRING_VALUE, 0}, {":file", IMAGE_STRING_VALUE, 0}, {":ascent", IMAGE_ASCENT_VALUE, 0}, {":margin", IMAGE_NON_NEGATIVE_INTEGER_VALUE_OR_PAIR, 0}, {":relief", IMAGE_INTEGER_VALUE, 0}, {":conversion", IMAGE_DONT_CHECK_VALUE_TYPE, 0}, {":heuristic-mask", IMAGE_DONT_CHECK_VALUE_TYPE, 0}, {":mask", IMAGE_DONT_CHECK_VALUE_TYPE, 0}, {":background", IMAGE_STRING_OR_NIL_VALUE, 0}, {":index", IMAGE_NON_NEGATIVE_INTEGER_VALUE, 0} }; /* Return true if OBJECT is a valid native API image specification. */ static bool native_image_p (Lisp_Object object) { struct image_keyword fmt[NATIVE_IMAGE_LAST]; memcpy (fmt, native_image_format, sizeof fmt); if (!parse_image_spec (object, fmt, 10, Qnative_image)) return 0; /* Must specify either the :data or :file keyword. */ return fmt[NATIVE_IMAGE_FILE].count + fmt[NATIVE_IMAGE_DATA].count == 1; } static bool native_image_load (struct frame *f, struct image *img) { Lisp_Object image_file = image_spec_value (img->spec, QCfile, NULL); if (STRINGP (image_file)) image_file = image_find_image_file (image_file); # ifdef HAVE_NTGUI return w32_load_image (f, img, image_file, image_spec_value (img->spec, QCdata, NULL)); # elif defined HAVE_NS return ns_load_image (f, img, image_file, image_spec_value (img->spec, QCdata, NULL)); # elif defined HAVE_HAIKU return haiku_load_image (f, img, image_file, image_spec_value (img->spec, QCdata, NULL)); # else return 0; # endif } #endif /* HAVE_NATIVE_IMAGE_API */ /*********************************************************************** PNG ***********************************************************************/ #if defined (HAVE_PNG) /* Indices of image specification fields in png_format, below. */ enum png_keyword_index { PNG_TYPE, PNG_DATA, PNG_FILE, PNG_ASCENT, PNG_MARGIN, PNG_RELIEF, PNG_ALGORITHM, PNG_HEURISTIC_MASK, PNG_MASK, PNG_BACKGROUND, PNG_LAST }; /* Vector of image_keyword structures describing the format of valid user-defined image specifications. */ static const struct image_keyword png_format[PNG_LAST] = { {":type", IMAGE_SYMBOL_VALUE, 1}, {":data", IMAGE_STRING_VALUE, 0}, {":file", IMAGE_STRING_VALUE, 0}, {":ascent", IMAGE_ASCENT_VALUE, 0}, {":margin", IMAGE_NON_NEGATIVE_INTEGER_VALUE_OR_PAIR, 0}, {":relief", IMAGE_INTEGER_VALUE, 0}, {":conversion", IMAGE_DONT_CHECK_VALUE_TYPE, 0}, {":heuristic-mask", IMAGE_DONT_CHECK_VALUE_TYPE, 0}, {":mask", IMAGE_DONT_CHECK_VALUE_TYPE, 0}, {":background", IMAGE_STRING_OR_NIL_VALUE, 0} }; /* Return true if OBJECT is a valid PNG image specification. */ static bool png_image_p (Lisp_Object object) { struct image_keyword fmt[PNG_LAST]; memcpy (fmt, png_format, sizeof fmt); if (!parse_image_spec (object, fmt, PNG_LAST, Qpng)) return 0; /* Must specify either the :data or :file keyword. */ return fmt[PNG_FILE].count + fmt[PNG_DATA].count == 1; } #endif /* HAVE_PNG */ #ifdef HAVE_PNG # ifdef WINDOWSNT /* PNG library details. */ DEF_DLL_FN (png_voidp, png_get_io_ptr, (png_structp)); DEF_DLL_FN (int, png_sig_cmp, (png_bytep, png_size_t, png_size_t)); DEF_DLL_FN (png_structp, png_create_read_struct, (png_const_charp, png_voidp, png_error_ptr, png_error_ptr)); DEF_DLL_FN (png_infop, png_create_info_struct, (png_structp)); DEF_DLL_FN (void, png_destroy_read_struct, (png_structpp, png_infopp, png_infopp)); DEF_DLL_FN (void, png_set_read_fn, (png_structp, png_voidp, png_rw_ptr)); DEF_DLL_FN (void, png_set_sig_bytes, (png_structp, int)); DEF_DLL_FN (void, png_read_info, (png_structp, png_infop)); DEF_DLL_FN (png_uint_32, png_get_IHDR, (png_structp, png_infop, png_uint_32 *, png_uint_32 *, int *, int *, int *, int *, int *)); # ifdef PNG_tRNS_SUPPORTED DEF_DLL_FN (png_uint_32, png_get_tRNS, (png_structp, png_infop, png_bytep *, int *, png_color_16p *)); # endif DEF_DLL_FN (void, png_set_strip_16, (png_structp)); DEF_DLL_FN (void, png_set_expand, (png_structp)); DEF_DLL_FN (void, png_set_gray_to_rgb, (png_structp)); DEF_DLL_FN (int, png_set_interlace_handling, (png_structp)); DEF_DLL_FN (void, png_set_background, (png_structp, png_color_16p, int, int, double)); DEF_DLL_FN (png_uint_32, png_get_bKGD, (png_structp, png_infop, png_color_16p *)); DEF_DLL_FN (void, png_read_update_info, (png_structp, png_infop)); DEF_DLL_FN (png_byte, png_get_channels, (png_structp, png_infop)); DEF_DLL_FN (png_size_t, png_get_rowbytes, (png_structp, png_infop)); DEF_DLL_FN (void, png_read_image, (png_structp, png_bytepp)); DEF_DLL_FN (void, png_read_end, (png_structp, png_infop)); DEF_DLL_FN (void, png_error, (png_structp, png_const_charp)); # if (PNG_LIBPNG_VER >= 10500) DEF_DLL_FN (void, png_longjmp, (png_structp, int) PNG_NORETURN); DEF_DLL_FN (jmp_buf *, png_set_longjmp_fn, (png_structp, png_longjmp_ptr, size_t)); # endif /* libpng version >= 1.5 */ static bool init_png_functions (void) { HMODULE library; if (!(library = w32_delayed_load (Qpng))) return 0; LOAD_DLL_FN (library, png_get_io_ptr); LOAD_DLL_FN (library, png_sig_cmp); LOAD_DLL_FN (library, png_create_read_struct); LOAD_DLL_FN (library, png_create_info_struct); LOAD_DLL_FN (library, png_destroy_read_struct); LOAD_DLL_FN (library, png_set_read_fn); LOAD_DLL_FN (library, png_set_sig_bytes); LOAD_DLL_FN (library, png_read_info); LOAD_DLL_FN (library, png_get_IHDR); # ifdef PNG_tRNS_SUPPORTED LOAD_DLL_FN (library, png_get_tRNS); # endif LOAD_DLL_FN (library, png_set_strip_16); LOAD_DLL_FN (library, png_set_expand); LOAD_DLL_FN (library, png_set_gray_to_rgb); LOAD_DLL_FN (library, png_set_interlace_handling); LOAD_DLL_FN (library, png_set_background); LOAD_DLL_FN (library, png_get_bKGD); LOAD_DLL_FN (library, png_read_update_info); LOAD_DLL_FN (library, png_get_channels); LOAD_DLL_FN (library, png_get_rowbytes); LOAD_DLL_FN (library, png_read_image); LOAD_DLL_FN (library, png_read_end); LOAD_DLL_FN (library, png_error); # if (PNG_LIBPNG_VER >= 10500) LOAD_DLL_FN (library, png_longjmp); LOAD_DLL_FN (library, png_set_longjmp_fn); # endif /* libpng version >= 1.5 */ return 1; } # undef png_create_info_struct # undef png_create_read_struct # undef png_destroy_read_struct # undef png_error # undef png_get_bKGD # undef png_get_channels # undef png_get_IHDR # undef png_get_io_ptr # undef png_get_rowbytes # undef png_get_tRNS # undef png_longjmp # undef png_read_end # undef png_read_image # undef png_read_info # undef png_read_update_info # undef png_set_background # undef png_set_expand # undef png_set_gray_to_rgb # undef png_set_interlace_handling # undef png_set_longjmp_fn # undef png_set_read_fn # undef png_set_sig_bytes # undef png_set_strip_16 # undef png_sig_cmp # define png_create_info_struct fn_png_create_info_struct # define png_create_read_struct fn_png_create_read_struct # define png_destroy_read_struct fn_png_destroy_read_struct # define png_error fn_png_error # define png_get_bKGD fn_png_get_bKGD # define png_get_channels fn_png_get_channels # define png_get_IHDR fn_png_get_IHDR # define png_get_io_ptr fn_png_get_io_ptr # define png_get_rowbytes fn_png_get_rowbytes # define png_get_tRNS fn_png_get_tRNS # define png_longjmp fn_png_longjmp # define png_read_end fn_png_read_end # define png_read_image fn_png_read_image # define png_read_info fn_png_read_info # define png_read_update_info fn_png_read_update_info # define png_set_background fn_png_set_background # define png_set_expand fn_png_set_expand # define png_set_gray_to_rgb fn_png_set_gray_to_rgb # define png_set_interlace_handling fn_png_set_interlace_handling # define png_set_longjmp_fn fn_png_set_longjmp_fn # define png_set_read_fn fn_png_set_read_fn # define png_set_sig_bytes fn_png_set_sig_bytes # define png_set_strip_16 fn_png_set_strip_16 # define png_sig_cmp fn_png_sig_cmp # endif /* WINDOWSNT */ /* Fast implementations of setjmp and longjmp. Although setjmp and longjmp will do, POSIX _setjmp and _longjmp (if available) are often faster. Do not use sys_setjmp, as PNG supports only jmp_buf. It's OK if the longjmp substitute restores the signal mask. */ # ifdef HAVE__SETJMP # define FAST_SETJMP(j) _setjmp (j) # define FAST_LONGJMP _longjmp # else # define FAST_SETJMP(j) setjmp (j) # define FAST_LONGJMP longjmp # endif # if PNG_LIBPNG_VER < 10500 # define PNG_LONGJMP(ptr) FAST_LONGJMP ((ptr)->jmpbuf, 1) # define PNG_JMPBUF(ptr) ((ptr)->jmpbuf) # else /* In libpng version 1.5, the jmpbuf member is hidden. (Bug#7908) */ # define PNG_LONGJMP(ptr) png_longjmp (ptr, 1) # define PNG_JMPBUF(ptr) \ (*png_set_longjmp_fn (ptr, FAST_LONGJMP, sizeof (jmp_buf))) # endif /* Error and warning handlers installed when the PNG library is initialized. */ static AVOID my_png_error (png_struct *png_ptr, const char *msg) { eassert (png_ptr != NULL); /* Avoid compiler warning about deprecated direct access to png_ptr's fields in libpng versions 1.4.x. */ image_error ("PNG error: %s", build_string (msg)); PNG_LONGJMP (png_ptr); } static void my_png_warning (png_struct *png_ptr, const char *msg) { eassert (png_ptr != NULL); image_error ("PNG warning: %s", build_string (msg)); } /* Memory source for PNG decoding. */ struct png_memory_storage { unsigned char *bytes; /* The data */ ptrdiff_t len; /* How big is it? */ ptrdiff_t index; /* Where are we? */ }; /* Function set as reader function when reading PNG image from memory. PNG_PTR is a pointer to the PNG control structure. Copy LENGTH bytes from the input to DATA. */ static void png_read_from_memory (png_structp png_ptr, png_bytep data, png_size_t length) { struct png_memory_storage *tbr = png_get_io_ptr (png_ptr); if (length > tbr->len - tbr->index) png_error (png_ptr, "Read error"); memcpy (data, tbr->bytes + tbr->index, length); tbr->index = tbr->index + length; } /* Function set as reader function when reading PNG image from a file. PNG_PTR is a pointer to the PNG control structure. Copy LENGTH bytes from the input to DATA. */ static void png_read_from_file (png_structp png_ptr, png_bytep data, png_size_t length) { FILE *fp = png_get_io_ptr (png_ptr); if (fread (data, 1, length, fp) < length) png_error (png_ptr, "Read error"); } /* Load PNG image IMG for use on frame F. Value is true if successful. */ struct png_load_context { /* These are members so that longjmp doesn't munge local variables. */ png_struct *png_ptr; png_info *info_ptr; png_info *end_info; FILE *fp; png_byte *pixels; png_byte **rows; }; static bool png_load_body (struct frame *f, struct image *img, struct png_load_context *c) { Lisp_Object specified_file, specified_data; FILE *fp = NULL; int x, y; ptrdiff_t i; png_struct *png_ptr; png_info *info_ptr = NULL, *end_info = NULL; png_byte sig[8]; png_byte *pixels = NULL; png_byte **rows = NULL; png_uint_32 width, height; int bit_depth, color_type, interlace_type; png_byte channels; png_uint_32 row_bytes; bool transparent_p; struct png_memory_storage tbr; /* Data to be read */ ptrdiff_t nbytes; Emacs_Pix_Container ximg; /* Find out what file to load. */ specified_file = image_spec_value (img->spec, QCfile, NULL); specified_data = image_spec_value (img->spec, QCdata, NULL); if (NILP (specified_data)) { int fd; Lisp_Object file = image_find_image_file (specified_file); if (!STRINGP (file) || (fd = emacs_open (SSDATA (ENCODE_FILE (file)), O_RDONLY, 0)) < 0) { image_not_found_error (specified_file); return false; } /* Open the image file. */ fp = emacs_fdopen (fd, "rb"); if (!fp) { image_error ("Cannot open image file `%s'", file); return 0; } /* Check PNG signature. */ if (fread (sig, 1, sizeof sig, fp) != sizeof sig || png_sig_cmp (sig, 0, sizeof sig)) { emacs_fclose (fp); image_error ("Not a PNG file: `%s'", file); return 0; } } else { if (!STRINGP (specified_data)) { image_invalid_data_error (specified_data); return false; } /* Read from memory. */ tbr.bytes = SDATA (specified_data); tbr.len = SBYTES (specified_data); tbr.index = 0; /* Check PNG signature. */ if (tbr.len < sizeof sig || png_sig_cmp (tbr.bytes, 0, sizeof sig)) { image_error ("Not a PNG image: `%s'", img->spec); return 0; } /* Need to skip past the signature. */ tbr.bytes += sizeof (sig); } /* Initialize read and info structs for PNG lib. */ png_ptr = png_create_read_struct (PNG_LIBPNG_VER_STRING, NULL, my_png_error, my_png_warning); if (png_ptr) { info_ptr = png_create_info_struct (png_ptr); end_info = png_create_info_struct (png_ptr); } c->png_ptr = png_ptr; c->info_ptr = info_ptr; c->end_info = end_info; c->fp = fp; c->pixels = pixels; c->rows = rows; if (! (info_ptr && end_info)) { png_destroy_read_struct (&c->png_ptr, &c->info_ptr, &c->end_info); png_ptr = 0; } if (! png_ptr) { if (fp) emacs_fclose (fp); return 0; } /* Set error jump-back. We come back here when the PNG library detects an error. */ struct png_load_context *volatile c_volatile = c; if (FAST_SETJMP (PNG_JMPBUF (png_ptr))) { error: c = c_volatile; if (c->png_ptr) png_destroy_read_struct (&c->png_ptr, &c->info_ptr, &c->end_info); xfree (c->pixels); xfree (c->rows); if (c->fp) emacs_fclose (c->fp); return 0; } #if GCC_LINT && __GNUC__ && !__clang__ /* These useless assignments pacify GCC 14.2.1 x86-64 . */ c = c_volatile; fp = c->fp; #endif /* Read image info. */ if (!NILP (specified_data)) png_set_read_fn (png_ptr, &tbr, png_read_from_memory); else png_set_read_fn (png_ptr, fp, png_read_from_file); png_set_sig_bytes (png_ptr, sizeof sig); png_read_info (png_ptr, info_ptr); png_get_IHDR (png_ptr, info_ptr, &width, &height, &bit_depth, &color_type, &interlace_type, NULL, NULL); if (! (width <= INT_MAX && height <= INT_MAX && check_image_size (f, width, height))) { image_size_error (); goto error; } /* Create the X image and pixmap now, so that the work below can be omitted if the image is too large for X. */ if (!image_create_x_image_and_pixmap (f, img, width, height, 0, &ximg, 0)) goto error; /* If image contains simply transparency data, we prefer to construct a clipping mask. */ transparent_p = false; # ifdef PNG_tRNS_SUPPORTED png_bytep trans_alpha; int num_trans; if (png_get_tRNS (png_ptr, info_ptr, &trans_alpha, &num_trans, NULL)) { transparent_p = true; if (trans_alpha) for (int i = 0; i < num_trans; i++) if (0 < trans_alpha[i] && trans_alpha[i] < 255) { transparent_p = false; break; } } # endif /* This function is easier to write if we only have to handle one data format: RGB or RGBA with 8 bits per channel. Let's transform other formats into that format. */ /* Strip more than 8 bits per channel. */ if (bit_depth == 16) png_set_strip_16 (png_ptr); /* Expand data to 24 bit RGB, or 8 bit grayscale, with alpha channel if available. */ png_set_expand (png_ptr); /* Convert grayscale images to RGB. */ if (color_type == PNG_COLOR_TYPE_GRAY || color_type == PNG_COLOR_TYPE_GRAY_ALPHA) png_set_gray_to_rgb (png_ptr); /* Handle alpha channel by combining the image with a background color. Do this only if a real alpha channel is supplied. For simple transparency, we prefer a clipping mask. */ if (!transparent_p) { Lisp_Object specified_bg = image_spec_value (img->spec, QCbackground, NULL); Emacs_Color color; /* If the user specified a color, try to use it; if not, use the current frame background, ignoring any default background color set by the image. */ if (STRINGP (specified_bg) ? FRAME_TERMINAL (f)->defined_color_hook (f, SSDATA (specified_bg), &color, false, false) : (FRAME_TERMINAL (f)->query_frame_background_color (f, &color), true)) /* The user specified `:background', use that. */ { int shift = bit_depth == 16 ? 