/* Execution of byte code produced by bytecomp.el.
Copyright (C) 1985-1988, 1993, 2000-2016 Free Software Foundation,
Inc.
This file is part of GNU Emacs.
GNU Emacs is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
GNU Emacs is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU Emacs. If not, see . */
/*
hacked on by jwz@lucid.com 17-jun-91
o added a compile-time switch to turn on simple sanity checking;
o put back the obsolete byte-codes for error-detection;
o added a new instruction, unbind_all, which I will use for
tail-recursion elimination;
o made temp_output_buffer_show be called with the right number
of args;
o made the new bytecodes be called with args in the right order;
o added metering support.
by Hallvard:
o added relative jump instructions;
o all conditionals now only do QUIT if they jump.
*/
#include
#include "lisp.h"
#include "blockinput.h"
#include "character.h"
#include "buffer.h"
#include "keyboard.h"
#include "syntax.h"
#include "window.h"
#ifdef CHECK_FRAME_FONT
#include "frame.h"
#include "xterm.h"
#endif
/*
* define BYTE_CODE_SAFE to enable some minor sanity checking (useful for
* debugging the byte compiler...)
*
* define BYTE_CODE_METER to enable generation of a byte-op usage histogram.
*/
/* #define BYTE_CODE_SAFE */
/* #define BYTE_CODE_METER */
/* If BYTE_CODE_THREADED is defined, then the interpreter will be
indirect threaded, using GCC's computed goto extension. This code,
as currently implemented, is incompatible with BYTE_CODE_SAFE and
BYTE_CODE_METER. */
#if (defined __GNUC__ && !defined __STRICT_ANSI__ \
&& !defined BYTE_CODE_SAFE && !defined BYTE_CODE_METER)
#define BYTE_CODE_THREADED
#endif
#ifdef BYTE_CODE_METER
#define METER_2(code1, code2) AREF (AREF (Vbyte_code_meter, code1), code2)
#define METER_1(code) METER_2 (0, code)
#define METER_CODE(last_code, this_code) \
{ \
if (byte_metering_on) \
{ \
if (XFASTINT (METER_1 (this_code)) < MOST_POSITIVE_FIXNUM) \
XSETFASTINT (METER_1 (this_code), \
XFASTINT (METER_1 (this_code)) + 1); \
if (last_code \
&& (XFASTINT (METER_2 (last_code, this_code)) \
< MOST_POSITIVE_FIXNUM)) \
XSETFASTINT (METER_2 (last_code, this_code), \
XFASTINT (METER_2 (last_code, this_code)) + 1); \
} \
}
#endif /* BYTE_CODE_METER */
/* Byte codes: */
#define BYTE_CODES \
DEFINE (Bstack_ref, 0) /* Actually, Bstack_ref+0 is not implemented: use dup. */ \
DEFINE (Bstack_ref1, 1) \
DEFINE (Bstack_ref2, 2) \
DEFINE (Bstack_ref3, 3) \
DEFINE (Bstack_ref4, 4) \
DEFINE (Bstack_ref5, 5) \
DEFINE (Bstack_ref6, 6) \
DEFINE (Bstack_ref7, 7) \
DEFINE (Bvarref, 010) \
DEFINE (Bvarref1, 011) \
DEFINE (Bvarref2, 012) \
DEFINE (Bvarref3, 013) \
DEFINE (Bvarref4, 014) \
DEFINE (Bvarref5, 015) \
DEFINE (Bvarref6, 016) \
DEFINE (Bvarref7, 017) \
DEFINE (Bvarset, 020) \
DEFINE (Bvarset1, 021) \
DEFINE (Bvarset2, 022) \
DEFINE (Bvarset3, 023) \
DEFINE (Bvarset4, 024) \
DEFINE (Bvarset5, 025) \
DEFINE (Bvarset6, 026) \
DEFINE (Bvarset7, 027) \
DEFINE (Bvarbind, 030) \
DEFINE (Bvarbind1, 031) \
DEFINE (Bvarbind2, 032) \
DEFINE (Bvarbind3, 033) \
DEFINE (Bvarbind4, 034) \
DEFINE (Bvarbind5, 035) \
DEFINE (Bvarbind6, 036) \
DEFINE (Bvarbind7, 037) \
DEFINE (Bcall, 040) \
DEFINE (Bcall1, 041) \
DEFINE (Bcall2, 042) \
DEFINE (Bcall3, 043) \
DEFINE (Bcall4, 044) \
DEFINE (Bcall5, 045) \
DEFINE (Bcall6, 046) \
DEFINE (Bcall7, 047) \
DEFINE (Bunbind, 050) \
DEFINE (Bunbind1, 051) \
DEFINE (Bunbind2, 052) \
DEFINE (Bunbind3, 053) \
DEFINE (Bunbind4, 054) \
DEFINE (Bunbind5, 055) \
DEFINE (Bunbind6, 056) \
DEFINE (Bunbind7, 057) \
\
DEFINE (Bpophandler, 060) \
DEFINE (Bpushconditioncase, 061) \
DEFINE (Bpushcatch, 062) \
\
DEFINE (Bnth, 070) \
DEFINE (Bsymbolp, 071) \
DEFINE (Bconsp, 072) \
DEFINE (Bstringp, 073) \
DEFINE (Blistp, 074) \
DEFINE (Beq, 075) \
DEFINE (Bmemq, 076) \
DEFINE (Bnot, 077) \
DEFINE (Bcar, 0100) \
DEFINE (Bcdr, 0101) \
DEFINE (Bcons, 0102) \
DEFINE (Blist1, 0103) \
DEFINE (Blist2, 0104) \
DEFINE (Blist3, 0105) \
DEFINE (Blist4, 0106) \
DEFINE (Blength, 0107) \
DEFINE (Baref, 0110) \
DEFINE (Baset, 0111) \
DEFINE (Bsymbol_value, 0112) \
DEFINE (Bsymbol_function, 0113) \
DEFINE (Bset, 0114) \
DEFINE (Bfset, 0115) \
DEFINE (Bget, 0116) \
DEFINE (Bsubstring, 0117) \
DEFINE (Bconcat2, 0120) \
DEFINE (Bconcat3, 0121) \
DEFINE (Bconcat4, 0122) \
DEFINE (Bsub1, 0123) \
DEFINE (Badd1, 0124) \
DEFINE (Beqlsign, 0125) \
DEFINE (Bgtr, 0126) \
DEFINE (Blss, 0127) \
DEFINE (Bleq, 0130) \
DEFINE (Bgeq, 0131) \
DEFINE (Bdiff, 0132) \
DEFINE (Bnegate, 0133) \
DEFINE (Bplus, 0134) \
DEFINE (Bmax, 0135) \
DEFINE (Bmin, 0136) \
DEFINE (Bmult, 0137) \
\
DEFINE (Bpoint, 0140) \
/* Was Bmark in v17. */ \
DEFINE (Bsave_current_buffer, 0141) /* Obsolete. */ \
DEFINE (Bgoto_char, 0142) \
DEFINE (Binsert, 0143) \
DEFINE (Bpoint_max, 0144) \
DEFINE (Bpoint_min, 0145) \
DEFINE (Bchar_after, 0146) \
DEFINE (Bfollowing_char, 0147) \
DEFINE (Bpreceding_char, 0150) \
DEFINE (Bcurrent_column, 0151) \
DEFINE (Bindent_to, 0152) \
DEFINE (Beolp, 0154) \
DEFINE (Beobp, 0155) \
DEFINE (Bbolp, 0156) \
DEFINE (Bbobp, 0157) \
DEFINE (Bcurrent_buffer, 0160) \
DEFINE (Bset_buffer, 0161) \
