unofficial mirror of bug-gnu-emacs@gnu.org 
 help / color / mirror / code / Atom feed
blob 4a4b65d37452cba69ef0b0e9b5f625aa748c898a 50011 bytes (raw)
name: lisp/calendar/timeclock.el 	 # note: path name is non-authoritative(*)

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
 
;;; timeclock.el --- mode for keeping track of how much you work  -*- lexical-binding:t -*-

;; Copyright (C) 1999-2021 Free Software Foundation, Inc.

;; Author: John Wiegley <johnw@gnu.org>
;; Created: 25 Mar 1999
;; Old-Version: 2.6.1
;; Keywords: calendar data

;; This file is part of GNU Emacs.

;; GNU Emacs is free software: you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation, either version 3 of the License, or
;; (at your option) any later version.

;; GNU Emacs is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
;; GNU General Public License for more details.

;; You should have received a copy of the GNU General Public License
;; along with GNU Emacs.  If not, see <https://www.gnu.org/licenses/>.

;;; Commentary:

;; This mode is for keeping track of time intervals.  You can use it
;; for whatever purpose you like, but the typical scenario is to keep
;; track of how much time you spend working on certain projects.
;;
;; Use `timeclock-in' when you start on a project, and `timeclock-out'
;; when you're done.  Once you've collected some data, you can use
;; `timeclock-workday-remaining' to see how much time is left to be
;; worked today (where `timeclock-workday' specifies the length of the
;; working day), and `timeclock-when-to-leave' to calculate when you're free.

;; You'll probably want to bind the timeclock commands to some handy
;; keystrokes.  At the moment, C-x t is unused:
;;
;;   (define-key ctl-x-map "ti" 'timeclock-in)
;;   (define-key ctl-x-map "to" 'timeclock-out)
;;   (define-key ctl-x-map "tc" 'timeclock-change)
;;   (define-key ctl-x-map "tr" 'timeclock-reread-log)
;;   (define-key ctl-x-map "tu" 'timeclock-update-mode-line)
;;   (define-key ctl-x-map "tw" 'timeclock-when-to-leave-string)

;; If you want Emacs to display the amount of time "left" to your
;; workday in the mode-line, you can either set the value of
;; `timeclock-mode-line-display' to t using M-x customize, or you can
;; add this code to your init file:
;;
;;   (require 'timeclock)
;;   (timeclock-mode-line-display)
;;
;; To cancel this mode line display at any time, just call
;; `timeclock-mode-line-display' again.

;; You may also want Emacs to ask you before exiting, if you are
;; currently working on a project.  This can be done either by setting
;; `timeclock-ask-before-exiting' to t using M-x customize (this is
;; the default), or by adding the following to your init file:
;;
;;   (add-hook 'kill-emacs-query-functions #'timeclock-query-out)

;; NOTE: If you change your timelog file without using timeclock's
;; functions, or if you change the value of any of timeclock's
;; customizable variables, you should run the command
;; `timeclock-reread-log'.  This will recompute any discrepancies in
;; your average working time, and will make sure that the various
;; display functions return the correct value.

;;; Code:

(require 'cl-lib)

(defgroup timeclock nil
  "Keeping track of the time that gets spent."
  :group 'data)

;;; User Variables:

(defcustom timeclock-file (locate-user-emacs-file "timelog" ".timelog")
  "The file used to store timeclock data in."
  :version "24.4"			; added locate-user-emacs-file
  :type 'file)

(defcustom timeclock-workday (* 8 60 60)
  "The length of a work period in seconds."
  :type 'integer)

(defcustom timeclock-relative t
  "Whether to make reported time relative to `timeclock-workday'.
For example, if the length of a normal workday is eight hours, and you
work four hours on Monday, then the amount of time \"remaining\" on
Tuesday is twelve hours -- relative to an averaged work period of
eight hours -- or eight hours, non-relative.  So relative time takes
into account any discrepancy of time under-worked or over-worked on
previous days.  This only affects the timeclock mode line display."
  :type 'boolean)

(defcustom timeclock-get-project-function 'timeclock-ask-for-project
  "The function used to determine the name of the current project.
When clocking in, and no project is specified, this function will be
called to determine what is the current project to be worked on.
If this variable is nil, no questions will be asked."
  :type 'function)

(defcustom timeclock-get-reason-function 'timeclock-ask-for-reason
  "A function used to determine the reason for clocking out.
When clocking out, and no reason is specified, this function will be
called to determine what is the reason.
If this variable is nil, no questions will be asked."
  :type 'function)

(defcustom timeclock-get-workday-function nil
  "A function used to determine the length of today's workday.
The first time that a user clocks in each day, this function will be
called to determine what is the length of the current workday.  If
the return value is nil, or equal to `timeclock-workday', nothing special
will be done.  If it is a quantity different from `timeclock-workday',
however, a record will be output to the timelog file to note the fact that
that day has a length that is different from the norm."
  :type '(choice (const nil) function))

(defcustom timeclock-ask-before-exiting t
  "If non-nil, ask if the user wants to clock out before exiting Emacs.
This variable only has effect if set with \\[customize]."
  :set (lambda (symbol value)
	 (if value
	     (add-hook 'kill-emacs-query-functions #'timeclock-query-out)
	   (remove-hook 'kill-emacs-query-functions #'timeclock-query-out))
	 (set symbol value))
  :type 'boolean)

(defvar timeclock-update-timer nil
  "The timer used to update `timeclock-mode-string'.")

(define-obsolete-variable-alias 'timeclock-modeline-display
  'timeclock-mode-line-display "24.3")

;; For byte-compiler.
(defvar display-time-hook)
(defvar timeclock-mode-line-display)

(defcustom timeclock-use-display-time t
  "If non-nil, use `display-time-hook' for doing mode line updates.
The advantage of this is that one less timer has to be set running
amok in Emacs's process space.  The disadvantage is that it requires
you to have `display-time' running.  If you don't want to use
`display-time', but still want the mode line to show how much time is
left, set this variable to nil.  Changing the value of this variable
while timeclock information is being displayed in the mode line has no
effect.  You should call the function `timeclock-mode-line-display' with
a positive argument to force an update."
  :set (lambda (symbol value)
	 (let ((currently-displaying
		(and (boundp 'timeclock-mode-line-display)
		     timeclock-mode-line-display)))
	   ;; if we're changing to the state that
	   ;; `timeclock-mode-line-display' is already using, don't
	   ;; bother toggling it.  This happens on the initial loading
	   ;; of timeclock.el.
	   (if (and currently-displaying
		    (or (and value
			     (boundp 'display-time-hook)
			     (memq #'timeclock-update-mode-line
				   display-time-hook))
			(and (not value)
			     timeclock-update-timer)))
	       (setq currently-displaying nil))
	   (and currently-displaying
		(setq timeclock-mode-line-display nil))
	   (set symbol value)
	   (and currently-displaying
		(setq timeclock-mode-line-display t))
           ;; FIXME: The return value isn't used, AFAIK!
	   value))
  :type 'boolean
  :require 'time)