0 : 8; png_color_16 bg = { 0 }; bg.red = color.red >> shift; bg.green = color.green >> shift; bg.blue = color.blue >> shift; png_set_background (png_ptr, &bg, PNG_BACKGROUND_GAMMA_SCREEN, 0, 1.0); } } png_set_interlace_handling (png_ptr); png_read_update_info (png_ptr, info_ptr); /* Get number of channels. Valid values are 1 for grayscale images and images with a palette, 2 for grayscale images with transparency information (alpha channel), 3 for RGB images, and 4 for RGB images with alpha channel, i.e. RGBA. If conversions above were sufficient we should only have 3 or 4 channels here. */ channels = png_get_channels (png_ptr, info_ptr); eassert (channels == 3 || channels == 4); /* Number of bytes needed for one row of the image. */ row_bytes = png_get_rowbytes (png_ptr, info_ptr); /* Allocate memory for the image. */ if (ckd_mul (&nbytes, row_bytes, sizeof *pixels) || ckd_mul (&nbytes, nbytes, height)) memory_full (SIZE_MAX); c->pixels = pixels = xmalloc (nbytes); c->rows = rows = xmalloc (height * sizeof *rows); for (i = 0; i < height; ++i) rows[i] = pixels + i * row_bytes; /* Read the entire image. */ png_read_image (png_ptr, rows); png_read_end (png_ptr, info_ptr); if (fp) { emacs_fclose (fp); c->fp = NULL; } /* Create an image and pixmap serving as mask if the PNG image contains an alpha channel. */ Emacs_Pix_Container mask_img = NULL; if (channels == 4 && transparent_p && !image_create_x_image_and_pixmap (f, img, width, height, 1, &mask_img, 1)) { image_destroy_x_image (ximg); image_clear_image_1 (f, img, CLEAR_IMAGE_PIXMAP); goto error; } /* Fill the X image and mask from PNG data. */ init_color_table (); for (y = 0; y < height; ++y) { png_byte *p = rows[y]; for (x = 0; x < width; ++x) { int r, g, b; r = *p++ << 8; g = *p++ << 8; b = *p++ << 8; PUT_PIXEL (ximg, x, y, lookup_rgb_color (f, r, g, b)); /* An alpha channel, aka mask channel, associates variable transparency with an image. Where other image formats support binary transparency---fully transparent or fully opaque---PNG allows up to 254 levels of partial transparency. The PNG library implements partial transparency by combining the image with a specified background color. I'm not sure how to handle this here nicely: because the background on which the image is displayed may change, for real alpha channel support, it would be necessary to create a new image for each possible background. What I'm doing now is that a mask is created if we have boolean transparency information. Otherwise I'm using the frame's background color to combine the image with. */ if (channels == 4) { if (mask_img) PUT_PIXEL (mask_img, x, y, *p > 0 ? PIX_MASK_DRAW : PIX_MASK_RETAIN); ++p; } } } if (NILP (image_spec_value (img->spec, QCbackground, NULL))) /* Set IMG's background color from the PNG image, unless the user overrode it. */ { png_color_16 *bg; if (png_get_bKGD (png_ptr, info_ptr, &bg)) { #ifndef USE_CAIRO img->background = lookup_rgb_color (f, bg->red, bg->green, bg->blue); #else /* USE_CAIRO */ char color_name[30]; sprintf (color_name, "#%04x%04x%04x", bg->red, bg->green, bg->blue); img->background = image_alloc_image_color (f, img, build_string (color_name), 0); #endif /* USE_CAIRO */ img->background_valid = 1; } } # ifdef COLOR_TABLE_SUPPORT /* Remember colors allocated for this image. */ img->colors = colors_in_color_table (&img->ncolors); free_color_table (); # endif /* COLOR_TABLE_SUPPORT */ /* Clean up. */ png_destroy_read_struct (&c->png_ptr, &c->info_ptr, &c->end_info); xfree (rows); xfree (pixels); img->width = width; img->height = height; /* Maybe fill in the background field while we have ximg handy. Casting avoids a GCC warning. */ IMAGE_BACKGROUND (img, f, (Emacs_Pix_Context)ximg); /* Put ximg into the image. */ image_put_x_image (f, img, ximg, 0); /* Same for the mask. */ if (mask_img) { /* Fill in the background_transparent field while we have the mask handy. Casting avoids a GCC warning. */ image_background_transparent (img, f, (Emacs_Pix_Context)mask_img); image_put_x_image (f, img, mask_img, 1); } return 1; } static bool png_load (struct frame *f, struct image *img) { struct png_load_context c; return png_load_body (f, img, &c); } #endif /* HAVE_PNG */ /*********************************************************************** JPEG ***********************************************************************/ #if defined (HAVE_JPEG) /* Indices of image specification fields in gs_format, below. */ enum jpeg_keyword_index { JPEG_TYPE, JPEG_DATA, JPEG_FILE, JPEG_ASCENT, JPEG_MARGIN, JPEG_RELIEF, JPEG_ALGORITHM, JPEG_HEURISTIC_MASK, JPEG_MASK, JPEG_BACKGROUND, JPEG_LAST }; /* Vector of image_keyword structures describing the format of valid user-defined image specifications. */ static const struct image_keyword jpeg_format[JPEG_LAST] = { {":type", IMAGE_SYMBOL_VALUE, 1}, {":data", IMAGE_STRING_VALUE, 0}, {":file", IMAGE_STRING_VALUE, 0}, {":ascent", IMAGE_ASCENT_VALUE, 0}, {":margin", IMAGE_NON_NEGATIVE_INTEGER_VALUE_OR_PAIR, 0}, {":relief", IMAGE_INTEGER_VALUE, 0}, {":conversions", IMAGE_DONT_CHECK_VALUE_TYPE, 0}, {":heuristic-mask", IMAGE_DONT_CHECK_VALUE_TYPE, 0}, {":mask", IMAGE_DONT_CHECK_VALUE_TYPE, 0}, {":background", IMAGE_STRING_OR_NIL_VALUE, 0} }; /* Return true if OBJECT is a valid JPEG image specification. */ static bool jpeg_image_p (Lisp_Object object) { struct image_keyword fmt[JPEG_LAST]; memcpy (fmt, jpeg_format, sizeof fmt); if (!parse_image_spec (object, fmt, JPEG_LAST, Qjpeg)) return 0; /* Must specify either the :data or :file keyword. */ return fmt[JPEG_FILE].count + fmt[JPEG_DATA].count == 1; } #endif /* HAVE_JPEG */ #ifdef HAVE_JPEG /* Work around a warning about HAVE_STDLIB_H being redefined in jconfig.h. */ # ifdef HAVE_STDLIB_H # undef HAVE_STDLIB_H # endif # if defined (HAVE_NTGUI) && !defined (__WIN32__) /* In older releases of the jpeg library, jpeglib.h will define boolean differently depending on __WIN32__, so make sure it is defined. */ # define __WIN32__ 1 # endif /* rpcndr.h (via windows.h) and jpeglib.h both define boolean types. Some versions of jpeglib try to detect whether rpcndr.h is loaded, using the Windows boolean type instead of the jpeglib boolean type if so. Cygwin jpeglib, however, doesn't try to detect whether its headers are included along with windows.h, so under Cygwin, jpeglib attempts to define a conflicting boolean type. Worse, forcing Cygwin jpeglib headers to use the Windows boolean type doesn't work because it created an ABI incompatibility between the already-compiled jpeg library and the header interface definition. The best we can do is to define jpeglib's boolean type to a different name. This name, jpeg_boolean, remains in effect through the rest of image.c. */ # if defined CYGWIN && defined HAVE_NTGUI # define boolean jpeg_boolean # endif # include # include # ifdef WINDOWSNT /* JPEG library details. */ DEF_DLL_FN (void, jpeg_CreateDecompress, (j_decompress_ptr, int, size_t)); DEF_DLL_FN (boolean, jpeg_start_decompress, (j_decompress_ptr)); DEF_DLL_FN (boolean, jpeg_finish_decompress, (j_decompress_ptr)); DEF_DLL_FN (void, jpeg_destroy_decompress, (j_decompress_ptr)); DEF_DLL_FN (int, jpeg_read_header, (j_decompress_ptr, boolean)); DEF_DLL_FN (JDIMENSION, jpeg_read_scanlines, (j_decompress_ptr, JSAMPARRAY, JDIMENSION)); DEF_DLL_FN (struct jpeg_error_mgr *, jpeg_std_error, (struct jpeg_error_mgr *)); DEF_DLL_FN (boolean, jpeg_resync_to_restart, (j_decompress_ptr, int)); static bool init_jpeg_functions (void) { HMODULE library; if (!(library = w32_delayed_load (Qjpeg))) return 0; LOAD_DLL_FN (library, jpeg_finish_decompress); LOAD_DLL_FN (library, jpeg_read_scanlines); LOAD_DLL_FN (library, jpeg_start_decompress); LOAD_DLL_FN (library, jpeg_read_header); LOAD_DLL_FN (library, jpeg_CreateDecompress); LOAD_DLL_FN (library, jpeg_destroy_decompress); LOAD_DLL_FN (library, jpeg_std_error); LOAD_DLL_FN (library, jpeg_resync_to_restart); return 1; } # undef jpeg_CreateDecompress # undef jpeg_destroy_decompress # undef jpeg_finish_decompress # undef jpeg_read_header # undef jpeg_read_scanlines # undef jpeg_resync_to_restart # undef jpeg_start_decompress # undef jpeg_std_error # define jpeg_CreateDecompress fn_jpeg_CreateDecompress # define jpeg_destroy_decompress fn_jpeg_destroy_decompress # define jpeg_finish_decompress fn_jpeg_finish_decompress # define jpeg_read_header fn_jpeg_read_header # define jpeg_read_scanlines fn_jpeg_read_scanlines # define jpeg_resync_to_restart fn_jpeg_resync_to_restart # define jpeg_start_decompress fn_jpeg_start_decompress # define jpeg_std_error fn_jpeg_std_error /* Wrapper since we can't directly assign the function pointer to another function pointer that was declared more completely easily. */ static boolean jpeg_resync_to_restart_wrapper (j_decompress_ptr cinfo, int desired) { return jpeg_resync_to_restart (cinfo, desired); } # undef jpeg_resync_to_restart # define jpeg_resync_to_restart jpeg_resync_to_restart_wrapper # endif /* WINDOWSNT */ struct my_jpeg_error_mgr { struct jpeg_error_mgr pub; sys_jmp_buf setjmp_buffer; /* The remaining members are so that longjmp doesn't munge local variables. */ struct jpeg_decompress_struct cinfo; enum { MY_JPEG_ERROR_EXIT, MY_JPEG_INVALID_IMAGE_SIZE, MY_JPEG_CANNOT_CREATE_X } failure_code; }; static AVOID my_error_exit (j_common_ptr cinfo) { struct my_jpeg_error_mgr *mgr = (struct my_jpeg_error_mgr *) cinfo->err; mgr->failure_code = MY_JPEG_ERROR_EXIT; sys_longjmp (mgr->setjmp_buffer, 1); } /* Init source method for JPEG data source manager. Called by jpeg_read_header before any data is actually read. See libjpeg.doc from the JPEG lib distribution. */ static void our_common_init_source (j_decompress_ptr cinfo) { } /* Method to terminate data source. Called by jpeg_finish_decompress after all data has been processed. */ static void our_common_term_source (j_decompress_ptr cinfo) { } /* Fill input buffer method for JPEG data source manager. Called whenever more data is needed. We read the whole image in one step, so this only adds a fake end of input marker at the end. */ static JOCTET our_memory_buffer[2]; static boolean our_memory_fill_input_buffer (j_decompress_ptr cinfo) { /* Insert a fake EOI marker. */ struct jpeg_source_mgr *src = cinfo->src; our_memory_buffer[0] = (JOCTET) 0xFF; our_memory_buffer[1] = (JOCTET) JPEG_EOI; src->next_input_byte = our_memory_buffer; src->bytes_in_buffer = 2; return 1; } /* Method to skip over NUM_BYTES bytes in the image data. CINFO->src is the JPEG data source manager. */ static void our_memory_skip_input_data (j_decompress_ptr cinfo, long int num_bytes) { struct jpeg_source_mgr *src = cinfo->src; if (src) { if (num_bytes > src->bytes_in_buffer) ERREXIT (cinfo, JERR_INPUT_EOF); src->bytes_in_buffer -= num_bytes; src->next_input_byte += num_bytes; } } /* Set up the JPEG lib for reading an image from DATA which contains LEN bytes. CINFO is the decompression info structure created for reading the image. */ static void jpeg_memory_src (j_decompress_ptr cinfo, JOCTET *data, ptrdiff_t len) { struct jpeg_source_mgr *src = cinfo->src; if (! src) { /* First time for this JPEG object? */ src = cinfo->mem->alloc_small ((j_common_ptr) cinfo, JPOOL_PERMANENT, sizeof *src); cinfo->src = src; src->next_input_byte = data; } src->init_source = our_common_init_source; src->fill_input_buffer = our_memory_fill_input_buffer; src->skip_input_data = our_memory_skip_input_data; src->resync_to_restart = jpeg_resync_to_restart; /* Use default method. */ src->term_source = our_common_term_source; src->bytes_in_buffer = len; src->next_input_byte = data; } struct jpeg_stdio_mgr { struct jpeg_source_mgr mgr; boolean finished; FILE *file; JOCTET *buffer; }; /* Size of buffer to read JPEG from file. Not too big, as we want to use alloc_small. */ #define JPEG_STDIO_BUFFER_SIZE 8192 /* Fill input buffer method for JPEG data source manager. Called whenever more data is needed. The data is read from a FILE *. */ static boolean our_stdio_fill_input_buffer (j_decompress_ptr cinfo) { struct jpeg_stdio_mgr *src; src = (struct jpeg_stdio_mgr *) cinfo->src; if (!src->finished) { ptrdiff_t bytes; bytes = fread (src->buffer, 1, JPEG_STDIO_BUFFER_SIZE, src->file); if (bytes > 0) src->mgr.bytes_in_buffer = bytes; else { WARNMS (cinfo, JWRN_JPEG_EOF); src->finished = 1; src->buffer[0] = (JOCTET) 0xFF; src->buffer[1] = (JOCTET) JPEG_EOI; src->mgr.bytes_in_buffer = 2; } src->mgr.next_input_byte = src->buffer; } return 1; } /* Method to skip over NUM_BYTES bytes in the image data. CINFO->src is the JPEG data source manager. */ static void our_stdio_skip_input_data (j_decompress_ptr cinfo, long int num_bytes) { struct jpeg_stdio_mgr *src; src = (struct jpeg_stdio_mgr *) cinfo->src; while (num_bytes > 0 && !src->finished) { if (num_bytes <= src->mgr.bytes_in_buffer) { src->mgr.bytes_in_buffer -= num_bytes; src->mgr.next_input_byte += num_bytes; break; } else { num_bytes -= src->mgr.bytes_in_buffer; src->mgr.bytes_in_buffer = 0; src->mgr.next_input_byte = NULL; our_stdio_fill_input_buffer (cinfo); } } } /* Set up the JPEG lib for reading an image from a FILE *. CINFO is the decompression info structure created for reading the image. */ static void jpeg_file_src (j_decompress_ptr cinfo, FILE *fp) { struct jpeg_stdio_mgr *src = (struct jpeg_stdio_mgr *) cinfo->src; if (! src) { /* First time for this JPEG object? */ src = cinfo->mem->alloc_small ((j_common_ptr) cinfo, JPOOL_PERMANENT, sizeof *src); cinfo->src = (struct jpeg_source_mgr *) src; src->buffer = cinfo->mem->alloc_small ((j_common_ptr) cinfo, JPOOL_PERMANENT, JPEG_STDIO_BUFFER_SIZE); } src->file = fp; src->finished = 0; src->mgr.init_source = our_common_init_source; src->mgr.fill_input_buffer = our_stdio_fill_input_buffer; src->mgr.skip_input_data = our_stdio_skip_input_data; src->mgr.resync_to_restart = jpeg_resync_to_restart; /* Use default. */ src->mgr.term_source = our_common_term_source; src->mgr.bytes_in_buffer = 0; src->mgr.next_input_byte = NULL; } /* Load image IMG for use on frame F. Patterned after example.c from the JPEG lib. */ static bool jpeg_load_body (struct frame *f, struct image *img, struct my_jpeg_error_mgr *mgr) { Lisp_Object specified_file, specified_data; FILE *fp = NULL; JSAMPARRAY buffer; int row_stride, x, y; int width, height; int i, ir, ig, ib; unsigned long *colors; Emacs_Pix_Container volatile ximg_volatile = NULL; /* Open the JPEG file. */ specified_file = image_spec_value (img->spec, QCfile, NULL); specified_data = image_spec_value (img->spec, QCdata, NULL); if (NILP (specified_data)) { int fd; Lisp_Object file = image_find_image_file (specified_file); if (!STRINGP (file) || (fd = emacs_open (SSDATA (ENCODE_FILE (file)), O_RDONLY, 0)) < 0) { image_not_found_error (specified_file); return false; } fp = emacs_fdopen (fd, "rb"); if (fp == NULL) { image_error ("Cannot open `%s'", file); return 0; } } else if (!STRINGP (specified_data)) { image_invalid_data_error (specified_data); return false; } /* Customize libjpeg's error handling to call my_error_exit when an error is detected. This function will perform a longjmp. */ mgr->cinfo.err = jpeg_std_error (&mgr->pub); mgr->pub.error_exit = my_error_exit; struct my_jpeg_error_mgr *volatile mgr_volatile = mgr; struct image *volatile img_volatile = img; FILE *volatile fp_volatile = fp; if (sys_setjmp (mgr->setjmp_buffer)) { mgr = mgr_volatile; img = img_volatile; fp = fp_volatile; switch (mgr->failure_code) { case MY_JPEG_ERROR_EXIT: { char buf[JMSG_LENGTH_MAX]; mgr->cinfo.err->format_message ((j_common_ptr) &mgr->cinfo, buf); image_error ("Error reading JPEG image `%s': %s", img->spec, build_string (buf)); break; } case MY_JPEG_INVALID_IMAGE_SIZE: image_size_error (); break; case MY_JPEG_CANNOT_CREATE_X: break; } /* Close the input file and destroy the JPEG object. */ if (fp) emacs_fclose (fp); jpeg_destroy_decompress (&mgr->cinfo); /* If we already have an XImage, free that. */ Emacs_Pix_Container ximg = ximg_volatile; if (ximg) image_destroy_x_image (ximg); /* Free pixmap and colors. */ image_clear_image (f, img); return 0; } #if GCC_LINT && __GNUC__ && !__clang__ /* These useless assignments pacify GCC 14.2.1 x86-64 . */ mgr = mgr_volatile; img = img_volatile; fp = fp_volatile; #endif /* Create the JPEG decompression object. Let it read from fp. Read the JPEG image header. */ jpeg_CreateDecompress (&mgr->cinfo, JPEG_LIB_VERSION, sizeof *&mgr->cinfo); if (NILP (specified_data)) jpeg_file_src (&mgr->cinfo, fp); else jpeg_memory_src (&mgr->cinfo, SDATA (specified_data), SBYTES (specified_data)); jpeg_read_header (&mgr->cinfo, 1); /* Customize decompression so that color quantization will be used. Start decompression. */ mgr->cinfo.quantize_colors = 1; jpeg_start_decompress (&mgr->cinfo); width = img->width = mgr->cinfo.output_width; height = img->height = mgr->cinfo.output_height; if (!check_image_size (f, width, height)) { mgr->failure_code = MY_JPEG_INVALID_IMAGE_SIZE; sys_longjmp (mgr->setjmp_buffer, 1); } /* Create X image and pixmap. */ Emacs_Pix_Container ximg; bool ximg_ok = image_create_x_image_and_pixmap (f, img, width, height, 0, &ximg, 0); ximg_volatile = ximg; if (!ximg_ok) { mgr->failure_code = MY_JPEG_CANNOT_CREATE_X; sys_longjmp (mgr->setjmp_buffer, 1); } /* Allocate colors. When color quantization is used, mgr->cinfo.actual_number_of_colors has been set with the number of colors generated, and mgr->cinfo.colormap is a two-dimensional array of color indices in the range 0..mgr->cinfo.actual_number_of_colors. No more than 255 colors will be generated. */ USE_SAFE_ALLOCA; { if (mgr->cinfo.out_color_components > 2) ir = 0, ig = 1, ib = 2; else if (mgr->cinfo.out_color_components > 1) ir = 0, ig = 1, ib = 0; else ir = 0, ig = 0, ib = 0; /* Use the color table mechanism because it handles colors that cannot be allocated nicely. Such colors will be replaced with a default color, and we don't have to care about which colors can be freed safely, and which can't. */ init_color_table (); SAFE_NALLOCA (colors, 1, mgr->cinfo.actual_number_of_colors); for (i = 0; i < mgr->cinfo.actual_number_of_colors; ++i) { /* Multiply RGB values with 255 because X expects RGB values in the range 0..0xffff. */ int r = mgr->cinfo.colormap[ir][i] << 8; int g = mgr->cinfo.colormap[ig][i] << 8; int b = mgr->cinfo.colormap[ib][i] << 8; colors[i] = lookup_rgb_color (f, r, g, b); } #ifdef COLOR_TABLE_SUPPORT /* Remember those colors actually allocated. */ img->colors = colors_in_color_table (&img->ncolors); free_color_table (); #endif /* COLOR_TABLE_SUPPORT */ } /* Read pixels. */ row_stride = width * mgr->cinfo.output_components; buffer = mgr->cinfo.mem->alloc_sarray ((j_common_ptr) &mgr->cinfo, JPOOL_IMAGE, row_stride, 1); for (y = 0; y < height; ++y) { jpeg_read_scanlines (&mgr->cinfo, buffer, 1); for (x = 0; x < mgr->cinfo.output_width; ++x) PUT_PIXEL (ximg, x, y, colors[buffer[0][x]]); } /* Clean up. */ jpeg_finish_decompress (&mgr->cinfo); jpeg_destroy_decompress (&mgr->cinfo); if (fp) emacs_fclose (fp); /* Maybe fill in the background field while we have ximg handy. */ if (NILP (image_spec_value (img->spec, QCbackground, NULL))) /* Casting avoids a GCC warning. */ IMAGE_BACKGROUND (img, f, (Emacs_Pix_Context)ximg); /* Put ximg into the image. */ image_put_x_image (f, img, ximg, 0); SAFE_FREE (); return 1; } static bool jpeg_load (struct frame *f, struct image *img) { struct my_jpeg_error_mgr mgr; return jpeg_load_body (f, img, &mgr); } #endif /* !HAVE_JPEG */ /*********************************************************************** TIFF ***********************************************************************/ #if defined (HAVE_TIFF) /* Indices of image specification fields in tiff_format, below. */ enum tiff_keyword_index { TIFF_TYPE, TIFF_DATA, TIFF_FILE, TIFF_ASCENT, TIFF_MARGIN, TIFF_RELIEF, TIFF_ALGORITHM, TIFF_HEURISTIC_MASK, TIFF_MASK, TIFF_BACKGROUND, TIFF_INDEX, TIFF_LAST }; /* Vector of image_keyword structures describing the format of valid user-defined image specifications. */ static const struct image_keyword tiff_format[TIFF_LAST] = { {":type", IMAGE_SYMBOL_VALUE, 1}, {":data", IMAGE_STRING_VALUE, 0}, {":file", IMAGE_STRING_VALUE, 0}, {":ascent", IMAGE_ASCENT_VALUE, 0}, {":margin", IMAGE_NON_NEGATIVE_INTEGER_VALUE_OR_PAIR, 0}, {":relief", IMAGE_INTEGER_VALUE, 0}, {":conversions", IMAGE_DONT_CHECK_VALUE_TYPE, 0}, {":heuristic-mask", IMAGE_DONT_CHECK_VALUE_TYPE, 0}, {":mask", IMAGE_DONT_CHECK_VALUE_TYPE, 0}, {":background", IMAGE_STRING_OR_NIL_VALUE, 0}, {":index", IMAGE_NON_NEGATIVE_INTEGER_VALUE, 0} }; /* Return true if OBJECT is a valid TIFF image specification. */ static bool tiff_image_p (Lisp_Object object) { struct image_keyword fmt[TIFF_LAST]; memcpy (fmt, tiff_format, sizeof fmt); if (!parse_image_spec (object, fmt, TIFF_LAST, Qtiff)) return 0; /* Must specify either the :data or :file keyword. */ return fmt[TIFF_FILE].count + fmt[TIFF_DATA].count == 1; } #endif /* HAVE_TIFF */ #ifdef HAVE_TIFF # include /* libtiff version 4.3.0 deprecated uint32 typedef. */ #if TIFFLIB_VERSION >= 20210416 # define UINT32 uint32_t #else # define UINT32 uint32 #endif # ifdef WINDOWSNT /* TIFF library details. */ DEF_DLL_FN (TIFFErrorHandler, TIFFSetErrorHandler, (TIFFErrorHandler)); DEF_DLL_FN (TIFFErrorHandler, TIFFSetWarningHandler, (TIFFErrorHandler)); DEF_DLL_FN (TIFF *, TIFFOpen, (const char *, const char *)); DEF_DLL_FN (TIFF *, TIFFClientOpen, (const char *, const char *, thandle_t, TIFFReadWriteProc, TIFFReadWriteProc, TIFFSeekProc, TIFFCloseProc, TIFFSizeProc, TIFFMapFileProc, TIFFUnmapFileProc)); DEF_DLL_FN (int, TIFFGetField, (TIFF *, ttag_t, ...)); DEF_DLL_FN (int, TIFFReadRGBAImage, (TIFF *, UINT32, UINT32, UINT32 *, int)); DEF_DLL_FN (void, TIFFClose, (TIFF *)); DEF_DLL_FN (int, TIFFSetDirectory, (TIFF *, tdir_t)); static bool init_tiff_functions (void) { HMODULE library; if (!