From mboxrd@z Thu Jan 1 00:00:00 1970 Path: news.gmane.org!not-for-mail From: "Shigeru Fukaya" Newsgroups: gmane.emacs.bugs Subject: bug#1334: 23.0.60; bug of bytecomp arithmetic operations Date: Wed, 19 Nov 2008 21:27:01 +0900 Message-ID: <64bd60570811190427o6e9894c3mf3ce6d6e6d595a0b@mail.gmail.com> References: <874p29kioa.fsf@cyd.mit.edu> <87fxltlj0e.fsf@cyd.mit.edu> Reply-To: Shigeru Fukaya , 1334@emacsbugs.donarmstrong.com NNTP-Posting-Host: lo.gmane.org Mime-Version: 1.0 Content-Type: multipart/mixed; boundary="----=_Part_90513_10176611.1227097621740" X-Trace: ger.gmane.org 1227099045 24915 80.91.229.12 (19 Nov 2008 12:50:45 GMT) X-Complaints-To: usenet@ger.gmane.org NNTP-Posting-Date: Wed, 19 Nov 2008 12:50:45 +0000 (UTC) Cc: 1334@emacsbugs.donarmstrong.com To: "Chong Yidong" Original-X-From: bug-gnu-emacs-bounces+geb-bug-gnu-emacs=m.gmane.org@gnu.org Wed Nov 19 13:51:46 2008 Return-path: Envelope-to: geb-bug-gnu-emacs@m.gmane.org Original-Received: from lists.gnu.org ([199.232.76.165]) by lo.gmane.org with esmtp (Exim 4.50) id 1L2mWq-0008CZ-Le for geb-bug-gnu-emacs@m.gmane.org; Wed, 19 Nov 2008 13:51:35 +0100 Original-Received: from localhost ([127.0.0.1]:36041 helo=lists.gnu.org) by lists.gnu.org with esmtp (Exim 4.43) id 1L2mVh-0008JM-Iz for geb-bug-gnu-emacs@m.gmane.org; Wed, 19 Nov 2008 07:50:21 -0500 Original-Received: from mailman by lists.gnu.org with tmda-scanned (Exim 4.43) id 1L2mVb-0008Ib-Pd for bug-gnu-emacs@gnu.org; Wed, 19 Nov 2008 07:50:15 -0500 Original-Received: from exim by lists.gnu.org with spam-scanned (Exim 4.43) id 1L2mVZ-0008ID-RR for bug-gnu-emacs@gnu.org; Wed, 19 Nov 2008 07:50:15 -0500 Original-Received: from [199.232.76.173] (port=56897 helo=monty-python.gnu.org) by lists.gnu.org with esmtp (Exim 4.43) id 1L2mVZ-0008I4-Im for bug-gnu-emacs@gnu.org; Wed, 19 Nov 2008 07:50:13 -0500 Original-Received: from rzlab.ucr.edu ([138.23.92.77]:49475) by monty-python.gnu.org with esmtps (TLS-1.0:DHE_RSA_AES_256_CBC_SHA1:32) (Exim 4.60) (envelope-from ) id 1L2mVX-0003Fo-Rz for bug-gnu-emacs@gnu.org; Wed, 19 Nov 2008 07:50:13 -0500 Original-Received: from rzlab.ucr.edu (rzlab.ucr.edu [127.0.0.1]) by rzlab.ucr.edu (8.13.8/8.13.8/Debian-3) with ESMTP id mAJCo9FH024435; Wed, 19 Nov 2008 04:50:09 -0800 Original-Received: (from debbugs@localhost) by rzlab.ucr.edu (8.13.8/8.13.8/Submit) id mAJCZ2Nm020162; Wed, 19 Nov 2008 04:35:02 -0800 X-Loop: don@donarmstrong.com Resent-From: "Shigeru Fukaya" Resent-To: bug-submit-list@donarmstrong.com Resent-CC: Emacs Bugs Resent-Date: Wed, 19 Nov 2008 12:35:02 +0000 Resent-Message-ID: Resent-Sender: don@donarmstrong.com X-Emacs-PR-Message: report 1334 X-Emacs-PR-Package: emacs X-Emacs-PR-Keywords: Original-Received: via spool by 1334-submit@emacsbugs.donarmstrong.com id=B1334.122709762518866 (code B ref 1334); Wed, 19 Nov 2008 12:35:02 +0000 Original-Received: (at 1334) by emacsbugs.donarmstrong.com; 19 Nov 2008 12:27:05 +0000 Original-Received: from rv-out-0506.google.com (rv-out-0506.google.com [209.85.198.231]) by rzlab.ucr.edu (8.13.8/8.13.8/Debian-3) with ESMTP id mAJCR2so018860 for <1334@emacsbugs.donarmstrong.com>; Wed, 19 Nov 2008 04:27:03 -0800 Original-Received: by rv-out-0506.google.com with SMTP id k40so3383935rvb.1 for <1334@emacsbugs.donarmstrong.com>; Wed, 19 Nov 2008 04:27:01 -0800 (PST) DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=gmail.com; s=gamma; h=domainkey-signature:received:received:message-id:date:from:to :subject:cc:in-reply-to:mime-version:content-type:references; bh=KMHxWQgJfjmnXvUbctJmkccmRHnaYNEzVUq225pQDaI=; b=dZa9x++HS/NsIfREfnrngikCJIfg45Gc7Nj0HE4nVlGlGCBSFG8rVf9jp/mFhRHAcr DoI6aDS0wki3LhckHFM4LloqgVZAwTiyd6l2FzMfGReI1D4pEN2zUeYpZocA23FmmLOE Mp3q4c4i2pFn4fh0EHPdGPyGMJWdcLXWhWvoA= DomainKey-Signature: a=rsa-sha1; c=nofws; d=gmail.com; s=gamma; h=message-id:date:from:to:subject:cc:in-reply-to:mime-version :content-type:references; b=YSMGJ+xY1rlmWNQ/bSjf9JGvFik2kp2IWD2EwMqPvuzzsgkYGSu+nDUcTKTqGuX8Y/ 1O1OAaMFwHQg8RBs1XNn6q9VaoLDgWN86jYzAeRPGBI625bec3Dzw3jB+DNum5rC/F2E RdKg4Q99EKR7ODNv7iAtcugipbvy52RmlIIug= Original-Received: by 10.140.207.2 with SMTP id e2mr571015rvg.65.1227097621759; Wed, 19 Nov 2008 04:27:01 -0800 (PST) Original-Received: by 10.140.187.11 with HTTP; Wed, 19 Nov 2008 04:27:01 -0800 (PST) In-Reply-To: <87fxltlj0e.fsf@cyd.mit.edu> X-detected-operating-system: by monty-python.gnu.org: GNU/Linux 2.6 (newer, 3) Resent-Date: Wed, 19 Nov 2008 07:50:15 -0500 X-BeenThere: bug-gnu-emacs@gnu.org X-Mailman-Version: 2.1.5 Precedence: list List-Id: "Bug reports for GNU Emacs, the Swiss army knife of text editors" List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , Original-Sender: bug-gnu-emacs-bounces+geb-bug-gnu-emacs=m.gmane.org@gnu.org Errors-To: bug-gnu-emacs-bounces+geb-bug-gnu-emacs=m.gmane.org@gnu.org Xref: news.gmane.org gmane.emacs.bugs:22490 Archived-At: ------=_Part_90513_10176611.1227097621740 Content-Type: text/plain; charset=ISO-8859-1 Content-Transfer-Encoding: 7bit Content-Disposition: inline Hello, Chong and everybody, After bytecomp.el is revised, problems remains as follows; 1. Operations are all compiled to binary operations. It may cause overflows or truncations in floating point data operations. ==> solved. 2. Most integer constants are moved to the end of expressions and pre-calculated at compile time. Changing of order may cause different result from original expressions. (In other words, `byte-optimize-delay-constants-math' should not be called) ==> In multiplication/division, problems become not to occur. I suppose it is because difference of precision/scale size in elisp, execution level, processor internal (elisp < C < processor) take over the issue. (let ((a (expt 2 -1074)) (b 0.125)) (list (* a b 8) (* (* a b) 8))) --> (5e-324 0.0) I can't find the bad case so far. So, in multiplication and division, I suppose, at least now, changing calculation order is allowable and leave `byte-optimize-delay-constants-math'. Addition/Subtraction still show this problem. 