(defcustom timeclock-first-in-hook nil
  "A hook run for the first \"in\" event each day.
Note that this hook is run before recording any events.  Thus the
value of `timeclock-hours-today', `timeclock-last-event' and the
return value of function `timeclock-last-period' are relative previous
to today."
  :type 'hook)

(defcustom timeclock-load-hook nil
  "Hook that gets run after timeclock has been loaded."
  :type 'hook)
(make-obsolete-variable 'timeclock-load-hook
                        "use `with-eval-after-load' instead." "28.1")

(defcustom timeclock-in-hook nil
  "A hook run every time an \"in\" event is recorded."
  :type 'hook)

(defcustom timeclock-day-over-hook nil
  "A hook that is run when the workday has been completed.
This hook is only run if the current time remaining is being displayed
in the mode line.  See the variable `timeclock-mode-line-display'."
  :type 'hook)

(defcustom timeclock-out-hook nil
  "A hook run every time an \"out\" event is recorded."
  :type 'hook)

(defcustom timeclock-done-hook nil
  "A hook run every time a project is marked as completed."
  :type 'hook)

(defcustom timeclock-event-hook nil
  "A hook run every time any event is recorded."
  :type 'hook)

(defvar timeclock-last-event nil
  "A list containing the last event that was recorded.
The format of this list is (CODE TIME PROJECT).")

(defvar timeclock-last-event-workday nil
  "The number of seconds in the workday of `timeclock-last-event'.")

;;; Internal Variables:

(defvar timeclock-discrepancy nil
  "A variable containing the time discrepancy before the last event.
Normally, timeclock assumes that you intend to work for
`timeclock-workday' seconds every day.  Any days in which you work
more or less than this amount is considered either a positive or
a negative discrepancy.  If you work in such a manner that the
discrepancy is always brought back to zero, then you will by
definition have worked an average amount equal to `timeclock-workday'
each day.")

(defvar timeclock-elapsed nil
  "A variable containing the time elapsed for complete periods today.
This value is not accurate enough to be useful by itself.  Rather,
call `timeclock-workday-elapsed', to determine how much time has been
worked so far today.  Also, if `timeclock-relative' is nil, this value
will be the same as `timeclock-discrepancy'.")

(defvar timeclock-use-elapsed nil
  "Non-nil if the mode line should display time elapsed, not remaining.")

(defvar timeclock-last-period nil
  "Integer representing the number of seconds in the last period.
Note that you shouldn't access this value, but instead should use the
function `timeclock-last-period'.")

(defvar timeclock-mode-string nil
  "The timeclock string (optionally) displayed in the mode line.
The time is bracketed by <> if you are clocked in, otherwise by [].")

(defvar timeclock-day-over nil
  "The date of the last day when notified \"day over\" for.")

;;; User Functions:

(define-obsolete-function-alias 'timeclock-modeline-display
  'timeclock-mode-line-display "24.3")

;;;###autoload
(define-minor-mode timeclock-mode-line-display
  "Toggle display of the amount of time left today in the mode line.
If `timeclock-use-display-time' is non-nil (the default), then
the function `display-time-mode' must be active, and the mode line
will be updated whenever the time display is updated.  Otherwise,
the timeclock will use its own sixty second timer to do its
updating.  With prefix ARG, turn mode line display on if and only
if ARG is positive.  Returns the new status of timeclock mode line
display (non-nil means on)."
  :global t
  ;; cf display-time-mode.
  (setq timeclock-mode-string "")
  (or global-mode-string (setq global-mode-string '("")))
  (if timeclock-mode-line-display
      (progn
        (or (memq 'timeclock-mode-string global-mode-string)
            (setq global-mode-string
                  (append global-mode-string '(timeclock-mode-string))))
        (add-hook 'timeclock-event-hook #'timeclock-update-mode-line)
        (when timeclock-update-timer
          (cancel-timer timeclock-update-timer)
          (setq timeclock-update-timer nil))
        (if (boundp 'display-time-hook)
            (remove-hook 'display-time-hook #'timeclock-update-mode-line))
        (if timeclock-use-display-time
            (progn
              ;; Update immediately so there is a visible change
              ;; on calling this function.
              (if display-time-mode
                  (timeclock-update-mode-line)
                (message "Activate `display-time-mode' or turn off \
`timeclock-use-display-time' to see timeclock information"))
              (add-hook 'display-time-hook #'timeclock-update-mode-line))
          (setq timeclock-update-timer
                (run-at-time nil 60 'timeclock-update-mode-line))))
    (setq global-mode-string
          (delq 'timeclock-mode-string global-mode-string))
    (remove-hook 'timeclock-event-hook #'timeclock-update-mode-line)
    (if (boundp 'display-time-hook)
        (remove-hook 'display-time-hook
                     #'timeclock-update-mode-line))
    (when timeclock-update-timer
      (cancel-timer timeclock-update-timer)
      (setq timeclock-update-timer nil))))

(defsubst timeclock-time-to-date (&optional time)
  "Convert the TIME value to a textual date string."
  (format-time-string "%Y/%m/%d" time))

;;;###autoload
(defun timeclock-in (&optional arg project find-project)
  "Clock in, recording the current time moment in the timelog.
With a numeric prefix ARG, record the fact that today has only that
many hours in it to be worked.  If ARG is a non-numeric prefix argument
\(non-nil, but not a number), 0 is assumed (working on a holiday or
weekend).  *If not called interactively, ARG should be the number of
_seconds_ worked today*.  This feature only has effect the first time
this function is called within a day.