(library = w32_delayed_load (Qtiff))) return 0; LOAD_DLL_FN (library, TIFFSetErrorHandler); LOAD_DLL_FN (library, TIFFSetWarningHandler); LOAD_DLL_FN (library, TIFFOpen); LOAD_DLL_FN (library, TIFFClientOpen); LOAD_DLL_FN (library, TIFFGetField); LOAD_DLL_FN (library, TIFFReadRGBAImage); LOAD_DLL_FN (library, TIFFClose); LOAD_DLL_FN (library, TIFFSetDirectory); return 1; } # undef TIFFClientOpen # undef TIFFClose # undef TIFFGetField # undef TIFFOpen # undef TIFFReadRGBAImage # undef TIFFSetDirectory # undef TIFFSetErrorHandler # undef TIFFSetWarningHandler # define TIFFClientOpen fn_TIFFClientOpen # define TIFFClose fn_TIFFClose # define TIFFGetField fn_TIFFGetField # define TIFFOpen fn_TIFFOpen # define TIFFReadRGBAImage fn_TIFFReadRGBAImage # define TIFFSetDirectory fn_TIFFSetDirectory # define TIFFSetErrorHandler fn_TIFFSetErrorHandler # define TIFFSetWarningHandler fn_TIFFSetWarningHandler # endif /* WINDOWSNT */ /* Reading from a memory buffer for TIFF images Based on the PNG memory source, but we have to provide a lot of extra functions. Blah. We really only need to implement read and seek, but I am not convinced that the TIFF library is smart enough not to destroy itself if we only hand it the function pointers we need to override. */ typedef struct { unsigned char *bytes; ptrdiff_t len; ptrdiff_t index; } tiff_memory_source; static tsize_t tiff_read_from_memory (thandle_t data, tdata_t buf, tsize_t size) { tiff_memory_source *src = (tiff_memory_source *) data; size = min (size, src->len - src->index); memcpy (buf, src->bytes + src->index, size); src->index += size; return size; } static tsize_t tiff_write_from_memory (thandle_t data, tdata_t buf, tsize_t size) { return -1; } static toff_t tiff_seek_in_memory (thandle_t data, toff_t off, int whence) { tiff_memory_source *src = (tiff_memory_source *) data; ptrdiff_t idx; switch (whence) { case SEEK_SET: /* Go from beginning of source. */ idx = off; break; case SEEK_END: /* Go from end of source. */ idx = src->len + off; break; case SEEK_CUR: /* Go from current position. */ idx = src->index + off; break; default: /* Invalid `whence'. */ return -1; } if (idx > src->len || idx < 0) return -1; src->index = idx; return src->index; } static int tiff_close_memory (thandle_t data) { /* NOOP */ return 0; } static int tiff_mmap_memory (thandle_t data, tdata_t *pbase, toff_t *psize) { /* It is already _IN_ memory. */ return 0; } static void tiff_unmap_memory (thandle_t data, tdata_t base, toff_t size) { /* We don't need to do this. */ } static toff_t tiff_size_of_memory (thandle_t data) { return ((tiff_memory_source *) data)->len; } /* GCC 3.x on x86 Windows targets has a bug that triggers an internal compiler error compiling tiff_handler, see Bugzilla bug #17406 (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=17406). Declaring this function as external works around that problem. */ # if defined (__MINGW32__) && __GNUC__ == 3 # define MINGW_STATIC # else # define MINGW_STATIC static # endif MINGW_STATIC void tiff_handler (const char *, const char *, const char *, va_list) ATTRIBUTE_FORMAT_PRINTF (3, 0); MINGW_STATIC void tiff_handler (const char *log_format, const char *title, const char *format, va_list ap) { /* doprnt is not suitable here, as TIFF handlers are called from libtiff and are passed arbitrary printf directives. Instead, use vsnprintf, taking care to be portable to nonstandard environments where vsnprintf returns -1 on buffer overflow. Since it's just a log entry, it's OK to truncate it. */ char buf[4000]; int len = vsnprintf (buf, sizeof buf, format, ap); add_to_log (log_format, build_string (title), make_string (buf, max (0, min (len, sizeof buf - 1)))); } # undef MINGW_STATIC static void tiff_error_handler (const char *, const char *, va_list) ATTRIBUTE_FORMAT_PRINTF (2, 0); static void tiff_error_handler (const char *title, const char *format, va_list ap) { tiff_handler ("TIFF error: %s %s", title, format, ap); } static void tiff_warning_handler (const char *, const char *, va_list) ATTRIBUTE_FORMAT_PRINTF (2, 0); static void tiff_warning_handler (const char *title, const char *format, va_list ap) { tiff_handler ("TIFF warning: %s %s", title, format, ap); } /* Load TIFF image IMG for use on frame F. Value is true if successful. */ static bool tiff_load (struct frame *f, struct image *img) { Lisp_Object specified_file; Lisp_Object specified_data; TIFF *tiff; int width, height, x, y, count; UINT32 *buf; int rc; Emacs_Pix_Container ximg; tiff_memory_source memsrc; Lisp_Object image; specified_file = image_spec_value (img->spec, QCfile, NULL); specified_data = image_spec_value (img->spec, QCdata, NULL); TIFFSetErrorHandler ((TIFFErrorHandler) tiff_error_handler); TIFFSetWarningHandler ((TIFFErrorHandler) tiff_warning_handler); if (NILP (specified_data)) { /* Read from a file */ Lisp_Object file = image_find_image_file (specified_file); if (!STRINGP (file)) { image_not_found_error (specified_file); return false; } Lisp_Object encoded_file = ENCODE_FILE (file); # ifdef WINDOWSNT encoded_file = ansi_encode_filename (encoded_file); # endif /* Try to open the image file. */ tiff = TIFFOpen (SSDATA (encoded_file), "r"); if (tiff == NULL) { image_error ("Cannot open `%s'", file); return 0; } } else { if (!STRINGP (specified_data)) { image_invalid_data_error (specified_data); return false; } /* Memory source! */ memsrc.bytes = SDATA (specified_data); memsrc.len = SBYTES (specified_data); memsrc.index = 0; tiff = TIFFClientOpen ("memory_source", "r", (thandle_t)&memsrc, tiff_read_from_memory, tiff_write_from_memory, tiff_seek_in_memory, tiff_close_memory, tiff_size_of_memory, tiff_mmap_memory, tiff_unmap_memory); if (!tiff) { image_error ("Cannot open memory source for `%s'", img->spec); return 0; } } image = image_spec_value (img->spec, QCindex, NULL); if (FIXNUMP (image)) { EMACS_INT ino = XFIXNAT (image); if (! (TYPE_MINIMUM (tdir_t) <= ino && ino <= TYPE_MAXIMUM (tdir_t) && TIFFSetDirectory (tiff, ino))) { image_error ("Invalid image number `%s' in image `%s'", image, img->spec); TIFFClose (tiff); return 0; } } /* Get width and height of the image, and allocate a raster buffer of width x height 32-bit values. */ TIFFGetField (tiff, TIFFTAG_IMAGEWIDTH, &width); TIFFGetField (tiff, TIFFTAG_IMAGELENGTH, &height); if (!check_image_size (f, width, height)) { image_size_error (); TIFFClose (tiff); return 0; } /* Create the X image and pixmap. */ if (! (height <= min (PTRDIFF_MAX, SIZE_MAX) / sizeof *buf / width && image_create_x_image_and_pixmap (f, img, width, height, 0, &ximg, 0))) { TIFFClose (tiff); return 0; } buf = xmalloc (sizeof *buf * width * height); rc = TIFFReadRGBAImage (tiff, width, height, buf, 0); /* Count the number of images in the file. */ for (count = 1; TIFFSetDirectory (tiff, count); count++) continue; if (count > 1) img->lisp_data = Fcons (Qcount, Fcons (make_fixnum (count), img->lisp_data)); TIFFClose (tiff); if (!rc) { image_error ("Error reading TIFF image `%s'", img->spec); xfree (buf); return 0; } /* Initialize the color table. */ init_color_table (); /* Process the pixel raster. Origin is in the lower-left corner. */ for (y = 0; y < height; ++y) { UINT32 *row = buf + y * width; for (x = 0; x < width; ++x) { UINT32 abgr = row[x]; int r = TIFFGetR (abgr) << 8; int g = TIFFGetG (abgr) << 8; int b = TIFFGetB (abgr) << 8; PUT_PIXEL (ximg, x, height - 1 - y, lookup_rgb_color (f, r, g, b)); } } # ifdef COLOR_TABLE_SUPPORT /* Remember the colors allocated for the image. Free the color table. */ img->colors = colors_in_color_table (&img->ncolors); free_color_table (); # endif /* COLOR_TABLE_SUPPORT */ img->width = width; img->height = height; /* Maybe fill in the background field while we have ximg handy. */ if (NILP (image_spec_value (img->spec, QCbackground, NULL))) /* Casting avoids a GCC warning on W32. */ IMAGE_BACKGROUND (img, f, (Emacs_Pix_Context)ximg); /* Put ximg into the image. */ image_put_x_image (f, img, ximg, 0); xfree (buf); return 1; } #endif /*********************************************************************** GIF ***********************************************************************/ #if defined (HAVE_GIF) /* Indices of image specification fields in gif_format, below. */ enum gif_keyword_index { GIF_TYPE, GIF_DATA, GIF_FILE, GIF_ASCENT, GIF_MARGIN, GIF_RELIEF, GIF_ALGORITHM, GIF_HEURISTIC_MASK, GIF_MASK, GIF_IMAGE, GIF_BACKGROUND, GIF_LAST }; /* Vector of image_keyword structures describing the format of valid user-defined image specifications. */ static const struct image_keyword gif_format[GIF_LAST] = { {":type", IMAGE_SYMBOL_VALUE, 1}, {":data", IMAGE_STRING_VALUE, 0}, {":file", IMAGE_STRING_VALUE, 0}, {":ascent", IMAGE_ASCENT_VALUE, 0}, {":margin", IMAGE_NON_NEGATIVE_INTEGER_VALUE_OR_PAIR, 0}, {":relief", IMAGE_INTEGER_VALUE, 0}, {":conversion", IMAGE_DONT_CHECK_VALUE_TYPE, 0}, {":heuristic-mask", IMAGE_DONT_CHECK_VALUE_TYPE, 0}, {":mask", IMAGE_DONT_CHECK_VALUE_TYPE, 0}, {":index", IMAGE_NON_NEGATIVE_INTEGER_VALUE, 0}, {":background", IMAGE_STRING_OR_NIL_VALUE, 0} }; /* Free X resources of GIF image IMG which is used on frame F. */ static void gif_clear_image (struct frame *f, struct image *img) { img->lisp_data = Qnil; image_clear_image (f, img); } /* Return true if OBJECT is a valid GIF image specification. */ static bool gif_image_p (Lisp_Object object) { struct image_keyword fmt[GIF_LAST]; memcpy (fmt, gif_format, sizeof fmt); if (!parse_image_spec (object, fmt, GIF_LAST, Qgif)) return 0; /* Must specify either the :data or :file keyword. */ return fmt[GIF_FILE].count + fmt[GIF_DATA].count == 1; } #endif /* HAVE_GIF */ #ifdef HAVE_GIF # ifdef HAVE_NTGUI /* winuser.h might define DrawText to DrawTextA or DrawTextW. Undefine before redefining to avoid a preprocessor warning. */ # ifdef DrawText # undef DrawText # endif /* avoid conflict with QuickdrawText.h */ # define DrawText gif_DrawText # include /* The bogus ifdef below, which is always true, is to avoid a compiler warning about DrawText being unused. */ # ifdef DrawText # undef DrawText # endif # else /* HAVE_NTGUI */ # include # endif /* HAVE_NTGUI */ /* Giflib before 4.1.6 didn't define these macros. */ # ifndef GIFLIB_MAJOR # define GIFLIB_MAJOR 4 # endif # ifndef GIFLIB_MINOR # define GIFLIB_MINOR 0 # endif # ifndef GIFLIB_RELEASE # define GIFLIB_RELEASE 0 # endif /* Giflib before 5.0 didn't define these macros. */ # if GIFLIB_MAJOR < 5 # define DISPOSAL_UNSPECIFIED 0 /* No disposal specified. */ # define DISPOSE_DO_NOT 1 /* Leave image in place. */ # define DISPOSE_BACKGROUND 2 /* Set area too background color. */ # define DISPOSE_PREVIOUS 3 /* Restore to previous content. */ # define NO_TRANSPARENT_COLOR -1 # endif /* GifErrorString is declared to return char const * when GIFLIB_MAJOR and GIFLIB_MINOR indicate 5.1 or later. Do not bother using it in earlier releases, where either it returns char * or GIFLIB_MINOR may be incorrect. */ # define HAVE_GIFERRORSTRING (5 < GIFLIB_MAJOR + (1 <= GIFLIB_MINOR)) # ifdef WINDOWSNT /* GIF library details. */ # if GIFLIB_MAJOR + (GIFLIB_MINOR >= 1) > 5 DEF_DLL_FN (int, DGifCloseFile, (GifFileType *, int *)); # else DEF_DLL_FN (int, DGifCloseFile, (GifFileType *)); # endif DEF_DLL_FN (int, DGifSlurp, (GifFileType *)); # if GIFLIB_MAJOR < 5 DEF_DLL_FN (GifFileType *, DGifOpen, (void *, InputFunc)); DEF_DLL_FN (GifFileType *, DGifOpenFileName, (const char *)); # else DEF_DLL_FN (GifFileType *, DGifOpen, (void *, InputFunc, int *)); DEF_DLL_FN (GifFileType *, DGifOpenFileName, (const char *, int *)); DEF_DLL_FN (int, DGifSavedExtensionToGCB, (GifFileType *, int, GraphicsControlBlock *)); # endif # if HAVE_GIFERRORSTRING DEF_DLL_FN (char const *, GifErrorString, (int)); # endif static bool init_gif_functions (void) { HMODULE library; if (!(library = w32_delayed_load (Qgif))) return 0; LOAD_DLL_FN (library, DGifCloseFile); LOAD_DLL_FN (library, DGifSlurp); LOAD_DLL_FN (library, DGifOpen); LOAD_DLL_FN (library, DGifOpenFileName); # if GIFLIB_MAJOR >= 5 LOAD_DLL_FN (library, DGifSavedExtensionToGCB); # endif # if HAVE_GIFERRORSTRING LOAD_DLL_FN (library, GifErrorString); # endif return 1; } # undef DGifCloseFile # undef DGifOpen # undef DGifOpenFileName # undef DGifSlurp # if GIFLIB_MAJOR >= 5 # undef DGifSavedExtensionToGCB # endif # undef GifErrorString # define DGifCloseFile fn_DGifCloseFile # define DGifOpen fn_DGifOpen # define DGifOpenFileName fn_DGifOpenFileName # define DGifSlurp fn_DGifSlurp # if GIFLIB_MAJOR >= 5 # define DGifSavedExtensionToGCB fn_DGifSavedExtensionToGCB # endif # define GifErrorString fn_GifErrorString # endif /* WINDOWSNT */ /* Reading a GIF image from memory Based on the PNG memory stuff to a certain extent. */ typedef struct { unsigned char *bytes; ptrdiff_t len; ptrdiff_t index; } gif_memory_source; /* Make the current memory source available to gif_read_from_memory. It's done this way because not all versions of libungif support a UserData field in the GifFileType structure. */ static gif_memory_source *current_gif_memory_src; static int gif_read_from_memory (GifFileType *file, GifByteType *buf, int len) { gif_memory_source *src = current_gif_memory_src; if (len > src->len - src->index) return -1; memcpy (buf, src->bytes + src->index, len); src->index += len; return len; } static int gif_close (GifFileType *gif, int *err) { int retval; #if GIFLIB_MAJOR + (GIFLIB_MINOR >= 1) > 5 retval = DGifCloseFile (gif, err); #else retval = DGifCloseFile (gif); #if GIFLIB_MAJOR >= 5 if (err) *err = gif->Error; #endif #endif return retval; } /* Load GIF image IMG for use on frame F. Value is true if successful. */ static const int interlace_start[] = {0, 4, 2, 1}; static const int interlace_increment[] = {8, 8, 4, 2}; #define GIF_LOCAL_DESCRIPTOR_EXTENSION 249 static void gif_destroy (struct anim_cache* cache) { int gif_err; gif_close (cache->handle, &gif_err); } static bool gif_load (struct frame *f, struct image *img) { int rc, width, height, x, y, i, j; ColorMapObject *gif_color_map; GifFileType *gif = NULL; gif_memory_source memsrc; Lisp_Object specified_bg = image_spec_value (img->spec, QCbackground, NULL); Lisp_Object specified_file = image_spec_value (img->spec, QCfile, NULL); Lisp_Object specified_data = image_spec_value (img->spec, QCdata, NULL); unsigned long *pixmap = NULL; EMACS_INT idx = -1; int gif_err; struct anim_cache* cache = NULL; /* Which sub-image are we to display? */ Lisp_Object image_number = image_spec_value (img->spec, QCindex, NULL); int byte_size = 0; idx = FIXNUMP (image_number) ? XFIXNAT (image_number) : 0; if (!NILP (image_number)) { /* If this is an animated image, create a cache for it. */ cache = anim_get_animation_cache (XCDR (img->spec)); /* We have an old cache entry, so use it. */ if (cache->handle) { gif = cache->handle; pixmap = cache->temp; /* We're out of sync, so start from the beginning. */ if (cache->index != idx - 1) cache->index = -1; } } /* If we don't have a cached entry, read the image. */ if (! gif) { if (NILP (specified_data)) { Lisp_Object file = image_find_image_file (specified_file); if (!STRINGP (file)) { image_not_found_error (specified_file); return false; } Lisp_Object encoded_file = ENCODE_FILE (file); #ifdef WINDOWSNT encoded_file = ansi_encode_filename (encoded_file); #endif /* Open the GIF file. */ #if GIFLIB_MAJOR < 5 gif = DGifOpenFileName (SSDATA (encoded_file)); #else gif = DGifOpenFileName (SSDATA (encoded_file), &gif_err); #endif if (gif == NULL) { #if HAVE_GIFERRORSTRING const char *errstr = GifErrorString (gif_err); if (errstr) image_error ("Cannot open `%s': %s", file, build_string (errstr)); else #endif image_error ("Cannot open `%s'", file); return false; } /* Get the file size so that we can report it in `image-cache-size'. */ { struct stat st; int fd; fd = emacs_open (SSDATA (encoded_file), O_RDONLY, 0); if (!sys_fstat (fd, &st)) byte_size = st.st_size; emacs_close (fd); } } else { if (!STRINGP (specified_data)) { image_invalid_data_error (specified_data); return false; } /* Read from memory! */ current_gif_memory_src = &memsrc; memsrc.bytes = SDATA (specified_data); memsrc.len = SBYTES (specified_data); memsrc.index = 0; byte_size = memsrc.len; #if GIFLIB_MAJOR < 5 gif = DGifOpen (&memsrc, gif_read_from_memory); #else gif = DGifOpen (&memsrc, gif_read_from_memory, &gif_err); #endif if (!gif) { #if HAVE_GIFERRORSTRING const char *errstr = GifErrorString (gif_err); if (errstr) image_error ("Cannot open memory source `%s': %s", img->spec, build_string (errstr)); else #endif image_error ("Cannot open memory source `%s'", img->spec); return false; } } /* Before reading entire contents, check the declared image size. */ if (!check_image_size (f, gif->SWidth, gif->SHeight)) { image_size_error (); goto gif_error; } /* Read entire contents. */ rc = DGifSlurp (gif); if (rc == GIF_ERROR || gif->ImageCount <= 0) { #if HAVE_GIFERRORSTRING const char *errstr = GifErrorString (gif->Error); if (errstr) if (NILP (specified_data)) image_error ("Error reading `%s' (%s)", img->spec, build_string (errstr)); else image_error ("Error reading GIF data: %s", build_string (errstr)); else #endif if (NILP (specified_data)) image_error ("Error reading `%s'", img->spec); else image_error ("Error reading GIF data"); goto gif_error; } width = img->width = gif->SWidth; height = img->height = gif->SHeight; /* Check that the selected subimages fit. It's not clear whether the GIF spec requires this, but Emacs can crash if they don't fit. */ for (j = 0; j < gif->ImageCount; ++j) { struct SavedImage *subimage = gif->SavedImages + j; int subimg_width = subimage->ImageDesc.Width; int subimg_height = subimage->ImageDesc.Height; int subimg_top = subimage->ImageDesc.Top; int subimg_left = subimage->ImageDesc.Left; if (subimg_width < 0 || subimg_height < 0 || subimg_top < 0 || subimg_left < 0 || subimg_top + subimg_height > height || subimg_left + subimg_width > width) { image_error ("Subimage does not fit in image"); goto gif_error; } } } else { /* Cached image; set data. */ width = img->width = gif->SWidth; height = img->height = gif->SHeight; } if (idx < 0 || idx >= gif->ImageCount) { image_error ("Invalid image number `%s' in image `%s'", make_fixnum (idx), img->spec); goto gif_error; } /* It's an animated image, so initialize the cache. */ if (cache && !cache->handle) { cache->handle = gif; cache->destructor = (void (*)(void *)) &gif_destroy; cache->width = width; cache->height = height; cache->byte_size = byte_size; } img->corners[TOP_CORNER] = gif->SavedImages[0].ImageDesc.Top; img->corners[LEFT_CORNER] = gif->SavedImages[0].ImageDesc.Left; img->corners[BOT_CORNER] = img->corners[TOP_CORNER] + gif->SavedImages[0].ImageDesc.Height; img->corners[RIGHT_CORNER] = img->corners[LEFT_CORNER] + gif->SavedImages[0].ImageDesc.Width; if (!check_image_size (f, width, height)) { image_size_error (); goto gif_error; } /* Create the X image and pixmap. */ Emacs_Pix_Container ximg; if (!image_create_x_image_and_pixmap (f, img, width, height, 0, &ximg, 0)) goto gif_error; /* We construct the (possibly composited animated) image in this buffer. */ if (!pixmap) { pixmap = xmalloc (width * height * sizeof (unsigned long)); if (cache) cache->temp = pixmap; } /* Clear the part of the screen image not covered by the image. Full animated GIF support requires more here (see the gif89 spec, disposal methods). Let's simply assume that the part not covered by a sub-image is in the frame's background color. */ unsigned long frame_bg; #ifndef USE_CAIRO frame_bg = FRAME_BACKGROUND_PIXEL (f); #else /* USE_CAIRO */ { Emacs_Color color; FRAME_TERMINAL (f)->query_frame_background_color (f, &color); frame_bg = lookup_rgb_color (f, color.red, color.green, color.blue); } #endif /* USE_CAIRO */ for (y = 0; y < img->corners[TOP_CORNER]; ++y) for (x = 0; x < width; ++x) *(pixmap + x + y * width) = frame_bg; for (y = img->corners[BOT_CORNER]; y < height; ++y) for (x = 0; x < width; ++x) *(pixmap + x + y * width) = frame_bg; for (y = img->corners[TOP_CORNER]; y < img->corners[BOT_CORNER]; ++y) { for (x = 0; x < img->corners[LEFT_CORNER]; ++x) *(pixmap + x + y * width) = frame_bg; for (x = img->corners[RIGHT_CORNER]; x < width; ++x) *(pixmap + x + y * width) = frame_bg; } /* Read the GIF image into the X image. */ init_color_table (); unsigned long bgcolor UNINIT; if (STRINGP (specified_bg)) { bgcolor = image_alloc_image_color (f, img, specified_bg, FRAME_BACKGROUND_PIXEL (f)); #ifdef USE_CAIRO Emacs_Color color = {.pixel = bgcolor}; FRAME_TERMINAL (f)->query_colors (f, &color, 1); bgcolor = lookup_rgb_color (f, color.red, color.green, color.blue); #endif } int start_frame = 0; /* We have animation data in the cache. */ if (cache && cache->temp) { start_frame = cache->index + 1; if (start_frame > idx) start_frame = 0; cache->index = idx; } for (j = start_frame; j <= idx; ++j) { /* We use a local variable `raster' here because RasterBits is a char *, which invites problems with bytes >= 0x80. */ struct SavedImage *subimage = gif->SavedImages + j; unsigned char *raster = (unsigned char *) subimage->RasterBits; int subimg_width = subimage->ImageDesc.Width; int subimg_height = subimage->ImageDesc.Height; int subimg_top = subimage->ImageDesc.Top; int subimg_left = subimage->ImageDesc.Left; /* From gif89a spec: 1 = "keep in place", 2 = "restore to background". Treat any other value like 2. */ int disposal = DISPOSAL_UNSPECIFIED; int transparency_color_index = NO_TRANSPARENT_COLOR; #if GIFLIB_MAJOR < 5 /* Find the Graphic Control Extension block for this sub-image. Extract the disposal method and transparency color. */ for (i = 0; i < subimage->ExtensionBlockCount; i++) { ExtensionBlock *extblock = subimage->ExtensionBlocks + i; if ((extblock->Function == GIF_LOCAL_DESCRIPTOR_EXTENSION) && extblock->ByteCount == 4 && extblock->Bytes[0] & 1) { disposal = (extblock->Bytes[0] >> 2) & 7; transparency_color_index = (unsigned char) extblock->Bytes[3]; break; } } #else GraphicsControlBlock gcb; DGifSavedExtensionToGCB (gif, j, &gcb); disposal = gcb.DisposalMode; transparency_color_index = gcb.TransparentColor; #endif /* We can't "keep in place" the first subimage. */ if (j == 0) disposal = DISPOSE_BACKGROUND; /* For disposal == 0 (DISPOSAL_UNSPECIFIED), the spec says "No disposal specified. The decoder is not required to take any action." In practice, it seems we need to treat this like "keep in place" (DISPOSE_DO_NOT), see e.g. https://upload.wikimedia.org/wikipedia/commons/3/37/Clock.gif */ if (disposal == DISPOSAL_UNSPECIFIED) disposal = DISPOSE_DO_NOT; /* This is not quite correct -- the specification is unclear, but I think we're supposed to restore to the frame before the previous frame? And we don't have that data at this point. But DISPOSE_DO_NOT is less wrong than substituting the background, so do that for now. */ if (disposal == DISPOSE_PREVIOUS) disposal = DISPOSE_DO_NOT; gif_color_map = subimage->ImageDesc.ColorMap; if (!gif_color_map) gif_color_map = gif->SColorMap; /* Allocate subimage colors. */ unsigned long pixel_colors[256] = { 0, }; if (gif_color_map) for (i = 0; i < gif_color_map->ColorCount; ++i) { if (transparency_color_index == i) pixel_colors[i] = STRINGP (specified_bg) ? bgcolor : frame_bg; else { int r = gif_color_map->Colors[i].Red << 8; int g = gif_color_map->Colors[i].Green << 8; int b = gif_color_map->Colors[i].Blue << 8; pixel_colors[i] = lookup_rgb_color (f, r, g, b); } } /* Apply the pixel values. */ if (GIFLIB_MAJOR < 5 && gif->SavedImages[j].ImageDesc.Interlace) { int row, pass; for (y = 0, row = interlace_start[0], pass = 0; y < subimg_height; y++, row += interlace_increment[pass]) { while (subimg_height <= row) row = interlace_start[++pass]; for (x = 0; x < subimg_width; x++) { int c = raster[y * subimg_width + x]; if (transparency_color_index != c || disposal != DISPOSE_DO_NOT) { *(pixmap + x + subimg_left + (y + subimg_top) * width) = pixel_colors[c]; } } } } else { for (y = 0; y < subimg_height; ++y) for (x = 0; x < subimg_width; ++x) { int c = raster[y * subimg_width + x]; if (transparency_color_index != c || disposal != DISPOSE_DO_NOT) { *(pixmap + x + subimg_left + (y + subimg_top) * width) = pixel_colors[c]; } } } } /* We now have the complete image (possibly composed from a series of animated frames) in pixmap. Put it into ximg. */ for (y = 0; y < height; ++y) for (x = 0; x < width; ++x) PUT_PIXEL (ximg, x, y, *(pixmap + x + y * width)); #ifdef COLOR_TABLE_SUPPORT img->colors = colors_in_color_table (&img->ncolors); free_color_table (); #endif /* COLOR_TABLE_SUPPORT */ /* Save GIF image extension data for `image-metadata'. Format is (count IMAGES extension-data (FUNCTION "BYTES" ...)). */ img->lisp_data = Qnil; if (gif->SavedImages[idx].ExtensionBlockCount > 0) { int delay = 0; ExtensionBlock *ext = gif->SavedImages[idx].ExtensionBlocks; for (i = 0; i < gif->SavedImages[idx].ExtensionBlockCount; i++, ext++) /* Append (... FUNCTION "BYTES") */ { img->lisp_data = Fcons (make_fixnum (ext->Function), Fcons (make_unibyte_string ((char *) ext->Bytes, ext->ByteCount), img->lisp_data)); if (ext->Function == GIF_LOCAL_DESCRIPTOR_EXTENSION && ext->ByteCount == 4) { delay = ext->Bytes[2] << CHAR_BIT; delay |= ext->Bytes[1]; } } img->lisp_data = list2 (Qextension_data, img->lisp_data); img->lisp_data = Fcons (Qdelay, /* Default GIF delay is 1/15th of a second. */ Fcons (make_float (delay? delay / 100.0: 1.0 / 15), img->lisp_data)); } if (gif->ImageCount > 1) img->lisp_data = Fcons (Qcount, Fcons (make_fixnum (gif->ImageCount), img->lisp_data)); if (!cache) { if (pixmap) xfree (pixmap); if (gif_close (gif, &gif_err) == GIF_ERROR) { #if HAVE_GIFERRORSTRING char const *error_text = GifErrorString (gif_err); if (error_text) image_error ("Error closing `%s': %s", img->spec, build_string (error_text)); else #endif image_error ("Error closing `%s'", img->spec); } } /* Maybe fill in the background field while we have ximg handy. */ if (NILP (image_spec_value (img->spec, QCbackground, NULL))) /* Casting avoids a GCC warning. */ IMAGE_BACKGROUND (img, f, (Emacs_Pix_Context)ximg); /* Put ximg into the image. */ image_put_x_image (f, img, ximg, 0); return true; gif_error: if (pixmap) xfree (pixmap); gif_close (gif, NULL); if (cache) { cache->handle = NULL; cache->temp = NULL; } return false; } #endif /* HAVE_GIF */ #ifdef HAVE_WEBP /*********************************************************************** WebP ***********************************************************************/ #include "webp/decode.h" #include "webp/demux.h" /* Indices of image specification fields in webp_format, below. */ enum webp_keyword_index { WEBP_TYPE, WEBP_DATA, WEBP_FILE, WEBP_ASCENT, WEBP_MARGIN, WEBP_RELIEF, WEBP_ALGORITHM, WEBP_HEURISTIC_MASK, WEBP_MASK, WEBP_INDEX, WEBP_BACKGROUND, WEBP_LAST }; /* Vector of image_keyword structures describing the format of valid user-defined image specifications. */ static const struct image_keyword webp_format[WEBP_LAST] = { {":type", IMAGE_SYMBOL_VALUE, 1}, {":data", IMAGE_STRING_VALUE, 0}, {":file", IMAGE_STRING_VALUE, 0}, {":ascent", IMAGE_ASCENT_VALUE, 0}, {":margin", IMAGE_NON_NEGATIVE_INTEGER_VALUE_OR_PAIR, 0}, {":relief", IMAGE_INTEGER_VALUE, 0}, {":conversion", IMAGE_DONT_CHECK_VALUE_TYPE, 0}, {":heuristic-mask", IMAGE_DONT_CHECK_VALUE_TYPE, 0}, {":mask", IMAGE_DONT_CHECK_VALUE_TYPE, 0}, {":index", IMAGE_NON_NEGATIVE_INTEGER_VALUE, 0}, {":background", IMAGE_STRING_OR_NIL_VALUE, 0} }; /* Return true if OBJECT is a valid WebP image specification. */ static bool webp_image_p (Lisp_Object object) { struct image_keyword fmt[WEBP_LAST]; memcpy (fmt, webp_format, sizeof fmt); if (!parse_image_spec (object, fmt, WEBP_LAST, Qwebp)) return false; /* Must specify either the :data or :file keyword. */ return fmt[WEBP_FILE].count + fmt[WEBP_DATA].count == 1; } #ifdef WINDOWSNT /* WebP library details. */ DEF_DLL_FN (int, WebPGetInfo, (const uint8_t *, size_t, int *, int *)); /* WebPGetFeatures is a static inline function defined in WebP's decode.h. Since we cannot use that with dynamically-loaded libwebp DLL, we instead load the internal function it calls and redirect to that through a macro. */ DEF_DLL_FN (VP8StatusCode, WebPGetFeaturesInternal, (const uint8_t *, size_t, WebPBitstreamFeatures *, int)); DEF_DLL_FN (uint8_t *, WebPDecodeRGBA, (const uint8_t *, size_t, int *, int *)); DEF_DLL_FN (uint8_t *, WebPDecodeRGB, (const uint8_t *, size_t, int *, int *)); DEF_DLL_FN (void, WebPFree, (void *)); DEF_DLL_FN (uint32_t, WebPDemuxGetI, (const WebPDemuxer *, WebPFormatFeature)); DEF_DLL_FN (WebPDemuxer *, WebPDemuxInternal, (const WebPData *, int, WebPDemuxState *, int)); DEF_DLL_FN (void, WebPDemuxDelete, (WebPDemuxer *)); DEF_DLL_FN (int, WebPAnimDecoderGetNext, (WebPAnimDecoder *, uint8_t **, int *)); DEF_DLL_FN (WebPAnimDecoder *, WebPAnimDecoderNewInternal, (const WebPData *, const WebPAnimDecoderOptions *, int)); DEF_DLL_FN (int, WebPAnimDecoderOptionsInitInternal, (WebPAnimDecoderOptions *, int)); DEF_DLL_FN (int, WebPAnimDecoderHasMoreFrames, (const WebPAnimDecoder *)); DEF_DLL_FN (void, WebPAnimDecoderDelete, (WebPAnimDecoder *)); static bool init_webp_functions (void) { HMODULE library1, library2; if (!((library1 = w32_delayed_load (Qwebp)) && (library2 = w32_delayed_load (Qwebpdemux)))) return false; LOAD_DLL_FN (library1, WebPGetInfo); LOAD_DLL_FN (library1, WebPGetFeaturesInternal); LOAD_DLL_FN (library1, WebPDecodeRGBA); LOAD_DLL_FN (library1, WebPDecodeRGB); LOAD_DLL_FN (library1, WebPFree); LOAD_DLL_FN (library2, WebPDemuxGetI); LOAD_DLL_FN (library2, WebPDemuxInternal); LOAD_DLL_FN (library2, WebPDemuxDelete); LOAD_DLL_FN (library2, WebPAnimDecoderGetNext); LOAD_DLL_FN (library2, WebPAnimDecoderNewInternal); LOAD_DLL_FN (library2, WebPAnimDecoderOptionsInitInternal); LOAD_DLL_FN (library2, WebPAnimDecoderHasMoreFrames); LOAD_DLL_FN (library2, WebPAnimDecoderDelete); return true; } #undef WebPGetInfo #undef WebPGetFeatures #undef WebPDecodeRGBA #undef WebPDecodeRGB #undef WebPFree #undef WebPDemuxGetI #undef WebPDemux #undef WebPDemuxDelete #undef WebPAnimDecoderGetNext #undef WebPAnimDecoderNew #undef WebPAnimDecoderOptionsInit #undef WebPAnimDecoderHasMoreFrames #undef WebPAnimDecoderDelete #define WebPGetInfo fn_WebPGetInfo #define WebPGetFeatures(d,s,f) \ fn_WebPGetFeaturesInternal(d,s,f,WEBP_DECODER_ABI_VERSION) #define WebPDecodeRGBA fn_WebPDecodeRGBA #define WebPDecodeRGB fn_WebPDecodeRGB #define WebPFree fn_WebPFree #define WebPDemuxGetI fn_WebPDemuxGetI #define WebPDemux(d) \ fn_WebPDemuxInternal(d,0,NULL,WEBP_DEMUX_ABI_VERSION) #define WebPDemuxDelete fn_WebPDemuxDelete #define WebPAnimDecoderGetNext fn_WebPAnimDecoderGetNext #define WebPAnimDecoderNew(d,o) \ fn_WebPAnimDecoderNewInternal(d,o,WEBP_DEMUX_ABI_VERSION) #define WebPAnimDecoderOptionsInit(o) \ fn_WebPAnimDecoderOptionsInitInternal(o,WEBP_DEMUX_ABI_VERSION) #define WebPAnimDecoderHasMoreFrames fn_WebPAnimDecoderHasMoreFrames #define WebPAnimDecoderDelete fn_WebPAnimDecoderDelete #endif /* WINDOWSNT */ static void webp_destroy (struct anim_cache* cache) { WebPAnimDecoderDelete (cache->handle); } /* Load WebP image IMG for use on frame F. Value is true if successful. */ static bool webp_load (struct frame *f, struct image *img) { ptrdiff_t size = 0; uint8_t *contents; Lisp_Object file = Qnil; int frames = 0; double delay = 0; WebPAnimDecoder* anim = NULL; /* Open the WebP file. */ Lisp_Object specified_file = image_spec_value (img->spec, QCfile, NULL); Lisp_Object specified_data = image_spec_value (img->spec, QCdata, NULL); if (NILP (specified_data)) { contents = (uint8_t *) slurp_image (specified_file, &size, "WebP"); if (contents == NULL) return false; } else { if (!STRINGP (specified_data)) { image_invalid_data_error (specified_data); return false; } contents = SDATA (specified_data); size = SBYTES (specified_data); } /* Validate the WebP image header. */ if (!WebPGetInfo (contents, size, NULL, NULL)) { if (!NILP (file)) image_error ("Not a WebP file: `%s'", file); else image_error ("Invalid header in WebP image data"); goto webp_error1; } Lisp_Object image_number = image_spec_value (img->spec, QCindex, NULL); ptrdiff_t idx = FIXNUMP (image_number) ? XFIXNAT (image_number) : 0; /* Get WebP features. */ WebPBitstreamFeatures features; VP8StatusCode result = WebPGetFeatures (contents, size, &features); switch (result) { case VP8_STATUS_OK: break; case VP8_STATUS_NOT_ENOUGH_DATA: case VP8_STATUS_OUT_OF_MEMORY: case VP8_STATUS_INVALID_PARAM: case VP8_STATUS_BITSTREAM_ERROR: case VP8_STATUS_UNSUPPORTED_FEATURE: case VP8_STATUS_SUSPENDED: case VP8_STATUS_USER_ABORT: default: /* Error out in all other cases. */ if (!NILP (file)) image_error ("Error when interpreting WebP image data: `%s'", file); else image_error ("Error when interpreting WebP image data"); goto webp_error1; } uint8_t *decoded = NULL; int width, height; if (features.has_animation) { /* Animated image. */ int timestamp; struct anim_cache* cache = anim_get_animation_cache (XCDR (img->spec)); /* Get the next frame from the animation cache. */ if (cache->handle && cache->index == idx - 1) { WebPAnimDecoderGetNext (cache->handle, &decoded, ×tamp); delay = timestamp; cache->index++; anim = cache->handle; width = cache->width; height = cache->height; frames = cache->frames; } else { /* Start a new cache entry. */ if (cache->handle) WebPAnimDecoderDelete (cache->handle); WebPData webp_data; if (NILP (specified_data)) /* If we got the data from a file, then we don't need to copy the data. */ webp_data.bytes = cache->temp = contents; else /* We got the data from a string, so copy it over so that it doesn't get garbage-collected. */ { webp_data.bytes = xmalloc (size); memcpy ((void*) webp_data.bytes, contents, size); } /* In any case, we release the allocated memory when we purge the anim cache. */ webp_data.size = size; /* This is used just for reporting by `image-cache-size'. */ cache->byte_size = size; /* Get the width/height of the total image. */ WebPDemuxer* demux = WebPDemux (&webp_data); cache->width = width = WebPDemuxGetI (demux, WEBP_FF_CANVAS_WIDTH); cache->height = height = WebPDemuxGetI (demux, WEBP_FF_CANVAS_HEIGHT); cache->frames = frames = WebPDemuxGetI (demux, WEBP_FF_FRAME_COUNT); cache->destructor = (void (*)(void *)) webp_destroy; WebPDemuxDelete (demux); WebPAnimDecoderOptions dec_options; WebPAnimDecoderOptionsInit (&dec_options); anim = WebPAnimDecoderNew (&webp_data, &dec_options); cache->handle = anim; cache->index = idx; while (WebPAnimDecoderHasMoreFrames (anim)) { WebPAnimDecoderGetNext (anim, &decoded, ×tamp); /* Each frame has its own delay, but we don't really support that. So just use the delay from the first frame. */ if (delay == 0) delay = timestamp; /* Stop when we get to the desired index. */ if (idx-- == 0) break; } } } else { /* Non-animated image. */ if (features.has_alpha) /* Linear [r0, g0, b0, a0, r1, g1, b1, a1, ...] order. */ decoded = WebPDecodeRGBA (contents, size, &width, &height); else /* Linear [r0, g0, b0, r1, g1, b1, ...] order. */ decoded = WebPDecodeRGB (contents, size, &width, &height); } if (!decoded) { image_error ("Error when decoding WebP image data"); goto webp_error1; } if (!