DEFINE (Bsave_current_buffer_1, 0162) /* Replacing Bsave_current_buffer. */ \
DEFINE (Binteractive_p, 0164) /* Obsolete since Emacs-24.1. */ \
\
DEFINE (Bforward_char, 0165) \
DEFINE (Bforward_word, 0166) \
DEFINE (Bskip_chars_forward, 0167) \
DEFINE (Bskip_chars_backward, 0170) \
DEFINE (Bforward_line, 0171) \
DEFINE (Bchar_syntax, 0172) \
DEFINE (Bbuffer_substring, 0173) \
DEFINE (Bdelete_region, 0174) \
DEFINE (Bnarrow_to_region, 0175) \
DEFINE (Bwiden, 0176) \
DEFINE (Bend_of_line, 0177) \
\
DEFINE (Bconstant2, 0201) \
DEFINE (Bgoto, 0202) \
DEFINE (Bgotoifnil, 0203) \
DEFINE (Bgotoifnonnil, 0204) \
DEFINE (Bgotoifnilelsepop, 0205) \
DEFINE (Bgotoifnonnilelsepop, 0206) \
DEFINE (Breturn, 0207) \
DEFINE (Bdiscard, 0210) \
DEFINE (Bdup, 0211) \
\
DEFINE (Bsave_excursion, 0212) \
DEFINE (Bsave_window_excursion, 0213) /* Obsolete since Emacs-24.1. */ \
DEFINE (Bsave_restriction, 0214) \
DEFINE (Bcatch, 0215) \
\
DEFINE (Bunwind_protect, 0216) \
DEFINE (Bcondition_case, 0217) \
DEFINE (Btemp_output_buffer_setup, 0220) /* Obsolete since Emacs-24.1. */ \
DEFINE (Btemp_output_buffer_show, 0221) /* Obsolete since Emacs-24.1. */ \
\
DEFINE (Bunbind_all, 0222) /* Obsolete. Never used. */ \
\
DEFINE (Bset_marker, 0223) \
DEFINE (Bmatch_beginning, 0224) \
DEFINE (Bmatch_end, 0225) \
DEFINE (Bupcase, 0226) \
DEFINE (Bdowncase, 0227) \
\
DEFINE (Bstringeqlsign, 0230) \
DEFINE (Bstringlss, 0231) \
DEFINE (Bequal, 0232) \
DEFINE (Bnthcdr, 0233) \
DEFINE (Belt, 0234) \
DEFINE (Bmember, 0235) \
DEFINE (Bassq, 0236) \
DEFINE (Bnreverse, 0237) \
DEFINE (Bsetcar, 0240) \
DEFINE (Bsetcdr, 0241) \
DEFINE (Bcar_safe, 0242) \
DEFINE (Bcdr_safe, 0243) \
DEFINE (Bnconc, 0244) \
DEFINE (Bquo, 0245) \
DEFINE (Brem, 0246) \
DEFINE (Bnumberp, 0247) \
DEFINE (Bintegerp, 0250) \
\
DEFINE (BRgoto, 0252) \
DEFINE (BRgotoifnil, 0253) \
DEFINE (BRgotoifnonnil, 0254) \
DEFINE (BRgotoifnilelsepop, 0255) \
DEFINE (BRgotoifnonnilelsepop, 0256) \
\
DEFINE (BlistN, 0257) \
DEFINE (BconcatN, 0260) \
DEFINE (BinsertN, 0261) \
\
/* Bstack_ref is code 0. */ \
DEFINE (Bstack_set, 0262) \
DEFINE (Bstack_set2, 0263) \
DEFINE (BdiscardN, 0266) \
\
DEFINE (Bconstant, 0300)
enum byte_code_op
{
#define DEFINE(name, value) name = value,
BYTE_CODES
#undef DEFINE
#ifdef BYTE_CODE_SAFE
Bscan_buffer = 0153, /* No longer generated as of v18. */
Bset_mark = 0163, /* this loser is no longer generated as of v18 */
#endif
};
/* Whether to maintain a `top' and `bottom' field in the stack frame. */
#define BYTE_MAINTAIN_TOP BYTE_CODE_SAFE
/* Structure describing a value stack used during byte-code execution
in Fbyte_code. */
struct byte_stack
{
/* Program counter. This points into the byte_string below
and is relocated when that string is relocated. */
const unsigned char *pc;
/* Top and bottom of stack. The bottom points to an area of memory
allocated with alloca in Fbyte_code. */
#if BYTE_MAINTAIN_TOP
Lisp_Object *top, *bottom;
#endif
/* The string containing the byte-code, and its current address.
Storing this here protects it from GC because mark_byte_stack
marks it. */
Lisp_Object byte_string;
const unsigned char *byte_string_start;
/* Next entry in byte_stack_list. */
struct byte_stack *next;
};
/* A list of currently active byte-code execution value stacks.
Fbyte_code adds an entry to the head of this list before it starts
processing byte-code, and it removes the entry again when it is
done. Signaling an error truncates the list. */
struct byte_stack *byte_stack_list;
/* Relocate program counters in the stacks on byte_stack_list. Called
when GC has completed. */
void
relocate_byte_stack (void)
{
struct byte_stack *stack;
for (stack = byte_stack_list; stack; stack = stack->next)
{
if (stack->byte_string_start != SDATA (stack->byte_string))
{
ptrdiff_t offset = stack->pc - stack->byte_string_start;
stack->byte_string_start = SDATA (stack->byte_string);
stack->pc = stack->byte_string_start + offset;
}
}
}
/* Fetch the next byte from the bytecode stream. */
#ifdef BYTE_CODE_SAFE
#define FETCH (eassert (stack.byte_string_start == SDATA (stack.byte_string)), *stack.pc++)
#else
#define FETCH *stack.pc++
#endif
/* Fetch two bytes from the bytecode stream and make a 16-bit number
out of them. */
#define FETCH2 (op = FETCH, op + (FETCH << 8))
/* Push x onto the execution stack. This used to be #define PUSH(x)
(*++stackp = (x)) This oddity is necessary because Alliant can't be
bothered to compile the preincrement operator properly, as of 4/91.
-JimB */
#define PUSH(x) (top++, *top = (x))
/* Pop a value off the execution stack. */
#define POP (*top--)
/* Discard n values from the execution stack. */
#define DISCARD(n) (top -= (n))
/* Get the value which is at the top of the execution stack, but don't
pop it. */
#define TOP (*top)
/* Actions that must be performed before and after calling a function
that might GC. */
#if !BYTE_MAINTAIN_TOP
#define BEFORE_POTENTIAL_GC() ((void)0)
#define AFTER_POTENTIAL_GC() ((void)0)
#else
#define BEFORE_POTENTIAL_GC() stack.top = top
#define AFTER_POTENTIAL_GC() stack.top = NULL
#endif
/* Garbage collect if we have consed enough since the last time.