PROJECT is the project being clocked into.  If PROJECT is nil, and
FIND-PROJECT is non-nil -- or the user calls `timeclock-in'
interactively -- call the function `timeclock-get-project-function' to
discover the name of the project."
  (interactive
   (list (and current-prefix-arg
	      (if (numberp current-prefix-arg)
		  (* current-prefix-arg 60 60)
		0))))
  (if (equal (car timeclock-last-event) "i")
      (error "You've already clocked in!")
    (unless timeclock-last-event
      (timeclock-reread-log))
    ;; Either no log file, or day has rolled over.
    (unless (and timeclock-last-event
                 (equal (timeclock-time-to-date
                         (cadr timeclock-last-event))
                        (timeclock-time-to-date)))
      (let ((workday (or (and (numberp arg) arg)
			 (and arg 0)
			 (and timeclock-get-workday-function
			      (funcall timeclock-get-workday-function))
			 timeclock-workday)))
	(run-hooks 'timeclock-first-in-hook)
	;; settle the discrepancy for the new day
	(setq timeclock-discrepancy
	      (- (or timeclock-discrepancy 0) workday))
	(if (not (= workday timeclock-workday))
	    (timeclock-log "h" (number-to-string
				(/ workday (if (zerop (% workday (* 60 60)))
					       60 60.0)
                                   60))))))
    (timeclock-log "i" (or project
			   (and timeclock-get-project-function
				(or find-project
				    (called-interactively-p 'interactive))
				(funcall timeclock-get-project-function))))
    (run-hooks 'timeclock-in-hook)))

;;;###autoload
(defun timeclock-out (&optional arg reason find-reason)
  "Clock out, recording the current time moment in the timelog.
If a prefix ARG is given, the user has completed the project that was
begun during the last time segment.

REASON is the user's reason for clocking out.  If REASON is nil, and
FIND-REASON is non-nil -- or the user calls `timeclock-out'
interactively -- call the function `timeclock-get-reason-function' to
discover the reason."
  (interactive "P")
  (or timeclock-last-event
      (error "You haven't clocked in!"))
  (if (equal (downcase (car timeclock-last-event)) "o")
      (error "You've already clocked out!")
    (timeclock-log
     (if arg "O" "o")
     (or reason
	 (and timeclock-get-reason-function
	      (or find-reason (called-interactively-p 'interactive))
	      (funcall timeclock-get-reason-function))))
    (run-hooks 'timeclock-out-hook)
    (if arg
	(run-hooks 'timeclock-done-hook))))

;; Should today-only be removed in favor of timeclock-relative? - gm
(defsubst timeclock-workday-remaining (&optional today-only)
  "Return the number of seconds until the workday is complete.
The amount returned is relative to the value of `timeclock-workday'.
If TODAY-ONLY is non-nil, the value returned will be relative only to
the time worked today, and not to past time."
  (let ((discrep (timeclock-find-discrep)))
    (if discrep
        (- (if today-only (cadr discrep)
             (car discrep)))
      0.0)))

;;;###autoload
(defun timeclock-status-string (&optional show-seconds today-only)
  "Report the overall timeclock status at the present moment.
If SHOW-SECONDS is non-nil, display second resolution.
If TODAY-ONLY is non-nil, the display will be relative only to time
worked today, ignoring the time worked on previous days."
  (interactive "P")
  (let* ((remainder (timeclock-workday-remaining
		     (or today-only
			 (not timeclock-relative))))
         (last-in (equal (car timeclock-last-event) "i"))
         (status
	  (format "Currently %s since %s (%s), %s %s, leave at %s"
		  (if last-in "IN" "OUT")
		  (if show-seconds
		      (format-time-string "%-I:%M:%S %p"
					  (nth 1 timeclock-last-event))
		    (format-time-string "%-I:%M %p"
					(nth 1 timeclock-last-event)))
		  (or (nth 2 timeclock-last-event)
		      (if last-in "**UNKNOWN**" "workday over"))
		  (timeclock-seconds-to-string remainder show-seconds t)
		  (if (> remainder 0)
		      "remaining" "over")
		  (timeclock-when-to-leave-string show-seconds today-only))))
    (if (called-interactively-p 'interactive)
	(message "%s" status)
      status)))

;;;###autoload
(defun timeclock-change (&optional arg project)
  "Change to working on a different project.
This clocks out of the current project, then clocks in on a new one.
With a prefix ARG, consider the previous project as finished at the
time of changeover.  PROJECT is the name of the last project you were
working on."
  (interactive "P")
  (timeclock-out arg)
  (timeclock-in nil project (called-interactively-p 'interactive)))

;;;###autoload
(defun timeclock-query-out ()
  "Ask the user whether to clock out.
This is a useful function for adding to `kill-emacs-query-functions'."
  (and (equal (car timeclock-last-event) "i")
       (y-or-n-p "You're currently clocking time, clock out? ")
       (timeclock-out))
  ;; Unconditionally return t for `kill-emacs-query-functions'.
  t)

;;;###autoload
(defun timeclock-reread-log ()
  "Re-read the timeclock, to account for external changes.
Returns the new value of `timeclock-discrepancy'."
  (interactive)
  (setq timeclock-discrepancy nil)
  (timeclock-find-discrep)
  (if (and timeclock-discrepancy timeclock-mode-line-display)
      (timeclock-update-mode-line))
  timeclock-discrepancy)

(defun timeclock-seconds-to-string (seconds &optional show-seconds
					    reverse-leader)
  "Convert SECONDS into a compact time string.
If SHOW-SECONDS is non-nil, make the resolution of the return string
include the second count.  If REVERSE-LEADER is non-nil, it means to
output a \"+\" if the time value is negative, rather than a \"-\".
This is used when negative time values have an inverted meaning (such
as with time remaining, where negative time really means overtime)."
  (let ((s (abs (truncate seconds))))
    (format (if show-seconds "%s%d:%02d:%02d" "%s%d:%02d")
	    (if (< seconds 0) (if reverse-leader "+" "-") "")
	    (/ s 3600) (% (/ s 60) 60) (% s 60))))

(defsubst timeclock-currently-in-p ()
  "Return non-nil if the user is currently clocked in."
  (equal (car timeclock-last-event) "i"))

;;;###autoload
(defun timeclock-workday-remaining-string (&optional show-seconds
						     today-only)
  "Return a string representing the amount of time left today.
Display second resolution if SHOW-SECONDS is non-nil.  If TODAY-ONLY
is non-nil, the display will be relative only to time worked today.
See `timeclock-relative' for more information about the meaning of
\"relative to today\"."
  (interactive)
  (let ((string (timeclock-seconds-to-string
		 (timeclock-workday-remaining today-only)
		 show-seconds t)))
    (if (called-interactively-p 'interactive)
	(message "%s" string)
      string)))