(width <= INT_MAX && height <= INT_MAX && check_image_size (f, width, height))) { image_size_error (); goto webp_error2; } /* Create the x image and pixmap. */ Emacs_Pix_Container ximg; if (!image_create_x_image_and_pixmap (f, img, width, height, 0, &ximg, false)) goto webp_error2; /* Find the background to use if the WebP image contains an alpha channel. */ Emacs_Color bg_color; if (features.has_alpha) { Lisp_Object specified_bg = image_spec_value (img->spec, QCbackground, NULL); /* If the user specified a color, try to use it; if not, use the current frame background, ignoring any default background color set by the image. */ if (STRINGP (specified_bg)) FRAME_TERMINAL (f)->defined_color_hook (f, SSDATA (specified_bg), &bg_color, false, false); else FRAME_TERMINAL (f)->query_frame_background_color (f, &bg_color); bg_color.red >>= 8; bg_color.green >>= 8; bg_color.blue >>= 8; } /* Fill the X image from WebP data. */ init_color_table (); img->corners[TOP_CORNER] = 0; img->corners[LEFT_CORNER] = 0; img->corners[BOT_CORNER] = img->corners[TOP_CORNER] + height; img->corners[RIGHT_CORNER] = img->corners[LEFT_CORNER] + width; uint8_t *p = decoded; for (int y = 0; y < height; ++y) { for (int x = 0; x < width; ++x) { int r, g, b; /* The WebP alpha channel allows 256 levels of partial transparency. Blend it with the background manually. */ if (features.has_alpha || anim) { float a = (float) p[3] / UINT8_MAX; r = (int)(a * p[0] + (1 - a) * bg_color.red) << 8; g = (int)(a * p[1] + (1 - a) * bg_color.green) << 8; b = (int)(a * p[2] + (1 - a) * bg_color.blue) << 8; p += 4; } else { r = *p++ << 8; g = *p++ << 8; b = *p++ << 8; } PUT_PIXEL (ximg, x, y, lookup_rgb_color (f, r, g, b)); } } #ifdef COLOR_TABLE_SUPPORT /* Remember colors allocated for this image. */ img->colors = colors_in_color_table (&img->ncolors); free_color_table (); #endif /* COLOR_TABLE_SUPPORT */ /* Put ximg into the image. */ image_put_x_image (f, img, ximg, 0); img->width = width; img->height = height; /* Return animation data. */ img->lisp_data = Fcons (Qcount, Fcons (make_fixnum (frames), img->lisp_data)); img->lisp_data = Fcons (Qdelay, Fcons (make_float (delay / 1000), img->lisp_data)); /* Clean up. */ if (!anim) WebPFree (decoded); if (NILP (specified_data) && !anim) xfree (contents); return true; webp_error2: if (!anim) WebPFree (decoded); webp_error1: if (NILP (specified_data)) xfree (contents); return false; } #endif /* HAVE_WEBP */ #ifdef HAVE_IMAGEMAGICK /*********************************************************************** ImageMagick ***********************************************************************/ /* Indices of image specification fields in imagemagick_format. */ enum imagemagick_keyword_index { IMAGEMAGICK_TYPE, IMAGEMAGICK_DATA, IMAGEMAGICK_FILE, IMAGEMAGICK_ASCENT, IMAGEMAGICK_MARGIN, IMAGEMAGICK_RELIEF, IMAGEMAGICK_ALGORITHM, IMAGEMAGICK_HEURISTIC_MASK, IMAGEMAGICK_MASK, IMAGEMAGICK_BACKGROUND, IMAGEMAGICK_HEIGHT, IMAGEMAGICK_WIDTH, IMAGEMAGICK_MAX_HEIGHT, IMAGEMAGICK_MAX_WIDTH, IMAGEMAGICK_FORMAT, IMAGEMAGICK_ROTATION, IMAGEMAGICK_CROP, IMAGEMAGICK_LAST }; /* Vector of image_keyword structures describing the format of valid user-defined image specifications. */ static struct image_keyword imagemagick_format[IMAGEMAGICK_LAST] = { {":type", IMAGE_SYMBOL_VALUE, 1}, {":data", IMAGE_STRING_VALUE, 0}, {":file", IMAGE_STRING_VALUE, 0}, {":ascent", IMAGE_ASCENT_VALUE, 0}, {":margin", IMAGE_NON_NEGATIVE_INTEGER_VALUE_OR_PAIR, 0}, {":relief", IMAGE_INTEGER_VALUE, 0}, {":conversion", IMAGE_DONT_CHECK_VALUE_TYPE, 0}, {":heuristic-mask", IMAGE_DONT_CHECK_VALUE_TYPE, 0}, {":mask", IMAGE_DONT_CHECK_VALUE_TYPE, 0}, {":background", IMAGE_STRING_OR_NIL_VALUE, 0}, {":height", IMAGE_INTEGER_VALUE, 0}, {":width", IMAGE_INTEGER_VALUE, 0}, {":max-height", IMAGE_INTEGER_VALUE, 0}, {":max-width", IMAGE_INTEGER_VALUE, 0}, {":format", IMAGE_SYMBOL_VALUE, 0}, {":rotation", IMAGE_NUMBER_VALUE, 0}, {":crop", IMAGE_DONT_CHECK_VALUE_TYPE, 0} }; /* Free X resources of imagemagick image IMG which is used on frame F. */ static void imagemagick_clear_image (struct frame *f, struct image *img) { image_clear_image (f, img); } /* Return true if OBJECT is a valid IMAGEMAGICK image specification. Do this by calling parse_image_spec and supplying the keywords that identify the IMAGEMAGICK format. */ static bool imagemagick_image_p (Lisp_Object object) { struct image_keyword fmt[IMAGEMAGICK_LAST]; memcpy (fmt, imagemagick_format, sizeof fmt); if (!parse_image_spec (object, fmt, IMAGEMAGICK_LAST, Qimagemagick)) return 0; /* Must specify either the :data or :file keyword. */ return fmt[IMAGEMAGICK_FILE].count + fmt[IMAGEMAGICK_DATA].count == 1; } /* The GIF library also defines DrawRectangle, but its never used in Emacs. Therefore rename the function so it doesn't collide with ImageMagick. */ #define DrawRectangle DrawRectangleGif #ifdef HAVE_IMAGEMAGICK7 # include # include /* ImageMagick 7 compatibility definitions. */ # define PixelSetMagickColor PixelSetPixelColor typedef PixelInfo MagickPixelPacket; #else # include # include #endif /* ImageMagick 6.5.3 through 6.6.5 hid PixelGetMagickColor for some reason. Emacs seems to work fine with the hidden version, so unhide it. */ #if 0x653 <= MagickLibVersion && MagickLibVersion <= 0x665 extern WandExport void PixelGetMagickColor (const PixelWand *, MagickPixelPacket *); #endif static void imagemagick_initialize (void) { static bool imagemagick_initialized; if (!imagemagick_initialized) { imagemagick_initialized = true; MagickWandGenesis (); } } /* Log ImageMagick error message. Useful when an ImageMagick function returns the status `MagickFalse'. */ static void imagemagick_error (MagickWand *wand) { char *description; ExceptionType severity; description = MagickGetException (wand, &severity); image_error ("ImageMagick error: %s", build_string (description)); MagickRelinquishMemory (description); } /* Possibly give ImageMagick some extra help to determine the image type by supplying a "dummy" filename based on the Content-Type. */ static char * imagemagick_filename_hint (Lisp_Object spec, char hint_buffer[MaxTextExtent]) { Lisp_Object symbol = Qimage_format_suffixes; Lisp_Object val = find_symbol_value (symbol); Lisp_Object format; if (! CONSP (val)) return NULL; format = image_spec_value (spec, QCformat, NULL); val = Fcar_safe (Fcdr_safe (Fassq (format, val))); if (! STRINGP (val)) return NULL; /* It's OK to truncate the hint if it has MaxTextExtent or more bytes, as ImageMagick would ignore the extra bytes anyway. */ snprintf (hint_buffer, MaxTextExtent, "/tmp/foo.%s", SSDATA (val)); return hint_buffer; } /* Animated images (e.g., GIF89a) are composed from one "master image" (which is the first one, and then there's a number of images that follow. If following images have non-transparent colors, these are composed "on top" of the master image. So, in general, one has to compute all the preceding images to be able to display a particular sub-image. Computing all the preceding images is too slow, so we maintain a cache of previously computed images. We have to maintain a cache separate from the image cache, because the images may be scaled before display. */ struct animation_cache { MagickWand *wand; int index; struct timespec update_time; struct animation_cache *next; char signature[FLEXIBLE_ARRAY_MEMBER]; }; static struct animation_cache *animation_cache = NULL; static struct animation_cache * imagemagick_create_cache (char *signature) { size_t len = strlen (signature) + 1; struct animation_cache *cache = xmalloc (FLEXSIZEOF (struct animation_cache, signature, len)); cache->wand = 0; cache->index = 0; cache->next = 0; memcpy (cache->signature, signature, len); return cache; } /* Discard cached images that haven't been used for a minute. If CLEAR, discard all cached animated images. */ static void imagemagick_prune_animation_cache (bool clear) { struct animation_cache **pcache = &animation_cache; struct timespec old = timespec_sub (current_timespec (), make_timespec (60, 0)); while (*pcache) { struct animation_cache *cache = *pcache; if (clear || timespec_cmp (old, cache->update_time) > 0) { if (cache->wand) DestroyMagickWand (cache->wand); *pcache = cache->next; xfree (cache); } else pcache = &cache->next; } } static struct animation_cache * imagemagick_get_animation_cache (MagickWand *wand) { char *signature = MagickGetImageSignature (wand); struct animation_cache *cache; struct animation_cache **pcache = &animation_cache; imagemagick_prune_animation_cache (false); while (1) { cache = *pcache; if (! cache) { *pcache = cache = imagemagick_create_cache (signature); break; } if (strcmp (signature, cache->signature) == 0) break; pcache = &cache->next; } DestroyString (signature); cache->update_time = current_timespec (); return cache; } static MagickWand * imagemagick_compute_animated_image (MagickWand *super_wand, int ino) { int i; MagickWand *composite_wand; size_t dest_width, dest_height; struct animation_cache *cache = imagemagick_get_animation_cache (super_wand); MagickSetIteratorIndex (super_wand, 0); if (ino == 0 || cache->wand == NULL || cache->index > ino) { composite_wand = MagickGetImage (super_wand); if (cache->wand) DestroyMagickWand (cache->wand); } else composite_wand = cache->wand; dest_height = MagickGetImageHeight (composite_wand); for (i = max (1, cache->index + 1); i <= ino; i++) { MagickWand *sub_wand; PixelIterator *source_iterator, *dest_iterator; PixelWand **source, **dest; size_t source_width, source_height; ssize_t source_left, source_top; MagickPixelPacket pixel; DisposeType dispose; ptrdiff_t lines = 0; MagickSetIteratorIndex (super_wand, i); sub_wand = MagickGetImage (super_wand); MagickGetImagePage (sub_wand, &source_width, &source_height, &source_left, &source_top); /* This flag says how to handle transparent pixels. */ dispose = MagickGetImageDispose (sub_wand); source_iterator = NewPixelIterator (sub_wand); if (! source_iterator) { DestroyMagickWand (composite_wand); DestroyMagickWand (sub_wand); cache->wand = NULL; image_error ("Imagemagick pixel iterator creation failed"); return NULL; } dest_iterator = NewPixelIterator (composite_wand); if (! dest_iterator) { DestroyMagickWand (composite_wand); DestroyMagickWand (sub_wand); DestroyPixelIterator (source_iterator); cache->wand = NULL; image_error ("Imagemagick pixel iterator creation failed"); return NULL; } /* The sub-image may not start at origin, so move the destination iterator to where the sub-image should start. */ if (source_top > 0) { PixelSetIteratorRow (dest_iterator, source_top); lines = source_top; } while ((source = PixelGetNextIteratorRow (source_iterator, &source_width)) != NULL) { ptrdiff_t x; /* Sanity check. This shouldn't happen, but apparently does in some pictures. */ if (++lines >= dest_height) break; dest = PixelGetNextIteratorRow (dest_iterator, &dest_width); for (x = 0; x < source_width; x++) { /* Sanity check. This shouldn't happen, but apparently also does in some pictures. */ if (x + source_left >= dest_width) break; /* Normally we only copy over non-transparent pixels, but if the disposal method is "Background", then we copy over all pixels. */ if (dispose == BackgroundDispose || PixelGetAlpha (source[x])) { PixelGetMagickColor (source[x], &pixel); PixelSetMagickColor (dest[x + source_left], &pixel); } } PixelSyncIterator (dest_iterator); } DestroyPixelIterator (source_iterator); DestroyPixelIterator (dest_iterator); DestroyMagickWand (sub_wand); } /* Cache a copy for the next iteration. The current wand will be destroyed by the caller. */ cache->wand = CloneMagickWand (composite_wand); cache->index = ino; return composite_wand; } /* Helper function for imagemagick_load, which does the actual loading given contents and size, apart from frame and image structures, passed from imagemagick_load. Uses librimagemagick to do most of the image processing. F is a pointer to the Emacs frame; IMG to the image structure to prepare; CONTENTS is the string containing the IMAGEMAGICK data to be parsed; SIZE is the number of bytes of data; and FILENAME is either the file name or the image data. Return true if successful. */ static bool imagemagick_load_image (struct frame *f, struct image *img, unsigned char *contents, unsigned int size, char *filename) { int width, height; size_t image_width, image_height; MagickBooleanType status; Emacs_Pix_Container ximg; int x, y; MagickWand *image_wand; PixelIterator *iterator; PixelWand **pixels, *bg_wand = NULL; MagickPixelPacket pixel; Lisp_Object image; #ifndef DONT_CREATE_TRANSFORMED_IMAGEMAGICK_IMAGE Lisp_Object value; #endif Lisp_Object crop; EMACS_INT ino; int desired_width, desired_height; #ifndef DONT_CREATE_TRANSFORMED_IMAGEMAGICK_IMAGE double rotation; #endif char hint_buffer[MaxTextExtent]; char *filename_hint = NULL; imagemagick_initialize (); /* Handle image index for image types who can contain more than one image. Interface :index is same as for GIF. First we "ping" the image to see how many sub-images it contains. Pinging is faster than loading the image to find out things about it. */ image = image_spec_value (img->spec, QCindex, NULL); ino = FIXNUMP (image) ? XFIXNAT (image) : 0; image_wand = NewMagickWand (); if (filename) status = MagickReadImage (image_wand, filename); else { Lisp_Object lwidth = image_spec_value (img->spec, QCwidth, NULL); Lisp_Object lheight = image_spec_value (img->spec, QCheight, NULL); if (FIXNATP (lwidth) && FIXNATP (lheight)) { MagickSetSize (image_wand, XFIXNAT (lwidth), XFIXNAT (lheight)); MagickSetDepth (image_wand, 8); } filename_hint = imagemagick_filename_hint (img->spec, hint_buffer); MagickSetFilename (image_wand, filename_hint); status = MagickReadImageBlob (image_wand, contents, size); } if (status == MagickFalse) { imagemagick_error (image_wand); DestroyMagickWand (image_wand); return 0; } #if defined HAVE_MAGICKAUTOORIENTIMAGE \ || HAVE_DECL_MAGICKAUTOORIENTIMAGE /* If no :rotation is explicitly specified, apply the automatic rotation from EXIF. */ if (NILP (image_spec_value (img->spec, QCrotation, NULL))) if (MagickAutoOrientImage (image_wand) == MagickFalse) { image_error ("Error applying automatic orientation in image `%s'", img->spec); DestroyMagickWand (image_wand); return 0; } #endif if (ino < 0 || ino >= MagickGetNumberImages (image_wand)) { image_error ("Invalid image number `%s' in image `%s'", image, img->spec); DestroyMagickWand (image_wand); return 0; } if (MagickGetImageDelay (image_wand) > 0) img->lisp_data = Fcons (Qdelay, Fcons (make_float (MagickGetImageDelay (image_wand) / 100.0), img->lisp_data)); if (MagickGetNumberImages (image_wand) > 1) img->lisp_data = Fcons (Qcount, Fcons (make_fixnum (MagickGetNumberImages (image_wand)), img->lisp_data)); /* If we have an animated image, get the new wand based on the "super-wand". */ if (MagickGetNumberImages (image_wand) > 1) { /* This is an animated image (it has a delay), so compute the composite image etc. */ if (MagickGetImageDelay (image_wand) > 0) { MagickWand *super_wand = image_wand; image_wand = imagemagick_compute_animated_image (super_wand, ino); if (! image_wand) image_wand = super_wand; else DestroyMagickWand (super_wand); } else /* This is not an animated image: It's just a multi-image file (like an .ico file). Just return the correct sub-image. */ { MagickWand *super_wand = image_wand; MagickSetIteratorIndex (super_wand, ino); image_wand = MagickGetImage (super_wand); DestroyMagickWand (super_wand); } } /* Retrieve the frame's background color, for use later. */ { Emacs_Color bgcolor; Lisp_Object specified_bg; specified_bg = image_spec_value (img->spec, QCbackground, NULL); if (!STRINGP (specified_bg) || !FRAME_TERMINAL (f)->defined_color_hook (f, SSDATA (specified_bg), &bgcolor, false, false)) FRAME_TERMINAL (f)->query_frame_background_color (f, &bgcolor); bg_wand = NewPixelWand (); PixelSetRed (bg_wand, (double) bgcolor.red / 65535); PixelSetGreen (bg_wand, (double) bgcolor.green / 65535); PixelSetBlue (bg_wand, (double) bgcolor.blue / 65535); } #ifndef DONT_CREATE_TRANSFORMED_IMAGEMAGICK_IMAGE compute_image_size (f, MagickGetImageWidth (image_wand), MagickGetImageHeight (image_wand), img, &desired_width, &desired_height); #else desired_width = desired_height = -1; #endif if (desired_width != -1 && desired_height != -1) { status = MagickScaleImage (image_wand, desired_width, desired_height); if (status == MagickFalse) { image_error ("Imagemagick scale failed"); imagemagick_error (image_wand); goto imagemagick_error; } } /* crop behaves similar to image slicing in Emacs but is more memory efficient. */ crop = image_spec_value (img->spec, QCcrop, NULL); if (CONSP (crop) && TYPE_RANGED_FIXNUMP (size_t, XCAR (crop))) { /* After some testing, it seems MagickCropImage is the fastest crop function in ImageMagick. This crop function seems to do less copying than the alternatives, but it still reads the entire image into memory before cropping, which is apparently difficult to avoid when using imagemagick. */ size_t crop_width = XFIXNUM (XCAR (crop)); crop = XCDR (crop); if (CONSP (crop) && TYPE_RANGED_FIXNUMP (size_t, XCAR (crop))) { size_t crop_height = XFIXNUM (XCAR (crop)); crop = XCDR (crop); if (CONSP (crop) && TYPE_RANGED_FIXNUMP (ssize_t, XCAR (crop))) { ssize_t crop_x = XFIXNUM (XCAR (crop)); crop = XCDR (crop); if (CONSP (crop) && TYPE_RANGED_FIXNUMP (ssize_t, XCAR (crop))) { ssize_t crop_y = XFIXNUM (XCAR (crop)); MagickCropImage (image_wand, crop_width, crop_height, crop_x, crop_y); } } } } #ifndef DONT_CREATE_TRANSFORMED_IMAGEMAGICK_IMAGE /* Furthermore :rotation. we need background color and angle for rotation. */ /* TODO background handling for rotation specified_bg = image_spec_value (img->spec, QCbackground, NULL); if (!STRINGP (specified_bg). */ value = image_spec_value (img->spec, QCrotation, NULL); if (FLOATP (value)) { rotation = XFLOAT_DATA (value); status = MagickRotateImage (image_wand, bg_wand, rotation); if (status == MagickFalse) { image_error ("Imagemagick image rotate failed"); imagemagick_error (image_wand); goto imagemagick_error; } } #endif /* Set the canvas background color to the frame or specified background, and flatten the image. Note: as of ImageMagick 6.6.0, SVG image transparency is not handled properly (e.g. etc/images/splash.svg shows a white background always). */ { MagickWand *new_wand; MagickSetImageBackgroundColor (image_wand, bg_wand); #if defined HAVE_MAGICKMERGEIMAGELAYERS \ || HAVE_DECL_MAGICKMERGEIMAGELAYERS new_wand = MagickMergeImageLayers (image_wand, MergeLayer); #else new_wand = MagickFlattenImages (image_wand); #endif DestroyMagickWand (image_wand); image_wand = new_wand; } /* Finally we are done manipulating the image. Figure out the resulting width/height and transfer ownership to Emacs. */ image_height = MagickGetImageHeight (image_wand); image_width = MagickGetImageWidth (image_wand); if (! (image_width <= INT_MAX && image_height <= INT_MAX && check_image_size (f, image_width, image_height))) { image_size_error (); goto imagemagick_error; } width = image_width; height = image_height; /* We can now get a valid pixel buffer from the imagemagick file, if all went ok. */ init_color_table (); #if (defined (HAVE_MAGICKEXPORTIMAGEPIXELS) \ || HAVE_DECL_MAGICKEXPORTIMAGEPIXELS) \ && ! defined (HAVE_NS) && ! defined (HAVE_HAIKU) if (imagemagick_render_type != 0) { /* Magicexportimage is normally faster than pixelpushing. This method is also well tested. Some aspects of this method are ad-hoc and needs to be more researched. */ void *dataptr; int imagedepth = 24; /*MagickGetImageDepth(image_wand);*/ const char *exportdepth = imagedepth <= 8 ? "I" : "BGRP"; /*"RGBP";*/ /* Try to create a x pixmap to hold the imagemagick pixmap. */ if (!image_create_x_image_and_pixmap (f, img, width, height, imagedepth, &ximg, 0)) { #ifdef COLOR_TABLE_SUPPORT free_color_table (); #endif image_error ("Imagemagick X bitmap allocation failure"); goto imagemagick_error; } dataptr = ximg->data; /* Oddly, the below code doesn't seem to work:*/ /* switch(ximg->bitmap_unit){ */ /* case 8: */ /* pixelwidth=CharPixel; */ /* break; */ /* case 16: */ /* pixelwidth=ShortPixel; */ /* break; */ /* case 32: */ /* pixelwidth=LongPixel; */ /* break; */ /* } */ /* Here im just guessing the format of the bitmap. happens to work fine for: - bw djvu images on rgb display. seems about 3 times as fast as pixel pushing(not carefully measured) */ int pixelwidth = CharPixel; /*??? TODO figure out*/ MagickExportImagePixels (image_wand, 0, 0, width, height, exportdepth, pixelwidth, dataptr); } else #endif /* HAVE_MAGICKEXPORTIMAGEPIXELS */ { size_t image_height; double quantum_range = QuantumRange; MagickRealType color_scale = 65535.0 / quantum_range; /* Try to create a x pixmap to hold the imagemagick pixmap. */ if (!image_create_x_image_and_pixmap (f, img, width, height, 0, &ximg, 0)) { #ifdef COLOR_TABLE_SUPPORT free_color_table (); #endif image_error ("Imagemagick X bitmap allocation failure"); goto imagemagick_error; } /* Copy imagemagick image to x with primitive yet robust pixel pusher loop. This has been tested a lot with many different images. */ /* Copy pixels from the imagemagick image structure to the x image map. */ iterator = NewPixelIterator (image_wand); if (! iterator) { #ifdef COLOR_TABLE_SUPPORT free_color_table (); #endif image_destroy_x_image (ximg); image_error ("Imagemagick pixel iterator creation failed"); goto imagemagick_error; } image_height = MagickGetImageHeight (image_wand); for (y = 0; y < image_height; y++) { size_t row_width; pixels = PixelGetNextIteratorRow (iterator, &row_width); if (! pixels) break; int xlim = min (row_width, width); for (x = 0; x < xlim; x++) { PixelGetMagickColor (pixels[x], &pixel); PUT_PIXEL (ximg, x, y, lookup_rgb_color (f, color_scale * pixel.red, color_scale * pixel.green, color_scale * pixel.blue)); } } DestroyPixelIterator (iterator); } #ifdef COLOR_TABLE_SUPPORT /* Remember colors allocated for this image. */ img->colors = colors_in_color_table (&img->ncolors); free_color_table (); #endif /* COLOR_TABLE_SUPPORT */ img->width = width; img->height = height; /* Put ximg into the image. */ image_put_x_image (f, img, ximg, 0); /* Final cleanup. image_wand should be the only resource left. */ DestroyMagickWand (image_wand); if (bg_wand) DestroyPixelWand (bg_wand); /* Do not call MagickWandTerminus, to work around ImageMagick bug 825. See: https://github.com/ImageMagick/ImageMagick/issues/825 Although this bug was introduced in ImageMagick 6.9.9-14 and fixed in 6.9.9-18, it's simpler to work around it in all versions. */ return 1; imagemagick_error: DestroyMagickWand (image_wand); if (bg_wand) DestroyPixelWand (bg_wand); /* TODO more cleanup. */ image_error ("Error parsing IMAGEMAGICK image `%s'", img->spec); return 0; } /* Load IMAGEMAGICK image IMG for use on frame F. Value is true if successful. this function will go into the imagemagick_type structure, and the prototype thus needs to be compatible with that structure. */ static bool imagemagick_load (struct frame *f, struct image *img) { bool success_p = 0; Lisp_Object file_name; /* If IMG->spec specifies a file name, create a non-file spec from it. */ file_name = image_spec_value (img->spec, QCfile, NULL); if (STRINGP (file_name)) { Lisp_Object file = image_find_image_file (file_name); if (!STRINGP (file)) { image_not_found_error (file_name); return false; } file = ENCODE_FILE (file); #ifdef WINDOWSNT file = ansi_encode_filename (file); #endif success_p = imagemagick_load_image (f, img, 0, 0, SSDATA (file)); } /* Else it's not a file, it's a Lisp object. Load the image from a Lisp object rather than a file. */ else { Lisp_Object data; data = image_spec_value (img->spec, QCdata, NULL); if (!STRINGP (data)) { image_invalid_data_error (data); return false; } success_p = imagemagick_load_image (f, img, SDATA (data), SBYTES (data), NULL); } return success_p; } DEFUN ("imagemagick-types", Fimagemagick_types, Simagemagick_types, 0, 0, 0, doc: /* Return a list of image types supported by ImageMagick. Each entry in this list is a symbol named after an ImageMagick format tag. See the ImageMagick manual for a list of ImageMagick formats and their descriptions (https://www.imagemagick.org/script/formats.php). You can also try the shell command: `identify -list format'. Note that ImageMagick recognizes many file-types that Emacs does not recognize as images, such as C. See `imagemagick-enabled-types' and `imagemagick-types-inhibit'. */) (void) { Lisp_Object typelist = Qnil; size_t numf = 0; ExceptionInfo *ex; char **imtypes; size_t i; imagemagick_initialize (); ex = AcquireExceptionInfo (); imtypes = GetMagickList ("*", &numf, ex); DestroyExceptionInfo (ex); for (i = 0; i < numf; i++) { Lisp_Object imagemagicktype = intern (imtypes[i]); typelist = Fcons (imagemagicktype, typelist); imtypes[i] = MagickRelinquishMemory (imtypes[i]); } MagickRelinquishMemory (imtypes); return Fnreverse (typelist); } #endif /* defined (HAVE_IMAGEMAGICK) */ /*********************************************************************** SVG ***********************************************************************/ #ifdef HAVE_RSVG /* Function prototypes. */ static bool svg_load_image (struct frame *, struct image *, char *, ptrdiff_t, char *); /* Indices of image specification fields in svg_format, below. */ enum svg_keyword_index { SVG_TYPE, SVG_DATA, SVG_FILE, SVG_BASE_URI, SVG_CSS, SVG_ASCENT, SVG_MARGIN, SVG_RELIEF, SVG_ALGORITHM, SVG_HEURISTIC_MASK, SVG_MASK, SVG_FOREGROUND, SVG_BACKGROUND, SVG_LAST }; /* Vector of image_keyword structures describing the format of valid user-defined image specifications. */ static const struct image_keyword svg_format[SVG_LAST] = { {":type", IMAGE_SYMBOL_VALUE, 1}, {":data", IMAGE_STRING_VALUE, 0}, {":file", IMAGE_STRING_VALUE, 0}, {":base-uri", IMAGE_STRING_VALUE, 0}, {":css", IMAGE_STRING_VALUE, 0}, {":ascent", IMAGE_ASCENT_VALUE, 0}, {":margin", IMAGE_NON_NEGATIVE_INTEGER_VALUE_OR_PAIR, 0}, {":relief", IMAGE_INTEGER_VALUE, 0}, {":conversion", IMAGE_DONT_CHECK_VALUE_TYPE, 0}, {":heuristic-mask", IMAGE_DONT_CHECK_VALUE_TYPE, 0}, {":mask", IMAGE_DONT_CHECK_VALUE_TYPE, 0}, {":foreground", IMAGE_STRING_OR_NIL_VALUE, 0}, {":background", IMAGE_STRING_OR_NIL_VALUE, 0} }; /* Return true if OBJECT is a valid SVG image specification. Do this by calling parse_image_spec and supplying the keywords that identify the SVG format. */ static bool svg_image_p (Lisp_Object object) { struct image_keyword fmt[SVG_LAST]; memcpy (fmt, svg_format, sizeof fmt); if (!parse_image_spec (object, fmt, SVG_LAST, Qsvg)) return 0; /* Must specify either the :data or :file keyword. */ return fmt[SVG_FILE].count + fmt[SVG_DATA].count == 1; } /* Some versions of glib's gatomic.h define MemoryBarrier, but MinGW w32api 3.18 and later has its own definition. The following gross hack avoids the clash. */ # ifdef WINDOWSNT # if (__W32API_MAJOR_VERSION + (__W32API_MINOR_VERSION >= 18)) >= 4 # define W32_SAVE_MINGW_VERSION __MINGW_MAJOR_VERSION # undef __MINGW_MAJOR_VERSION # define __MINGW_MAJOR_VERSION 4 # endif # endif # include /* librsvg is too old for us if it doesn't define this macro. */ # ifndef LIBRSVG_CHECK_VERSION # define LIBRSVG_CHECK_VERSION(v, w, x) false # endif # ifdef WINDOWSNT /* Restore the original definition of __MINGW_MAJOR_VERSION. */ # if defined W32_SAVE_MINGW_VERSION && defined __MINGW_MAJOR_VERSION # undef __MINGW_MAJOR_VERSION # define __MINGW_MAJOR_VERSION W32_SAVE_MINGW_VERSION # ifdef __MINGW_MAJOR_VERSION # undef W32_SAVE_MINGW_VERSION # endif # endif /* SVG library functions. */ # if LIBRSVG_CHECK_VERSION (2, 32, 0) DEF_DLL_FN (GFile *, g_file_new_for_path, (char const *)); DEF_DLL_FN (GInputStream *, g_memory_input_stream_new_from_data, (void const *, gssize, GDestroyNotify)); DEF_DLL_FN (RsvgHandle *, rsvg_handle_new_from_stream_sync, (GInputStream *, GFile *, RsvgHandleFlags, GCancellable *, GError **error)); # else DEF_DLL_FN (RsvgHandle *, rsvg_handle_new, (void)); DEF_DLL_FN (void, rsvg_handle_set_base_uri, (RsvgHandle *, const char *)); DEF_DLL_FN (gboolean, rsvg_handle_write, (RsvgHandle *, const guchar *, gsize, GError **)); DEF_DLL_FN (gboolean, rsvg_handle_close, (RsvgHandle *, GError **)); # endif DEF_DLL_FN (void, rsvg_handle_set_dpi_x_y, (RsvgHandle * handle, double dpi_x, double dpi_y)); # if LIBRSVG_CHECK_VERSION (2, 52, 1) DEF_DLL_FN (gboolean, rsvg_handle_get_intrinsic_size_in_pixels, (RsvgHandle *, gdouble *, gdouble *)); # endif # if LIBRSVG_CHECK_VERSION (2, 46, 0) DEF_DLL_FN (void, rsvg_handle_get_intrinsic_dimensions, (RsvgHandle *, gboolean *, RsvgLength *, gboolean *, RsvgLength *, gboolean *, RsvgRectangle *)); DEF_DLL_FN (gboolean, rsvg_handle_get_geometry_for_layer, (RsvgHandle *, const char *, const RsvgRectangle *, RsvgRectangle *, RsvgRectangle *, GError **)); # else DEF_DLL_FN (void, rsvg_handle_get_dimensions, (RsvgHandle *, RsvgDimensionData *)); # endif # if LIBRSVG_CHECK_VERSION (2, 48, 0) DEF_DLL_FN (gboolean, rsvg_handle_set_stylesheet, (RsvgHandle *, const guint8 *, gsize, GError **)); # endif DEF_DLL_FN (GdkPixbuf *, rsvg_handle_get_pixbuf, (RsvgHandle *)); DEF_DLL_FN (int, gdk_pixbuf_get_width, (const GdkPixbuf *)); DEF_DLL_FN (int, gdk_pixbuf_get_height, (const GdkPixbuf *)); DEF_DLL_FN (guchar *, gdk_pixbuf_get_pixels, (const GdkPixbuf *)); DEF_DLL_FN (int, gdk_pixbuf_get_rowstride, (const GdkPixbuf *)); DEF_DLL_FN (GdkColorspace, gdk_pixbuf_get_colorspace, (const GdkPixbuf *)); DEF_DLL_FN (int, gdk_pixbuf_get_n_channels, (const GdkPixbuf *)); DEF_DLL_FN (gboolean, gdk_pixbuf_get_has_alpha, (const GdkPixbuf *)); DEF_DLL_FN (int, gdk_pixbuf_get_bits_per_sample, (const GdkPixbuf *)); # if ! GLIB_CHECK_VERSION (2, 36, 0) DEF_DLL_FN (void, g_type_init, (void)); # endif DEF_DLL_FN (void, g_object_unref, (gpointer)); DEF_DLL_FN (void, g_error_free, (GError *)); static bool init_svg_functions (void) { HMODULE library, gdklib = NULL, glib = NULL, gobject = NULL, giolib = NULL; if (!(glib = w32_delayed_load (Qglib)) || !(gobject = w32_delayed_load (Qgobject)) # if LIBRSVG_CHECK_VERSION (2, 32, 0) || !(giolib = w32_delayed_load (Qgio)) # endif || !(gdklib = w32_delayed_load (Qgdk_pixbuf)) || !(library = w32_delayed_load (Qsvg))) { if (gdklib) FreeLibrary (gdklib); if (giolib) FreeLibrary (giolib); if (gobject) FreeLibrary (gobject); if (glib) FreeLibrary (glib); return 0; } #if LIBRSVG_CHECK_VERSION (2, 32, 0) LOAD_DLL_FN (giolib, g_file_new_for_path); LOAD_DLL_FN (giolib, g_memory_input_stream_new_from_data); LOAD_DLL_FN (library, rsvg_handle_new_from_stream_sync); #else LOAD_DLL_FN (library, rsvg_handle_new); LOAD_DLL_FN (library, rsvg_handle_set_base_uri); LOAD_DLL_FN (library, rsvg_handle_write); LOAD_DLL_FN (library, rsvg_handle_close); #endif LOAD_DLL_FN (library, rsvg_handle_set_dpi_x_y); #if LIBRSVG_CHECK_VERSION (2, 52, 1) LOAD_DLL_FN (library, rsvg_handle_get_intrinsic_size_in_pixels); #endif #if LIBRSVG_CHECK_VERSION (2, 46, 0) LOAD_DLL_FN (library, rsvg_handle_get_intrinsic_dimensions); LOAD_DLL_FN (library, rsvg_handle_get_geometry_for_layer); #else LOAD_DLL_FN (library, rsvg_handle_get_dimensions); #endif #if LIBRSVG_CHECK_VERSION (2, 48, 0) LOAD_DLL_FN (library, rsvg_handle_set_stylesheet); #endif LOAD_DLL_FN (library, rsvg_handle_get_pixbuf); LOAD_DLL_FN (gdklib, gdk_pixbuf_get_width); LOAD_DLL_FN (gdklib, gdk_pixbuf_get_height); LOAD_DLL_FN (gdklib, gdk_pixbuf_get_pixels); LOAD_DLL_FN (gdklib, gdk_pixbuf_get_rowstride); LOAD_DLL_FN (gdklib, gdk_pixbuf_get_colorspace); LOAD_DLL_FN (gdklib, gdk_pixbuf_get_n_channels); LOAD_DLL_FN (gdklib, gdk_pixbuf_get_has_alpha); LOAD_DLL_FN (gdklib, gdk_pixbuf_get_bits_per_sample); # if ! GLIB_CHECK_VERSION (2, 36, 0) LOAD_DLL_FN (gobject, g_type_init); # endif LOAD_DLL_FN (gobject, g_object_unref); LOAD_DLL_FN (glib, g_error_free); return 1; } /* The following aliases for library functions allow dynamic loading to be used on some platforms. */ # undef gdk_pixbuf_get_bits_per_sample # undef gdk_pixbuf_get_colorspace # undef gdk_pixbuf_get_has_alpha # undef gdk_pixbuf_get_height # undef gdk_pixbuf_get_n_channels # undef gdk_pixbuf_get_pixels # undef gdk_pixbuf_get_rowstride # undef gdk_pixbuf_get_width # undef g_error_free # undef g_object_unref # undef g_type_init # if LIBRSVG_CHECK_VERSION (2, 52, 1) # undef rsvg_handle_get_intrinsic_size_in_pixels # endif # if LIBRSVG_CHECK_VERSION (2, 46, 0) # undef rsvg_handle_get_intrinsic_dimensions # undef rsvg_handle_get_geometry_for_layer # else # undef rsvg_handle_get_dimensions # endif # if LIBRSVG_CHECK_VERSION (2, 48, 0) # undef rsvg_handle_set_stylesheet # endif # undef rsvg_handle_get_pixbuf # if LIBRSVG_CHECK_VERSION (2, 32, 0) # undef g_file_new_for_path # undef g_memory_input_stream_new_from_data # undef rsvg_handle_new_from_stream_sync # else # undef rsvg_handle_close # undef rsvg_handle_new # undef rsvg_handle_set_base_uri # undef rsvg_handle_write # endif # undef rsvg_handle_set_dpi_x_y # define gdk_pixbuf_get_bits_per_sample fn_gdk_pixbuf_get_bits_per_sample # define gdk_pixbuf_get_colorspace fn_gdk_pixbuf_get_colorspace # define gdk_pixbuf_get_has_alpha fn_gdk_pixbuf_get_has_alpha # define gdk_pixbuf_get_height fn_gdk_pixbuf_get_height # define gdk_pixbuf_get_n_channels fn_gdk_pixbuf_get_n_channels # define gdk_pixbuf_get_pixels fn_gdk_pixbuf_get_pixels # define gdk_pixbuf_get_rowstride fn_gdk_pixbuf_get_rowstride # define gdk_pixbuf_get_width fn_gdk_pixbuf_get_width # define g_error_free fn_g_error_free # define g_object_unref fn_g_object_unref # if ! GLIB_CHECK_VERSION (2, 36, 0) # define g_type_init fn_g_type_init # endif # if LIBRSVG_CHECK_VERSION (2, 52, 1) # define rsvg_handle_get_intrinsic_size_in_pixels \ fn_rsvg_handle_get_intrinsic_size_in_pixels # endif # if LIBRSVG_CHECK_VERSION (2, 46, 0) # define rsvg_handle_get_intrinsic_dimensions \ fn_rsvg_handle_get_intrinsic_dimensions # define rsvg_handle_get_geometry_for_layer \ fn_rsvg_handle_get_geometry_for_layer # else # define rsvg_handle_get_dimensions fn_rsvg_handle_get_dimensions # endif # if LIBRSVG_CHECK_VERSION (2, 48, 0) # define rsvg_handle_set_stylesheet fn_rsvg_handle_set_stylesheet # endif # define rsvg_handle_get_pixbuf fn_rsvg_handle_get_pixbuf # if LIBRSVG_CHECK_VERSION (2, 32, 0) # define g_file_new_for_path fn_g_file_new_for_path # define g_memory_input_stream_new_from_data \ fn_g_memory_input_stream_new_from_data # define rsvg_handle_new_from_stream_sync fn_rsvg_handle_new_from_stream_sync # else # define rsvg_handle_close fn_rsvg_handle_close # define rsvg_handle_new fn_rsvg_handle_new # define rsvg_handle_set_base_uri fn_rsvg_handle_set_base_uri # define rsvg_handle_write fn_rsvg_handle_write # endif # define rsvg_handle_set_dpi_x_y fn_rsvg_handle_set_dpi_x_y # endif /* !WINDOWSNT */ /* Load SVG image IMG for use on frame F. Value is true if successful. */ static bool svg_load (struct frame *f, struct image *img) { bool success_p = 0; Lisp_Object file_name, base_uri; /* If IMG->spec specifies a file name, create a non-file spec from it. */ file_name = image_spec_value (img->spec, QCfile, NULL); base_uri = image_spec_value (img->spec, QCbase_uri, NULL); if (STRINGP (file_name)) { image_fd fd; Lisp_Object file = image_find_image_fd (file_name, &fd); if (!STRINGP (file)) { image_not_found_error (file_name); return false; } /* Read the entire file into memory. */ ptrdiff_t size; char *contents = slurp_file (fd, &size); if (contents == NULL) { image_error ("Error loading SVG image `%s'", file); return false; } /* If the file was