We do this at every branch, to avoid loops that never GC. */
#define MAYBE_GC() \
do { \
BEFORE_POTENTIAL_GC (); \
maybe_gc (); \
AFTER_POTENTIAL_GC (); \
} while (0)
/* Check for jumping out of range. */
#ifdef BYTE_CODE_SAFE
#define CHECK_RANGE(ARG) \
if (ARG >= bytestr_length) emacs_abort ()
#else /* not BYTE_CODE_SAFE */
#define CHECK_RANGE(ARG)
#endif /* not BYTE_CODE_SAFE */
/* A version of the QUIT macro which makes sure that the stack top is
set before signaling `quit'. */
#define BYTE_CODE_QUIT \
do { \
if (!NILP (Vquit_flag) && NILP (Vinhibit_quit)) \
{ \
Lisp_Object flag = Vquit_flag; \
Vquit_flag = Qnil; \
BEFORE_POTENTIAL_GC (); \
if (EQ (Vthrow_on_input, flag)) \
Fthrow (Vthrow_on_input, Qt); \
Fsignal (Qquit, Qnil); \
AFTER_POTENTIAL_GC (); \
} \
else if (pending_signals) \
process_pending_signals (); \
} while (0)
DEFUN ("byte-code", Fbyte_code, Sbyte_code, 3, 3, 0,
doc: /* Function used internally in byte-compiled code.
The first argument, BYTESTR, is a string of byte code;
the second, VECTOR, a vector of constants;
the third, MAXDEPTH, the maximum stack depth used in this function.
If the third argument is incorrect, Emacs may crash. */)
(Lisp_Object bytestr, Lisp_Object vector, Lisp_Object maxdepth)
{
return exec_byte_code (bytestr, vector, maxdepth, Qnil, 0, NULL);
}
static void
bcall0 (Lisp_Object f)
{
Ffuncall (1, &f);
}
/* Execute the byte-code in BYTESTR. VECTOR is the constant vector, and
MAXDEPTH is the maximum stack depth used (if MAXDEPTH is incorrect,
emacs may crash!). If ARGS_TEMPLATE is non-nil, it should be a lisp
argument list (including &rest, &optional, etc.), and ARGS, of size
NARGS, should be a vector of the actual arguments. The arguments in
ARGS are pushed on the stack according to ARGS_TEMPLATE before
executing BYTESTR. */
Lisp_Object
exec_byte_code (Lisp_Object bytestr, Lisp_Object vector, Lisp_Object maxdepth,
Lisp_Object args_template, ptrdiff_t nargs, Lisp_Object *args)
{
ptrdiff_t count = SPECPDL_INDEX ();
#ifdef BYTE_CODE_METER
int volatile this_op = 0;
int prev_op;
#endif
int op;
/* Lisp_Object v1, v2; */
Lisp_Object *vectorp;
#ifdef BYTE_CODE_SAFE
ptrdiff_t const_length;
Lisp_Object *stacke;
ptrdiff_t bytestr_length;
#endif
struct byte_stack stack;
Lisp_Object *top;
Lisp_Object result;
enum handlertype type;
#if 0 /* CHECK_FRAME_FONT */
{
struct frame *f = SELECTED_FRAME ();
if (FRAME_X_P (f)
&& FRAME_FONT (f)->direction != 0
&& FRAME_FONT (f)->direction != 1)
emacs_abort ();
}
#endif
CHECK_STRING (bytestr);
CHECK_VECTOR (vector);
CHECK_NATNUM (maxdepth);
#ifdef BYTE_CODE_SAFE
const_length = ASIZE (vector);
#endif
if (STRING_MULTIBYTE (bytestr))
/* BYTESTR must have been produced by Emacs 20.2 or the earlier
because they produced a raw 8-bit string for byte-code and now
such a byte-code string is loaded as multibyte while raw 8-bit
characters converted to multibyte form. Thus, now we must
convert them back to the originally intended unibyte form. */
bytestr = Fstring_as_unibyte (bytestr);
#ifdef BYTE_CODE_SAFE
bytestr_length = SBYTES (bytestr);
#endif
vectorp = XVECTOR (vector)->contents;
stack.byte_string = bytestr;
stack.pc = stack.byte_string_start = SDATA (bytestr);
if (MAX_ALLOCA / word_size <= XFASTINT (maxdepth))
memory_full (SIZE_MAX);
top = alloca ((XFASTINT (maxdepth) + 1) * sizeof *top);
#if BYTE_MAINTAIN_TOP
stack.bottom = top + 1;
stack.top = NULL;
#endif
stack.next = byte_stack_list;
byte_stack_list = &stack;
#ifdef BYTE_CODE_SAFE
stacke = stack.bottom - 1 + XFASTINT (maxdepth);
#endif
if (INTEGERP (args_template))
{
ptrdiff_t at = XINT (args_template);
bool rest = (at & 128) != 0;
int mandatory = at & 127;
ptrdiff_t nonrest = at >> 8;
eassert (mandatory <= nonrest);
if (nargs <= nonrest)
{
ptrdiff_t i;
for (i = 0 ; i < nargs; i++, args++)
PUSH (*args);
if (nargs < mandatory)
/* Too few arguments. */
Fsignal (Qwrong_number_of_arguments,
list2 (Fcons (make_number (mandatory),
rest ? Qand_rest : make_number (nonrest)),
make_number (nargs)));
else
{
for (; i < nonrest; i++)
PUSH (Qnil);
if (rest)
PUSH (Qnil);
}
}
else if (rest)
{
ptrdiff_t i;
for (i = 0 ; i < nonrest; i++, args++)
PUSH (*args);
PUSH (Flist (nargs - nonrest, args));
}
else
/* Too many arguments. */
Fsignal (Qwrong_number_of_arguments,
list2 (Fcons (make_number (mandatory), make_number (nonrest)),
make_number (nargs)));
}
else if (! NILP (args_template))
/* We should push some arguments on the stack. */
{
error ("Unknown args template!");
}
while (1)
{
#ifdef BYTE_CODE_SAFE
if (top > stacke)
emacs_abort ();
else if (top < stack.bottom - 1)
emacs_abort ();
#endif
#ifdef BYTE_CODE_METER
prev_op = this_op;
this_op = op = FETCH;
METER_CODE (prev_op, op);
#else
#ifndef BYTE_CODE_THREADED
op = FETCH;
#endif
#endif
/* The interpreter can be compiled one of two ways: as an
ordinary switch-based interpreter, or as a threaded
interpreter. The threaded interpreter relies on GCC's
computed goto extension, so it is not available everywhere.
Threading provides a performance boost. These macros are how
we allow the code to be compiled both ways. */
#ifdef BYTE_CODE_THREADED
/* The CASE macro introduces an instruction's body. It is
either a label or a case label. */
#define CASE(OP) insn_ ## OP
/* NEXT is invoked at the end of an instruction to go to the
next instruction. It is either a computed goto, or a
plain break. */
#define NEXT goto *(targets[op = FETCH])
/* FIRST is like NEXT, but is only used at the start of the
interpreter body. In the switch-based interpreter it is the
switch, so the threaded definition must include a semicolon. */
#define FIRST NEXT;
/* Most cases are labeled with the CASE macro, above.