3. Mulitiplication/Division optimization sometimes don't consider floating point operators. ==> Add patterns. Examples. (let ((a most-positive-fixnum) (b 2.0)) (* a 2 b)) --> 1073741820.0 --> -4.0 (let ((a 3) (b 2)) (/ a b 1.0)) --> 1.5 --> 1 4. In division, optimizing -1 twice and cause erroneous results. ==> Easy. To get all examples at a glance, see the attached `byte-test-minimal.el' or its log file. Changing policy / plan * Change functions byte-optimize-plus, byte-optimize-minus, byte-optimize-multiply, byte-optimize-divide. * All modifications are closed to the function itself. Don't add other functions, symbols. * Don't call `byte-optimize-delay-constants-math' in plus, minus operations. Remain to call it in multiplication, division operations. * Call `byte-optimize-predicate' at the last as in minus operation. This will optimize expressions that all arguments are constant to constant values. * Consider frequency or possibility. ** Remove/Abandon some optimizations. *** Most optimizations that need floating point data result. **** Zero in operands of multiplication or division (first operand). This case seems rare. If you do something, it's like below, Multiplication: (cond ((or (memql 0.0 (cdr form)) (and (eq 0 last) (memq t (mapcar #'floatp (cdr form))))) (setq form (nconc (list 'progn) (delq 0 (mapcar (lambda (x) (if (or (numberp x) (symbolp x)) 0 x)) (cdr form))) (list 0.0)))) Division: (cond ((or (eql (cadr form) 0.0) (and (eq (cadr form) 0) (memq t (mapcar #'floatp (cddr form))))) ;; This optimization may throw out division by zero error. (setq form (nconc (list 'progn) (delq 0 (mapcar (lambda (x) (if (or (numberp x) (symbolp x)) 0 x)) (cdr form))) (list 0.0)))) ((and (eq (cadr form 0) 0) (numberp last) (nthcdr 3 form)) (setq form (byte-compile-butlast form)) ) ** Add some optimizations. *** Optimize addtion/subtraction where their last operand is 1 or -1 to use `1+', `1-' funcitons. This pattern often appears and more effective at least in size (byte-add1 vs constant 1). *** Other small changes. Files: ChangeLog byte-opt.el - modified file. byte-opt.diff - diff by `diff -c OLD NEW >byte-opt.diff' byte-test-minimal.el - test script to compare original and revised. log.summary - sammary output by byte-test-minimal log.detail - detailed (with disassembled code) output by byte-test-minimal. byte-regress-minimal.el - simple coverage test log.regress - log output of the coverage test If something is wrong, let me know, please. Regards, Shigeru 2008/11/15 Chong Yidong : > "Shigeru Fukaya" writes: > >>> Could you separate out the byte-optimize-*-functions part of the patch? >> >> They are mutually affected. So I'll make and send a patch of >> byte-opt.el that includes minimal changes to the latest CVS. It is >> necessary because the current byte-opt.el still has problems I >> pointed. It will take a few days. >> >> Is it ok? > > That would be great. Thanks! > ------=_Part_90513_10176611.1227097621740 Content-Type: application/x-gzip; name=bc2.tgz Content-Transfer-Encoding: base64 X-Attachment-Id: f_fnpy6tjl0 Content-Disposition: attachment; filename=bc2.tgz H4sICKcFJEkAA2JjMi50YXIA5Fz7c9tGks6vVtX+D7O82iNoETRJW3Yie7NRHDv2nS2lbOW8uavb CwgMScQgwOAhmvnr7+vuGWDAhyg7dpK7ZSUyBcz09PTj6wcGejwP0pl+kc0++3SfIT4PhkP6dzS8 Z/4djvg6PuO7D04+G9EHv9x/gOuju+OTk8/U8BPyVH+qogxypT47ixZxGhdlHpRZXmyPO89S/Vvw 8xt/xsPh5/5o5I8+V/g8KubxTOfVYFq9DdbBV7NFECeDMFt8+aejPx3duq0m61L72bIc6ER5/Atu LuNE+5OqTIKi7J2ql9mVVuVcq2UShFrFqSqyKse3MgONarnUOa5gRFCqDONyNa3SsIyztFCL4K1W iyqcq2yKEXGhfoz0tKgmRdnVEabboQN89yw38SL+RfvLpCqw/DdZ2i1VGCQJhrRHRDoJ1uA4hc7T svAXQTkHVyq4yuIIjAZhWEH/WuW6qJKS1nhJDNFmwqDQCkRVkM+qhcZ0fMNlQ0zZRSImWF9nHtQG o7mO4hDrDNSbuU6ZPMmuJq2w75HKcuWP+iAQso8SXdqV+nF03O3jp9/dIQQY8SeQwiu9IKXW/A3V NM8WrihKNY1zbCGeqmVWFPEkwe6s8GgPHyY+SG6L//cSnxLhgUgjPp/Fd7xTfNhwvEzWZMY31DyI 7Gd+v+ZFpM3kQBzAG/bVuCfOsQjWWLyi1dPderlYxkJZebfVO+y3Rxx4vnrX27G5KL6KI/3pt/Z4 rsO3mNsQBQYAPtUyKArcTnSQJ2uFf2BTOs9xK6sKpd+BBkyHxBBgDi0fY7x3B1szOzvG12HPSk/t kN1g2EiP7e4a+f3e4PsH+NSAHsXT6Sdag4L8/Xv3OO4/ONmM/+PxyaiO/6O7JxT/Ef5Hv3H8LyTk 7R33/zT+3759Ww0Gd5y4fuuy0kCItVL31Xh8enLv9N5YUZpw5Pu+ag99A1w4z67U6As1+vx0ODod n8jQ2+0P/a4e3HvQ//z+ieILSt3Cx0uQcSkvWAJyKQtQXprrK50XDQYVPfs5UvyZZvmCf8F/HpID zNrOA5THw47+jAleocufeZraBMRdkZAHjlT32KzoIaR5C734maIeEW0RBAm64YXZcu0X+udKp8h0 hEdD4OHD/RwAELMwBn5dab9cZT4g02GjZzYADiPleWkFpPbCKG9u3pKbMQGgz2juyWXmXF8FibKC uMVXgLZ2OnH38OFDpZ5zxEyzUhXBlPMM7EqXEiJswqUA5HGuk7Wd5QVhWSF2rPuAarXKqiRSEy0k ILKVVm/TbMU0iizh5MFONasFwOj8rc57A7lxy92is09IPIVERs62m5Eb0iBlpdViovPl9iyRinPV XHTpBiRqIY6BxMTdTQrKgwzFJFxiquuNKATzQIx0Row3RhhikMXF0gbwY4lycUpxboTfeop5OTaB 3dzg2C57hY5gFbiukbPzoo2tXsfYtgxuqRaf7l6xWcrR35/8eJv8qHEMY4/i/0RW/6zMTkgKXQig O/LNbObAzPJKx3z3QQBnwRYDxAfVd1XZgAolrGSZOo36SDxCvSybPNKOGnwwfIwb+MDK53CDLCWE 4xSZtMrrwMk4XQ2RnsBzAiWGOxDYEe3yQC9EiPIsMm7aZc/ARAMUmiCJqzEjZzBBSaFaA+sHSKCU 8v0vnUu1Ppy97kI0Z1jto46jNnC4xaLMJNaAGfV9xy96u3hg84Ad7Daf/dT8a8kd7yYHIT2fykgA FITz+OL89SUuZCQ0/qXXVwudoxZra3Jg+THgsQd+btW3WDe7OEyhwdAy6hMTLU/jeW1XZcIG2Vj6 xmJa2tthMn9A/Fc1ErRAc1gzugld2LgxbGvS6p11hT3VibktKzlYv8ucW5CvN0Bv2OvJ4kNCalmc C686KhfityZn2KRtGXESGrNHwQ0asBfeTJXqItwHZjm3DSdi/ISzmtTjVHqo3Z5evHrJWmbFrRqk NAg2uDZNAZ7/USyNmgKYASpIOVGFSmXKPaggj8v5Qpdx+EHpyF603ox4WxCtjLF0l3k2SzdtBK7N g0f1YHby0Z6M05nh2ykNmvBUf9/cejK7BSiMmxhSJwMc/bHHRbCkbXaL9WKSJctttyE8pB2NttPl 8bXM0yqreZwQakF1XrMCidUNUM6K7mQKTsbv7N6P264YOBPNpluE8J9n245qV5ezVV7UJYsYypbi 96cp0pD5tV48Fi8+kDRsYRum+A0UtiITbtyyhvpXIprObEWi7vJdaw4Oiu4Kej7FJlHjLzrP6sAn 1zcqlzRO5AZTvrMj8tnbpozBhJ4htjPQG4faRcls34I7dskyG7U2t6mLTSOwZuvQ2SuGHTQ3QoRs 7pa5vH/7dq3ddrmtZisfJVsUodlimnUAMya4U2of4NUDdpVU3o7QaMGOUBbW0WUkSLejIO4MW+mc 8Ij0rVUgEHaxkbayGMl8rlGNA1y788cbuGiSzRbQafKrvXTUwh3upXBD5MEXyB18/6M0RI5vCFvH N4Gt4xs3WK5rcPxfarH8UbKU909ATIl33BgJFXWclO7Jg9UqBuUok8l2IdYBEKKO7//SrRGtDSrO mkh/uUmx7rWJbbdPmjkjzOrTF7/+Rt2Pft3usGn8ip7w3KDf4qYnu1sudcL9a7ouZpmtzksTDQ+1 R3a0n2qA2mq/NL2X91xgvHuBNgI2PuNI8GYdGXxsU2bDGJqGApvCB3QxmqjUKKyhTLxw84LK+GY9 p55q4shoY5tuB+C6iN7bt7ZfL+4fXNzfu7p/YPWag31F7OEe+MdsgH0YvP/KFtixzMvlOR8lj4WE