slurped into memory properly, parse it. */ if (!STRINGP (base_uri)) base_uri = file; success_p = svg_load_image (f, img, contents, size, SSDATA (ENCODE_FILE (base_uri))); xfree (contents); } /* Else it's not a file, it's a Lisp object. Load the image from a Lisp object rather than a file. */ else { Lisp_Object data; data = image_spec_value (img->spec, QCdata, NULL); if (!STRINGP (data)) { image_invalid_data_error (data); return false; } if (!STRINGP (base_uri)) base_uri = BVAR (current_buffer, filename); success_p = svg_load_image (f, img, SSDATA (data), SBYTES (data), (STRINGP (base_uri) ? SSDATA (ENCODE_FILE (base_uri)) : NULL)); } return success_p; } #if LIBRSVG_CHECK_VERSION (2, 46, 0) static double svg_css_length_to_pixels (RsvgLength length, double dpi, int font_size) { double value = length.length; #if ! LIBRSVG_CHECK_VERSION (2, 48, 0) /* librsvg 2.48 lets us define the font size, but earlier versions default to 12 pixels. */ font_size = 12; #endif switch (length.unit) { case RSVG_UNIT_PX: /* Already a pixel value. */ break; case RSVG_UNIT_CM: /* 2.54 cm in an inch. */ value = dpi * value / 2.54; break; case RSVG_UNIT_MM: /* 25.4 mm in an inch. */ value = dpi * value / 25.4; break; case RSVG_UNIT_PT: /* 72 points in an inch. */ value = dpi * value / 72; break; case RSVG_UNIT_PC: /* 6 picas in an inch. */ value = dpi * value / 6; break; case RSVG_UNIT_IN: value *= dpi; break; case RSVG_UNIT_EM: value *= font_size; break; case RSVG_UNIT_EX: /* librsvg uses an ex height of half the em height, so we match that here. */ value = value * font_size / 2.0; break; case RSVG_UNIT_PERCENT: /* Percent is a ratio of the containing "viewport". We don't have a viewport, as such, as we try to draw the image to it's 'natural' size rather than dictate the size as if we were drawing icons on a toolbar or similar. This means that percent values are useless to us and we are best off just drawing the image according to whatever other sizes we can derive. If we do set explicit width and height values in the image spec, this will work out correctly as librsvg will still honor the percentage sizes in its final rendering no matter what size we make the image. */ value = 0; break; default: /* We should never reach this. */ value = 0; } return value; } #endif /* Load frame F and image IMG. CONTENTS contains the SVG XML data to be parsed, SIZE is its size, and FILENAME is the name of the SVG file being loaded. Use librsvg to do most of the image processing. Return true when successful. The basic process, which is used for all versions of librsvg, is to load the SVG and parse it, then extract the image dimensions. We then use those image dimensions to calculate the final size and wrap the SVG data inside another SVG we build on the fly. This wrapper does the necessary resizing and setting of foreground and background colors and is then parsed and rasterized. It should also be noted that setting up the SVG prior to 2.32 was done differently, but the overall process is the same. */ static bool svg_load_image (struct frame *f, struct image *img, char *contents, ptrdiff_t size, char *filename) { RsvgHandle *rsvg_handle; double viewbox_width, viewbox_height; GError *err = NULL; GdkPixbuf *pixbuf; int width; int height; const guint8 *pixels; int rowstride; char *wrapped_contents = NULL; ptrdiff_t wrapped_size; bool empty_errmsg = true; const char *errmsg = ""; ptrdiff_t errlen = 0; #if LIBRSVG_CHECK_VERSION (2, 48, 0) char *css = NULL; #endif #if ! GLIB_CHECK_VERSION (2, 36, 0) /* g_type_init is a glib function that must be called prior to using gnome type library functions (obsolete since 2.36.0). */ g_type_init (); #endif /* Parse the unmodified SVG data so we can get its initial size. */ #if LIBRSVG_CHECK_VERSION (2, 32, 0) GInputStream *input_stream = g_memory_input_stream_new_from_data (contents, size, NULL); GFile *base_file = filename ? g_file_new_for_path (filename) : NULL; rsvg_handle = rsvg_handle_new_from_stream_sync (input_stream, base_file, RSVG_HANDLE_FLAGS_NONE, NULL, &err); if (base_file) g_object_unref (base_file); g_object_unref (input_stream); /* Check rsvg_handle too, to avoid librsvg 2.40.13 bug (Bug#36773#26). */ if (!rsvg_handle || err) goto rsvg_error; rsvg_handle_set_dpi_x_y (rsvg_handle, FRAME_DISPLAY_INFO (f)->resx, FRAME_DISPLAY_INFO (f)->resy); #if LIBRSVG_CHECK_VERSION (2, 48, 0) Lisp_Object lcss = image_spec_value (img->spec, QCcss, NULL); if (!STRINGP (lcss)) { /* Generate the CSS for the SVG image. We use this to set the font (font-family in CSS lingo) and the font size. We can extend this to handle any CSS values SVG supports, however it's only available in librsvg 2.48 and above so some things we could set here are handled in the wrapper below. */ /* FIXME: The below calculations leave enough space for a font size up to 9999, if it overflows we just throw an error but should probably increase the buffer size. */ const char *css_spec = "svg{font-family:\"%s\";font-size:%dpx}"; int css_len = strlen (css_spec) + strlen (img->face_font_family) + 1; css = xmalloc (css_len); if (css_len <= snprintf (css, css_len, css_spec, img->face_font_family, img->face_font_size)) goto rsvg_error; rsvg_handle_set_stylesheet (rsvg_handle, (guint8 *)css, strlen (css), NULL); } else { css = xmalloc (SBYTES (lcss) + 1); strncpy (css, SSDATA (lcss), SBYTES (lcss)); *(css + SBYTES (lcss) + 1) = 0; } #endif #else /* Make a handle to a new rsvg object. */ rsvg_handle = rsvg_handle_new (); eassume (rsvg_handle); rsvg_handle_set_dpi_x_y (rsvg_handle, FRAME_DISPLAY_INFO (f)->resx, FRAME_DISPLAY_INFO (f)->resy); /* Set base_uri for properly handling referenced images (via 'href'). Can be explicitly specified using `:base_uri' image property. See rsvg bug 596114 - "image refs are relative to curdir, not .svg file" . */ if (filename) rsvg_handle_set_base_uri (rsvg_handle, filename); /* Parse the contents argument and fill in the rsvg_handle. */ rsvg_handle_write (rsvg_handle, (unsigned char *) contents, size, &err); if (err) goto rsvg_error; /* The parsing is complete, rsvg_handle is ready to be used, close it for further writes. */ rsvg_handle_close (rsvg_handle, &err); if (err) goto rsvg_error; #endif /* Get the image dimensions. There are a couple of approaches used here, depending on the contents of the SVG, and which version of librsvg we're using. With librsvg versions prior to 2.46 we ask librsvg for the size of the image, however this may include pats of the image that are outside of the viewbox. librsvg 2.46 allows us to request the image's "intrinsic dimensions", which are the sizes given in the SVG in CSS units. So, for example, if the image defines it's width as "10mm", we are given a struct that we need to translate into pixel values ourself (see svg_css_length_to_pixels). 2.52 introduces a function that will give us the pixel sizes directly, assuming we provide the correct screen DPI values. */ #if LIBRSVG_CHECK_VERSION (2, 46, 0) gdouble gviewbox_width = 0, gviewbox_height = 0; gboolean has_viewbox = FALSE; # if LIBRSVG_CHECK_VERSION (2, 52, 1) has_viewbox = rsvg_handle_get_intrinsic_size_in_pixels (rsvg_handle, &gviewbox_width, &gviewbox_height); # endif if (has_viewbox) { viewbox_width = gviewbox_width; viewbox_height = gviewbox_height; } else { RsvgRectangle viewbox; double explicit_width = 0, explicit_height = 0; /* Try the intrinsic dimensions first. */ gboolean has_width, has_height; RsvgLength iwidth, iheight; double dpi = FRAME_DISPLAY_INFO (f)->resx; rsvg_handle_get_intrinsic_dimensions (rsvg_handle, &has_width, &iwidth, &has_height, &iheight, &has_viewbox, &viewbox); if (has_width) explicit_width = svg_css_length_to_pixels (iwidth, dpi, img->face_font_size); if (has_height) explicit_height = svg_css_length_to_pixels (iheight, dpi, img->face_font_size); if (explicit_width > 0 && explicit_height > 0) { viewbox_width = explicit_width; viewbox_height = explicit_height; } else if (explicit_width > 0 && has_viewbox) { viewbox_width = explicit_width; viewbox_height = explicit_width * viewbox.height / viewbox.width; } else if (explicit_height > 0 && has_viewbox) { viewbox_height = explicit_height; viewbox_width = explicit_height * viewbox.width / viewbox.height; } else if (has_viewbox) { viewbox_width = viewbox.width; viewbox_height = viewbox.height; } else viewbox_width = viewbox_height = 0; if (! (0 < viewbox_width && 0 < viewbox_height)) { /* We haven't found a usable set of sizes, so try working out the visible area. */ /* FIXME: I'm not sure exactly how librsvg uses this viewport input here, so I'm not sure what values I should set. */ RsvgRectangle max_viewport_rect = {0, 0, UINT_MAX, UINT_MAX}; RsvgRectangle out_logical_rect; rsvg_handle_get_geometry_for_layer (rsvg_handle, NULL, &max_viewport_rect, &viewbox, &out_logical_rect, NULL); viewbox_width = viewbox.x + viewbox.width; viewbox_height = viewbox.y + viewbox.height; } } #else /* In librsvg before 2.46.0, guess the viewbox from the image dimensions. */ RsvgDimensionData dimension_data; rsvg_handle_get_dimensions (rsvg_handle, &dimension_data); viewbox_width = dimension_data.width; viewbox_height = dimension_data.height; #endif #ifdef HAVE_NATIVE_TRANSFORMS compute_image_size (f, viewbox_width, viewbox_height, img, &width, &height); width = scale_image_size (width, 1, FRAME_SCALE_FACTOR (f)); height = scale_image_size (height, 1, FRAME_SCALE_FACTOR (f)); #else width = viewbox_width; height = viewbox_height; #endif if (! check_image_size (f, width, height)) { image_size_error (); goto done_error; } /* We are now done with the unmodified data. */ g_object_unref (rsvg_handle); /* Wrap the SVG data in another SVG. This allows us to set the width and height, as well as modify the foreground and background colors. */ { Lisp_Object value; unsigned long foreground = img->face_foreground; unsigned long background = img->face_background; Lisp_Object encoded_contents = Fbase64_encode_string (make_unibyte_string (contents, size), Qt); /* The wrapper sets the foreground color, width and height, and viewBox must contain the dimensions of the original image. It also draws a rectangle over the whole space, set to the background color, before including the original image. This acts to set the background color, instead of leaving it transparent. */ const char *wrapper = "" "" "" ""; /* FIXME: I've added 64 in the hope it will cover the size of the width and height strings and things. */ int buffer_size = SBYTES (encoded_contents) + strlen (wrapper) + 64; value = image_spec_value (img->spec, QCforeground, NULL); if (!NILP (value)) foreground = image_alloc_image_color (f, img, value, img->face_foreground); value = image_spec_value (img->spec, QCbackground, NULL); if (!NILP (value)) { background = image_alloc_image_color (f, img, value, img->face_background); img->background = background; img->background_valid = 1; } #if HAVE_NTGUI /* Windows stores the image colors in BGR format, and SVG expects them in RGB. */ foreground = (foreground & 0x0000FF) << 16 | (foreground & 0xFF0000) >> 16 | (foreground & 0x00FF00); background = (background & 0x0000FF) << 16 | (background & 0xFF0000) >> 16 | (background & 0x00FF00); #endif wrapped_contents = xmalloc (buffer_size); if (buffer_size <= snprintf (wrapped_contents, buffer_size, wrapper, foreground & 0xFFFFFF, width, height, viewbox_width, viewbox_height, background & 0xFFFFFF, SSDATA (encoded_contents))) goto rsvg_error; wrapped_size = strlen (wrapped_contents); } /* Now we parse the wrapped version. */ #if LIBRSVG_CHECK_VERSION (2, 32, 0) input_stream = g_memory_input_stream_new_from_data (wrapped_contents, wrapped_size, NULL); base_file = filename ? g_file_new_for_path (filename) : NULL; rsvg_handle = rsvg_handle_new_from_stream_sync (input_stream, base_file, RSVG_HANDLE_FLAGS_NONE, NULL, &err); if (base_file) g_object_unref (base_file); g_object_unref (input_stream); /* Check rsvg_handle too, to avoid librsvg 2.40.13 bug (Bug#36773#26). */ if (!rsvg_handle || err) goto rsvg_error; rsvg_handle_set_dpi_x_y (rsvg_handle, FRAME_DISPLAY_INFO (f)->resx, FRAME_DISPLAY_INFO (f)->resy); #if LIBRSVG_CHECK_VERSION (2, 48, 0) /* Set the CSS for the wrapped SVG. See the comment above the previous use of 'css'. */ rsvg_handle_set_stylesheet (rsvg_handle, (guint8 *)css, strlen (css), NULL); #endif #else /* Make a handle to a new rsvg object. */ rsvg_handle = rsvg_handle_new (); eassume (rsvg_handle); rsvg_handle_set_dpi_x_y (rsvg_handle, FRAME_DISPLAY_INFO (f)->resx, FRAME_DISPLAY_INFO (f)->resy); /* Set base_uri for properly handling referenced images (via 'href'). Can be explicitly specified using `:base_uri' image property. See rsvg bug 596114 - "image refs are relative to curdir, not .svg file" . */ if (filename) rsvg_handle_set_base_uri (rsvg_handle, filename); /* Parse the contents argument and fill in the rsvg_handle. */ rsvg_handle_write (rsvg_handle, (unsigned char *) wrapped_contents, wrapped_size, &err); if (err) goto rsvg_error; /* The parsing is complete, rsvg_handle is ready to used, close it for further writes. */ rsvg_handle_close (rsvg_handle, &err); if (err) goto rsvg_error; #endif /* We can now get a valid pixel buffer from the svg file, if all went ok. */ pixbuf = rsvg_handle_get_pixbuf (rsvg_handle); if (!pixbuf) goto rsvg_error; g_object_unref (rsvg_handle); xfree (wrapped_contents); #if LIBRSVG_CHECK_VERSION (2, 48, 0) if (!STRINGP (lcss)) xfree (css); #endif /* Extract some meta data from the svg handle. */ width = gdk_pixbuf_get_width (pixbuf); height = gdk_pixbuf_get_height (pixbuf); pixels = gdk_pixbuf_get_pixels (pixbuf); rowstride = gdk_pixbuf_get_rowstride (pixbuf); /* Validate the svg meta data. */ eassert (gdk_pixbuf_get_colorspace (pixbuf) == GDK_COLORSPACE_RGB); eassert (gdk_pixbuf_get_n_channels (pixbuf) == 4); eassert (gdk_pixbuf_get_has_alpha (pixbuf)); eassert (gdk_pixbuf_get_bits_per_sample (pixbuf) == 8); { /* Try to create a x pixmap to hold the svg pixmap. */ Emacs_Pix_Container ximg; if (!image_create_x_image_and_pixmap (f, img, width, height, 0, &ximg, 0)) { g_object_unref (pixbuf); return false; } init_color_table (); /* This loop handles opacity values, since Emacs assumes non-transparent images. Each pixel must be "flattened" by calculating the resulting color, given the transparency of the pixel, and the image background color. */ for (int y = 0; y < height; ++y) { for (int x = 0; x < width; ++x) { int red = *pixels++; int green = *pixels++; int blue = *pixels++; /* Skip opacity. */ pixels++; PUT_PIXEL (ximg, x, y, lookup_rgb_color (f, red << 8, green << 8, blue << 8)); } pixels += rowstride - 4 * width; } #ifdef COLOR_TABLE_SUPPORT /* Remember colors allocated for this image. */ img->colors = colors_in_color_table (&img->ncolors); free_color_table (); #endif /* COLOR_TABLE_SUPPORT */ g_object_unref (pixbuf); img->width = width; img->height = height; /* Maybe fill in the background field while we have ximg handy. Casting avoids a GCC warning. */ IMAGE_BACKGROUND (img, f, (Emacs_Pix_Context)ximg); /* Put ximg into the image. */ image_put_x_image (f, img, ximg, 0); } eassume (err == NULL); return true; rsvg_error: if (err && err->message[0]) { errmsg = err->message; errlen = strlen (errmsg); /* Remove trailing whitespace from the error message text. It has a newline at the end, and perhaps more whitespace. */ while (errlen && c_isspace (errmsg[errlen - 1])) errlen--; empty_errmsg = errlen == 0; } if (empty_errmsg) image_error ("Error parsing SVG image"); else image_error ("Error parsing SVG image: %s", make_string (errmsg, errlen)); if (err) g_error_free (err); done_error: if (rsvg_handle) g_object_unref (rsvg_handle); if (wrapped_contents) xfree (wrapped_contents); #if LIBRSVG_CHECK_VERSION (2, 48, 0) if (css && !STRINGP (lcss)) xfree (css); #endif return false; } #endif /* defined (HAVE_RSVG) */ /*********************************************************************** Ghostscript ***********************************************************************/ #if defined HAVE_X_WINDOWS && !defined USE_CAIRO #define HAVE_GHOSTSCRIPT 1 #endif /* HAVE_X_WINDOWS && !USE_CAIRO */ #ifdef HAVE_GHOSTSCRIPT /* Indices of image specification fields in gs_format, below. */ enum gs_keyword_index { GS_TYPE, GS_PT_WIDTH, GS_PT_HEIGHT, GS_FILE, GS_LOADER, GS_BOUNDING_BOX, GS_ASCENT, GS_MARGIN, GS_RELIEF, GS_ALGORITHM, GS_HEURISTIC_MASK, GS_MASK, GS_BACKGROUND, GS_LAST }; /* Vector of image_keyword structures describing the format of valid user-defined image specifications. */ static const struct image_keyword gs_format[GS_LAST] = { {":type", IMAGE_SYMBOL_VALUE, 1}, {":pt-width", IMAGE_POSITIVE_INTEGER_VALUE, 1}, {":pt-height", IMAGE_POSITIVE_INTEGER_VALUE, 1}, {":file", IMAGE_STRING_VALUE, 1}, {":loader", IMAGE_FUNCTION_VALUE, 0}, {":bounding-box", IMAGE_DONT_CHECK_VALUE_TYPE, 1}, {":ascent", IMAGE_ASCENT_VALUE, 0}, {":margin", IMAGE_NON_NEGATIVE_INTEGER_VALUE_OR_PAIR, 0}, {":relief", IMAGE_INTEGER_VALUE, 0}, {":conversion", IMAGE_DONT_CHECK_VALUE_TYPE, 0}, {":heuristic-mask", IMAGE_DONT_CHECK_VALUE_TYPE, 0}, {":mask", IMAGE_DONT_CHECK_VALUE_TYPE, 0}, {":background", IMAGE_STRING_OR_NIL_VALUE, 0} }; /* Return true if OBJECT is a valid Ghostscript image specification. */ static bool gs_image_p (Lisp_Object object) { struct image_keyword fmt[GS_LAST]; Lisp_Object tem; int i; memcpy (fmt, gs_format, sizeof fmt); if (!parse_image_spec (object, fmt, GS_LAST, Qpostscript)) return 0; /* Bounding box must be a list or vector containing 4 integers. */ tem = fmt[GS_BOUNDING_BOX].value; if (CONSP (tem)) { for (i = 0; i < 4; ++i, tem = XCDR (tem)) if (!CONSP (tem) || !FIXNUMP (XCAR (tem))) return 0; if (!NILP (tem)) return 0; } else if (VECTORP (tem)) { if (ASIZE (tem) != 4) return 0; for (i = 0; i < 4; ++i) if (!FIXNUMP (AREF (tem, i))) return 0; } else return 0; return 1; } /* Load Ghostscript image IMG for use on frame F. Value is true if successful. */ static bool gs_load (struct frame *f, struct image *img) { uintmax_t