CASE_DEFAULT is one exception; it is used if the interpreter
being built requires a default case. The threaded
interpreter does not, because the dispatch table is
completely filled. */
#define CASE_DEFAULT
/* This introduces an instruction that is known to call abort. */
#define CASE_ABORT CASE (Bstack_ref): CASE (default)
#else
/* See above for the meaning of the various defines. */
#define CASE(OP) case OP
#define NEXT break
#define FIRST switch (op)
#define CASE_DEFAULT case 255: default:
#define CASE_ABORT case 0
#endif
#ifdef BYTE_CODE_THREADED
/* A convenience define that saves us a lot of typing and makes
the table clearer. */
#define LABEL(OP) [OP] = &&insn_ ## OP
#if 4 < __GNUC__ + (6 <= __GNUC_MINOR__)
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Woverride-init"
#elif defined __clang__
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Winitializer-overrides"
#endif
/* This is the dispatch table for the threaded interpreter. */
static const void *const targets[256] =
{
[0 ... (Bconstant - 1)] = &&insn_default,
[Bconstant ... 255] = &&insn_Bconstant,
#define DEFINE(name, value) LABEL (name) ,
BYTE_CODES
#undef DEFINE
};
#if 4 < __GNUC__ + (6 <= __GNUC_MINOR__) || defined __clang__
# pragma GCC diagnostic pop
#endif
#endif
FIRST
{
CASE (Bvarref7):
op = FETCH2;
goto varref;
CASE (Bvarref):
CASE (Bvarref1):
CASE (Bvarref2):
CASE (Bvarref3):
CASE (Bvarref4):
CASE (Bvarref5):
op = op - Bvarref;
goto varref;
/* This seems to be the most frequently executed byte-code
among the Bvarref's, so avoid a goto here. */
CASE (Bvarref6):
op = FETCH;
varref:
{
Lisp_Object v1, v2;
v1 = vectorp[op];
if (SYMBOLP (v1))
{
if (XSYMBOL (v1)->redirect != SYMBOL_PLAINVAL
|| (v2 = SYMBOL_VAL (XSYMBOL (v1)),
EQ (v2, Qunbound)))
{
BEFORE_POTENTIAL_GC ();
v2 = Fsymbol_value (v1);
AFTER_POTENTIAL_GC ();
}
}
else
{
BEFORE_POTENTIAL_GC ();
v2 = Fsymbol_value (v1);
AFTER_POTENTIAL_GC ();
}
PUSH (v2);
NEXT;
}
CASE (Bgotoifnil):
{
Lisp_Object v1;
MAYBE_GC ();
op = FETCH2;
v1 = POP;
if (NILP (v1))
{
BYTE_CODE_QUIT;
CHECK_RANGE (op);
stack.pc = stack.byte_string_start + op;
}
NEXT;
}
CASE (Bcar):
{
Lisp_Object v1;
v1 = TOP;
if (CONSP (v1))
TOP = XCAR (v1);
else if (NILP (v1))
TOP = Qnil;
else
{
BEFORE_POTENTIAL_GC ();
wrong_type_argument (Qlistp, v1);
}
NEXT;
}
CASE (Beq):
{
Lisp_Object v1;
v1 = POP;
TOP = EQ (v1, TOP) ? Qt : Qnil;
NEXT;
}
CASE (Bmemq):
{
Lisp_Object v1;
BEFORE_POTENTIAL_GC ();
v1 = POP;
TOP = Fmemq (TOP, v1);
AFTER_POTENTIAL_GC ();
NEXT;
}
CASE (Bcdr):
{
Lisp_Object v1;
v1 = TOP;
if (CONSP (v1))
TOP = XCDR (v1);
else if (NILP (v1))
TOP = Qnil;
else
{
BEFORE_POTENTIAL_GC ();
wrong_type_argument (Qlistp, v1);
}
NEXT;
}
CASE (Bvarset):
CASE (Bvarset1):
CASE (Bvarset2):
CASE (Bvarset3):
CASE (Bvarset4):
CASE (Bvarset5):
op -= Bvarset;
goto varset;
CASE (Bvarset7):
op = FETCH2;
goto varset;
CASE (Bvarset6):
op = FETCH;
varset:
{
Lisp_Object sym, val;
sym = vectorp[op];
val = TOP;
/* Inline the most common case. */
if (SYMBOLP (sym)
&& !EQ (val, Qunbound)
&& !XSYMBOL (sym)->redirect
&& !SYMBOL_CONSTANT_P (sym))
SET_SYMBOL_VAL (XSYMBOL (sym), val);
else
{
BEFORE_POTENTIAL_GC ();
set_internal (sym, val, Qnil, 0);
AFTER_POTENTIAL_GC ();
}
}
(void) POP;
NEXT;
CASE (Bdup):
{
Lisp_Object v1;
v1 = TOP;
PUSH (v1);
NEXT;
}
/* ------------------ */
CASE (Bvarbind6):
op = FETCH;
goto varbind;
CASE (Bvarbind7):
op = FETCH2;
goto varbind;
CASE (Bvarbind):
CASE (Bvarbind1):
CASE (Bvarbind2):
CASE (Bvarbind3):
CASE (Bvarbind4):
CASE (Bvarbind5):
op -= Bvarbind;
varbind:
/* Specbind can signal and thus GC. */
BEFORE_POTENTIAL_GC ();
specbind (vectorp[op], POP);
AFTER_POTENTIAL_GC ();
NEXT;
CASE (Bcall6):
op = FETCH;
goto docall;
CASE (Bcall7):
op = FETCH2;
goto docall;
CASE (Bcall):
CASE (Bcall1):
CASE (Bcall2):
CASE (Bcall3):
CASE (Bcall4):
CASE (Bcall5):
op -= Bcall;
docall:
{
BEFORE_POTENTIAL_GC ();
DISCARD (op);
#ifdef BYTE_CODE_METER
if (byte_metering_on && SYMBOLP (TOP))
{
Lisp_Object v1, v2;
v1 = TOP;
v2 = Fget (v1, Qbyte_code_meter);
if (INTEGERP (v2)
&& XINT (v2) < MOST_POSITIVE_FIXNUM)
{
XSETINT (v2, XINT (v2) + 1);
Fput (v1, Qbyte_code_meter, v2);
}
}
#endif
TOP = Ffuncall (op + 1, &TOP);
AFTER_POTENTIAL_GC ();
NEXT;
}
CASE (Bunbind6):
op = FETCH;
goto dounbind;
CASE (Bunbind7):
op = FETCH2;
goto dounbind;
CASE (Bunbind):
CASE (Bunbind1):
CASE (Bunbind2):
CASE (Bunbind3):