(defsubst timeclock-workday-elapsed ()
  "Return the number of seconds worked so far today.
If RELATIVE is non-nil, the amount returned will be relative to past
time worked.  The default is to return only the time that has elapsed
so far today."
  (let ((discrep (timeclock-find-discrep)))
    (if discrep
	(nth 2 discrep)
      0.0)))

;;;###autoload
(defun timeclock-workday-elapsed-string (&optional show-seconds)
  "Return a string representing the amount of time worked today.
Display seconds resolution if SHOW-SECONDS is non-nil.  If RELATIVE is
non-nil, the amount returned will be relative to past time worked."
  (interactive)
  (let ((string (timeclock-seconds-to-string (timeclock-workday-elapsed)
					     show-seconds)))
    (if (called-interactively-p 'interactive)
	(message "%s" string)
      string)))

(define-obsolete-function-alias 'timeclock-time-to-seconds 'float-time "26.1")
(define-obsolete-function-alias 'timeclock-seconds-to-time 'time-convert "26.1")

;; Should today-only be removed in favor of timeclock-relative? - gm
(defsubst timeclock-when-to-leave (&optional today-only)
  "Return a time value representing the end of today's workday.
If TODAY-ONLY is non-nil, the value returned will be relative only to
the time worked today, and not to past time."
  (time-since (let ((discrep (timeclock-find-discrep)))
		(if discrep
		    (if today-only
			(cadr discrep)
		      (car discrep))
		  0))))

;;;###autoload
(defun timeclock-when-to-leave-string (&optional show-seconds
						 today-only)
  "Return a string representing the end of today's workday.
This string is relative to the value of `timeclock-workday'.  If
SHOW-SECONDS is non-nil, the value printed/returned will include
seconds.  If TODAY-ONLY is non-nil, the value returned will be
relative only to the time worked today, and not to past time."
  ;; Should today-only be removed in favor of timeclock-relative? - gm
  (interactive)
  (let* ((then (timeclock-when-to-leave today-only))
	 (string
	  (if show-seconds
	      (format-time-string "%-I:%M:%S %p" then)
	    (format-time-string "%-I:%M %p" then))))
    (if (called-interactively-p 'interactive)
	(message "%s" string)
      string)))

(defun timeclock-make-hours-explicit (old-default)
  "Specify all workday lengths in `timeclock-file'.
OLD-DEFAULT hours are set for every day that has no number indicated."
  (interactive "P")
  (if old-default (setq old-default (prefix-numeric-value old-default))
    (error "`timeclock-make-hours-explicit' requires an explicit argument"))
  (let ((extant-timelog (find-buffer-visiting timeclock-file))
	current-date)
    (with-current-buffer (find-file-noselect timeclock-file t)
      (unwind-protect
	  (save-excursion
	    (save-restriction
	      (widen)
	      (goto-char (point-min))
	      (while (progn (skip-chars-forward "\n") (not (eobp)))
		;; This is just a variant of `timeclock-moment-regexp'.
		(unless (looking-at
			 (concat "^\\([bhioO]\\) \\([0-9]+/[0-9]+/[0-9]+\\) "
				 "\\([0-9]+:[0-9]+:[0-9]+\\)"))
		  (error "Can't parse `%s'" timeclock-file))
		(let ((this-date (match-string 2)))
		  (unless (or (and current-date
				   (string= this-date current-date))
			      (string= (match-string 1) "h"))
		    (insert (format "h %s %s %s\n" (match-string 2)
				    (match-string 3) old-default)))
		  (if (string-match "^[ih]" (match-string 1)) ; ignore logouts
		      (setq current-date this-date)))
		(forward-line))
	      (save-buffer)))
	(unless extant-timelog (kill-buffer (current-buffer)))))))

;;; Internal Functions:

(defvar timeclock-project-list nil)
(defvar timeclock-last-project nil)

(defun timeclock-completing-read (prompt alist &optional default)
  "A version of `completing-read'.
PROMPT, ALIST and DEFAULT are used for the PROMPT, COLLECTION and DEF
arguments of `completing-read'."
  (declare (obsolete completing-read "27.1"))
  (completing-read prompt alist nil nil nil nil default))

(defun timeclock-ask-for-project ()
  "Ask the user for the project they are clocking into."
  (completing-read
   (format-prompt "Clock into which project"
	          (or timeclock-last-project
	              (car timeclock-project-list)))
   timeclock-project-list
   nil nil nil nil
   (or timeclock-last-project
       (car timeclock-project-list))))

(defvar timeclock-reason-list nil)

(defun timeclock-ask-for-reason ()
  "Ask the user for the reason they are clocking out."
  (completing-read "Reason for clocking out: " timeclock-reason-list))

(define-obsolete-function-alias 'timeclock-update-modeline
  'timeclock-update-mode-line "24.3")

(defun timeclock-update-mode-line ()
  "Update the `timeclock-mode-string' displayed in the mode line.
The value of `timeclock-relative' affects the display as described in
that variable's documentation."
  (interactive)
  (let ((remainder
	 (if timeclock-use-elapsed
	     (timeclock-workday-elapsed)
	   (timeclock-workday-remaining (not timeclock-relative))))
	(last-in (equal (car timeclock-last-event) "i"))
	(todays-date (timeclock-time-to-date)))
    (when (and (< remainder 0)
	       (not (and timeclock-day-over
			 (equal timeclock-day-over todays-date))))
      (setq timeclock-day-over todays-date)
      (run-hooks 'timeclock-day-over-hook))
    (setq timeclock-mode-string
          (propertize
           (format " %c%s%c "
                   (if last-in ?< ?\[)
 		   (timeclock-seconds-to-string remainder nil t)
		   (if last-in ?> ?\]))
           'help-echo "timeclock: time remaining"))))

(put 'timeclock-mode-string 'risky-local-variable t)

(defun timeclock-log (code &optional project)
  "Log the event CODE to the timeclock log, at the time of call.
If PROJECT is a string, it represents the project which the event is
being logged for.  Normally only \"in\" events specify a project."
  (let ((extant-timelog (find-buffer-visiting timeclock-file)))
    (with-current-buffer (find-file-noselect timeclock-file t)
      (save-excursion
	(save-restriction
	  (widen)
	  (goto-char (point-max))
	  (if (not (bolp))
	      (insert "\n"))
	  (let ((now (current-time)))
	    (insert code " "
		    (format-time-string "%Y/%m/%d %H:%M:%S" now)
		    (or (and (stringp project)
			     (> (length project) 0)
			     (concat " " project))
			"")
		    "\n")
	    (if (equal (downcase code) "o")
		(setq timeclock-last-period
		      (float-time
		       (time-subtract now (cadr timeclock-last-event)))
		      timeclock-discrepancy
		      (+ timeclock-discrepancy
			 timeclock-last-period)))
	    (setq timeclock-last-event (list code now project)))))
      (save-buffer)
      (unless extant-timelog (kill-buffer (current-buffer)))))
  (run-hooks 'timeclock-event-hook))