LQEEyTnb6cCx9RITSdzmsMS8/b2WdnnQ9JSPmwxidxhqLVIvY/ptvabNNqw5yHJ3Eq2wzZRjLsMm 1H9wS9Cap7DlxIj3CBEfHCSa7qPjPO96DdXrW4JqS2/XNAVby/kOUtxkPf/Agrvahs6CQ1ffznK2 mt5IkdWOyuq65Q9u14VG+b21ZwcRrxPpjWDRWbIl5N1r+tcvegiL/zn7lMpC91ZT8BrQ/w3ags/P L598++TVh7QHr+9N7AauP4jmP1Hf8PcG5dsmoWr5bN02vGn7o0WQYbcv31oZky95vl/f6rWXte3K 6yFwXxdAOc60vxew9ezzo+RaH7WLJ3nPjdOlTXc8+OxwVxtQOQ7XKFOOZ+UVnGohx7TyRmGUxLDh GVuxWE9xjUwxUcPBRgbWMpQ7qn6k5lqy24O8phj4cHf5FQ5jGTeR9mb1xh57bQiyb9ypQ2fTaL9J W8syZH1MTsc1993ut92SJJTbmxK3vdNE9U23NUy+X61zjcse7Nztbt19DI/9VE293/sw1wd8nNNc n2yNa8//j8cn90d3+fzf8MHJ+MG9Ezr/f3/0W5//+yc9/0/Zjnuon/rSlBC5J2v53K4u5Eg+QsEi CAsf/r3kmcp4cH50BFqPUR3n8WyOwPO4p0ZffDHq0897fToXOOSfI/455p93+ee9/hFnufh6whfu 888H/PNz9TTXWr3OpuWKDic/zao0Yr766nkaDnjZs6qcZ/mp+rdgEWv1n8EqTou3sXr00+qXr5Iq jCN+iQEjbz1DQngV5JF6WuUVXH6uHs0n06+qJI/fDqo4G6QZjVMvgzgt8b8G1aevn9Klf9frVZZH xSn3xfI0SHjtS3pNYUoPLPHvMshLEtS359+rJyQo4a/+lcZMaT+F2c+pWmcVB3TCL9hfDCTUnGqm 0R3E2UUWxdM1EcE1bB05J2kBDCxqlRD5bzV4RWH7XTVJ4lC9iEOd0tFn8ERXirlG9st0aMZ+meqY 81rKF0j3d+0ahmAfuTAR8YKSOM/ZUrKU2qZrBIOymbpj580G6UUDJjvPlloObFOOTtEaiQ0UM60S tgoMVm+eXz67+P5SnZ3/oN6cvXp1dn75w0MMhs5xF6mNkIoXyyQGZWwpB1CvwTlr8smrx88w5ezr 5y+eX/5AufzT55fnT16/pspFnanvzl5dPn/8/YuzV+q77199d/H6yUCp15qrC7uFPdKdsoIgwUjD WBKj7R+g0WLO9cackygd6vgKnNGxiuX6sNaISJBk6Yw36RiTonIMlUlfFeDv0bwsl6d37qxWq8Es rQZZPruTCIXizpfMC3nkgnLGIF+fMnN//UgfotU5z1AhlaT0OVLWOfkVmXOZo+Yydt0t5a2eQOVB qOGlEBupDUII1DKeDazEMLZPZChV7ds5U+QEoE7jOhhIYy9wFxXgsirFS6QOWwVYkqQqxtZCJild /+ON+rqaQYTssGEWsZhpHXrZQPJpGSNSn1bAwzj9SUt1SUl4oMoqn2QhNjrTOdU3xHk3Z0pFSdZL ZeMsi6G6MpNNxHTBbgSWnqoHQ7VYzvts27i7YLzE+jooYs3ehbkzzTe59iYZCdZcqG8uTo0gzGNC 5PmLSRQo753611wjhVr3uL6i7GSaZchLZPjCIBp2wckZFNC8eEWVcMrM03seYaiLgj16lmQTmCcQ Mw6QMBWybl1Xz2J512sBot1onQJ+6SWbtc9F9jKHc+flWp6pYFgqOC/1iboaqasxV4lXL9XVueqp R/hlkwoufYlbsNsv98/u0fz9sxlI1uSHFaAJuslSfrusT02AWvy0Qdq+ThD60sC0F6SrgHKoZEt9 JgaqQmyMhFlLxnp8yrfZ7zE9ztUkTiOsWTTvOLF7s8FOtLyggpFrFUynsDXCs3wN7lJxDTpHAzvp RnpSzfws9eXwQ9eQ9WNKSGfAjrK3c3gwyRCSbjw81e9Kn1+UOjQlTufxJC79n6v4MH0a5E+TYHZw 5GFaVLXtG2NePoMwkyJzJ81CzuD9cg4fmWdQ1EFGgFdv/UVG+tk3lrGn+JvxsNcUgSgWyDN4Cs8l YhPcIKrMI+sCvvdWyzK2Tr8iRx1RfwgG7U3HPfHfI9tKVN7T88bc2Z+pI1Y3tNI4tA2tkK9ZQ5M3 KMvMLgcytBCvUS9BIEQzGamrNCHPx0CK1pv+7Llg5dw94ic1UximwT3ym9rsObhLT5BxCtjJ+AOo CkxiIpxcpNqGRuASUpKSPTKBSoMZgXRaiiQpkbHrqwIhldzc6OBlsJ5o07E0HsnIDuVjduIjAakA X7lJOopgXagOfqc31Gg+4bQPuEKRmJFjrpd8hKBaLOkEwcYbZ4zNHYooUPPK4BuEScE5kBKR1G2r xKxnJC2vTxIgEhIxeeHHpmcWVWgSqYLEAk6479FnNK11PAkKCIQBLRCI+roq+6L6Fb8FimRY3qm1 aANqHkXnWQVlUypW9qw4OZCxRJU6SwWGVESxgdukJVzCGJl9K5W5TSqOUco7M+E4RywDTzCYKNMF c5Hlb2krNtejZFnnhHjwVlCIIxP4GHxIYByF6ZGg84IiwhoytonmnAPxL88CbIyNko2ZARwEqK9L qiuWOoyn1BegGG6six95O55OQu5iBZ+mFKrrTZMMTEoPwzwDryXU621NlRcKeTaQIssS66KNAdqX Yok9GxuMeSEXoRcm61csJbAQhUjPkKZbyw6zJAmWfBJoscBmgDHOK5Nm0C5cQGFB6X0Kfsxjy8Lo EIOmCOZIYCPOyVAsrHQiiffKvFu75ldCJT+wzKeZKuJI+5ojVnFqAzM/Sj3GJiYq7DXfoDN56kG/ BhFsh39G1ZIzEX9scWiiuRwhNeXYqoOV5lgcr0BHTZyvNr+5RALumxBPTwNMFKfvpp0PowRaNbqA X0i2+ALF7OAwjSBZZNSOTVaEGgB7S4hlRWbbypNYVC2YkpSPkqa0gcVOrgl/OpyzZktwiWAJtdry wwCpcT6ogDJFwBEyvzxgZ+Okki/ROPKtstDJtNc3OCjtYqIFxQH/IIPS2eiVdsTg5ITCIefh6dp5 RVgKwIW9YYHe2ukz+7AIPL0LOCJSrp/uWgSSi+G/Yo0UY8CacOo2B6MNdpO1TYFtf4/vL4IlQlvK NmWjpznGSpeaeMo3iAVS2TQVeOZZvY1BNd2pOZkto3q10T2z9UpsH5Ot4ERckgaKUs2EU0ffKjHI qdRmvT++OP+mb+p6EQDZKJTb2norRyTydUhLVadKiW6nlhesB9C40qYgnsJ2E9WhbXY4aBhTo5B1 Fgk/EjCYzv+QOIwRyjLT+B0HEqvaWt4Eex4df/mFEwkuNKyzy0C+yj1TCXweXAM5ggqar5Pma8jn LrD83Z56cv7NKT2xIE5dYm0CxDAfPWsT48vrNmF7Gbx6swwONLSLyL59LNw7vGKBZG17Qbq6vR5d 3V6uWUHiPENKkdnHOSQtoGpu7F3VOFRb+7VSZfmN7KJ/F8X8vS1KsbOZNB3qDJGyKSlZNzp/Rud7 CNq3XtrbQvYhVG3gL7LkSv7KgAm/CNqAyEVxiovUwpnNHQ7I4SSf3AnCqUlsbLVPm/YFGWk9Kb/z bNXfQE8zRsyaBkh2oSl7aGAQJfpS0isZSH4spS4n+3B0ZAYr6sJgNdrbBMzpK+ubsdTMYK7xc2LW NKoS/Y7y5SbFMhJ7Q2sRNelC2LDtwOU8iOzs9tTnkQ5O65yGCgoe5PMgOr1IaSi1Jhc6SJ1UXK4F FmxrnDXzk7Vtk0BXIfL2OgTSRKTGGDOQtLfP25N8hcnTiL7qAPQ6Voo20a/3YEOGyJrG+iZOMpbJ tIjqCFNBwCwTauwRX95F3pQ6BIyPX6hOpMFmrjtSZEk98UZ3TQMO5gvDILkCvsg9eV18Z1cCG0Bq +gM1c0r5Nyt6acZxyG/KHuGcWl9UGEjVExEEbmzR2DynmyYbLKhKXMtomx3Y0THY0UFk0/g/K2xC pVpyQz6tgHIeptTwyDJfkfWR6aeaOje4SQvwVnNpN8Rpo/eJpqVqnXvieUBvMtmlZKPQNVnkLMug v5R8VGT6VKh6PaMkK15IhhvVsUljkd4V2UJL/WAqwiUFT2u5ZzC/n7KcWsJBdIXkFCVe/Ud/CvCw 0HW1wM1darkj2+W8H6KvnzrU9iLpVoyUNNec6y5ANYYLUZOWNl40e2bn94z0jbcMpIQXQ+DiqS4e G6tvwWN/MyYjvSLnl4pbGvdbzEMY2USvZQ3PFNxcHmdBxI1M1JUB1QNGbyRHgqxoLbA3YYANyi41 NU1KOwFAIHQEUBJX0iYtFO/J6sgiHWCSfnMoXvHjTGObgMJsllJgQHVBQMDTMZUkSX9MwORtnPF7 pDsUkPIkte5CcuJP/3GEGsmvkwAV1NgkTso+NTGrSjwy/bYiWPBTC/c0tpwYvH5NKRDMeW5z3rBZ 7gxIuJpWCaS80fk0ri1BjMpNaoLFiSlqlTn/tDZNXvxn/oYCPUDh6M01EmEpKiliHAm2bp4WDw6w zftbwgPpGAW3a2ue35iGAgdhnyMo6Z7+kk6TjHPNWKfT7l/vcaaSXGlf9akt908l0R/HmfpNKSk5 s3Phb5ah0v65JUCQ82e7bP7iPN2p5aZmVZATtBkS9TtftLJTQ/osz/+CjOJZSpzxhf92luST8EKk 2b2EMI66Ti1Mj2/Ij53HCZwrZBHMC8ZteeE/CxRSq8K6fLAWdTaFe4fhWndA8zHQg57YHdAonQuk Qw9Gqd1AdZErdkOj2P0TnUlEhCaG5utE5ves/8qpHjb5M/U1Cmw6qyGvW9LvBzylnisuem/cJh3t Jp3ehHQ99964NucNrrlwBylpZrY5r7uSB7iXToPhXtBlew97FqJ9yL2vm37qgS3xcLsld70jecQW kVV4pnKHulBEUazpHfHfYPGpP2ArOtUMCxMi4R5RsadhkmzmJ8HSH8kJFcRAebRDLy/RcRV58ZLL EJkGR7rS1MmRY6hcvApQdS5N9mSf6Jos3NkwPyDj8EOO+0rTV6QSK9/uwzaGOnysxttidURLmsdR XcOw/HOkmkZ3iDLlyFbW5tRVLWrsrHfEL3fygaGsFDta0pZ7cofn1W+c2veCzcTmDcuSutB0SAep fecfzGvHDvdTji5E0kzy5Fk+BlDLnhvYW2PViYyueTR8mNbg0pwdCsU4G+pWAwS9QpNSPVOo/6Xo cLXs0NNEo3t59q3MNkSdVe0ppaB+j5yPsRmiVKaBcsGzzQkw8XV76E9Ya+6353N0gE3tpdHsTGaX m1RdHsO2HMNNJe7S04BEYvRiiWzrJyR99HaJzsa3Xj1dLrXH1ifyLfPkM/Vu2fSMWLqmQ2B60kJK JBA2uzEG3/H+UkCrvQ7pTIYZm2SvFbwgZ0ddl2c7/d3S8s1O207/o3DOvG0daAOv8tLn/7b3pt2N 3FiCaH2VzuR/iNE5HolMBTfl4s7F1bbLrufpKrum7Om2p6vPmBKDSnZSDJpBZkrz3vvvg7sBFwgE AyFlOtNV4rFTZASAQAB3x13guXUMJWJy6g9/+s88s8PD/3JoPYGETsnoGxQyqt16DQeJi9VysQJ+ fiingOY3kzw7oU3wO6dW+SvzAobcBESvoZVzzjvym8l9kOuBkv1M/Y4zNPYbcgv9BkeHYjWmQHCz KkRzDg8c1amM1ED7xGdxcwR3Ou7Cm3Yb65RnriC6FDQzNPWXbO7vrghKebF6s9iUKN9Y+oPwhv60 8GXOStjc4VnzuAhI9UEp9BpmShSUPRstPlq5bS7YfEDoAIdURlLBYdVQBvM2OCPGOR+6eNPMWsEj 3YLCx62gnx8C+fT3a/BVISERLeKAACijYdAlSmy7DepyoBbDsR1MGkjU9AqVtW/QJf/VtGLno/Ni iZ75iy16nxiRHXI9rkH5obO0DVit0ZZOB4AFCfVT1J7xgGWBAuQpOyxMgzhqo6Tm5CUMHJPOuEAN