CASE (Bunbind4):
CASE (Bunbind5):
op -= Bunbind;
dounbind:
BEFORE_POTENTIAL_GC ();
unbind_to (SPECPDL_INDEX () - op, Qnil);
AFTER_POTENTIAL_GC ();
NEXT;
CASE (Bunbind_all): /* Obsolete. Never used. */
/* To unbind back to the beginning of this frame. Not used yet,
but will be needed for tail-recursion elimination. */
BEFORE_POTENTIAL_GC ();
unbind_to (count, Qnil);
AFTER_POTENTIAL_GC ();
NEXT;
CASE (Bgoto):
MAYBE_GC ();
BYTE_CODE_QUIT;
op = FETCH2; /* pc = FETCH2 loses since FETCH2 contains pc++ */
CHECK_RANGE (op);
stack.pc = stack.byte_string_start + op;
NEXT;
CASE (Bgotoifnonnil):
{
Lisp_Object v1;
MAYBE_GC ();
op = FETCH2;
v1 = POP;
if (!NILP (v1))
{
BYTE_CODE_QUIT;
CHECK_RANGE (op);
stack.pc = stack.byte_string_start + op;
}
NEXT;
}
CASE (Bgotoifnilelsepop):
MAYBE_GC ();
op = FETCH2;
if (NILP (TOP))
{
BYTE_CODE_QUIT;
CHECK_RANGE (op);
stack.pc = stack.byte_string_start + op;
}
else DISCARD (1);
NEXT;
CASE (Bgotoifnonnilelsepop):
MAYBE_GC ();
op = FETCH2;
if (!NILP (TOP))
{
BYTE_CODE_QUIT;
CHECK_RANGE (op);
stack.pc = stack.byte_string_start + op;
}
else DISCARD (1);
NEXT;
CASE (BRgoto):
MAYBE_GC ();
BYTE_CODE_QUIT;
stack.pc += (int) *stack.pc - 127;
NEXT;
CASE (BRgotoifnil):
{
Lisp_Object v1;
MAYBE_GC ();
v1 = POP;
if (NILP (v1))
{
BYTE_CODE_QUIT;
stack.pc += (int) *stack.pc - 128;
}
stack.pc++;
NEXT;
}
CASE (BRgotoifnonnil):
{
Lisp_Object v1;
MAYBE_GC ();
v1 = POP;
if (!NILP (v1))
{
BYTE_CODE_QUIT;
stack.pc += (int) *stack.pc - 128;
}
stack.pc++;
NEXT;
}
CASE (BRgotoifnilelsepop):
MAYBE_GC ();
op = *stack.pc++;
if (NILP (TOP))
{
BYTE_CODE_QUIT;
stack.pc += op - 128;
}
else DISCARD (1);
NEXT;
CASE (BRgotoifnonnilelsepop):
MAYBE_GC ();
op = *stack.pc++;
if (!NILP (TOP))
{
BYTE_CODE_QUIT;
stack.pc += op - 128;
}
else DISCARD (1);
NEXT;
CASE (Breturn):
result = POP;
goto exit;
CASE (Bdiscard):
DISCARD (1);
NEXT;
CASE (Bconstant2):
PUSH (vectorp[FETCH2]);
NEXT;
CASE (Bsave_excursion):
record_unwind_protect (save_excursion_restore,
save_excursion_save ());
NEXT;
CASE (Bsave_current_buffer): /* Obsolete since ??. */
CASE (Bsave_current_buffer_1):
record_unwind_current_buffer ();
NEXT;
CASE (Bsave_window_excursion): /* Obsolete since 24.1. */
{
ptrdiff_t count1 = SPECPDL_INDEX ();
record_unwind_protect (restore_window_configuration,
Fcurrent_window_configuration (Qnil));
BEFORE_POTENTIAL_GC ();
TOP = Fprogn (TOP);
unbind_to (count1, TOP);
AFTER_POTENTIAL_GC ();
NEXT;
}
CASE (Bsave_restriction):
record_unwind_protect (save_restriction_restore,
save_restriction_save ());
NEXT;
CASE (Bcatch): /* Obsolete since 24.4. */
{
Lisp_Object v1;
BEFORE_POTENTIAL_GC ();
v1 = POP;
TOP = internal_catch (TOP, eval_sub, v1);
AFTER_POTENTIAL_GC ();
NEXT;
}
CASE (Bpushcatch): /* New in 24.4. */
type = CATCHER;
goto pushhandler;
CASE (Bpushconditioncase): /* New in 24.4. */
type = CONDITION_CASE;
pushhandler:
{
Lisp_Object tag = POP;
int dest = FETCH2;
struct handler *c = push_handler (tag, type);
c->bytecode_dest = dest;
c->bytecode_top = top;
if (sys_setjmp (c->jmp))
{
struct handler *c = handlerlist;
int dest;
top = c->bytecode_top;
dest = c->bytecode_dest;
handlerlist = c->next;
PUSH (c->val);
CHECK_RANGE (dest);
/* Might have been re-set by longjmp! */
stack.byte_string_start = SDATA (stack.byte_string);
stack.pc = stack.byte_string_start + dest;
}
NEXT;
}
CASE (Bpophandler): /* New in 24.4. */
{
handlerlist = handlerlist->next;
NEXT;
}
CASE (Bunwind_protect): /* FIXME: avoid closure for lexbind. */
{
Lisp_Object handler = POP;
/* Support for a function here is new in 24.4. */
record_unwind_protect (NILP (Ffunctionp (handler))
? unwind_body : bcall0,
handler);
NEXT;
}
CASE (Bcondition_case): /* Obsolete since 24.4. */
{
Lisp_Object handlers, body;
handlers = POP;
body = POP;
BEFORE_POTENTIAL_GC ();
TOP = internal_lisp_condition_case (TOP, body, handlers);
AFTER_POTENTIAL_GC ();
NEXT;
}
CASE (Btemp_output_buffer_setup): /* Obsolete since 24.1. */
BEFORE_POTENTIAL_GC ();
CHECK_STRING (TOP);
temp_output_buffer_setup (SSDATA (TOP));
AFTER_POTENTIAL_GC ();
TOP = Vstandard_output;
NEXT;
CASE (Btemp_output_buffer_show): /* Obsolete since 24.1. */
{
Lisp_Object v1;
BEFORE_POTENTIAL_GC ();
v1 = POP;
temp_output_buffer_show (TOP);
TOP = v1;
/* pop binding of standard-output */
unbind_to (SPECPDL_INDEX () - 1, Qnil);
AFTER_POTENTIAL_GC ();
NEXT;
}
CASE (Bnth):
{
Lisp_Object v1, v2;
EMACS_INT n;