(defvar timeclock-moment-regexp
  (concat "\\([bhioO]\\)\\s-+"
	  "\\([0-9]+\\)/\\([0-9]+\\)/\\([0-9]+\\)\\s-+"
	  "\\([0-9]+\\):\\([0-9]+\\):\\([0-9]+\\)[ \t]*" "\\([^\n]*\\)"))

(defun timeclock-read-moment ()
  "Read the moment under point from the timelog."
  (if (looking-at timeclock-moment-regexp)
      (let ((code (match-string 1))
	    (year (string-to-number (match-string 2)))
	    (mon  (string-to-number (match-string 3)))
	    (mday (string-to-number (match-string 4)))
	    (hour (string-to-number (match-string 5)))
	    (min  (string-to-number (match-string 6)))
	    (sec  (string-to-number (match-string 7)))
	    (project (match-string 8)))
	(list code (encode-time sec min hour mday mon year) project))))

(defun timeclock-last-period (&optional moment)
  "Return the value of the last event period.
If the last event was a clock-in, the period will be open ended, and
growing every second.  Otherwise, it is a fixed amount which has been
recorded to disk.  If MOMENT is non-nil, use that as the current time.
This is only provided for coherency when used by
`timeclock-discrepancy'."
  (if (equal (car timeclock-last-event) "i")
      (float-time (time-subtract moment (cadr timeclock-last-event)))
    timeclock-last-period))

(cl-defstruct (timeclock-entry
               (:constructor nil) (:copier nil)
               (:type list))
  begin end project comment
  ;; FIXME: Documented in docstring of timeclock-log-data, but I can't see
  ;; where it's used in the code.
  final-p)

(defsubst timeclock-entry-length (entry)
  "Return the length of ENTRY in seconds."
  (float-time (time-subtract (cadr entry) (car entry))))

(defsubst timeclock-entry-list-length (entry-list)
  "Return the total length of ENTRY-LIST in seconds."
  (let ((length 0))
    (dolist (entry entry-list)
      (setq length (+ length (timeclock-entry-length entry))))
    length))

(defsubst timeclock-entry-list-begin (entry-list)
  "Return the start time of the first element of ENTRY-LIST."
  (timeclock-entry-begin (car entry-list)))

(defsubst timeclock-entry-list-end (entry-list)
  "Return the end time of the last element of ENTRY-LIST."
  (timeclock-entry-end (car (last entry-list))))

(defsubst timeclock-entry-list-span (entry-list)
  "Return the total time in seconds spanned by ENTRY-LIST."
  (float-time (time-subtract (timeclock-entry-list-end entry-list)
			     (timeclock-entry-list-begin entry-list))))

(defsubst timeclock-entry-list-break (entry-list)
  "Return the total break time (span - length) in ENTRY-LIST."
  (- (timeclock-entry-list-span entry-list)
     (timeclock-entry-list-length entry-list)))

(defun timeclock-entry-list-projects (entry-list)
  "Return a list of all the projects in ENTRY-LIST."
  (let (projects)
    (dolist (entry entry-list)
      (cl-pushnew (timeclock-entry-project entry) projects :test #'equal))
    projects))

(defsubst timeclock-day-required (day)
  "Return the required length of DAY in seconds, default `timeclock-workday'."
  (or (car day) timeclock-workday))

(defsubst timeclock-day-length (day)
  "Return the actual length of DAY in seconds."
  (timeclock-entry-list-length (cdr day)))

(defsubst timeclock-day-debt (day)
  "Return the debt (required - actual) associated with DAY, in seconds."
  (- (timeclock-day-required day)
     (timeclock-day-length day)))

(defsubst timeclock-day-begin (day)
  "Return the start time of DAY."
  (timeclock-entry-list-begin (cdr day)))

(defsubst timeclock-day-end (day)
  "Return the end time of DAY."
  (timeclock-entry-list-end (cdr day)))

(defsubst timeclock-day-span (day)
  "Return the span of DAY."
  (timeclock-entry-list-span (cdr day)))

(defsubst timeclock-day-break (day)
  "Return the total break time of DAY."
  (timeclock-entry-list-break (cdr day)))

(defsubst timeclock-day-projects (day)
  "Return a list of all the projects in DAY."
  (timeclock-entry-list-projects (cddr day)))

(defun timeclock-day-list-template (func day-list)
  "Template for summing the result of FUNC on each element of DAY-LIST."
  (let ((length 0))
    (dolist (day day-list)
      (setq length (+ length (funcall func day))))
    length))

(defun timeclock-day-list-required (day-list)
  "Return total required length of DAY-LIST, in seconds."
  (timeclock-day-list-template #'timeclock-day-required day-list))

(defun timeclock-day-list-length (day-list)
  "Return actual length of DAY-LIST, in seconds."
  (timeclock-day-list-template #'timeclock-day-length day-list))

(defun timeclock-day-list-debt (day-list)
  "Return total debt (required - actual) of DAY-LIST."
  (timeclock-day-list-template #'timeclock-day-debt day-list))

(defsubst timeclock-day-list-begin (day-list)
  "Return the start time of DAY-LIST."
  (timeclock-day-begin (car day-list)))

(defsubst timeclock-day-list-end (day-list)
  "Return the end time of DAY-LIST."
  (timeclock-day-end (car (last day-list))))

(defun timeclock-day-list-span (day-list)
  "Return the span of DAY-LIST."
  (timeclock-day-list-template #'timeclock-day-span day-list))

(defun timeclock-day-list-break (day-list)
  "Return the total break of DAY-LIST."
  (timeclock-day-list-template #'timeclock-day-break day-list))

(defun timeclock-day-list-projects (day-list)
  "Return a list of all the projects in DAY-LIST."
  (let (projects)
    (dolist (day day-list)
      (dolist (proj (timeclock-day-projects day))
        (cl-pushnew proj projects :test #'equal)))
    projects))

(defsubst timeclock-current-debt (&optional log-data)
  "Return the seconds debt from LOG-DATA, default `timeclock-log-data'."
  (nth 0 (or log-data (timeclock-log-data))))

(defsubst timeclock-day-alist (&optional log-data)
  "Return the date alist from LOG-DATA, default `timeclock-log-data'."
  (nth 1 (or log-data (timeclock-log-data))))

(defun timeclock-day-list (&optional log-data)
  "Return a list of the cdrs of the date alist from LOG-DATA."
  (let (day-list)
    (dolist (date-list (timeclock-day-alist log-data))
      (push (cdr date-list) day-list))
    day-list))

(defsubst timeclock-project-alist (&optional log-data)
  "Return the project alist from LOG-DATA, default `timeclock-log-data'."
  (nth 2 (or log-data (timeclock-log-data))))

(defun timeclock-log-data (&optional recent-only filename)
  "Return the contents of the timelog file, in a useful format.
If the optional argument RECENT-ONLY is non-nil, only show the contents
from the last point where the time debt (see below) was set.
If the optional argument FILENAME is non-nil, it is used instead of
the file specified by `timeclock-file.'