x0Hm5N+xQE+nCl8OvJzITgKGFHATn5HvBZjHDGpvyhvDcj1k4OU0a4FLYSB1jTwX99CbjBHCAQMl js3Gc0OPWMtek7Dh76DFOsCIPvhLA/lWfq6wm/NVCPLYKg3qGTgF1KFnrw6ceNnFvlGSCrTXA4Fj lA6FkbdTwyqO2CyDqiuRp58/qY6NND8HVy3wM5vC+s/NndmRpfz4QBjS+QSje7QBqkJEKhV9SLg1 X7HEj+uzAnF/ty1BgEI6jJKUeDCv8BIhI69f+kIcWm7cecmVj7+lYSmzdyLk18APcA1nC7RU0uLh pSP1fjLXJlkNn4d0rsA12DJ53UdRiIbPg8w4lIvOCb/2zdcEIE7qJF5nadLJvDACB0u2BsFsa8Ex EQJRujaPHTtGDiSnYkMtnG5JMsXsZ+p0LA5U4MK4WsAzfv97sJJX22J+qIUf2fJjloKmVc4dWAj2 plJrxHd63tR+9haRCJBZy3y6NIRqdmNPlHDBjlXHLbrAXfDJqzB4cuIoZzcDO3PciZ+FeZ7aJRo5 Rqj2JDsVMcM2nPTUjzMlwnlbq+LrLC9G4KQH9/z5+JBB98xL/RFMW7t1hocG9Eb8IiryBTU/eR/0 mUP9M0Ykd6u5UaJyERzQ3P7fyPd1umTaQXIA0UvcQPx6NDXy/w34EbEHDGtREqRDA2r6eoK2p8pf Fgs7UaC3S0MPllEpCsPpWGbl+YcVebmN2zav2ZjFAO/ipOf/PqvFKIuPD5MGnh3jOlgynU4i9/Cm LCicglfbNVySs4IIVUHw4sxQMGqP1XX6fmjxyD2R7jSRQ28gMLug7jG9QDMpq0G2RdIDKJEVr8ah TaokJJdvGNC2oOSEJzhxen2afXMMYVYFH6pVS4g1kyNhPsP+37SGJz08AwNfKDUGvKRbVqHoHCta KBh+ze7tIEGBcip8J3OLhZtix3Bd53jYRRIQ6SzNY6jgSHl9JgNOXaZjAx7PPqVhTNwB94Zbdy+6 0DA9b5HNerEjLh2FgnOLkTG3UoQAHMunl3ICOdVinxqFTzrwBCzcFfRHMuhMS4PuKwbqvE2SW+5t b+j4jiZeDe62hm17oi0EseEsuNDhWfuguCkELnpDLFarVtZRUPv4eLtGOgorNZY2omqHjemSNk04 osGMiXth9isHHpRGotw68Onx2sqQbq775cxyjRa+GYtJeL60LctsXrx15uojJ2Oq9xdaaQ8dzGuZ rrnpqua67bxq9Mu9SMvS4PbblbScxFJyDzo0BaU+h5Lwb8XCF4i3Bv3CNzoMA/9gKWEqKat55Tki +VBHUvvhAZ4tgbIHSAcosDTSDx1jrYzQusACAOJbgPI8yLvkCwOd8YgUvEWnJAb97HJqGUSBQ5pe 7/jUerRDrAOdcWJvz4Jiz8MN9j7XnEKyJ/p2DZQphIGA8oCsdFW8RX9Fja+yh4ykjArFVoDB6oJ2 sy1PlNyknB3P42Wh1Sg7ygxy/2378uVnf9sCluMMeULYRb73lBEJz0tgg1DRxtIv+dLMZ6ksSg0G IBiLRJu30+VrMQHBY/mYiDIi4D/Z1yBrgT1rqU+ilkujvf8b+bz9566C4BNca+XawhFUBqCNbv7F bkvDvXUH7XiSzMYkPHU3UvOl9U2ubgxsXNtf3Az9DmgkdPmF3WAnA0jjxge2b1/dyGmi3zN7lvfA t+FzCa04ZK6CYU3lhk7toMtWH4uTcyYYaPgauaXAocMODlTJ68aOtUAUBvcIXkaxeq20qM1S6PZq zTKdJHZ1RnklbDt7Pbyu2yoUL4EKeFBFeRsohqEKjK5WS+TB5WbBYblbZVR1EzhhXfL4l125LdSc glD3vZTcABG0MtuPo2CXZ6TeMuE0tG2xGufbUoynSl3J0B3SCEbUGZgMupwYgg6WU4xLm98o8DO4 tbgY6K7Yc6byM3H/xVwtaXaCEM3SX48GsLmQbFYxTrmpsebgQC8YkOb9qjMv+7HSTqweZom/Ws1G DNZNg5X3NSptdMlki2X+PG+0fMNWI9iCecqtv3IOhZCdIsR4MRZbvgnLBtRPBsB4NBjXNIShxQMK Os6K9fZVjskYVkVVPWOcRY997g54yJGABRyDmXawoahU2xo6OAJvGyuvYl2Gn5bZh4djPGnCCTo9 YVzx7ij2LsqdhwjS2Dsv24sNsB7cS6NDFCHs6L5mSSqTmuZBDGYEgqWhzVMaTQNgF8ofKNAsqa0H RwHJAMLWC7bjoL78F0vEN1k1WlSkg+rOAW9h4wvCkNwe3y7a1L2CNPXRIJ7qJNw2JNghDYOHhXvG D1EDe1d8q71eOUroaoGfvb23mym4fkGATrnaVRyFwgRwAUImSR0vrj+jlBXmSwLBZrHygEVfw5ia l42SXASL5sYHpuZLQHxlSvfccU8zjNYfUV+bcQojctMYO/MuCnAdHi7IloIK23f2fhONNnTlsNMb bMN1aOwxib5zAv57uZfYDh4yksqIenlxLfoA/gQldbPg0ya4wMdQ+fkOnAsdzyF/UZK+KJABJUdw KwKIv1hsM4QxcPE/Jt9kiIMs0K1SBiHvSvSR3BQk1cEhDsiQUenWig0Uxmweho5r4ZugNZOyl/p3 ejRVGUVC7h2TgshU8ReFY2MbaYbl2zxq2QUNZe0ZiECn44MpoEeg+sn6uuWlszQUenBBYErT8/JN YXNWClvnREkSJdbOYtvgkyj07dmM97KLOaMLnR+9qOdU1/DsU/WaFYFOHBbz46NeyLu6IKB+QVmb sGJgGxJGF8ZP9hOsSx0DMZhxAzFimO6zgNPVU0l+wf6MELmZ2chNhwIYnESyWDknfewc3PwhadXS RbWC1QBkM9vvG/aG3mEgqI2/gYPUYvFmer4kr0KJVLDqlvT3Q+9YFaxkKr7Mx5jEGrmVNjczeE0y PBraUL7GbTW65sAyDq1LyT6RvgYvaaBjVjUk0UOWx0UUUM6V9krjQgsi10rw7sfYiZNgbFO2yllB MhSzcBSyebjZohRqR1C8mazwlnDQ9FRLn+IrG4UVEI8y1HbN1ghAZJ9USDILlIUymtxzTh04O3J6 Zn2RNGOa6yzse0036sUcn7Vj7OkZZBzzaYc7g2B0j4l+iwqr7c4yfWQB5gIlAVppKqbI4tBIE0IE JQuG9VsSbmRXKSjjgNzmrRHjy7eK6fQc1/IRxbrkTyul/aLZIDs3DBHdNQyfsKKm2WO0u/go6EIC +OjyKquK9RS8ypd8gikGQrW2uxVMNDdoviWKllmryxFfBECRpD6G1/o9soWKKTghk+CusjguNKCH ArJh8Ws2hMFUTqEIMplrZiX6sUAwecbxU5ZQgO+gnQrNBBxerKe8sg6YtdvusHaq6h9OGCNDwdLE Til64IX1hnf4cioDSdgBR4aQE9aMc3wYgnlTbAcRXeo28qxlSvViFr76Br6D3q4hB0JNHu/F9yfc GDtA0v7Aum2nlxhTDERBertX4EY4F50GqHnPlB5FQW0wd1wl2q/TpNW/7eKzMpq66otLI5cWdtmp 0rSVXdHACNLsz9TuGF4KI46kA2wIZoByQDbAOKe3YOO0hahhLCBuZOeWLZ5KBooSqvly1O0NBUDh HAr224JYMelmg3RpOyV9jdkhjJMBHoGWfp4x9fuZvdLBCjfITpPJNy4WOad5SdQgi8Pq1Aq1aJ2C FJ9UJZ1LFhsCi2SRxyAXGAmnqA03n5/SGQR2xMYo+7/CuisVD7IIPBnQOzKjGKG3C8joBXNxz87Y YcQ+ncc5p1gmTAfKoAhnoReQv4MAxHr24HkF2UpUVkU3y5k0kTOpFq/GnuZ8/tqHBwR2/b9nh1Wb BEreEA+4L5aDYsnT9pywjqV9rqaLsq4uROVbyg9OLotteB3c+3N/MCdvZ+FagbwGGtGqzB3QO08g BrPI1LQ7S7c1Ogms7qtes3yBx3CYRcsZmUQQ2CtbyKCa+frnBNqoA8sIJCYMDKJFbjtLwBkUNNQx XqXOfAtoVYFMENM6WWwpMexmjQHVA9f2BwnpXZX2YMgd7FHkMdI5s+3HGafp4kmIhzkxqQ0b0zyH Jl1mwJmMDmxZ1zfkbTLbeC09yy3l9yXtzGtkbUKe890bnshBWJ+l9oADf6qU4/cYtsm7jc47cMuN 7L8iTY0KbpmFmG3C7n6LNxRVI4torX6NqjGeLXPkHgAkJNX5BKnrbrWr2LczZvZ0kj9+uJBYHfjt Geh+PUIZQrHgFYXTAuNAGCKGxckdJEL3xqZ/Ix311W4jHLyOwXyk7tUJ5NpaSmk6PqEXySyGW6lZ EXsDzsiiI0kH0HHRYaYV/TCdBbFauxBik6ITEulhPZPeWgGUeC7FLktCIQpits4yW8wWeeD0W5yg S8zcynJZ1bKKpNCR9W5T9AIQcoWhlksKeVlzgMah9oejozypxLVSs8Gq2hI44dsw5ysX6xF6W8ee e0LuLRkkUqSoU/MKQFc40TdqsX/65vsfjNy4XVTzm8DJk4Y5plgHWjob4rkVjzxlB8BXs0Ey4sPB McgnkaEznRpFIpLkCeRMw4OQ26H1FNFuIvaBTStCOzr3XSrn3qE/RrF5zgRgjZRDeHvMhythHQTA JnjqMmWxeSC39gGUxcpVMTj0+WyLU0KdnbpnkmsU90VQVzaJ0yAzGw5EtiqXKOvQ0x3RdjU3tMHg r5xIqlwOGBtO7yOGXEzWC0LwBuzKzo3AHYWiFw2IcZUXTG4pk81cyXklxAiFQ0FCCFC6MS0YCFOY WQyyzHIypIHvW2AeC14iyn9V+5+LHwlCkC706R2VWFd5bRFjzCPPDSIybH2/cQY5oxadSoY7JMMD Rw3EbzCz0pvQUdx/9ywX1iQWq5aufvu6vCfewcVbl4aoXKuSJzbAgcoykjf0jn1FcDmtZ955eak0 2k2W5+iPZy50depR/qw4swiOwvV5cCxvN9d6Vh82oDmZh9n0s1zmPoZroGf3HM4Ri/wOKnAEhyqY vQlHQ8mUk5oeijYO+CYx81spSWJGpJMa30hLHmagvXKqP86nZ9GHHG04c0YoCxjEtA/w+KHEzRqy fijWK/XaqAduMMsACTHwGrDGNj8rvMXAEXf0uMSLACKUdo7V93mh0IxIPrT2yDPIZGBU9yeB9Bq9 YgNqjlBA2DrlFs12Ybo9LwLvarBpwzDokFJon2mePTFOaEMXwkngK9em6Ayyrhe6nxFFbPI6o9Qj eAjzdrNABzV3F4SX7F+/+utPGAoBuSJs8hGHXrxP8iQSZ+Dlvvof6GIIldVsboU5miW/+/ZPP3H1 GLDcXU1nmI8S0ydS0jk0CWDyaibrnDoZC95wtpiCI+DQwUWlFgFQwbeCPldwUsaZLOLTg4lgS8re 5tkUbFIhW8lHqu1YxKQUCkDxbRpHScpJm+iSwR021CIFgBfhYs5OP0d/pTmvnBQERYXEGinubJzt ws/QgbIPyzh+yAhRZPZUCI0R7OAhwOVIr/N30zxK9HboWOlwOM8XioVGXUFO3YZMAZRltdI+qJik SdZqEHRgh4mTxiXc8x72o36FSn/pgkvotnK2U1c5NsB26DVur9mYO+7ux7yz7Hev9eX3scFqEd/F /hKLUE12zDltEBQna9FancfrkD86wd/Qt80CMxNUmMHQ+ZvW5UGoNGkB1widIsVamorBs5gCVyco UzNRFXxPyQ/gIYgD/UGDfqUK/mJuIy+iVbRL4pon7siJLzh+ozc4wlF11XTHARWDc0OrUt/EJlUt Z9eelN6wqSia/NR9PFF8jdzoFCYJQ7AFISh2SbGGnEbeSbF6gAM1MCUi8E9HdeVMy5S1Pk2YtfE1 5n3PBGFGBMmPGjRJJ19QslfQUtbZ9Ti7pqT016te9vIlXjQ/4Y+938uuzzDS8JqSMiJI5ygrDBtg 