BEFORE_POTENTIAL_GC ();
v1 = POP;
v2 = TOP;
CHECK_NUMBER (v2);
n = XINT (v2);
immediate_quit = 1;
while (--n >= 0 && CONSP (v1))
v1 = XCDR (v1);
immediate_quit = 0;
TOP = CAR (v1);
AFTER_POTENTIAL_GC ();
NEXT;
}
CASE (Bsymbolp):
TOP = SYMBOLP (TOP) ? Qt : Qnil;
NEXT;
CASE (Bconsp):
TOP = CONSP (TOP) ? Qt : Qnil;
NEXT;
CASE (Bstringp):
TOP = STRINGP (TOP) ? Qt : Qnil;
NEXT;
CASE (Blistp):
TOP = CONSP (TOP) || NILP (TOP) ? Qt : Qnil;
NEXT;
CASE (Bnot):
TOP = NILP (TOP) ? Qt : Qnil;
NEXT;
CASE (Bcons):
{
Lisp_Object v1;
v1 = POP;
TOP = Fcons (TOP, v1);
NEXT;
}
CASE (Blist1):
TOP = list1 (TOP);
NEXT;
CASE (Blist2):
{
Lisp_Object v1;
v1 = POP;
TOP = list2 (TOP, v1);
NEXT;
}
CASE (Blist3):
DISCARD (2);
TOP = Flist (3, &TOP);
NEXT;
CASE (Blist4):
DISCARD (3);
TOP = Flist (4, &TOP);
NEXT;
CASE (BlistN):
op = FETCH;
DISCARD (op - 1);
TOP = Flist (op, &TOP);
NEXT;
CASE (Blength):
BEFORE_POTENTIAL_GC ();
TOP = Flength (TOP);
AFTER_POTENTIAL_GC ();
NEXT;
CASE (Baref):
{
Lisp_Object v1;
BEFORE_POTENTIAL_GC ();
v1 = POP;
TOP = Faref (TOP, v1);
AFTER_POTENTIAL_GC ();
NEXT;
}
CASE (Baset):
{
Lisp_Object v1, v2;
BEFORE_POTENTIAL_GC ();
v2 = POP; v1 = POP;
TOP = Faset (TOP, v1, v2);
AFTER_POTENTIAL_GC ();
NEXT;
}
CASE (Bsymbol_value):
BEFORE_POTENTIAL_GC ();
TOP = Fsymbol_value (TOP);
AFTER_POTENTIAL_GC ();
NEXT;
CASE (Bsymbol_function):
BEFORE_POTENTIAL_GC ();
TOP = Fsymbol_function (TOP);
AFTER_POTENTIAL_GC ();
NEXT;
CASE (Bset):
{
Lisp_Object v1;
BEFORE_POTENTIAL_GC ();
v1 = POP;
TOP = Fset (TOP, v1);
AFTER_POTENTIAL_GC ();
NEXT;
}
CASE (Bfset):
{
Lisp_Object v1;
BEFORE_POTENTIAL_GC ();
v1 = POP;
TOP = Ffset (TOP, v1);
AFTER_POTENTIAL_GC ();
NEXT;
}
CASE (Bget):
{
Lisp_Object v1;
BEFORE_POTENTIAL_GC ();
v1 = POP;
TOP = Fget (TOP, v1);
AFTER_POTENTIAL_GC ();
NEXT;
}
CASE (Bsubstring):
{
Lisp_Object v1, v2;
BEFORE_POTENTIAL_GC ();
v2 = POP; v1 = POP;
TOP = Fsubstring (TOP, v1, v2);
AFTER_POTENTIAL_GC ();
NEXT;
}
CASE (Bconcat2):
BEFORE_POTENTIAL_GC ();
DISCARD (1);
TOP = Fconcat (2, &TOP);
AFTER_POTENTIAL_GC ();
NEXT;
CASE (Bconcat3):
BEFORE_POTENTIAL_GC ();
DISCARD (2);
TOP = Fconcat (3, &TOP);
AFTER_POTENTIAL_GC ();
NEXT;
CASE (Bconcat4):
BEFORE_POTENTIAL_GC ();
DISCARD (3);
TOP = Fconcat (4, &TOP);
AFTER_POTENTIAL_GC ();
NEXT;
CASE (BconcatN):
op = FETCH;
BEFORE_POTENTIAL_GC ();
DISCARD (op - 1);
TOP = Fconcat (op, &TOP);
AFTER_POTENTIAL_GC ();
NEXT;
CASE (Bsub1):
{
Lisp_Object v1;
v1 = TOP;
if (INTEGERP (v1))
{
XSETINT (v1, XINT (v1) - 1);
TOP = v1;
}
else
{
BEFORE_POTENTIAL_GC ();
TOP = Fsub1 (v1);
AFTER_POTENTIAL_GC ();
}
NEXT;
}
CASE (Badd1):
{
Lisp_Object v1;
v1 = TOP;
if (INTEGERP (v1))
{
XSETINT (v1, XINT (v1) + 1);
TOP = v1;
}
else
{
BEFORE_POTENTIAL_GC ();
TOP = Fadd1 (v1);
AFTER_POTENTIAL_GC ();
}
NEXT;
}
CASE (Beqlsign):
{
Lisp_Object v1, v2;
BEFORE_POTENTIAL_GC ();
v2 = POP; v1 = TOP;
CHECK_NUMBER_OR_FLOAT_COERCE_MARKER (v1);
CHECK_NUMBER_OR_FLOAT_COERCE_MARKER (v2);
AFTER_POTENTIAL_GC ();
if (FLOATP (v1) || FLOATP (v2))
{
double f1, f2;
f1 = (FLOATP (v1) ? XFLOAT_DATA (v1) : XINT (v1));
f2 = (FLOATP (v2) ? XFLOAT_DATA (v2) : XINT (v2));
TOP = (f1 == f2 ? Qt : Qnil);
}
else
TOP = (XINT (v1) == XINT (v2) ? Qt : Qnil);
NEXT;
}
CASE (Bgtr):
{
Lisp_Object v1;
BEFORE_POTENTIAL_GC ();
v1 = POP;
TOP = arithcompare (TOP, v1, ARITH_GRTR);
AFTER_POTENTIAL_GC ();
NEXT;
}
CASE (Blss):
{
Lisp_Object v1;
BEFORE_POTENTIAL_GC ();
v1 = POP;
TOP = arithcompare (TOP, v1, ARITH_LESS);
AFTER_POTENTIAL_GC ();
NEXT;
}
CASE (Bleq):
{
Lisp_Object v1;
BEFORE_POTENTIAL_GC ();
v1 = POP;
TOP = arithcompare (TOP, v1, ARITH_LESS_OR_EQUAL);
AFTER_POTENTIAL_GC ();
NEXT;
}
CASE (Bgeq):
{
Lisp_Object v1;
BEFORE_POTENTIAL_GC ();
v1 = POP;
TOP = arithcompare (TOP, v1, ARITH_GRTR_OR_EQUAL);
AFTER_POTENTIAL_GC ();
NEXT;
}
CASE (Bdiff):
BEFORE_POTENTIAL_GC ();
DISCARD (1);
TOP = Fminus (2, &TOP);
AFTER_POTENTIAL_GC ();
NEXT;
CASE (Bnegate):
{
Lisp_Object v1;
v1 = TOP;
if (INTEGERP (v1))
{
XSETINT (v1, - XINT (v1));
TOP = v1;
}
else
{
BEFORE_POTENTIAL_GC ();
TOP = Fminus (1, &TOP);
AFTER_POTENTIAL_GC ();
}
NEXT;
}
CASE (Bplus):
BEFORE_POTENTIAL_GC ();
DISCARD (1);
TOP = Fplus (2, &TOP);
AFTER_POTENTIAL_GC ();
NEXT;
CASE (Bmax):
BEFORE_POTENTIAL_GC ();
DISCARD (1);
TOP = Fmax (2, &TOP);
AFTER_POTENTIAL_GC ();
NEXT;
CASE (Bmin):
BEFORE_POTENTIAL_GC ();
DISCARD (1);
TOP = Fmin (2, &TOP);
AFTER_POTENTIAL_GC ();