A timelog contains data in the form of a single entry per line.
Each entry has the form:

  CODE YYYY/MM/DD HH:MM:SS [COMMENT]

CODE is one of: b, h, i, o or O.  COMMENT is optional when the code is
i, o or O.  The meanings of the codes are:

  b  Set the current time balance, or \"time debt\".  Useful when
     archiving old log data, when a debt must be carried forward.
     The COMMENT here is the number of seconds of debt.

  h  Set the required working time for the given day.  This must
     be the first entry for that day.  The COMMENT in this case is
     the number of hours in this workday.  Floating point amounts
     are allowed.

  i  Clock in.  The COMMENT in this case should be the name of the
     project worked on.

  o  Clock out.  COMMENT is unnecessary, but can be used to provide
     a description of how the period went, for example.

  O  Final clock out.  Whatever project was being worked on, it is
     now finished.  Useful for creating summary reports.

When this function is called, it will return a data structure with the
following format:

  (DEBT ENTRIES-BY-DAY ENTRIES-BY-PROJECT)

DEBT is a floating point number representing the number of seconds
“owed” before any work was done.  For a new file (one without a `b'
entry), this is always zero.

The two entries lists have similar formats.  They are both alists,
where the CAR is the index, and the CDR is a list of time entries.
For ENTRIES-BY-DAY, the CAR is a textual date string, of the form
YYYY/MM/DD.  For ENTRIES-BY-PROJECT, it is the name of the project
worked on, or t for the default project.

The CDR for ENTRIES-BY-DAY is slightly different than for
ENTRIES-BY-PROJECT.  It has the following form:

  (DAY-LENGTH TIME-ENTRIES...)

For ENTRIES-BY-PROJECT, there is no DAY-LENGTH member.  It is simply a
list of TIME-ENTRIES.  Note that if DAY-LENGTH is nil, it means
whatever is the default should be used.

A TIME-ENTRY is a recorded time interval.  It has the following format
\(although generally one does not have to manipulate these entries
directly; see below):

  (BEGIN-TIME END-TIME PROJECT [COMMENT] [FINAL-P])

Anyway, suffice it to say there are a lot of structures.  Typically
the user is expected to manipulate to the day(s) or project(s) that he
or she wants, at which point the following helper functions may be
used:

  timeclock-day-required
  timeclock-day-length
  timeclock-day-debt
  timeclock-day-begin
  timeclock-day-end
  timeclock-day-span
  timeclock-day-break
  timeclock-day-projects

  timeclock-day-list-required
  timeclock-day-list-length
  timeclock-day-list-debt
  timeclock-day-list-begin
  timeclock-day-list-end
  timeclock-day-list-span
  timeclock-day-list-break
  timeclock-day-list-projects

  timeclock-entry-length
  timeclock-entry-begin
  timeclock-entry-end
  timeclock-entry-project
  timeclock-entry-comment

  timeclock-entry-list-length
  timeclock-entry-list-begin
  timeclock-entry-list-end
  timeclock-entry-list-span
  timeclock-entry-list-break
  timeclock-entry-list-projects

A few comments should make the use of the above functions obvious:

  `required' is the amount of time that must be spent during a day, or
  sequence of days, in order to have no debt.

  `length' is the actual amount of time that was spent.

  `debt' is the difference between required time and length.  A
  negative debt signifies overtime.

  `begin' is the earliest moment at which work began.

  `end' is the final moment work was done.

  `span' is the difference between begin and end.

  `break' is the difference between span and length.

  `project' is the project that was worked on, and `projects' is a
  list of all the projects that were worked on during a given period.

  `comment', where it applies, could mean anything.

There are a few more functions available, for locating day and entry
lists:

  timeclock-day-alist LOG-DATA
  timeclock-project-alist LOG-DATA
  timeclock-current-debt LOG-DATA

See the documentation for the given function if more info is needed."
  (let ((log-data (list 0.0 nil nil))
	(now (current-time))
	last-date-limited last-date-seconds last-date
	(line 0) last beg day entry event)
    (with-temp-buffer
      (insert-file-contents (or filename timeclock-file))
      (when recent-only
	(goto-char (point-max))
	(unless (re-search-backward "^b\\s-+" nil t)
	  (goto-char (point-min))))
      (while (or (setq event (timeclock-read-moment))
		 (and beg (not last)
		      (setq last t event (list "o" now))))
	(setq line (1+ line))
	(pcase (car event)
          ("b"
	   (setcar log-data (string-to-number (nth 2 event))))
	  ("h"
	   (setq last-date-limited (timeclock-time-to-date (cadr event))
		 last-date-seconds (* (string-to-number (nth 2 event))
				      3600.0)))
	  ("i"
	   (if beg
	       (error "Error in format of timelog file, line %d" line)
	     (setq beg t))
	   (setq entry (list (cadr event) nil
			     (and (> (length (nth 2 event)) 0)
				  (nth 2 event))))
	   (let ((date (timeclock-time-to-date (cadr event))))
	     (if (and last-date
		      (not (equal date last-date)))
		 (progn
		   (setcar (cdr log-data)
			   (cons (cons last-date day)
				 (cadr log-data)))
		   (setq day (list (and last-date-limited
					last-date-seconds))))
	       (unless day
		 (setq day (list (and last-date-limited
				      last-date-seconds)))))
	     (setq last-date date
		   last-date-limited nil)))
	  ((or "o" "O")
	   (if (not beg)
	       (error "Error in format of timelog file, line %d" line)
	     (setq beg nil))
	   (setcar (cdr entry) (cadr event))
	   (let ((desc (and (> (length (nth 2 event)) 0)
			    (nth 2 event))))
	     (if desc
		 (nconc entry (list (nth 2 event))))
	     (if (equal (car event) "O")
		 (nconc entry (if desc
				  (list t)
				(list nil t))))
	     (nconc day (list entry))
	     (setq desc (nth 2 entry))
	     (let ((proj (assoc desc (nth 2 log-data))))
	       (if (null proj)
		   (setcar (cddr log-data)
			   (cons (cons desc (list entry))
				 (nth 2 log-data)))
		 (nconc (cdr proj) (list entry)))))))
	(forward-line))
      (if day
	  (setcar (cdr log-data)
		  (cons (cons last-date day)
			(cadr log-data))))
      log-data)))