2pDOPWDNghahvgeTdQe+hjbxmmBoeyLA8Y0LtcFxbAeX/nMZCpiUR5EmMC1YtSgCISG2wSeOEZkN WsPp1eAVL9hh3YjOYEEw2Epm/LrivDEAFGllyXU18udSXlLzqOdSVNIfwz52Wcy3QVMermn2AUDd 4gViIHmXd6CqQfGXiG8AZP++zrmcK9YfN6O/eAkVBk+m5xUlgYNYzvEI6tLhJSpULrTly9KQEFDT 2KnAkWy0JVNhS0nsUGTf//D5X3+AnOSbS6QtmAISCdnX//NbznJ4Za0nOk+bKreMIv/X5SZMtAz2 WDrWzTD9OHrPTre1fKxst12sLsrNBiYvJtdNgU5FRBrBWRAugojPaUtthk5KV1iKSRhdneDIlfLq F5R6nwaaokHTHvdNaWoDyq5pD2opTyh6SpkBTsY9VDmuyjdoa8dc6m5lIfIR5J6J18qahklRoinW XqGBOkYLtJE9Eap7oZGZTQx/LjaXZAmEzT2uwi3n7B6406d0xgN7i+aA4oqVeLPtazYqsBart9fX 1uWYBXIY4mR61rZlaPbiUhgxbA5b9sBWBYocJeIEM4N7f9OJv3MiIFiNYwPW/V4gqxAd3iMvZGES q0CIsfFkIgrUBG2vErYTKNreW08yOr9DJWGAuB6fopgNu8haro80cIEGLJBDgSV3RkN7ALqw3gfb WDkkwFkKwOuMKs0ILnLgrrV8uiEORAUwmISWS7uzfNTCsFXOVXZmV25WDQCpfJBkSKJ7PLC5WGIB i1KNpfvIqIst5UjAJa6sfZQEhWaKa4Mh+IRkpzzcApR3p5ZSWMH1UY3IuKoADNDDwUK9cjtWZAd1 UUDP9CYBV83JyqT+kyy2aBYTUWelLKUTtlZ+LVX55SvGNRK1Xu4qN8jz57esy/ywZwU+rnLPoowa Ll6oXglj+57eLBRYewYVZL1NXeZbV2VuqMbdodgyAb2hky4xa2rpWKcydygaa59H6XBZOrED+T7S BInUfkwFVx9CQWT+Bpls+QsUWmXyWXAKIZyT5891fDLOcpW2RjWZBE1UmqPvxMYnOXQpeEBl4eUJ yA3IySvWDOZ4TEX0eey+6R0EcYsZD6ZmavkF5X/tNvAkNrArJXuoiI1dKyIgnH+G3wdWAwrVH49z 4SE4nXCrsxvKH4Mb3VyDOdh8xY8vqOa5bIkb05b4HT/UT3LpNHUN4kgdXugWpWuBjhY81VbvNpu9 /7F5w3PzlueKYa4JCfdqAFeLlU9Vs7/sPFHTSmU2XsSe00irwa3J8UTIsXlucsFuIhf0UAh3MDw/ +z/FpqwOMy+7WFAx+UAhclBXu2b/ZO4YmHp8q7S1zMSZhV+425EnQHlbF1oyzXIiuJm1KdUno0Bi ZLe8M4Io9Hh+uyrgDLS3IOb2/TOFEte9Q4sGqITyxBWVDSx3IW4EBMl7UK5wvv1J+d5HPdz3qJHe VfsgmyVVk1jQo1/WopeaH9zyipqw5VwEvU7P9i1gAlFTD/OWNPa0fN/j2mgoWj4+CqnI+gz4XH/E Ewx5oRGcnwtKc1GXa8K4vWRZBoMlw3LrcSJNqYNulAh9O9m3L8T2Gym1hBaJb7794as/fvVXZ8db rNhws7DnmJbqMz0e7Kc/dez/SGRe9IJAAwl4/0EqJvOy5MTuFMPOgvEHI6d9Fm0UFo7ZpbQGIw1I pwdDknlK3zzpJSdJOre3evqROT9zHxHDw56AJcc9U735Wb3XJ4J3kXlmC0gjezdkmjhkShZcQjRL QKHYmYLPw5cFlscGF7irgvJpysbgeQYAFsODUGjgQABqy2w0CCQhBQxDoPZffvft9z/0HJQSMHp7 HQrct0WCW6OBTJd5Ybs8H4VENxTC+5CZW0OSjxBEvWkIzjwkAU+sQYQJD7UUSaJc+BqEgkPHb0MU 5Mml6xCN6HeQgHkx3LsD9i3Ly6sd1Yi4GzdTTo77ZnMoQCoRmSOnEIRQYfP4kkRopsqRK0HKLy8V hYWQ/VYjeKASCUNPDMhnVG6Uoo1zzXW6lqYp4MjOeNbgObhYTTc3apP8s8+o43Kdy7U0ngSz1UGt Jz3fQCDu4egL7tm1bVJgvKTTNBSYM5Ic1CS9t1dOGKz7Na1Ny28+KNfMl3WjY2S9iGSXrzEBx35v B9xvbFG+9rmj6d7sLa5t+M2eCuVrTocaWeW9axyssMy7oaIAVq7a3gQAE402bz641kaqOjmlWBT7 JO2W8AkkgLr8hP2sbWHX8ZFCPNal4lgJk30J5KLeqpcdHWVH1VEICFSVQWbTVpeB29mOD81QLX3A lN3j5v325iL/S5c8oQvYdaT9sL09yUTS4Wp63dYhPLi2XY043bkr933ZPs+QjMljDUm9fVcwB9y6 O8VDvbxbdz6C7zwGD/IiAeTCB392iz4vXt7iObfoM354iz559z6gGHbuA4Sucy/k5p17kfNH115A +rv3En/Hzv04hfjt+r24Zb8c4q26PFTWBkW6tn5WRu25bkY6u02369t16waZAi614PoEEJvdoo/I rrd4WNeO5MB4fIVGHIMPb6Aq4UxcCSkRgHU2GGTZH7hksh9zsCzL9aFkO5IyDdD991me/ffp1QLr z3yDKchf07hQFxEFTQzz8uJOwWJlZriDIsOFODY/xoSlj08prkEZk3QVKFccFOtJsqelNQhAocn/ xwg/b6abGS8ZDd6yXpy3NSq/sQjoCW/lRhzLajkh/YDnaMpI7djgSa9coS1fh+IfHg/WNckGiRMO c5Tvu82dKzaAYE6+dOtPK4hvF7H4ZWiSh45uUrjwNIuWhcdGjd51uhQQpFOQLLZmC7hkrdFpJpRP mJosPLvscgGJiJaUxXblpwYxgx+fYojiW6qlAtFUnK/70MVvYSo6SrVd7TZSUbug/lzDlxRKMPeB I8/AW3IR6q2meeLMM6JG86KqzOVZTR3HZP0HnA+kxQOKXabF19VLy+sUKO7uhd2zXxJf00Hp8OHM 9U1W3cODELROWiwcjRBcbryN/wF3CZMCmjkcc22sqh0cvomDAweBaHO9BxvlxoIGPtRQFAEJyeiO wDHwHGHclmo9lZbZ+gk1u8SE8XW3c6XzsDcM0gnDAxohyIACPYWhgT0dVJAd4r34rdmn19KMtpze RM1jDTBBKKWgAmPbbjhbbMWRtx7OUy6jxSbbFhCFTTuKDrJTzM1TH4YquTVDCmRugczYbjz2x2Qw URDC83JGaqr6wYZKiqKmVNpk+D5VXJHpx5ZSaFJOBbjNpGZrfTxiToxUmGuxrBtVIjDJwNQElCF8 +5vbDcAzPUtlydjrhsnTZnq6D7ptTpMQL/gji36+ma4uXpHtnMO/zgsUbFbPstcLl9uN3gGLXdva J6p6Tmi3yp5jsL+Mb+Sjn6Hx8aBOdX/mfTz9Zz1dSf7gXj9Gr5vIfZaGrDbS3a62TqHAq10rSORt htfU2xEvZqzLPmAWs3AbANGo+Jf/SHlN94JMh4guMMvAhLS8W5DjOethvEsmvmOGxcBVaoI3rHQH WeepZ5hmiWfAkShMeCJF4cL146biF6bYp77Z822P5UZiXMIRQuEAj5BUHQ7P5aaeSu0g0++z13yL heIcyaX64JQ/GwpiVp9lL4AWftbLXmzo78uXn4VNoBc1k1ZquBderXoY71WxMn+g5KHZFh6Rrqpe 86m539pNJmKv6ufihIBkhZ2kmoS8Wm2U+jD8eCy7IGN4txSHZ04TsaQLvNYPOSQTuw44DZDqZ2rD ObIoKx+GZg9qrTUEkicaZ1z3cdUr8+TSwdeebh7+ebbdLN5AKZGfcYbHtYee1ADrZxj/lE7z5P0M RfTdisKniWuZnLRJ9vs6aWI8it6pzybezM0xXKnYTIP1a2ZXNmV/ljlewGBxWnc9PWmispGXrw33 zzVXNk68FjinqgwflMSp7iHszguQPpkOGpQnfjOlEdNBumki+Zhl5Ee6ix0VKNlzSepISQKyWbmD g6tVcYlm7+fcBghMMZ2dkl0ChTBKaujSA7qsaCFlFphT/NKiGeI/gH6Pj3GVy5k0mgDPJ0pxbT69 zMY/4k93cE2I7uo0uJdFm4yrduCdMj/yD8f9w8va1hzIg5zHokq/pTVM2TTLNOOUn6Uya0SIpw2f NJ9GNSQNx3GPjxy3DU+2wnMk2LFWyy8eM1N785D29nBSbE3Es9bmF6Ub38y5fXzItk7NaR1bmmMj igf0UR3h3SghyhJnwL+ShJrQblAs5Ziq6RCleTiZ5XRbXt2682qfwXxf96ZcXBJ4qyUPezEslUr8 tl5B1e82N9DoWssvx5TnqyhDdl7+fhlYtlmKr11P4vh1IeKIgWS/3Y4D0tVbc+A5ch4IgvTMGCL8 nFL1BTLmrjCBBb/1QMwntkynMuli2QaqHjddVaRdSKtju1y5Wq1B83KB24BNBYmu+ppMSNwd0EvP RrwpMAkuJCwyvSWzAfILG1BuHbAOG5JCkvFWZGfoR/BoC79yrJ4krpdwqoYoqpjfGEvd2q392EKW 2WoekxxdwtI9EH6jvQmunQMkzc2x1lhZQma6RxYIYIcRUihr47m2egAe23Trwq7D1JOyInSbrXqB 9dZCwn7Cxc0sGcF5tVPrNR7G2zOlovWsxjT5seea9xPbR/2nzK2YcZxjorRlHKMqVKXDiAdRkN3A yTqTQNZRUpQIXYyamJNsgdk/YIDQh6rApPCSa/OY5Luei3R0pg97ZaaznzqKZoBT8nOaB20PbaJX eMPKD37wYpScBIFr76MKdnYgbWttVT2lmMtWQ5uWrVuhL0Q0YUAt48RLqCwzhz31S5kw4DfFaI2k ojq/FaIrNOaTEx8MaqFcgRx8MfO3vNdu+Iz5yzCctK8OJrFtWiCczDtaI5BwXRj2Ccbk12AKB9HR NjVVQAx8n720kdI40Dinbz2MCojE2Lrl9Z7Gu9BlhTET5/VV8Ywd5fOLV2bLDW/jn5viEjzmXUXC GSaAkMG51n0+rfLdagGNTtUl9C7yLoLSYlvieaa6bpujPOwsyxvKWEbUt5hCWZjW4zNp1wAPdhgt U3x1Nb2o8sn4uMrs60riT/CDznarmXnSj9gOdJrv+et0dYNnYVUJqXUpj/50hREEyxuVLZS0sAVZ yfURCWQ1OLHESQDthGWp6wKeAoSEL1RyxWrVQCE10O4f0PU+2HqahUW5qp3xVEB+o4sLnUOfRs6Y bW3R3tQi/ucxUw+koBahxhkRZxvOTX0oej4iCptPsA9Yk8OgvD1PQGBcloZ95+bCYor+E0jq/Qza +Jz6i0mqbL/oafN02SyhnbdbX0HeQYVTYYLFAg/+p1vKSFBWhUpkQqk1MVs6p7tmb0ib0YBSdcM4 lLybA1wgbwJmX0K7walKXgjJkTgfjKRKIx9Z2yTHxPkqZXxl3u6mhOLZEuxEbwIJ3vEaekcQ5oDZ m7KHg/QePIj/3OFJX1PmXt/Pl8zuVLVNv5Kh+YY3oPzPhnL4OkAK+j04c7g6U3bFXWERiArhjJ4l JpE20IWbZHC13NxIvhodf+RyyODpF1eieFtSoTk6YMf0yKbvF5REd8bVPtCNZFYyBLxGGab0S1RU 4k1CcVgSLYWviikk1VugmWjPa3JOSy4mTpWOC5TJMNbKloogej9FdlByXh0h8lBt1hYHsmvw1vSk bD7n+g1nZb3j+RSye5Ss7ZF1Fzra8iJTSE1rJr7auvIeekWwxnQJNf0goydCmxmIw8dozXHKFoGw yAkduL/l8Wb0WpjHVJLWuloHbsloat+YF0WOYhDwm+xqgamh4cT1Wf43Q1qJcIbVFvL5qhKz5vHJ J1k/e5jl2TAbvszGDzMjObzIXrzMXmafZUaqgKxK0wuoq0EyMqROzaYV5FmDvIdmAQ1xQqdZ+PcX 84MLbVCxv3yO9gmoisMXfKpYyWVMebooZvkahqBrmK+Das8KM1XVjE27i+l6sZ0ugTMC/QRHhRwc