NEXT;
CASE (Bmult):
BEFORE_POTENTIAL_GC ();
DISCARD (1);
TOP = Ftimes (2, &TOP);
AFTER_POTENTIAL_GC ();
NEXT;
CASE (Bquo):
BEFORE_POTENTIAL_GC ();
DISCARD (1);
TOP = Fquo (2, &TOP);
AFTER_POTENTIAL_GC ();
NEXT;
CASE (Brem):
{
Lisp_Object v1;
BEFORE_POTENTIAL_GC ();
v1 = POP;
TOP = Frem (TOP, v1);
AFTER_POTENTIAL_GC ();
NEXT;
}
CASE (Bpoint):
{
Lisp_Object v1;
XSETFASTINT (v1, PT);
PUSH (v1);
NEXT;
}
CASE (Bgoto_char):
BEFORE_POTENTIAL_GC ();
TOP = Fgoto_char (TOP);
AFTER_POTENTIAL_GC ();
NEXT;
CASE (Binsert):
BEFORE_POTENTIAL_GC ();
TOP = Finsert (1, &TOP);
AFTER_POTENTIAL_GC ();
NEXT;
CASE (BinsertN):
op = FETCH;
BEFORE_POTENTIAL_GC ();
DISCARD (op - 1);
TOP = Finsert (op, &TOP);
AFTER_POTENTIAL_GC ();
NEXT;
CASE (Bpoint_max):
{
Lisp_Object v1;
XSETFASTINT (v1, ZV);
PUSH (v1);
NEXT;
}
CASE (Bpoint_min):
{
Lisp_Object v1;
XSETFASTINT (v1, BEGV);
PUSH (v1);
NEXT;
}
CASE (Bchar_after):
BEFORE_POTENTIAL_GC ();
TOP = Fchar_after (TOP);
AFTER_POTENTIAL_GC ();
NEXT;
CASE (Bfollowing_char):
{
Lisp_Object v1;
BEFORE_POTENTIAL_GC ();
v1 = Ffollowing_char ();
AFTER_POTENTIAL_GC ();
PUSH (v1);
NEXT;
}
CASE (Bpreceding_char):
{
Lisp_Object v1;
BEFORE_POTENTIAL_GC ();
v1 = Fprevious_char ();
AFTER_POTENTIAL_GC ();
PUSH (v1);
NEXT;
}
CASE (Bcurrent_column):
{
Lisp_Object v1;
BEFORE_POTENTIAL_GC ();
XSETFASTINT (v1, current_column ());
AFTER_POTENTIAL_GC ();
PUSH (v1);
NEXT;
}
CASE (Bindent_to):
BEFORE_POTENTIAL_GC ();
TOP = Findent_to (TOP, Qnil);
AFTER_POTENTIAL_GC ();
NEXT;
CASE (Beolp):
PUSH (Feolp ());
NEXT;
CASE (Beobp):
PUSH (Feobp ());
NEXT;
CASE (Bbolp):
PUSH (Fbolp ());
NEXT;
CASE (Bbobp):
PUSH (Fbobp ());
NEXT;
CASE (Bcurrent_buffer):
PUSH (Fcurrent_buffer ());
NEXT;
CASE (Bset_buffer):
BEFORE_POTENTIAL_GC ();
TOP = Fset_buffer (TOP);
AFTER_POTENTIAL_GC ();
NEXT;
CASE (Binteractive_p): /* Obsolete since 24.1. */
BEFORE_POTENTIAL_GC ();
PUSH (call0 (intern ("interactive-p")));
AFTER_POTENTIAL_GC ();
NEXT;
CASE (Bforward_char):
BEFORE_POTENTIAL_GC ();
TOP = Fforward_char (TOP);
AFTER_POTENTIAL_GC ();
NEXT;
CASE (Bforward_word):
BEFORE_POTENTIAL_GC ();
TOP = Fforward_word (TOP);
AFTER_POTENTIAL_GC ();
NEXT;
CASE (Bskip_chars_forward):
{
Lisp_Object v1;
BEFORE_POTENTIAL_GC ();
v1 = POP;
TOP = Fskip_chars_forward (TOP, v1);
AFTER_POTENTIAL_GC ();
NEXT;
}
CASE (Bskip_chars_backward):
{
Lisp_Object v1;
BEFORE_POTENTIAL_GC ();
v1 = POP;
TOP = Fskip_chars_backward (TOP, v1);
AFTER_POTENTIAL_GC ();
NEXT;
}
CASE (Bforward_line):
BEFORE_POTENTIAL_GC ();
TOP = Fforward_line (TOP);
AFTER_POTENTIAL_GC ();
NEXT;
CASE (Bchar_syntax):
{
int c;
BEFORE_POTENTIAL_GC ();
CHECK_CHARACTER (TOP);
AFTER_POTENTIAL_GC ();
c = XFASTINT (TOP);
if (NILP (BVAR (current_buffer, enable_multibyte_characters)))
MAKE_CHAR_MULTIBYTE (c);
XSETFASTINT (TOP, syntax_code_spec[SYNTAX (c)]);
}
NEXT;
CASE (Bbuffer_substring):
{
Lisp_Object v1;
BEFORE_POTENTIAL_GC ();
v1 = POP;
TOP = Fbuffer_substring (TOP, v1);
AFTER_POTENTIAL_GC ();
NEXT;
}
CASE (Bdelete_region):
{
Lisp_Object v1;
BEFORE_POTENTIAL_GC ();
v1 = POP;
TOP = Fdelete_region (TOP, v1);
AFTER_POTENTIAL_GC ();
NEXT;
}
CASE (Bnarrow_to_region):
{
Lisp_Object v1;
BEFORE_POTENTIAL_GC ();
v1 = POP;
TOP = Fnarrow_to_region (TOP, v1);
AFTER_POTENTIAL_GC ();
NEXT;
}
CASE (Bwiden):
BEFORE_POTENTIAL_GC ();
PUSH (Fwiden ());
AFTER_POTENTIAL_GC ();
NEXT;
CASE (Bend_of_line):
BEFORE_POTENTIAL_GC ();
TOP = Fend_of_line (TOP);
AFTER_POTENTIAL_GC ();
NEXT;
CASE (Bset_marker):
{
Lisp_Object v1, v2;
BEFORE_POTENTIAL_GC ();
v1 = POP;
v2 = POP;
TOP = Fset_marker (TOP, v2, v1);
AFTER_POTENTIAL_GC ();
NEXT;
}
CASE (Bmatch_beginning):
BEFORE_POTENTIAL_GC ();
TOP = Fmatch_beginning (TOP);
AFTER_POTENTIAL_GC ();
NEXT;
CASE (Bmatch_end):
BEFORE_POTENTIAL_GC ();
TOP = Fmatch_end (TOP);
AFTER_POTENTIAL_GC ();
NEXT;
CASE (Bupcase):
BEFORE_POTENTIAL_GC ();
TOP = Fupcase (TOP);
AFTER_POTENTIAL_GC ();
NEXT;
CASE (Bdowncase):
BEFORE_POTENTIAL_GC ();
TOP = Fdowncase (TOP);
AFTER_POTENTIAL_GC ();
NEXT;
CASE (Bstringeqlsign):
{
Lisp_Object v1;
BEFORE_POTENTIAL_GC ();
v1 = POP;
TOP = Fstring_equal (TOP, v1);
AFTER_POTENTIAL_GC ();
NEXT;
}
CASE (Bstringlss):
{
Lisp_Object v1;
BEFORE_POTENTIAL_GC ();
v1 = POP;
TOP = Fstring_lessp (TOP, v1);
AFTER_POTENTIAL_GC ();
NEXT;
}
CASE (Bequal):
{
Lisp_Object v1;
v1 = POP;
TOP = Fequal (TOP, v1);
NEXT;
}
CASE (Bnthcdr):
{
Lisp_Object v1;