printnum1, printnum2; char buffer[sizeof " " + 2 * INT_STRLEN_BOUND (intmax_t)]; Lisp_Object window_and_pixmap_id = Qnil, loader, pt_height, pt_width; Lisp_Object frame; double in_width, in_height; Lisp_Object pixel_colors = Qnil; /* Compute pixel size of pixmap needed from the given size in the image specification. Sizes in the specification are in pt. 1 pt = 1/72 in, xdpi and ydpi are stored in the frame's X display info. */ pt_width = image_spec_value (img->spec, QCpt_width, NULL); in_width = FIXNUMP (pt_width) ? XFIXNAT (pt_width) / 72.0 : 0; in_width *= FRAME_RES_X (f); pt_height = image_spec_value (img->spec, QCpt_height, NULL); in_height = FIXNUMP (pt_height) ? XFIXNAT (pt_height) / 72.0 : 0; in_height *= FRAME_RES_Y (f); if (! (in_width <= INT_MAX && in_height <= INT_MAX && check_image_size (f, in_width, in_height))) { image_size_error (); return 0; } img->width = in_width; img->height = in_height; /* Create the pixmap. */ eassert (img->pixmap == NO_PIXMAP); if (image_check_image_size (0, img->width, img->height)) { /* Only W32 version did BLOCK_INPUT here. ++kfs */ block_input (); img->pixmap = XCreatePixmap (FRAME_X_DISPLAY (f), FRAME_X_DRAWABLE (f), img->width, img->height, FRAME_DISPLAY_INFO (f)->n_planes); unblock_input (); } if (!img->pixmap) { image_error ("Unable to create pixmap for `%s'" , img->spec); return 0; } /* Call the loader to fill the pixmap. It returns a process object if successful. We do not record_unwind_protect here because other places in redisplay like calling window scroll functions don't either. Let the Lisp loader use `unwind-protect' instead. */ printnum1 = FRAME_X_DRAWABLE (f); printnum2 = img->pixmap; window_and_pixmap_id = make_formatted_string (buffer, "%"PRIuMAX" %"PRIuMAX, printnum1, printnum2); printnum1 = FRAME_FOREGROUND_PIXEL (f); printnum2 = FRAME_BACKGROUND_PIXEL (f); pixel_colors = make_formatted_string (buffer, "%"PRIuMAX" %"PRIuMAX, printnum1, printnum2); XSETFRAME (frame, f); loader = image_spec_value (img->spec, QCloader, NULL); if (NILP (loader)) loader = Qgs_load_image; img->lisp_data = call6 (loader, frame, img->spec, make_fixnum (img->width), make_fixnum (img->height), window_and_pixmap_id, pixel_colors); return PROCESSP (img->lisp_data); } /* Kill the Ghostscript process that was started to fill PIXMAP on frame F. Called from XTread_socket when receiving an event telling Emacs that Ghostscript has finished drawing. */ void x_kill_gs_process (Pixmap pixmap, struct frame *f) { struct image_cache *c = FRAME_IMAGE_CACHE (f); ptrdiff_t i; struct image *img; /* Find the image containing PIXMAP. */ for (i = 0; i < c->used; ++i) if (c->images[i]->pixmap == pixmap) break; /* Should someone in between have cleared the image cache, for instance, give up. */ if (i == c->used) return; /* Kill the GS process. We should have found PIXMAP in the image cache and its image should contain a process object. */ img = c->images[i]; eassert (PROCESSP (img->lisp_data)); Fkill_process (img->lisp_data, Qnil); img->lisp_data = Qnil; #if defined (HAVE_X_WINDOWS) /* On displays with a mutable colormap, figure out the colors allocated for the image by looking at the pixels of an XImage for img->pixmap. */ if (x_mutable_colormap (FRAME_X_VISUAL_INFO (f))) { XImage *ximg; block_input (); /* Try to get an XImage for img->pixmep. */ ximg = XGetImage (FRAME_X_DISPLAY (f), img->pixmap, 0, 0, img->width, img->height, ~0, ZPixmap); if (ximg) { /* Initialize the color table. */ init_color_table (); /* For each pixel of the image, look its color up in the color table. After having done so, the color table will contain an entry for each color used by the image. */ #ifdef COLOR_TABLE_SUPPORT for (int y = 0; y < img->height; ++y) for (int x = 0; x < img->width; ++x) { unsigned long pixel = XGetPixel (ximg, x, y); lookup_pixel_color (f, pixel); } /* Record colors in the image. Free color table and XImage. */ img->colors = colors_in_color_table (&img->ncolors); free_color_table (); #endif XDestroyImage (ximg); } else image_error ("Cannot get X image of `%s'; colors will not be freed", img->spec); unblock_input (); } #endif /* HAVE_X_WINDOWS */ /* Now that we have the pixmap, compute mask and transform the image if requested. */ block_input (); postprocess_image (f, img); unblock_input (); } #endif /* HAVE_GHOSTSCRIPT */ /*********************************************************************** Tests ***********************************************************************/ DEFUN ("imagep", Fimagep, Simagep, 1, 1, 0, doc: /* Value is non-nil if SPEC is a valid image specification. */) (Lisp_Object spec) { return valid_image_p (spec) ? Qt : Qnil; } #ifdef GLYPH_DEBUG DEFUN ("lookup-image", Flookup_image, Slookup_image, 1, 1, 0, doc: /* */) (Lisp_Object spec) { ptrdiff_t id = -1; if (valid_image_p (spec)) id = lookup_image (SELECTED_FRAME (), spec, -1); debug_print (spec); return make_fixnum (id); } #endif /* GLYPH_DEBUG */ /*********************************************************************** Initialization ***********************************************************************/ DEFUN ("image-transforms-p", Fimage_transforms_p, Simage_transforms_p, 0, 1, 0, doc: /* Test whether FRAME supports image transformation. Return list of capabilities if FRAME supports native transforms, nil otherwise. FRAME defaults to the selected frame. The list of capabilities can include one or more of the following: - the symbol `scale' if FRAME supports image scaling - the symbol `rotate90' if FRAME supports image rotation only by angles that are integral multiples of 90 degrees. */) (Lisp_Object frame) { struct frame *f = decode_live_frame (frame); if (FRAME_WINDOW_P (f)) { #ifdef HAVE_NATIVE_TRANSFORMS # if defined HAVE_IMAGEMAGICK || defined (USE_CAIRO) || defined (HAVE_NS) \ || defined (HAVE_HAIKU) | defined HAVE_ANDROID return list2 (Qscale, Qrotate90); # elif defined (HAVE_X_WINDOWS) && defined (HAVE_XRENDER) if (FRAME_DISPLAY_INFO (f)->xrender_supported_p) return list2 (Qscale, Qrotate90); # elif defined (HAVE_NTGUI) return (w32_image_rotations_p () ? list2 (Qscale, Qrotate90) : list1 (Qscale)); # endif #endif } return Qnil; } DEFUN ("image-cache-size", Fimage_cache_size, Simage_cache_size, 0, 0, 0, doc: /* Return the size of the image cache. */) (void) { Lisp_Object tail, frame; size_t total = 0; FOR_EACH_FRAME (tail, frame) if (FRAME_WINDOW_P (XFRAME (frame))) total += image_frame_cache_size (XFRAME (frame)); #if defined (HAVE_WEBP) || defined (HAVE_GIF) struct anim_cache *pcache = anim_cache; while (pcache) { total += pcache->byte_size; pcache = pcache->next; } #endif return make_int (total); } DEFUN ("init-image-library", Finit_image_library, Sinit_image_library, 1, 1, 0, doc: /* Initialize image library implementing image type TYPE. Return t if TYPE is a supported image type. If image libraries are loaded dynamically (currently the case only on MS-Windows), load the library for TYPE if it is not yet loaded, using the library file(s) specified by `dynamic-library-alist'. */) (Lisp_Object type) { return lookup_image_type (type) ? Qt : Qnil; } static bool initialize_image_type (struct image_type const *type) { #ifdef WINDOWSNT Lisp_Object typesym = builtin_lisp_symbol (type->type); # if HAVE_NATIVE_IMAGE_API if (image_can_use_native_api (typesym)) return true; # endif Lisp_Object tested = Fassq (typesym, Vlibrary_cache); /* If we failed to load the library before, don't try again. */ if (CONSP (tested)) return !NILP (XCDR (tested)) ? true : false; bool (*init) (void) = type->init; if (init) { bool type_valid = init (); Vlibrary_cache = Fcons (Fcons (typesym, type_valid ? Qt : Qnil), Vlibrary_cache); return type_valid; } #endif return true; } /* Array of supported image types. */ static struct image_type const image_types[] = { #ifdef HAVE_GHOSTSCRIPT { SYMBOL_INDEX (Qpostscript), gs_image_p, gs_load, image_clear_image }, #endif #ifdef HAVE_IMAGEMAGICK { SYMBOL_INDEX (Qimagemagick), imagemagick_image_p, imagemagick_load, imagemagick_clear_image }, #endif #ifdef HAVE_RSVG { SYMBOL_INDEX (Qsvg), svg_image_p, svg_load, image_clear_image, IMAGE_TYPE_INIT (init_svg_functions) }, #endif #if defined HAVE_PNG { SYMBOL_INDEX (Qpng), png_image_p, png_load, image_clear_image, IMAGE_TYPE_INIT (init_png_functions) }, #endif #if defined HAVE_GIF { SYMBOL_INDEX (Qgif), gif_image_p, gif_load, gif_clear_image, IMAGE_TYPE_INIT (init_gif_functions) }, #endif #if defined HAVE_TIFF { SYMBOL_INDEX (Qtiff), tiff_image_p, tiff_load, image_clear_image, IMAGE_TYPE_INIT (init_tiff_functions) }, #endif #if defined HAVE_JPEG { SYMBOL_INDEX (Qjpeg), jpeg_image_p, jpeg_load, image_clear_image, IMAGE_TYPE_INIT (init_jpeg_functions) }, #endif #if defined HAVE_XPM || defined HAVE_NS || defined HAVE_HAIKU \ || defined HAVE_PGTK || defined HAVE_ANDROID { SYMBOL_INDEX (Qxpm), xpm_image_p, xpm_load, image_clear_image, IMAGE_TYPE_INIT (init_xpm_functions) }, #endif #if defined HAVE_WEBP { SYMBOL_INDEX (Qwebp), webp_image_p, webp_load, image_clear_image, IMAGE_TYPE_INIT (init_webp_functions) }, #endif { SYMBOL_INDEX (Qxbm), xbm_image_p, xbm_load, image_clear_image }, { SYMBOL_INDEX (Qpbm), pbm_image_p, pbm_load, image_clear_image }, }; #if HAVE_NATIVE_IMAGE_API static struct image_type native_image_type = { SYMBOL_INDEX (Qnative_image), native_image_p, native_image_load, image_clear_image }; #endif /* Look up image type TYPE, and return a pointer to its image_type structure. Return 0 if TYPE is not a known image type. */ static struct image_type const * lookup_image_type (Lisp_Object type) { #if HAVE_NATIVE_IMAGE_API if (image_can_use_native_api (type)) return &native_image_type; #endif for (int i = 0; i < ARRAYELTS (image_types); i++) { struct image_type const *r = &image_types[i]; if (EQ (type, builtin_lisp_symbol (r->type))) return initialize_image_type (r) ? r : NULL; } return NULL; } /* Prune the animation caches. If CLEAR, remove all animation cache entries. */ void image_prune_animation_caches (bool clear) { #if defined (HAVE_WEBP) || defined (HAVE_GIF) anim_prune_animation_cache (clear? Qt: Qnil); #endif #ifdef HAVE_IMAGEMAGICK imagemagick_prune_animation_cache (clear); #endif } void syms_of_image (void) { /* Must be defined now because we're going to update it below, while defining the supported image types. */ DEFVAR_LISP ("image-types", Vimage_types, doc: /* List of potentially supported image types. Each element of the list is a symbol for an image type, like `jpeg' or `png'. To check whether it is really supported, use `image-type-available-p'. */); Vimage_types = Qnil; DEFVAR_LISP ("max-image-size", Vmax_image_size, doc: /* Maximum size of images. Emacs will not load an image into memory if its pixel width or pixel height exceeds this limit. If the value is an integer, it directly specifies the maximum image height and width, measured in pixels. If it is a floating point number, it specifies the maximum image height and width as a ratio to the frame height and width. If the value is non-numeric, there is no explicit limit on the size of images. */); Vmax_image_size = make_float (MAX_IMAGE_SIZE); /* Other symbols. */ DEFSYM (Qcount, "count"); DEFSYM (Qextension_data, "extension-data"); DEFSYM (Qdelay, "delay"); DEFSYM (Qauto, "auto"); /* Keywords. */ DEFSYM (QCascent, ":ascent"); DEFSYM (QCmargin, ":margin"); DEFSYM (QCrelief, ":relief"); DEFSYM (QCconversion, ":conversion"); DEFSYM (QCcolor_symbols, ":color-symbols"); DEFSYM (QCheuristic_mask, ":heuristic-mask"); DEFSYM (QCindex, ":index"); DEFSYM (QCcrop, ":crop"); DEFSYM (QCrotation, ":rotation"); DEFSYM (QCmatrix, ":matrix"); DEFSYM (QCscale, ":scale"); DEFSYM (QCtransform_smoothing, ":transform-smoothing"); DEFSYM (QCcolor_adjustment, ":color-adjustment"); DEFSYM (QCmask, ":mask"); DEFSYM (QCflip, ":flip"); /* Other symbols. */ DEFSYM (Qlaplace, "laplace"); DEFSYM (Qemboss, "emboss"); DEFSYM (Qedge_detection, "edge-detection"); DEFSYM (Qheuristic, "heuristic"); DEFSYM (Qpostscript, "postscript"); DEFSYM (QCmax_width, ":max-width"); DEFSYM (QCmax_height, ":max-height"); DEFSYM (Qem, "em"); DEFSYM (Qch, "ch"); DEFSYM (Qcw, "cw"); #ifdef HAVE_NATIVE_TRANSFORMS DEFSYM (Qscale, "scale"); DEFSYM (Qrotate, "rotate"); DEFSYM (Qrotate90, "rotate90"); DEFSYM (Qcrop, "crop"); #endif #ifdef HAVE_GHOSTSCRIPT add_image_type (Qpostscript); DEFSYM (QCloader, ":loader"); DEFSYM (QCpt_width, ":pt-width"); DEFSYM (QCpt_height, ":pt-height"); DEFSYM (Qgs_load_image, "gs-load-image"); #endif /* HAVE_GHOSTSCRIPT */ #ifdef HAVE_NTGUI /* Versions of libpng, libgif, and libjpeg that we were compiled with, or -1 if no PNG/GIF support was compiled in. This is tested by w32-win.el to correctly set up the alist used to search for the respective image libraries. */ DEFSYM (Qlibpng_version, "libpng-version"); Fset (Qlibpng_version, #if HAVE_PNG make_fixnum (PNG_LIBPNG_VER) #else make_fixnum (-1) #endif ); DEFSYM (Qlibgif_version, "libgif-version"); Fset (Qlibgif_version, #ifdef HAVE_GIF make_fixnum (GIFLIB_MAJOR * 10000 + GIFLIB_MINOR * 100 + GIFLIB_RELEASE) #else make_fixnum (-1) #endif ); DEFSYM (Qlibjpeg_version, "libjpeg-version"); Fset (Qlibjpeg_version, #if HAVE_JPEG make_fixnum (JPEG_LIB_VERSION) #else make_fixnum (-1) #endif ); #endif DEFSYM (Qpbm, "pbm"); add_image_type (Qpbm); DEFSYM (Qxbm, "xbm"); add_image_type (Qxbm); #if defined (HAVE_XPM) || defined (HAVE_NS) \ || defined (HAVE_HAIKU) || defined (HAVE_PGTK) \ || defined (HAVE_ANDROID) DEFSYM (Qxpm, "xpm"); add_image_type (Qxpm); #endif #if defined (HAVE_JPEG) || defined (HAVE_NATIVE_IMAGE_API) DEFSYM (Qjpeg, "jpeg"); add_image_type (Qjpeg); #endif #if defined (HAVE_TIFF) || defined (HAVE_NATIVE_IMAGE_API) DEFSYM (Qtiff, "tiff"); add_image_type (Qtiff); #endif #if defined (HAVE_GIF) || defined (HAVE_NATIVE_IMAGE_API) DEFSYM (Qgif, "gif"); add_image_type (Qgif); #endif #if defined (HAVE_PNG) || defined (HAVE_NATIVE_IMAGE_API) DEFSYM (Qpng, "png"); add_image_type (Qpng); #endif #if defined (HAVE_WEBP) \ || (defined (HAVE_NATIVE_IMAGE_API) \ && ((defined (HAVE_NS) && defined (NS_IMPL_COCOA)) \ || defined (HAVE_HAIKU))) DEFSYM (Qwebp, "webp"); DEFSYM (Qwebpdemux, "webpdemux"); add_image_type (Qwebp); #endif #if defined (HAVE_IMAGEMAGICK) DEFSYM (Qimagemagick, "imagemagick"); add_image_type (Qimagemagick); #endif #if defined (HAVE_RSVG) DEFSYM (Qsvg, "svg"); DEFSYM (QCbase_uri, ":base-uri"); DEFSYM (QCcss, ":css"); add_image_type (Qsvg); #ifdef HAVE_NTGUI /* Other libraries used directly by svg code. */ DEFSYM (Qgdk_pixbuf, "gdk-pixbuf"); DEFSYM (Qglib, "glib"); # if LIBRSVG_CHECK_VERSION (2, 32, 0) DEFSYM (Qgio, "gio"); # endif DEFSYM (Qgobject, "gobject"); #endif /* HAVE_NTGUI */ #elif defined HAVE_NATIVE_IMAGE_API \ && ((defined HAVE_NS && defined NS_IMPL_COCOA) \ || defined HAVE_HAIKU) DEFSYM (Qsvg, "svg"); /* On Haiku, the SVG translator may not be installed. */ if (image_can_use_native_api (Qsvg)) add_image_type (Qsvg); #endif #ifdef HAVE_NS DEFSYM (Qheic, "heic"); add_image_type (Qheic); #endif #if HAVE_NATIVE_IMAGE_API DEFSYM (Qnative_image, "native-image"); # if defined HAVE_NTGUI || defined HAVE_HAIKU DEFSYM (Qbmp, "bmp"); add_image_type (Qbmp); # endif # ifdef HAVE_NTGUI DEFSYM (Qgdiplus, "gdiplus"); DEFSYM (Qshlwapi, "shlwapi"); # endif #endif defsubr (&Sinit_image_library); #ifdef HAVE_IMAGEMAGICK defsubr (&Simagemagick_types); #endif defsubr (&Sclear_image_cache); defsubr (&Simage_flush); defsubr (&Simage_size); defsubr (&Simage_mask_p); defsubr (&Simage_metadata); defsubr (&Simage_cache_size); defsubr (&Simagep); #ifdef GLYPH_DEBUG defsubr (&Slookup_image); #endif DEFSYM (QCanimate_buffer, ":animate-buffer"); DEFSYM (QCanimate_tardiness, ":animate-tardiness"); DEFSYM (QCanimate_position, ":animate-position"); DEFSYM (QCanimate_multi_frame_data, ":animate-multi-frame-data"); defsubr (&Simage_transforms_p); DEFVAR_BOOL ("cross-disabled-images", cross_disabled_images, doc: /* Non-nil means always draw a cross over disabled images. Disabled images are those having a `:conversion disabled' property. A cross is always drawn on black & white displays. */); cross_disabled_images = 0; DEFVAR_LISP ("x-bitmap-file-path", Vx_bitmap_file_path, doc: /* List of directories to search for window system bitmap files. */); Vx_bitmap_file_path = decode_env_path (0, PATH_BITMAPS, 0); DEFVAR_LISP ("image-cache-eviction-delay", Vimage_cache_eviction_delay, doc: /* Maximum time after which images are removed from the cache. When an image has not been displayed this many seconds, Emacs automatically removes it from the image cache. If the cache contains a large number of images, the actual eviction time may be shorter. The value can also be nil, meaning the cache is never cleared. The function `clear-image-cache' disregards this variable. */); Vimage_cache_eviction_delay = make_fixnum (300); DEFVAR_LISP ("image-scaling-factor", Vimage_scaling_factor, doc: /* When displaying images, apply this scaling factor before displaying. This is not supported for all image types, and is mostly useful when you have a high-resolution monitor. The value is either a floating point number (where numbers higher than 1 means to increase the size and lower means to shrink the size), or the symbol `auto', which will compute a scaling factor based on the font pixel size. */); Vimage_scaling_factor = Qauto; #ifdef HAVE_IMAGEMAGICK DEFVAR_INT ("imagemagick-render-type", imagemagick_render_type, doc: /* Integer indicating which ImageMagick rendering method to use. The options are: 0 -- the default method (pixel pushing) 1 -- a newer method ("MagickExportImagePixels") that may perform better (speed etc) in some cases, but has not been as thoroughly tested with Emacs as the default method. This method requires ImageMagick version 6.4.6 (approximately) or later. */); /* MagickExportImagePixels is in 6.4.6-9, but not 6.4.4-10. */ imagemagick_render_type = 0; DEFSYM (Qimage_format_suffixes, "image-format-suffixes"); DEFSYM (QCformat, ":format"); #endif /* HAVE_IMAGEMAGICK */ }