FXK0N8L/YP4uqGgUiCU5JXvCr+eFIXyQxh5/kXUWv6ryqfDz7WK2hXKKoDmat+d7mFnoAuGv3Bjw gQSX+WIllbFwdnCcOOWc7PpkEX9xxB8sLUpquZlkAXrQrMAXhWe7X+DnBTkmp0bAyXmF5SdR2ll5 gaZAgkQzhxX43JsRiuUWkz7xmFAZA/63F7c2Niu/AheyS3lF0Kb4UXNZRCv1zOdL8+LQBF2ZFkBm SvD/pQvFtXntSn6ZPX8NW5tZaMgNXJXLndnVtYyxKt6aPcftw9/cGmrVAKTI7+rmyszktfyEPL90 G8bB9DP4L70WThIZ3HTLf/CGLRSxgbm8WWC6QBqC3JDm2w1o31tYQMgBbv5/BVBv/nIZS/WVNx2u GFqFN+YUsQR3zQjQNadp4l6bS4b+K0DDqm6rvCrncO91cWPUzRygDduyduFjTr6Yg5hk1iG4Dhcu 4f/xKCOPUhiivDzP2FGUPTjZ/3Np3mo5XV0uVvPSNCTJBWAWv/H86Ds60GEbAF1ZB/DHZ3kRdR1w sjfYnFlZPBesYqndjLAqrreyaqDUsHJFXnRuXUxLswh4FrkElIcAqzVMLoc9oW/0aGhpKNPiOme/ RcYKc/HNotxV8rDQXENHeVtDQcwIm+lsMV1VcHtWXBpKaRgTOnxsiMABKOaQRkx6G9XGYBJ5MUJ/ 1HQMYTGLueL7cKHAOBvOZw3gZdoC9ax+2WxZfcnE41g89j3Xe8+tmH+YSTKJcBcMGKlfnOvMUdHq GmGYHSFdoT+5gmRa3CSJj9MPWsuIAuaeHqhfEQ2uruh5c7ftzNUtmE8dAnJzC0duyN0aA4uMeGk4 zW5JrwA9KuQ0Zh/opfA35JsyhHpZu+FQx3R9Q3TdfGNSzmDOv2asCQM1kyqIs8uikh+vCsgW5nq/ qi42pREH+adBjgUTDdtfGAz5azpvIsW2DRLnTgrwGfh0s5nerNE6idz33PBeLB1fws4hWdZMFYBR WDFssfBaYKLynZku/iI+K0flZrWZkK0zq4HhvpTSD+6YC9OLLXd+BSgMJ6rl1dUUuInNy4m3veLL 9uflsjw3W2XooL1kVkv4m+pH1E+3M2tcokABETzryl4Hwq86aj7gXfs/RiYGvgkrWcBKGp2N8BDy rm0to1k7hzTirMhN1sQx8uV0Y8Biq3hDvtzs+KfPE6CLjeiiInWZzYnHX2B9me6udRFQ6rx6g9qA oTWWE+uLjBXEV6ADyBqOTuXrssIwPbpeQD1JdwWLM1f42oTkJLjAH/xHX4AJG34glIlUEwNnVwtI o2dB3y7ClSHNZsTyDUaj47sYScoQrnXGB19yViy8QS8DO12bTmbHrOSFefaWBiWAJ5RAEvFfmSb/ MORXLl8Dl7goZnYfDZO4glgmhlzkLVgVZY1E/gKmataycjnADVlYIw5ra2BVLLH4Zo5w4X4yRIg4 uEYyaBBjupnlDsHcterGQP21vUoRLVCVfM30GUfwGqkfuKig0eSMfzT12hUmFXQD6r+gsOLuyyjB rc30rdxGWgqnTjUCixd3ixn9Ml+AztLj6M86ExmMJDJ0LjE09FW5LBAaeHMN0ZgvLncbAmt7eYmI wL/W7PJLltFG5QetVGhQjzXp1YvUZVvtaBnrRLaZ6HBNU2og7PHJ1RvHpumVxotPuD5QfeqRh+FL UA1hNBVB+S2lxEPkihoh8xVW2MyqEBWftHu0A6MWvWJnYuvQMMAcuoGd4FRbLkR/R8uH9YPghBaS FnymcoBjsMyAvYPBRPRqMSerLHIGsH1hKIZXCRC6HIomDS/sM19WArUAxUJhud568qESdQg9PZjw Rna7L5d7VOvMB0G5SXtnm6pd0rZVOfisoMhOAaoq1wGVOzOyVmtzNh4VLCplu8+OBoPBUfbv5t// yFbOzwQ8c1D69+y4ZoG2EAuvfKR9vwU0luQXUulHO7wsVsiMOJL+UPWeFTYlBLppGIgb+ycs3iGh LZRGxcr18w3tR8INx3vXkBMjiM/BW9rx59AWRI+O0/wkHmsce0RPWc3dQnseHoG/R8seIn7C3iOK yBPNV6Mhmb0BIDs+cVfBBub9mtBPIxaDsUe+g01evsMZJJ/9IDq5vEjXWxBMqP7t+WI7XxTLGede tmI288cSd7ZCw+B3LJtjKZz5ggy22WxRGc1rUCwRTcD0XBq1dQUpG9E7eAElqQXKqXEBsYp5OZ/j EQLsxxE5u1E9TzPZ/3rEwF1AFWbKgcBOHmCbxI5zoj0iF/JUbVo/KndCpU6oyByle4AABzNFGoQa f/eX0+wvP/wVn/PFTz989T2SyR3Z6WYZPGx2Y+jGAuZ3A/hk3gZOBCB0y/1abzf6J+xDpY/YX5j2 tDt4xGtPn7cFnPVRXKlp8dQeOXOJM31z8ujTnjtqYE98GOCJC1/6BWaCcAwz6h085wUzmwU6fUYK HIbqCexU1BRd8GTEp+kjEjBS/VeDoeG41oVPjPm1EW2SJrB0hN2zT8UDxVAqMzP4dWDn8JaKCdPu gv/AZy/tOtsiAocHmYSO5fW7+n1kHL3+fmtyc8BTpcijJu4k94W7e1mC5j83xHQL7qs5eFIb+X1N QWORFW5e4vgCty5v2+LW3wjku2+jb7NYGRHR3EuePJsMavDW4/BcpE8zSzs3WD624vpuxGT8YsG2 oLwTO+RwhUtkK0qzkaJaP8iZAcgl2+kCip6hemKEFleRbn3BAhCdSKAFOoMa2+htiwXAoE6X5tt1 bkdskFPbG/kZiRzGZACB+fK7P3xFp0vMOk8NwTJKF+q55ipmzfrXr77URUXr0bK6ZI531xnuY3e3 00sxO416mptHeXbwGsxQPq+aXpzSrOzWMzC21/w5/1878VPLaqDIgp3S/z/gejN//vxfvsq//8uf vvnyq8+/+NNXUqaPi63/TPT9WPgTbhyfns3suczPgHbHFRZuQ3YlLAMPrbiWLvIMBI6pVA7E2lEM RwKSe+ZlFvkUzoai1QljsJh9s5J6E1AN+G2BpQymFvIINKSyXAQKKe00xActp+cFhNzuh0aQvfyN VEVeyW6M0gqdgVuQk4Q3/JcYGsAToPuoB+dqG9g74K3CUA8MREP178MDs8jmnh/jhjLoSyQXNKgT OstNOBMXpwljkusZ9vSEVcskozQRp2j+518sctTFEHTNRDEBPEGE3efVRbkuzLwuFxfNz6NDL9aV tXVQJw3zOIGR74SwwvkjVH6F3fdi02Q9ideDVxNWYAVTN78GrLzjnOjDRWXcp1S43rppcUwU/GtH 5fs+acANgE3rHR7YAfAx4gWK4ynRw0a4O/7nlsi/08skoC9YEi32hhF6WJIetBdgTLx7EoZgaZKU Wuewsd3WbGq+gdqO3Ied2HDHLAbIxtOcZHCOf6vPvinZJBgNrYhuput2xO4XvEScQHMOPbd38WZ2 N3gr8UXlWXCnYXR/14A71lDsIPPflwir2wXyoCP+njukVRV4mckIsCngxSUgMsDX5UcD1FlJ0U4H 0EU5QEG+SkMLXmYn2b8beeciG1B1LzAuGBT+j37m0wVHOBj88UX4K06PZzpSDycC443jyTc2hhmD bswAROR3V1cYng8jU40fx5IMehudi45nj2iJj5BHUZiYDn33Hq5K3h3U0ljoSF8BTYU1CHougJJa Mjbb7XrOVG8KXkfm73/urtZYht7bUAnI9dbShkMDIIrW7YXl+zCBjILipGF+wUQaQvttlHXkjsAn Dcy1mJ0jG154Jg4X2AhKLfNzLXBLOUlbhG0qHMY+m6Bo5nEe6EvQ7Lfy14d5oO7ocs7DmhvhRwG0 BeXs/8tOfvj8jzDZVang2vrWW2XeetkXS6JRXlFEuQh9i+X20O1RsVSO9y4UQN4cjYfPs3VRrMG+ q8rxhUYLM0Wm3eIdDhP3eV2v1stmHZwufWuH1ZTM6sVUpyxsZXUpXKA2bSucB/qa5LsVGEt4InG7 y2xHD6Bfkt7GNuSvYvm3CpQo/LwfrD7RsZEar2DKb2asruJy2qHG7uvk4Ln7cea+PlKdvfMnhB5y k8qm54ZDcsbqmh3cLMHvs+wbMNtYbzEC1hUPQXjmDq4M5nJJRyreZdhDhg+AtBLZbgUG/9xopkYS 3f6ex/i2dJnBoTg8V08DMup34Bw0YDCeLs37HArJAhkZ3e1YjC/P/5N96NgIZQQE8i/DWIsBd2R7 tXk1NAJPq3J1KjsAh4dgTCBfsBm9jnIzMyMcfSHinioYd17gCs2yNQaowDsDNA2OYlDPtsFmG/4e 058Bwa7Qd+iBw6UFQQ8eBfhoCQQOeXQ+VXYD2RPlFhClr3S4576CGdaN5c758GdwVEtNvGM/NQ0+ Db4ol7sr7l/YRcFzYfzmFgpO3ev9+Ug7gjJp26c2jcKjFAXRxtkVK1C5s8BfyDtiFAkunFO0chBW axSHvTyIyhWOlhpUnOgfTBOq3TlvieE1Y4/eLKvFJS/b5VYeX8leCkhcypfZYi4vAnGMhRoLy2rR q02v+YvsKHiB8LycZ5/7TYcsaqy4U6H426gfL+yq2sUD/uZGYm8nenmQhPDbL7syYzGXDjI6oKW2 pV9syovXVAaXSBeTIXD9/8NXX//r53/93198992fnI3DEKPN6wHVu0TCtbHWBzJOHbAGD7GGJ/Ml KM7mohUNyyWc96/z3RpK58JfPqKusJ1Ryb2LGY7AQ6ggL1C/zZYGjdXg1EdZP1ueaxpiLn/sB6/3 P1dimzv1OgfpZlB/LUlcNktxSuXyoCr5n4z0sKjIbVkc0DHxRIb+z1SqQcQRXjtGNHhp/gkUOJiw ali/AYwXGEsZGQ5Y/95RqTOanQxuGrbyGjcXzLGb6ZXjb+D3jcuAhSOIgwRbwZU59cqBWQk27qv/ kWEMOseMmifcwD2zLt9DQAq7oZdUxuIt+yfDPAJINH3InRkGXRcbPEDcqprLxNa53OaAgb6wI2Q/ Mzk1cuF0hadOx1LkA7wyFkA/8QFkBcQXmu625ZUZGE9QwLamsGTQlOidE3SfgITs7FVmvoykaFTF pHhFRFI1C/Onz/+CSGqEnUycl9VpUjEbHH4zh0ol+Vdff/3Vlz/Qa2DKq1MVLOHiJKgQNehHAMQG 6VdlZp5fbgyXviiUudZMeYS2sDH+OzFKwmszQyOaAjwfY8Ir9GQCJcMQZz58hDgw1HRQQ7paT+Cf M9AwQg8CEPM94hVkKhRdtp1xcdNOlNCz6rkXU7Y8IDONbxzaUJblJex2dgSVCvKcDg2MOGUza3v6 oWlJaosaH20QMaVZVLOR0oIPnZ5vD6XDGxM5oObUT5hH/qdyh14JBnMWF5xiQ1yEKqohfgRSGp/E zhaVeebsCFAO+wtsztBIvqenUaHGz7z+8MyBNwkImymu1lsCR8NPwd4FeAwKZoUWIsxxCm2mdGbB NgRDqw6s+v8iBIrPgCZRBaIXLAt/ptoDvV+sLpY7EMqeqRuUwfNH7J019yfiKu0am8Fi0EjZntGc 3UOivI5ZXMGVs9r82Fp3VLITgIpeTQWq2SQUlG1rNo0rzxBshPWL1w9zcNOWFKgssbkH1g0jTaV3 Ldt+ic8ZOwNVFHsOM2vxNXj0SSXg87etWb2/be3qHdE83GDOeoHGGUIW+Tp2xhC2CPJ0Rm3TSZuN A/KEWbEZJZhJ3roye6cisLJnIrJ5PnQFbWbcZqRnyFap70KrFCSHuQK9mdhshpBzpIHDQ1KwaPQN zvz4jHHhx2eNSBACeHjsQGiAMY4zaSMoEgBe4Q2kLLIJ2xQ0gY06cjCo16h5wiQvoiSk5h7siRvf 350O2/MHZL7guLhcXFAl8ell9omBBWYCdcx1Sx0ILeUlelTBVUd0QqgEQDyBVzTg2DP/P2NY/ARs lM+O1OmNTZRhNsj7odogFVK39pOwOIQR4zEgZukzAZpjSvmPfnM0mTW1p5shdxjq0VxP6Bi5by81 