BEFORE_POTENTIAL_GC ();
v1 = POP;
TOP = Fnthcdr (TOP, v1);
AFTER_POTENTIAL_GC ();
NEXT;
}
CASE (Belt):
{
Lisp_Object v1, v2;
if (CONSP (TOP))
{
/* Exchange args and then do nth. */
EMACS_INT n;
BEFORE_POTENTIAL_GC ();
v2 = POP;
v1 = TOP;
CHECK_NUMBER (v2);
AFTER_POTENTIAL_GC ();
n = XINT (v2);
immediate_quit = 1;
while (--n >= 0 && CONSP (v1))
v1 = XCDR (v1);
immediate_quit = 0;
TOP = CAR (v1);
}
else
{
BEFORE_POTENTIAL_GC ();
v1 = POP;
TOP = Felt (TOP, v1);
AFTER_POTENTIAL_GC ();
}
NEXT;
}
CASE (Bmember):
{
Lisp_Object v1;
BEFORE_POTENTIAL_GC ();
v1 = POP;
TOP = Fmember (TOP, v1);
AFTER_POTENTIAL_GC ();
NEXT;
}
CASE (Bassq):
{
Lisp_Object v1;
BEFORE_POTENTIAL_GC ();
v1 = POP;
TOP = Fassq (TOP, v1);
AFTER_POTENTIAL_GC ();
NEXT;
}
CASE (Bnreverse):
BEFORE_POTENTIAL_GC ();
TOP = Fnreverse (TOP);
AFTER_POTENTIAL_GC ();
NEXT;
CASE (Bsetcar):
{
Lisp_Object v1;
BEFORE_POTENTIAL_GC ();
v1 = POP;
TOP = Fsetcar (TOP, v1);
AFTER_POTENTIAL_GC ();
NEXT;
}
CASE (Bsetcdr):
{
Lisp_Object v1;
BEFORE_POTENTIAL_GC ();
v1 = POP;
TOP = Fsetcdr (TOP, v1);
AFTER_POTENTIAL_GC ();
NEXT;
}
CASE (Bcar_safe):
{
Lisp_Object v1;
v1 = TOP;
TOP = CAR_SAFE (v1);
NEXT;
}
CASE (Bcdr_safe):
{
Lisp_Object v1;
v1 = TOP;
TOP = CDR_SAFE (v1);
NEXT;
}
CASE (Bnconc):
BEFORE_POTENTIAL_GC ();
DISCARD (1);
TOP = Fnconc (2, &TOP);
AFTER_POTENTIAL_GC ();
NEXT;
CASE (Bnumberp):
TOP = (NUMBERP (TOP) ? Qt : Qnil);
NEXT;
CASE (Bintegerp):
TOP = INTEGERP (TOP) ? Qt : Qnil;
NEXT;
#ifdef BYTE_CODE_SAFE
/* These are intentionally written using 'case' syntax,
because they are incompatible with the threaded
interpreter. */
case Bset_mark:
BEFORE_POTENTIAL_GC ();
error ("set-mark is an obsolete bytecode");
AFTER_POTENTIAL_GC ();
break;
case Bscan_buffer:
BEFORE_POTENTIAL_GC ();
error ("scan-buffer is an obsolete bytecode");
AFTER_POTENTIAL_GC ();
break;
#endif
CASE_ABORT:
/* Actually this is Bstack_ref with offset 0, but we use Bdup
for that instead. */
/* CASE (Bstack_ref): */
call3 (Qerror,
build_string ("Invalid byte opcode: op=%s, ptr=%d"),
make_number (op),
make_number ((stack.pc - 1) - stack.byte_string_start));
/* Handy byte-codes for lexical binding. */
CASE (Bstack_ref1):
CASE (Bstack_ref2):
CASE (Bstack_ref3):
CASE (Bstack_ref4):
CASE (Bstack_ref5):
{
Lisp_Object *ptr = top - (op - Bstack_ref);
PUSH (*ptr);
NEXT;
}
CASE (Bstack_ref6):
{
Lisp_Object *ptr = top - (FETCH);
PUSH (*ptr);
NEXT;
}
CASE (Bstack_ref7):
{
Lisp_Object *ptr = top - (FETCH2);
PUSH (*ptr);
NEXT;
}
CASE (Bstack_set):
/* stack-set-0 = discard; stack-set-1 = discard-1-preserve-tos. */
{
Lisp_Object *ptr = top - (FETCH);
*ptr = POP;
NEXT;
}
CASE (Bstack_set2):
{
Lisp_Object *ptr = top - (FETCH2);
*ptr = POP;
NEXT;
}
CASE (BdiscardN):
op = FETCH;
if (op & 0x80)
{
op &= 0x7F;
top[-op] = TOP;
}
DISCARD (op);
NEXT;
CASE_DEFAULT
CASE (Bconstant):
#ifdef BYTE_CODE_SAFE
if (op < Bconstant)
{
emacs_abort ();
}
if ((op -= Bconstant) >= const_length)
{
emacs_abort ();
}
PUSH (vectorp[op]);
#else
PUSH (vectorp[op - Bconstant]);
#endif
NEXT;
}
}
exit:
byte_stack_list = byte_stack_list->next;
/* Binds and unbinds are supposed to be compiled balanced. */
if (SPECPDL_INDEX () != count)
{
if (SPECPDL_INDEX () > count)
unbind_to (count, Qnil);
error ("binding stack not balanced (serious byte compiler bug)");
}
return result;
}
void
syms_of_bytecode (void)
{
defsubr (&Sbyte_code);
#ifdef BYTE_CODE_METER
DEFVAR_LISP ("byte-code-meter", Vbyte_code_meter,
doc: /* A vector of vectors which holds a histogram of byte-code usage.
(aref (aref byte-code-meter 0) CODE) indicates how many times the byte
opcode CODE has been executed.
(aref (aref byte-code-meter CODE1) CODE2), where CODE1 is not 0,
indicates how many times the byte opcodes CODE1 and CODE2 have been
executed in succession. */);
DEFVAR_BOOL ("byte-metering-on", byte_metering_on,
doc: /* If non-nil, keep profiling information on byte code usage.
The variable byte-code-meter indicates how often each byte opcode is used.
If a symbol has a property named `byte-code-meter' whose value is an
integer, it is incremented each time that symbol's function is called. */);
byte_metering_on = 0;
Vbyte_code_meter = Fmake_vector (make_number (256), make_number (0));
DEFSYM (Qbyte_code_meter, "byte-code-meter");
{
int i = 256;
while (i--)
ASET (Vbyte_code_meter, i,
Fmake_vector (make_number (256), make_number (0)));
}
#endif
}