(defun timeclock-find-discrep ()
  "Calculate time discrepancies, in seconds.
The result is a three element list, containing the total time
discrepancy, today's discrepancy, and the time worked today."
  ;; This is not implemented in terms of the functions above, because
  ;; it's a bit wasteful to read all of that data in, just to throw
  ;; away more than 90% of the information afterwards.
  ;;
  ;; If it were implemented using those functions, it would look
  ;; something like this:
  ;;  (let ((days (timeclock-day-alist (timeclock-log-data)))
  ;;        (total 0.0))
  ;;    (while days
  ;;      (setq total (+ total (- (timeclock-day-length (cdar days))
  ;;                              (timeclock-day-required (cdar days))))
  ;;            days (cdr days)))
  ;;    total)
  (let* ((now (current-time))
	 (todays-date (timeclock-time-to-date now))
	 (first t) (accum 0) (elapsed 0)
	 event beg last-date
	 last-date-limited last-date-seconds)
    (unless timeclock-discrepancy
      (when (file-readable-p timeclock-file)
	(setq timeclock-project-list nil
	      timeclock-last-project nil
	      timeclock-reason-list nil
	      timeclock-elapsed 0)
	(with-temp-buffer
	  (insert-file-contents timeclock-file)
	  (goto-char (point-max))
	  (unless (re-search-backward "^b\\s-+" nil t)
	    (goto-char (point-min)))
	  (while (setq event (timeclock-read-moment))
	    (cond ((equal (car event) "b")
		   (setq accum (string-to-number (nth 2 event))))
		  ((equal (car event) "h")
		   (setq last-date-limited
			 (timeclock-time-to-date (cadr event))
			 last-date-seconds
			 (* (string-to-number (nth 2 event)) 3600.0)))
		  ((equal (car event) "i")
		   (when (and (nth 2 event)
			      (> (length (nth 2 event)) 0))
		     (add-to-list 'timeclock-project-list (nth 2 event))
		     (setq timeclock-last-project (nth 2 event)))
		   (let ((date (timeclock-time-to-date (cadr event))))
		     (if (if last-date
			     (not (equal date last-date))
			   first)
			 (setq first nil
			       accum (- accum (if last-date-limited
						  last-date-seconds
						timeclock-workday))))
		     (setq last-date date
			   last-date-limited nil)
		     (if beg
			 (error "Error in format of timelog file!")
		       (setq beg (cadr event)))))
		  ((equal (downcase (car event)) "o")
		   (if (and (nth 2 event)
			    (> (length (nth 2 event)) 0))
		       (add-to-list 'timeclock-reason-list (nth 2 event)))
		   (if (not beg)
		       (error "Error in format of timelog file!")
		     (setq timeclock-last-period
			   (float-time (time-subtract (cadr event) beg))
			   accum (+ timeclock-last-period accum)
			   beg nil))
		   (if (equal last-date todays-date)
		       (setq timeclock-elapsed
			     (+ timeclock-last-period timeclock-elapsed)))))
	    (setq timeclock-last-event event
		  timeclock-last-event-workday
		  (if (equal todays-date last-date-limited)
		      last-date-seconds
		    timeclock-workday))
	    (forward-line))
	  (setq timeclock-discrepancy accum))))
    (unless timeclock-last-event-workday
      (setq timeclock-last-event-workday timeclock-workday))
    (setq accum (or timeclock-discrepancy 0)
	  elapsed (or timeclock-elapsed elapsed))
    (if timeclock-last-event
	(if (equal (car timeclock-last-event) "i")
	    (let ((last-period (timeclock-last-period now)))
	      (setq accum (+ accum last-period)
		    elapsed (+ elapsed last-period)))
	  (if (not (equal (timeclock-time-to-date
			   (cadr timeclock-last-event))
			  (timeclock-time-to-date now)))
	      (setq accum (- accum timeclock-last-event-workday)))))
    (list accum (- elapsed timeclock-last-event-workday)
	  elapsed)))

;;; A reporting function that uses timeclock-log-data

(defun timeclock-day-base (&optional time)
  "Given a time within a day, return 0:0:0 within that day.
If optional argument TIME is non-nil, use that instead of the current time."
  (let ((decoded (decode-time time)))
    (setf (decoded-time-second decoded) 0)
    (setf (decoded-time-minute decoded) 0)
    (setf (decoded-time-hour decoded) 0)
    (encode-time decoded)))

(defun timeclock-mean (l)
  "Compute the arithmetic mean of the values in the list L."
  (if (not (consp l))
      0
    (let ((total 0))
      (dolist (thisl l)
        (setq total (+ total thisl)))
      (/ total (length l)))))