DRPOoDYON4gN9AOmldmCPkrRlrY4TFmPFh20cxzWGQSMJ70Ypo179uukgSNBmVtrPai7c6mdtdm8 HCdyI6nHZDVxnaz1Vhusobjn6gLPw8wcB3F+eBAkCZKRGixYCvs433OEo9rcN6U+5tqbMVyOyLy3 Z5wVRHGX5dq+ozx9ItQsryLGmv80AsM5gzpAFZo4JrnS/lRNVNpKWj45U1FrI5ClZYmgBe+57r1/ 4sICDbrA2Yg3SeGq0WdbgUrdHQsB3q31TQZ9KzAw8iHHy0jtMQtfUYgcJENaXYBlFgwImGkBdWbb Ve5m1i90sUI/Ch7qpbthE9+5nKuA5s7WbITlzcz6JaNSJ/ZdPAHjnudAKTaXaLKZrlSxAPeSv2RO hxs3cnGPuonYQWQzQmJ9GlZrXqOwJ1tS0tFIgco61w4srgoze7JnR4hbZK41cXq3jkBds7h9d+LW BLUEqYEEp0F3vI/3Cbo0S9x7ZeGJk4UjuwvECqWWH+X8yvvgvqn7ZGZo7s+Ztxv7675qFDpWwYh6 mx6AzzvIliZOSfZUTGAlhcshy6gDAuv7TkCUFfDJxUGkEZ/qqYYpYADzUDRXCUyWsDq6qqUpXaSP ATKctPV9ic6UbjZ04odYbh9AlqWT6dNonkO9QwsYs1TeiBx7VA8fpPHKT04Xod8aaLV2EoHpPQPw I2LqzfsC7lbgHaUCL4gbB/TCP9ZoJEr7Csyx4DNc/KlRJZtwKzhQ/9HtHJ0ILFacg0wydrfNvwmi I6DHDj5tMk+z1hLIPHVvNDt7hyv0xk7ObFIqPUzicVQ3H6TjME1nevLGfYRCsJiDE0Q7EbQiYoQS huxOOmhnh4iiLQJvCk3gni1NPRfzmGDsVICYxNxCf7Xw6JR6J9Da7Q/NAAHnPXTtE61P20OPlkfX u8F2cKB0jrhaHns95i4BVLOri8ZsTfR5/L02rIPUx/saw/5HR20kY9+Z7lbGAdKwA2Xf/vR1a3v5 30FcwzC0po6uhT/Ev0kSIBumRselZGJGok4Ri5IKCIT9UzWA8ymZSralxerV4hz8WiDBEa6cJwfD 6Z0aIPpgVDToFBuTyb4LU4GiHr5GrBRiLarKXXapLrSTHyp+vhp2EAyDTdwwrsiGz36cM5zXIf4W ql1goEi0kEkWpO0mO9K2QZn6JLYEnlN58Ys9MwvVYj0C3rf4XLE3KIaHwrMBCo80uWlGUR9JQScx XS0FRJStthuLu/irBflqwqJdV29LdSO9SSqLpKa2bAyIoDWdMpl/J88QLel37DQGIZigHQNV6NjK YBB09oIvKPICRtqrV2pLkWnsA6HjanDrnRpdp7P/nF6gso/+oHQabP6gijxLMLyOIo6tV+szJOvu ui7pQ8BHSWoQEKC9EmUYKh27VKOeuHo29jQ4coIUYTECwQnUfbeCWKvcrDWBQdo5GwilERKGyKhe Vtjdu9tCmi5b6NmXViz1TVt0twVCXoEHn7g+/JOXycxna4RoWA7ydtd4w/4D0pN/JvRsOdNRzrLi zyRu+2ob6rYXeJYULasBsX8GbvUMddJ3YrYrX+/dv6V3RAcUkKGJQFtVNY/xJUuZLVF3cKaZjLCN BaY7hCnhYOK6qcypSBjVFLBfne4bMcveXaCr/8IGncpD7Cpw2K6hIBBYxCsualhsvjjyCac4O/pk 9uwo9Di3zNOSn1JT9qMjT7ajp70wM30iXU4o9fhxjGHlYhGRd0YGdpTx9OHOkWfCdqezal2W6NJC 43AieOs27i2wFHSkBWKah9/lDZtOaQ/khPaFweydGX168YrOZNafVJ81T/HQThA2j0JWFtnYlmen +9H50BZvgHnNIvwyXUZ+gWllyvVn7P+LCM9f7T3fXMs5LvacOyXYZvkRCZ4O5AsZOLynWNtqBxxK JbH/BMKHONtEbLIW8ql4Wb1vqk7CpnF+mW8z+dBBJNuk+e7Jt7mWSLJq+gYyIHJuIG8M7L6vG8x7 s6D4C9dxT7e7750zm2MP8jbxXkHbWNxtNVU3+Its1GCkVDng9dENFrSoa5lKTQ/t6IGB0x4tiq3f PzxSsUX+gcLIyUmNinR36IUhyc7gHbuBnGcIf6DJp75L5jmYHchvPyBKF2EavvS3gS0U+57kP6qm EpHq1BWRxLcEhJQfn4lx1ko6/fynmjEX20JjFmiUcHNHtxR1gu3EAy6swPe0hdTxzEaJqG5sw+lo pdEZxLKsZoerOb7Y4aSRUtCshSXBgPbvn1T/EZxgHNi9XcopsJx/R/BKPZdflkGo7rEUiIfeyezI l7+aoWffAUHfWdx9SNpjX23uKeifZJfdIxvXQsRCGrkvL0cNIAOo1KVGQ5i0yPxmuszBa1tgQIAs QuvipmJfoi+0L2vN4KJtHdNNVJAhrdKFhsqStazZQWzN1FGZBfWmBW0ehRo2WI7kPSY9Un2ZsLpE J84LzLbUWBBCuLvbjJgOHmMYeuCj58QRD4DoPxrNYLOwySXsUMfo2Y/RtVicr9pCemZKTE+1+eQU yqkPRPV8c50yGAjz8l7EhlL7Jy4zrWCkEyUjt75erD878gfzX99NU9s07K5E785qd29llVanOOk0 J9bJ+lYkHwQ1u0w1GLJqrpOdCMs4mbDckbKMb0VZdJ4Lh4eeZhxEWVsrDRxktwX+arrs+G/YTR2N t5D2NPaMkoSPDh6bFlPexH1rOHzxSZNqYMVrjzpZUP1TsaVICKIWi2ukKbjB21N+vX7PhhEMDn3m rYRqWFMlg2KbrX7Uf48Rpv3L5IwR8fVyCjrecaSEe8VWrZUIHnQlgQcxAhjbAYHM4Hhkj+ZxC4pl aA2ffP0EV1CKzqzz109CloAMNfT6X8+wl/Ik417/S5sWrJMZ3vri8y//5TSDf5+FvrJrSnLEZzlQ kECbHLITdJqDwiFltqt2FHyVkQ1vWULIP1WZJbeMcgNOd4ZEQpqL3t6DsBpppBnHqOckSj21fVM8 XSXFxfMvphev3xrCR+kswjHbye3EJ7f6vMufoWe9C3S52jQV7RvHvXIdRD1/3kia/rLD3FKf4PEL J7KCvTiKkmYyVa6Kt61pV5qRHPH7GTwRQM9Xp5+xJ4i7JQq2q4fnPJHtDCPVpsWONGnvrBrQm6nz MTkn9zkhkiBuizc9YaSW2sSNJiehWoOvEyDteysz8omORym0r+htHbKyn54FMk9ftPZMsz6j2T8c m8Y1rAbP0PUO820SMmO5sowTj6kMaXBvry1rb4hI7ERP3RKvBodLqRpWkyClzhFqNoG25CKHTUpK ID9wWHXWZnU6ZZTAbaEkEUoMO8IIan6gM6h6h/DvCaM9pH3m2cf4GuGwFtO9k1AlxYWIyXg029RS EOlEQTGdMxvEdUO3LVGZr9ZtXxe1k9mgcb9DmbFlBilD+iCEIwpBihC0OpGKkptRjNzUjJY115Am 0VooxL8VSB6Ql1NMKXm+QNQqxmSAbqs2APMYqv7ifAPO++jFwzHplB6YnEBdoEVp6FD1SnnT76HJ NqG4E+6aQzjYKdadqfmJpRThDRXWRqJycNBqXzpogKaGm403mnq5b95rpHGSXmM+rUNpwHv4JQgm OyhlM70snsnVvxbnu8XSqpRhNtKhf8MmHRhIf47W92vxRXy0IodhXMDwRoZ6W2zQSQxSAVEOIGqN FQsNz6IkB0HVPwRBGJvLHspgVO+NfIqvINUmhnqUqFa5NW14a/bFj7+6C033Q9i9EPqNlP5WGkc9 Yn0ZxqtHitgGBnYvtyKMEnM1bbBi7G0ycTB1sltB1aM6q44vFwy+dzkVB1naYC2HA/UBZSppE9HJ F/WSN2xf02waxuw5VGK7iBWZbIz8l0GMo7lAgpv8igRd+p11YGNTby9AyE4i1YTlmIdOg7CnaeA5 qHtxs+ZQIHemyXqgBa4OcXccxCb03juhHrmfdmR9Eq0IYeRQsH5UGjnGrmsOunEQIEZ3ZFNU8gR0 iB3KL3SM9XaXWwQus6HP7dD+ohFafW5lJvVg7GgcJ+vC/guKBxHxcbSMqcyg4vkTuLg6J9Yg0iym C4jzjzLPOGje57mKgoUP8zGXokAgcBJXbFc9q6jjsJiQ8oq02BaVmrbqk+o/zF54YIzlOzyodS5t Cmas6wF/+XPog/Dwz71we/f6H4gb3z4HhTTEbHJeP8h8vZzGZxnn5GFtG52/gVrxmM9sa8STb+7T p/yeRZqbR7LO1GSlCNdwtUoeNtywVIBGQTngEJDizcLWEzEii1Tv+aHMpm/KxSw7Wi6qtRFSKiwn XFxfGHGlwjJecCPH4wAc94iSRKHMDgUuJYE5ZtRabKtiOT+1lXMqLvULmcSvyopqQEvFrDe6MNDJ FIpRTmdYbKeHCfUjZxAkWfCbe4VgbToUm7g0rOTuitaz3qjqrHTqrNLlWx9+S4h8sH073aywTixp CoLXkGTVJVa9VhhvXs/oLypPIHA1rMeaHdGgsD2fVIjB103eKdkthwRhF4eV7scn9XWwI/u3zsvZ TcOt9YbrJTZ1Xayg0lq9GWayh1IQBmgQlJzkbIOkT0GortYgXS+gLsCg4SEwdQKat9Pla3f6Fs8J RlIWFVDC0lIXUKfv8lk2mo8fjZ4+Oc+fnj0t8kfnhuFNp8WT/J9Gn346eVJcjOfzMWa2lWGhcE0B lbNBJzj83Yf4sIfG5QZKI0MFvqvp0kzrnT5jZD5PRyP4Ox494r+jMV4fjSbjR48nvxvDB36MzfXx k9Hj0e+y0TudRcNnZ0SLTZb97vMZvL3RV6bbclPV231r4P/XmM+v/LHgWIeBB4cPwiSk4IosDdeY wGRVPcCUsQ9Emb2A6opAQMCi+0BnGJ9CcfuT8wyy9F9k4wGa7x72egmNzM+0ZiAjJTYcpDbt0DD5 8dA0ddxR6tuP0udqHp486qDDuNPEZqkLNe2yTIkPhxdKbHqROs+LLvO8SJ9nYtNpdg7jps42falg 5A5NU+c7Ngh4ltb0jMAPFNdOzbNHqUuXOPIUcr0lvl3i8ubJLS9SZ3nRYZaJm5Unt0QwTG+avPDn yS8FbRPp2rgLwGLTLu+WvGHUmN6vvX2eMmietgR5KrvM09llnsoq8nR2mXdhl3kqu8zT2WWezi7z LuwyT8P+PJVd5unsMk/lAXk6u8xTMSRPZ5d5KrvM09ll3o1ddlmqVHaZd2GXeTq7zLuxy7wru8xT 2WWezC7zVHaZJ7PLPJX65snsMk9ll3kyu8zT2WWezi7zDuwyT2eXeRd2mXdhl3kXdplH2CWcxk6X kPV+U+4uXyXqnf2Ux/XTFqefykj76Yy0n8pE+umMtN+FkfZTGWk/nZH20xlpvwsj7afRhX4qI+2n M9J+KnfopzPSfiru9NMZaT+VkfbTGWm/GyPtslSpjLTfhZH20xlpvxsj7XdlpP1URtpPZqT9VEba T2ak/VS63E9mpP1URtpPZqT9dEbaT2ek/Q6MtJ/OSPtdGGm/CyPtd2Gk/Y565zBl0GHaEgxT2eUw nV0OU1nFMJ1dDruwy2Equxyms8thOrscdmGXwzTsH6ayy2E6uxym8oBhOrscpmLIMJ1dDlPZ5TCd XQ67scsuS5XKLodd2OUwnV0Ou7HLYVd2OUxll8NkdjlMZZfDZHY5TKW+w2R2OUxll8NkdjlMZ5fD dHY57MAuh+nsctiFXQ67sMthF3Y5jLBL+qaLh/HJKPicYDjLiasbBnV1oduJ9rU4+ssRXaQnrzdQ kLKoLqZrSHa9mlYXi0W2NU0OgnvF2+ViBTnw1L1fdiVWY8JL57t5dtT/g6s034cnHWzG5p8S/nkz yt7A38VqBoUot9PzKr8qZwWOxwe7mNapWM0esHM8OO+el7vVbO1cYPBF7VFw74ELsdzfovE0uee2 Azx+jmxDPpc+ktvgJ0NfM+stYwbh23AVHPuziJNKBs2ycqya2sCYHEMNVovlA/LYoTHA2Yh6vRnB G0jBZ7oNAQXmeq9lvMx9eFjwKIJMnr5/DleS53eCweHJBgrfjBuePfaejS5YBt6w7cyBQEarcyBP h1yJtUqku/kDifv4JeOCmJtiOsvL1RILjNMGnuxWBmQW8xszmJRR7dnv02vAGSmniSUze70H1qlm o+ar4AInTy5vY5Xda0NvbfZLXSz54puRush7Y9ZDX3T4jS9c7rbrnQHKMofaZPLeR/0vfvrhqy+/ +/Nf+keyktEFAj/U2XQz43EAXQgQD0IoPLAk5aJcZouszDZ2DQwVAM+lzGVlq45olx94LoXQ88Qv NisItIDVXsM7Hxw8R6Ky3hTm3+MK/AR3yy23K7ndGNrZ8oRhqw212mBq8OcKaGZYJdTNGwN7IBbX vBCDQvgu6AcK4Wff/cvfVkeQys5tfXPjb/+Y3Bgawqf0G88Z6A/iC/y3FfTbkA+vwkZNmdipdgN4 uYVSwkRkqceH9tR5Px8kPUii35Pz1+/a/L9GTyePHqH/1+jp40dnk7PfjcaPH40m9/5fv8bH+n8F MNDg/OUxc8Ai5fmF6SLm5W6DOXmrcgkhp1yMGZgbjupJWuD2m6/LCqu25vPF9Wp3hcLXWAlf9pC8 Jqg1ds9jhwbp3Sfe0/vJAmjsI6KjdMc6v1iEuFxCTG4wKPolnBTX661RvfInj3rISdWVx3iFvFEi Ol9ifzzHgz/nPT2xV5vyrZEd3k5vwmGlv8HRRzTkaDCePAZ2kfEafeqm0/KSuFrikB83yteaxK02 XrO4whw0OYOxOoAC9raT2KNlq2eg0qTsDPDUfNxTiPLWCw3kZg+zR6bhJJOWcgG1ar6U2zbwOKrb Y4Y7xdwYNju23xj7t7fuh4/v1x8/DNsM620aF6bN6SdouEeXtC3bDkaDhilD0sP3mRtqTdNnmjRs 3mHYViu11zKlXZvOrxrSAvRc47pKbHlGcV1c7LbFx6gTZ5sJqsVZORHNOHsDX5fjbDmJK8laSTVy 4vlmurlxyuq9ktqmpNb1Uv+pzcqptNuroUqj26upGwvUzZYMhR8IB+bWKyMQHQ2O1Ls2gsg7g5HJ e9/TScOeTt7Fnta2wOBj4to3Wws2E31xsseEUOqW5aSDXYEu6u5vnGTxAY0N78TM0DyI0sLFBLGn NTwSm5VjvxmR1JKfl+2dd+2R47RHTt7hI72xKODTwEO1Xi62DLnWhpIdmW5iqFlOoq0m3ErNwBkw TmYlhDpW5iLQh2vY29WlIS5LUIzkO88oau/Isk/ys8ngbFLRSzzQAbCQhZ+iasc0QuTOpKdGt6+L wapj6oNvhhf00ri50Ot5tpZmm/A/oOXl4/gsy8vBrNhOF+/c6uM+++0/T85G48ds/3n69Ozx49+N xmePno7v7T+/xqebLcaZYpA+Tp58+ujs8aPHTwcjI/Z/hCMRyUEb9rMs/nENiFAZGlw9y2oVdN3H NoD2I77ISSzNx59zawN6KRhqzC1ttgt7hT+RBtBvUr88GOl+0QbQ88zNDTMtmCb+EyMNoN+j2uVz v1+kAfR7XLs89ftFGkC/J7UXeOj3izSAfk/dcLz2wfMiDaDfp7XLwftFGkC/f6pdDtYz0gB3nrcL ZXL8nPn9Ig2wH0MEJ8qI9Ks3wH4MEVJAofapN/C0iKZPCuY2mGY91H2SRgQ+xFC/bYKST7wHxxr8 o1KU3O8XaXBPUbKPkqLE/FoZdR+fPfn06eifxqM0KvDrj/TbJic+NYk1+EelJn2/X6TBPTXJPiQ1 afbxYzQdDx6/7+a/GvI7sAvWP9LgHtPxk4zpQ79fpME9pmcfEtM7e1SQ0D94Oh49Hj1+dDaejM+e PhkX+WiiWT8W60salY5nKT2iLz6kj8Ez2zu1D0BOcKbuE2/wbimKWSfdL9pAUxQHqMETIw00RZnO ZoH5hT/1BpqgNK5NvEGcpgQzjTTQNEW/+mPdL9pAU5XGtYk0CKhKnNpGGmiq0khtIw00VWm0+0Qa aKrSSG0jDbDfWXg5eD9poFYUTXDjR/XrfsdHtZGxH+9XM7mtN8B+DBKOmoboVG+A/RgkmsltrcF7 IreeA9q7pLgwMA6b3Yno+vO7p7v3dPcfmu4G1rFIg1+Z7npkd1VcTg2C1T9tZLfxpOVxOLCmus3U ut5AU91mal1vgP0YHJqpda1BZ2rd6NerfHrJbFXkZ5NHHbqeZ5++u67/IDQW1sP1a2jwLqisGxIX 3vVraBDXmQMsjTTQdLaRCkUaxOlsYFWLNIjrzMHzIg3iOnMzlfWoiajEdhqf+v0iDTwq20hO6g00 lW0mJ/UGmso2k5Nag67kxM+zExG+uAGVUFaNEsb4ACRg5LeuN2DrlSB488ryXyjiIIvWsqrwkX0N EKP1Y5HfvUlSP0H+q91y22GagvcO3sZJ/QTv3wm8cXzInWGuNs7fA9x1BaA65+l3AryAsrZ+6lxn MkgD2bp4n9bPyvY+bW39CM/pCuvCEu4M6xzkdCc4r41xD+PpkHNXGP9lV/K33wZxtSFzkXMuP5VK lnGTKMjVRvkAQBccR7UCXbPiXG/QcADm96s3GAbHX3GRtc7Rz7Q472Aq+KjjLw2sEaDy+9XJ6kSL 8o3I+Nsjq/sjP1XYJwHu6OnZ00fjTyepfiAyCJ7iTHt2oPxRxwE4Y05kFr9xHxIfJaMNNGo1ap+R Bhq1nOgdfOony9P4yXKAknWZpa9Rq/F5SkvWKCmYs17uqmi/J7V+5/GT5WBd6lryRGvJTtYPPnVb 5JnWkhu1z0gDrSU38/Fag66obCNUvRjsPe4Z0pBD97Fhh/H+bv03PmIcGwaWqDjMt+BYI7tswbFG mK/jGAsSdf4UfBqwrPXTgGWtn9tjGScxIO5lJmlBES6Y3/mZ+p2ffZzokXv40apTdF8ll8OBOfWD w7FicPuufQh52NfCYg1+nfXC/BG8EigYUYmsTxVhxuvwr+vvrn+AtZu06hIjX5lotg/zX3/1hMQ0 CgSa8jbuTOo+5D7cQhyADhbYd+0DrH0QxxBr8J7hNg/hNkc5NZ+E8Ln/+gdZOw9w4w3e8+r1fWjD w8G++cMplOTaRB2GybUPgeme50O0QRzPAxvXx4Dn/RBuJ6SIUmmI8QR3wF2Hf11/d/1jpLcys0iY ZDzsKb4PjQrRO92HoY8BZuL67ZovfYyW2vdNLYYhzI4GT4KPWauB9sGhVo/hcti0cYQPsbTepKMN YvN8j2sd0X1t2i5cuSd3aASed5QyyrX7GLWED6pENyrDdS1b69CNPrIRJTuuQzdHQGhdOKIi+/3q hiytQjdaxqWB794XUY/9btIg0IOTrVQ+hrQaqe6MRrmgyKO7tBrnASJ9GMHoHpE+BkQKXM2lQbU7 //tEpNxjNaM7NAI0yjUafRgB6+8cjQLf4Q+FRrPFfO6mmcyP/s7RyHKayV1agWDnIdKHMQvdI9LH gEgN/OjvXLCbWmbzT3dqZnUk8KixLe+RqSsyNRw1tkp3QSjhLbBp2gmbWo/zuwWKN/KzluN8d9k3 dtoGPvoKPjX7oNcbYD8eo9lyUWvwDjDTsq+nd2tn1S6Hm0/vcfMeN+WTjJsBi7wrbvoy6m8DN/OA HcLJ/F3aWV3O4ebH6oTwG0fOBjE0iAX97SLnO2acv2XktAwxb/CLS25oNUSFnuN79LxHT/l8KN75 W5RrXdEXQqSG47acW/Zu0e4eMbv6tsatN62ura3Wm1bXVs960+i9UG+g0bIxg0K9gcbKRjRpsd40 okncetP6aUaTvF2+hHa9dim0Z11j7uXKD48fje4p0sAH2OToigBgk/HDB9hW/EhChjuAvi3i1RrU 4ML2EhvdQ/5vkzO0Bj34ganJMQ8BxiRHPLyjOB9Vg44yxtyxoXZRyqThPcz/NmG+ldzf0kkp8H0U kG5EMWngP+7jC6X70MVo7j+/+gfqP22Ky01RRWoevaPP/vpPk0ej0ROs/zSGdo+fQP2nJ4+f3td/ +jU+76rW0mn23b+8w0orqcOlFVoIRktJzx50eZdZpG83dGrG1HD0jhn+gu7xbFzNjYL0SfGGQf6Z pkZBxpBkkGhL3NAADfEwb27sR7/yxVqwp3/dD2rke7VAO/+6H1DG92rhUv51P5jHTtgPMPEv74ul aF6ewMm/raHzYm5uGfhptjV0jmhtD1eONu1N3cF/2wT0QWR7W3Us0ty4Zs3d3zRPmUCg/+9rWNOL 2onlw5bt8vjFpGXH/MaWeKQ2t7g6SSHzD5k6dOuQ3aZL1+eMuq3UqPubQOz05BZduj5HSHsTfAbi xKhjczuds9SF7TQheOVptydcZI5hpHYYdOwyUsJJ8tZ17AI0Y6Tepi6HvZMFZotiKrGhDvZdEic1 NsThrIVTeR3OCNQde0t7ju2WPbKiRupqt/HHoHkr8wsWYNpl+Ny1Txr+ws4+kSpcuPknLtDYKQZp HXLXI3kPzi20J8FiigBU69AqCNV6CJlukkfCnVb4UdfFGp/SGdOp0/g2T7Jr8DilV54uYeR2sfIE wM27iRh5dxEjVwwzT+/RTcbIbyNj5ErGSFur0S3eRUsZnfp0fpLQq0ZBODA0dBA08u6CRq74YNqM tKSRJz6jo6iRdxc1ciVq5Kk9Bt37hMJGEsW+xSIraSNPIPF5IG7kSaQx9+SNPIHO5zWBI3EB6gJH /ih1xTsIELkWOJLexwkQacRFSRxpC3bRdakU10kkKR0FiFyLHMlkS8kcTZp5rUObhaTWoYuwmHsy R6OtItxtjSVpXD2QOhLX2Jc6utAXBQBJvfrp29Lvoq73ldSRMg1P6khapX5XNb3fYqpt7tJ1Yk4c SG3e+QlK5OjSpetzOqi5nsE8sXn3hZ12WtjBPqt7tEtHVO170kbyW3QiuX1P2EjduNvIGt0XWIka 6R26vktHw0b/doaNfkTOmCTJGX0lZyQiSrtJO1iBToio5YykDo7XpDENzWbSuFNfCRqJHbSgkdhF CxrJHToYN1IPLmpd7KFeEuv0JY1E6L2FoNEPBI1OT1KrkHTczK1Xi2VCY7tgqc3ti6d30Epi8fCb b79O6jfo+iAlc3R80C2n2En6GHaXPobdpY/hbaSPoSViiUs97QoE01uvcAcuOewuhgx9o0fyvC5u /T6dOPKwu0AyrAkk73O9u0klw9tIJUNPKknqEEoldQeP/d2sVDIanD1N6tpJLBl2FUuGSixJWoC8 Y/uOUsmwu1Qy7CqVDLtLJUNPKkmmTO2+DLUO7b4XtS6dOMU4QJNxoh9N7am3owK+rJKIPaGsYrt9 aC/E+8+H+oD/b7W7uppubt7bM/b7/45Hk8kZ+v+Onj59enY2Af/fp+PRvf/vr/GxBOOO/r+K9HxE I6WMleiR/LEOlTJYTGXlsZSX9Mc5UhJPc2zwfTdXHd6lT7geFnJlJI3KQo7I6bcag2e2d2rd3znV Wb3zlGFgHDa705v780t++Y6+9B261kve36Gr6hw7jnhXFbnjTd5bIeZ6s/dSCzfWJLUC6kG3CqhJ ZFKtyEddhjJCSZ3ypgwx76EQ34NIdbID0vQfHOb8Fa4+aCjQdWCfWv/54FZFqg6y4OKDhhpL9lmR nw/21hlSj9hz8cGeajv2YVRsx/v54Fa1YtTj6eKDaKkT+6Twx4P0ah/qUV0rfcRB6/3Wudg33Psr ChBv+X4zqO8b7v2lm963cu83N+/+Id9v7tF9q/jecyvuH/S9546LN/4VcmM1P/h9ZRvaywuFE7bx 1S6Nmpq9x2wbBzbbxoc2idx/7j/3n/vP/ef+c/+5/9x/7j/3n/vP/ef+c/+5/9x/7j/3n/vP/ef+ c/+5//ymP/8XM6FbSABYAgA= ------=_Part_90513_10176611.1227097621740--