(defun timeclock-generate-report (&optional html-p)
  "Generate a summary report based on the current timelog file.
By default, the report is in plain text, but if the optional argument
HTML-P is non-nil, HTML markup is added."
  (interactive "P")
  (let ((log (timeclock-log-data))
	(today (timeclock-day-base)))
    (if html-p (insert "<p>"))
    (insert "Currently ")
    (let ((project (nth 2 timeclock-last-event))
	  (begin (nth 1 timeclock-last-event))
	  done)
      (if (timeclock-currently-in-p)
	  (insert "IN")
	(if (zerop (length project))
	    (progn (insert "Done Working Today")
		   (setq done t))
	  (insert "OUT")))
      (unless done
	(insert " since " (format-time-string "%Y/%m/%d %-I:%M %p" begin))
	(if html-p
	    (insert "<br>\n<b>")
	  (insert "\n*"))
	(if (timeclock-currently-in-p)
	    (insert "Working on "))
	(if html-p
	    (insert project "</b><br>\n")
	  (insert project "*\n"))
	(let ((proj-data (cdr (assoc project (timeclock-project-alist log))))
	      (two-weeks-ago (time-subtract today (* 2 7 24 60 60)))
	      two-week-len today-len)
	  (while proj-data
	    (if (not (time-less-p
		      (timeclock-entry-begin (car proj-data)) today))
		(setq today-len (timeclock-entry-list-length proj-data)
		      proj-data nil)
	      (if (and (null two-week-len)
		       (not (time-less-p
			     (timeclock-entry-begin (car proj-data))
			     two-weeks-ago)))
		  (setq two-week-len (timeclock-entry-list-length proj-data)))
	      (setq proj-data (cdr proj-data))))
	  (if (null two-week-len)
	      (setq two-week-len today-len))
	  (if html-p (insert "<p>"))
	  (if today-len
	      (insert "\nTime spent on this task today: "
		      (timeclock-seconds-to-string today-len)
		      ".  In the last two weeks: "
		      (timeclock-seconds-to-string two-week-len))
	    (if two-week-len
		(insert "\nTime spent on this task in the last two weeks: "
			(timeclock-seconds-to-string two-week-len))))
	  (if html-p (insert "<br>"))
	  (insert "\n"
		  (timeclock-seconds-to-string (timeclock-workday-elapsed))
		  " worked today, "
		  (timeclock-seconds-to-string (timeclock-workday-remaining))
		  " remaining, done at "
		  (timeclock-when-to-leave-string) "\n")))
      (if html-p (insert "<p>"))
      (insert "\nThere have been "
	      (number-to-string
	       (length (timeclock-day-alist log)))
	      " days of activity, starting "
	      (caar (last (timeclock-day-alist log))))
      (if html-p (insert "</p>"))
      (when html-p
	(insert "<p>
<table>
<td width=\"25\"><br></td><td>
<table border=1 cellpadding=3>
<tr><th><i>Statistics</i></th>
    <th>Entire</th>
    <th>-30 days</th>
    <th>-3 mons</th>
    <th>-6 mons</th>
    <th>-1 year</th>
</tr>")
	(let* ((day-list (timeclock-day-list))
	       (thirty-days-ago (time-subtract today (* 30 24 60 60)))
	       (three-months-ago (time-subtract today (* 90 24 60 60)))
	       (six-months-ago (time-subtract today (* 180 24 60 60)))
	       (one-year-ago (time-subtract today (* 365 24 60 60)))
	       (time-in  (vector (list t) (list t) (list t) (list t) (list t)))
	       (time-out (vector (list t) (list t) (list t) (list t) (list t)))
	       (breaks   (vector (list t) (list t) (list t) (list t) (list t)))
	       (workday  (vector (list t) (list t) (list t) (list t) (list t)))
	       (lengths  (vector '(0 0) thirty-days-ago three-months-ago
				 six-months-ago one-year-ago)))
	  ;; collect statistics from complete timelog
	  (dolist (day day-list)
	    (dotimes (i 5)
	      (unless (time-less-p
		       (timeclock-day-begin day)
		       (aref lengths i))
		(let ((base (timeclock-day-base (timeclock-day-begin day))))
		  (nconc (aref time-in i)
			 (list (float-time (time-subtract
					    (timeclock-day-begin day)
				            base))))
		  (let ((span (timeclock-day-span day))
			(len (timeclock-day-length day))
			(req (timeclock-day-required day)))
		    ;; If the day's actual work length is less than
		    ;; 70% of its span, then likely the exit time
		    ;; and break amount are not worthwhile adding to
		    ;; the statistic
		    (when (and (> span 0)
			       (> (/ (float len) (float span)) 0.70))
		      (nconc (aref time-out i)
			     (list (float-time (time-subtract
						(timeclock-day-end day)
						base))))
		      (nconc (aref breaks i) (list (- span len))))
		    (if req
			(setq len (+ len (- timeclock-workday req))))
		    (nconc (aref workday i) (list len)))))))
	  ;; average statistics
	  (dotimes (i 5)
	    (aset time-in i (timeclock-mean (cdr (aref time-in i))))
	    (aset time-out i (timeclock-mean (cdr (aref time-out i))))
	    (aset breaks i (timeclock-mean (cdr (aref breaks i))))
	    (aset workday i (timeclock-mean (cdr (aref workday i)))))
	  ;; Output the HTML table
	  (insert "<tr>\n")
	  (insert "<td align=\"center\">Time in</td>\n")
	  (dotimes (i 5)
	    (insert "<td align=\"right\">"
		    (timeclock-seconds-to-string (aref time-in i))
		    "</td>\n"))
	  (insert "</tr>\n")

	  (insert "<tr>\n")
	  (insert "<td align=\"center\">Time out</td>\n")
	  (dotimes (i 5)
	    (insert "<td align=\"right\">"
		    (timeclock-seconds-to-string (aref time-out i))
		    "</td>\n"))
	  (insert "</tr>\n")

	  (insert "<tr>\n")
	  (insert "<td align=\"center\">Break</td>\n")
	  (dotimes (i 5)
	    (insert "<td align=\"right\">"
		    (timeclock-seconds-to-string (aref breaks i))
		    "</td>\n"))
	  (insert "</tr>\n")

	  (insert "<tr>\n")
	  (insert "<td align=\"center\">Workday</td>\n")
	  (dotimes (i 5)
	    (insert "<td align=\"right\">"
		    (timeclock-seconds-to-string (aref workday i))
		    "</td>\n"))
	  (insert "</tr>\n"))
	(insert "<tfoot>
<td colspan=\"6\" align=\"center\">
  <i>These are approximate figures</i></td>
</tfoot>
</table>
</td></table>")))))

;;; A helpful little function

(defun timeclock-visit-timelog ()
  "Open the file named by `timeclock-file' in another window."
  (interactive)
  (find-file-other-window timeclock-file))

(provide 'timeclock)

(run-hooks 'timeclock-load-hook)

;; make sure we know the list of reasons, projects, and have computed
;; the last event and current discrepancy.
(if (file-readable-p timeclock-file)
    ;; FIXME: Loading a file should not have these kinds of side-effects.
    (timeclock-reread-log))

;;; timeclock.el ends here

debug log:

solving 4a4b65d374 ...
found 4a4b65d374 in https://git.savannah.gnu.org/cgit/emacs.git

(*) Git path names are given by the tree(s) the blob belongs to.
    Blobs themselves have no identifier aside from the hash of its contents.^

Code repositories for project(s) associated with this public inbox

	https://git.savannah.gnu.org/cgit/emacs.git

This is a public inbox, see mirroring instructions
for how to clone and mirror all data and code used for this inbox;
as well as URLs for read-only IMAP folder(s) and NNTP newsgroup(s).